Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F103061132
integration.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Feb 26, 23:17
Size
4 KB
Mime Type
text/x-c++
Expires
Fri, Feb 28, 23:17 (1 d, 20 h)
Engine
blob
Format
Raw Data
Handle
24487852
Attached To
rTAMAAS tamaas
integration.hh
View Options
/**
* @file
*
* @author Lucas Frérot <lucas.frerot@epfl.ch>
*
* @section LICENSE
*
* Copyright (©) 2018-2021 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Expolit is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Expolit is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Expolit. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef INTEGRATION_HH
#define INTEGRATION_HH
#include "differentiation.hh"
#include "exponential.hh"
#include "litteral.hh"
#include "polynomial.hh"
#include "types.hh"
namespace
expolit
{
namespace
detail
{
template
<
std
::
size_t
i
>
struct
for_integ
{
template
<
typename
CT
,
std
::
size_t
n
>
static
constexpr
void
integ
(
std
::
array
<
CT
,
n
+
1
>&
res
,
const
std
::
array
<
CT
,
n
>&
a
)
{
std
::
get
<
i
>
(
res
)
=
a
[
i
-
1
]
/
static_cast
<
CT
>
(
i
);
for_integ
<
i
-
1
>::
integ
(
res
,
a
);
}
};
template
<>
struct
for_integ
<
1
>
{
template
<
typename
CT
,
std
::
size_t
n
>
static
constexpr
void
integ
(
std
::
array
<
CT
,
n
+
1
>&
res
,
const
std
::
array
<
CT
,
n
>&
a
)
{
std
::
get
<
1
>
(
res
)
=
a
[
0
];
}
};
}
// namespace detail
/// Integrate polynomial
template
<
typename
CT
,
UInt
order
>
constexpr
auto
integrate
(
const
Polynomial
<
CT
,
order
>&
p
)
{
Polynomial
<
CT
,
order
+
1
>
ip
;
detail
::
for_integ
<
ip
.
terms
-
1
>::
integ
(
ip
.
coeffs
,
p
.
coeffs
);
return
ip
;
}
/// Integrate litteral
template
<
typename
Tag
>
constexpr
auto
integrate
(
const
Litteral
<
Tag
>&
q
)
{
constexpr
Polynomial
<
Int
,
1
>
id
({
0
,
1
});
return
q
*
id
;
}
/// Integrate constant * expression
template
<
typename
CT
,
typename
Derived
>
constexpr
auto
integrate
(
const
Product
<
Constant
<
CT
>
,
Derived
>&
p
)
{
return
p
.
operands
.
first
*
integrate
(
p
.
operands
.
second
);
}
/// Integrate expression * constant
template
<
typename
CT
,
typename
Derived
>
constexpr
auto
integrate
(
const
Product
<
Derived
,
Constant
<
CT
>>&
p
)
{
return
integrate
(
p
.
commute
());
}
/// Integrate litteral * expression
template
<
typename
Tag
,
typename
Derived
>
constexpr
auto
integrate
(
const
Product
<
Litteral
<
Tag
>
,
Derived
>&
p
)
{
return
p
.
operands
.
first
*
integrate
(
p
.
operands
.
second
);
}
/// Integrate expression * litteral
template
<
typename
Tag
,
typename
Derived
>
constexpr
auto
integrate
(
const
Product
<
Derived
,
Litteral
<
Tag
>>&
p
)
{
return
integrate
(
p
.
commute
());
}
/// Integrate litteral / expression
template
<
typename
Tag
,
typename
Derived
>
constexpr
auto
integrate
(
const
Division
<
Derived
,
Litteral
<
Tag
>>&
p
)
{
return
integrate
(
p
.
operands
.
first
)
/
p
.
operands
.
second
;
}
/// Integrate exponential of order 1 polynomial
template
<
typename
CT
>
constexpr
auto
integrate
(
const
Exponential
<
Polynomial
<
CT
,
1
>>&
e
)
{
return
Constant
<
CT
>
({
1
/
e
.
expression
.
coeffs
.
back
()})
*
e
;
}
/// Integrate exponential of litteral * order 1 polynomial
template
<
typename
Tag
,
typename
CT
>
constexpr
auto
integrate
(
const
Exponential
<
Product
<
Litteral
<
Tag
>
,
Polynomial
<
CT
,
1
>>>&
e
)
{
return
e
*
Constant
<
CT
>
({
1
/
e
.
expression
.
operands
.
second
.
coeffs
.
back
()})
/
e
.
expression
.
operands
.
first
;
}
/// Integrate exponential of order 1 polynomial * litteral
template
<
typename
Tag
,
typename
CT
>
constexpr
auto
integrate
(
const
Exponential
<
Product
<
Polynomial
<
CT
,
1
>
,
Litteral
<
Tag
>>>&
e
)
{
return
integrate
(
e
.
op
(
e
.
expression
.
commute
()));
}
/// Integration by parts of expression * polynomial
template
<
typename
Derived
,
typename
CT
,
UInt
order
>
constexpr
auto
integrate
(
const
Product
<
Derived
,
Polynomial
<
CT
,
order
>>&
p
)
{
auto
u
=
integrate
(
p
.
operands
.
first
);
return
u
*
p
.
operands
.
second
-
integrate
(
u
*
differentiate
(
p
.
operands
.
second
));
}
/// Integration by parts of polynomial * expression
template
<
typename
Derived
,
typename
CT
,
UInt
order
>
constexpr
auto
integrate
(
const
Product
<
Polynomial
<
CT
,
order
>
,
Derived
>&
p
)
{
return
integrate
(
p
.
commute
());
}
/// Integration of sum
template
<
typename
Der1
,
typename
Der2
>
constexpr
auto
integrate
(
const
Sum
<
Der1
,
Der2
>&
s
)
{
return
integrate
(
s
.
operands
.
first
)
+
integrate
(
s
.
operands
.
second
);
}
/// Compute definite integral
template
<
typename
T
,
typename
Derived
>
constexpr
auto
definite_integral
(
const
std
::
pair
<
T
,
T
>&
bounds
,
const
Expression
<
Derived
>&
exp
)
{
auto
integ
=
integrate
(
exp
.
downcast
());
return
integ
(
bounds
.
second
)
-
integ
(
bounds
.
first
);
}
}
// namespace expolit
#endif
Event Timeline
Log In to Comment