diff --git a/TP_prediction/find_best_TPs.py b/TP_prediction/find_best_TPs.py
index 4ed03ee..f10e45c 100644
--- a/TP_prediction/find_best_TPs.py
+++ b/TP_prediction/find_best_TPs.py
@@ -1,231 +1,287 @@
 import sys
 sys.path.insert(0, '../src/envipath-python/enviPath_python/')
 sys.path.insert(0, '../src/envipath-python/')
 from enviPath_python.enviPath import *
 from enviPath_python.enviPath import *
 from util import *
 import getpass
 
 #---------------------------#
 # enviPath SETTINGS         #
 #---------------------------#
 
 # Define the instance to use
 INSTANCE_HOST = 'https://envipath.org'
 USERNAME = '' # TODO USER: enter your username
 
 # MODEL # TODO USER: Select model for relative reasoning. Default: Standard model BBD - ML - ECC - 2022
 # New enviPath - default relative reasoning model on envipath: BBD - ML - ECC - 2022
-EP_MODEL_ID = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/646afb6c-6cfc-4d4b-8d22-e196d849ec73'
+# EP_MODEL_ID = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/646afb6c-6cfc-4d4b-8d22-e196d849ec73'
 # New enviPath - BBD+SOIL relative reasoning model on envipath: BBD+SOIL - ML - ECC - 2022
-# rr_id = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/0aec0115-941d-4e33-a844-4431d3ec598d'
+# EP_MODEL_ID = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/0aec0115-941d-4e33-a844-4431d3ec598d'
 # New enviPath - BBD+SOIL relative reasoning model on envipath: BBD+SLUDGE - ML - ECC - 2022
-# rr_id = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/2a41e599-f962-4268-b7d1-5f1cb252b937'
+# EP_MODEL_ID = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/2a41e599-f962-4268-b7d1-5f1cb252b937'
 # New enviPath - BBD+SOIL relative reasoning model on envipath: BBD+SOIL+SLUDGE - ML - ECC - 2022
-# rr_id = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/76bd8654-e02f-4fbd-98df-bf61411f9b92'
+# EP_MODEL_ID = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/76bd8654-e02f-4fbd-98df-bf61411f9b92'
+# Old model - old default relative reasoning model on envipath from 2021: BBD - ML - ECC
+EP_MODEL_ID = 'https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/relative-reasoning/edaf8d8c-430a-4277-848b-3e163a86febf'
 
 # PACKAGE - # TODO USER: prepare a new package (manually) and add it's URI here - make sure it is empty when running script!
 EP_PACKAGE_ID = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55' # Test package
 # List of output packages used for Sludge TP paper
-# pkg_id_1 = 'https://envipath.org/package/0915fad3-b889-4aa8-ac98-0707b717be57' # Package for results using BBD - ML - ECC - 2022 model
-# pkg_id_2 = 'https://envipath.org/package/80cf58b1-21e2-4c28-9cc6-dc69c6445bdf' # Package for results using BBD+SOIL - ML - ECC - 2022 model
-# pkg_id_3 = 'https://envipath.org/package/7d64aa85-2e3c-413f-a538-4d5f2bfd4662' # Package for results using BBD+SLUDGE - ML - ECC - 2022 model
-# pkg_id_4 = 'https://envipath.org/package/11f2acd5-5209-4d49-ad77-93f6f6965886' # Package for results using BBD+SOIL+SLUDGE - ML - ECC - 2022 model
+# EP_PACKAGE_ID = 'https://envipath.org/package/0915fad3-b889-4aa8-ac98-0707b717be57' # Package for results using BBD - ML - ECC - 2022 model
+# EP_PACKAGE_ID = 'https://envipath.org/package/80cf58b1-21e2-4c28-9cc6-dc69c6445bdf' # Package for results using BBD+SOIL - ML - ECC - 2022 model
+# EP_PACKAGE_ID = 'https://envipath.org/package/7d64aa85-2e3c-413f-a538-4d5f2bfd4662' # Package for results using BBD+SLUDGE - ML - ECC - 2022 model
+# EP_PACKAGE_ID = 'https://envipath.org/package/11f2acd5-5209-4d49-ad77-93f6f6965886' # Package for results using BBD+SOIL+SLUDGE - ML - ECC - 2022 model
 
 
 #---------------------------#
 # PATHWAY SEARCH SETTINGS   #
 #---------------------------#
 # These are the default settings used for the Sludge TP paper.
 # They can be modified to direct the pathway search towards a specific objective.
 
 # Maximum number of TPs to predict
-MAX_TP = 50
+MAX_TP = 20
 
 # Lower probability threshold
-PROBABILITY_THRESHOLD = -1 # any value equal to or lower than the threshold will be excluded
+PROBABILITY_THRESHOLD = 0 # any value equal to or lower than the threshold will be excluded
 
 # Set probabilities of 0 to 0.01 to continue having a weighting scheme downstream of the pathway
 INCLUDE_0_PROBABILITIES = False
 
 # Follow moiety - only compounds containing moiety in SMILES will be expanded
 MOIETY = "" # e.g., "C(F)(F)F"
 
 # To prioritize small compounds in the queue
 SORT_TPS_BY_SIZE = False
 
 # Follow labeled atoms
 FOLLOW_LABELED_ATOM = False
 ATOM_LABEL = '14'
 
+# Print as a reaction file additionally to the list of TPs
+PRINT_REACTION_FILE = True
+
 #---------------------------#
 # FILE PATH SETTINGS        #
 #---------------------------#
 # Input/output files
 INPUT_FILE_PATH = 'input/input_structures.tsv'
 OUTPUT_DIRECTORY = 'output/'
 OUTPUT_FILE_TAG = 'TEST'
 
 
 #---------------------------#
 # CONNECT TO ENVIPATH       #
 #---------------------------#
 eP = enviPath(INSTANCE_HOST)
 password = getpass.getpass()
 eP.login(USERNAME, password)
 
 
 #---------------------------#
 # FUNCTIONS                 #
 #---------------------------#
 def __main__(rr_id, pkg_id, tag):
     """
     Main function, predicts pathways for a list of input smiles
     Output: pathways are saved to specified enviPath package, TP list as .tsv file to output folder
     :param rr_id: URI of enviPath relative reasoning mode to be used
     :param pkg_id: URI of enviPath package to store resulting pathways
     :param tag: string tag to attach to output files for identification
     """
     rr = RelativeReasoning(eP.requester, id=rr_id)
     pkg = Package(eP.requester, id=pkg_id)
     input_list = load_input(INPUT_FILE_PATH)
-    output_file_path = '{}TP_prediction_{}_top_{}.tsv'.format(OUTPUT_DIRECTORY, tag, MAX_TP)
-    outfile = open(output_file_path, 'w')
+    output_file_path_TP = '{}TP_prediction_{}_top_{}.tsv'.format(OUTPUT_DIRECTORY, tag, MAX_TP)
+    output_file_path_reaction = '{}reaction_prediction_{}_top_{}.tsv'.format(OUTPUT_DIRECTORY, tag, MAX_TP)
+    outfile_TP = open(output_file_path_TP, 'w')
+    outfile_reaction = open(output_file_path_reaction, 'w')
+    rule_dict = {}
     for compound_input in input_list:
         result = predict_TPs(compound_input['smiles'], compound_input['name'], rr)
         result_list = clean_result(result) # sort and name TPs
         pathway_info = upload_envipath_pathway(eP, result_list, pkg)
-        print_result(outfile, result_list, pathway_info) # continuous writing of result file
+        print_TP_file(outfile_TP, result_list, pathway_info) # continuous writing of result file
+        if PRINT_REACTION_FILE:
+            rule_dict = print_reaction_file(outfile_reaction, result_list, rule_dict, pathway_info)
 
 
 
-def print_result(open_file, result, pathway = None):
+def print_TP_file(open_TP_file, result, pathway = None):
     """
     Prints output to open file
     :param open_file: writable file object
     :param result: clean result dictionary from predict_TPs() function
     :param pathway: pathway URI from upload_envipath_pathway() function
     """
-    open_file.write('///') # signifies new pathway entry
+    open_TP_file.write('///') # signifies new pathway entry
     if pathway:
-        open_file.write(' Pathway name: {}, Pathway id: {}'.format(pathway['name'], pathway['id']))
-    open_file.write('\n')
+        open_TP_file.write(' Pathway name: {}, Pathway id: {}'.format(pathway['name'], pathway['id']))
+    open_TP_file.write('\n')
     header= ('SMILES\tname\tcombined_probability\trules\tgeneration\tprobability\tparent\n')
-    open_file.write(header)
+    open_TP_file.write(header)
     for TP in result:
-        open_file.write('{}\t{}\t{}\t{}\t{}\t{}\t{}\n'.format(TP['smiles'],
+        open_TP_file.write('{}\t{}\t{}\t{}\t{}\t{}\t{}\n'.format(TP['smiles'],
                                               TP['name'],
                                               TP['combined_probability'],
                                               TP['rules'],
+                                              TP['rule_IDs'],
                                               TP['generation'],
                                               TP['probability'],
-                                              TP['parent'])
+                                              TP['parent_smiles'])
                         )
 
+def print_reaction_file(open_file, result, rule_dict, pathway=None):
+    open_file.write('///') # signifies new pathway entry
+    if pathway:
+        open_file.write(' Pathway name: {}, Pathway id: {}'.format(pathway['name'], pathway['id']))
+    open_file.write('\n')
+    header= ('substrate_name\tproduct_name\tsubstrate_SMILES\tproduct_SMILES\trules\tEC_numbers\tgeneration\tcombined_probability\tprobability\n')
+    open_file.write(header)
+    for TP in result[1:]: # ignore first line which is parent
+        EC_list, rule_dict = get_EC_list(TP, rule_dict)
+        open_file.write('{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n'.format(
+                                              TP['parent_name'],
+                                              TP['name'],
+                                              TP['parent_smiles'],
+                                              TP['smiles'],
+                                              TP['rules'],
+                                              ','.join(EC_list),
+                                              TP['generation'],
+                                              TP['combined_probability'],
+                                              TP['probability']))
+    return rule_dict
+
+def get_EC_list(TP, rule_dict):
+    rule_id_list = TP['rule_IDs'].split(',')
+    EC_list = []
+    for rule_id in rule_id_list:
+        if not rule_dict.get(rule_id):
+            ec_list_for_rule = []
+            rule = ParallelCompositeRule(eP.requester, id = rule_id)
+            try:
+                rule_ECs = rule._get('ecNumbers')
+            except:
+                print('Warning: JsonDecodeError for ', rule_id)
+            else:
+                for ec in rule_ECs:
+                    if 'KEGG' in ec['linkingMethod']:
+                        ec_list_for_rule.append(ec['ecNumber'])
+                rule_dict[rule_id] = ec_list_for_rule
+        else:
+            ec_list_for_rule = rule_dict[rule_id]
+
+        EC_list.extend(ec_list_for_rule)
+    return EC_list, rule_dict
+
+
 def predict_TPs(input_smiles, input_name, rr):
     """
     Pathway prediction for single compound
     :param input_smiles: input smiles of parent compound
     :param input_name: name of parent compound
     :param rr: relative reasoning object
     :return: dictionary of resulting TPs
     """
     print('\n### PREDICT TPs FOR COMPOUND {} ###\n'.format(input_name))
     num_TP = -1 # counter starts at -1, because source compound is also in the TP list
     validated_TPs = {}  # container for resulting predictions
-    queued_items = [{'probability': 1, 'combined_probability': 1, 'smiles': input_smiles, 'generation': 0, 'parent': '',
-                     'rules': '', 'name': input_name, 'size': len(input_smiles)}]
+    queued_items = [{'probability': 1, 'combined_probability': 1, 'smiles': input_smiles, 'generation': 0, 'parent_smiles': '',
+                     'rules': '', 'rule_IDs': '', 'name': input_name, 'size': len(input_smiles)}]
     queue = [input_smiles]  # queue is updated after each cycle to have top TP first, list of smiles
     while num_TP < MAX_TP:
         if len(queue) == 0:
             print('\nEmpty queue - The exploration of has converged at {} predicted TPs'.format(num_TP))
             return validated_TPs # stop TP prediction
         smiles = queue.pop(0) # get top item in queue
         data = queued_items.pop(0) # remove data from queued items
         result_list = expand_smiles(smiles, rr)  # create children
         TP_dict = result_to_compound_dict(result_list)
         queue, queued_items, validated_TPs = update_queue(queue, queued_items, validated_TPs, TP_dict, data)
         validated_TPs[smiles] = data
         num_TP += 1
     return validated_TPs
 
 
 def update_queue(_queue,_queued_items, _validated_TPs, _TPs, _parent_data):
     """
     Update queue with TPs predicted in current iteration
     :param _queue: ordered list of smiles to explore
     :param _queued_items: ordered list of compound dictionaries, same order as _queue
     :param _validated_TPs: list of already validated TPs for resulting pathway
     :param _TPs: predicted TPs from current iteration, to be evaluated and added to queue
     :param _parent_data: compound dictionary of the parent compound of _TPs
     :return: new_queue: new ordered list of smiles to explore
     :return _queued_items: new ordered list of compound dictionaries
     :return: _validated_TPs: updated list of already validated TPs
     """
     parent_probability = _parent_data['combined_probability']
     parent_generation = _parent_data['generation']
     parent_smiles = _parent_data['smiles']
     queue_before = len(_queue)
     for smiles in _TPs:
         data = _TPs[smiles]
         # If the probability is 0 , we don't consider the TP further
         this_probability = data['probability']
         if this_probability <= PROBABILITY_THRESHOLD:
             continue
         # If a moiety is given and it is not in SMILES, we don't follow the TP further
         if MOIETY not in smiles:
             continue
         if FOLLOW_LABELED_ATOM and ATOM_LABEL not in smiles:
             continue
         if INCLUDE_0_PROBABILITIES and this_probability == 0:
             this_probability = 0.01
         # add combined probability
         this_combined_probability = parent_probability * this_probability
         this_generation = parent_generation + 1
         rules = data['rules']
+        rule_IDs = data['rule_IDs']
         # first, check if compound already in validated. if yes, update
         if smiles in _validated_TPs.keys():
             _validated_TPs[smiles] = update_compound_entry(_validated_TPs[smiles],
-                                                           this_combined_probability, rules,
+                                                           this_combined_probability, rules, rule_IDs,
                                                            this_generation, parent_smiles, size_metric='size',
                                                            size_value=len(smiles))
         # next, check if compound is already in queue. if yes, update
         elif smiles in _queue:
             index = _queue.index(smiles)
             assert smiles == _queued_items[index]['smiles'], \
                 'smiles {} does not match smiles in {}'.format(smiles, _queued_items[index])
             _queued_items[index] = update_compound_entry(_queued_items[index],
-                                                           this_combined_probability, rules,
+                                                           this_combined_probability, rules, rule_IDs,
                                                            this_generation, parent_smiles, size_metric='size',
                                                            size_value=len(smiles))
         # else, add new item to queue
         else:
             data['combined_probability'] = this_combined_probability
             data['generation'] = this_generation
-            data['parent'] = parent_smiles
+            data['parent_smiles'] = parent_smiles
             data['carbon_count'] = smiles.upper().count('C')
             _queued_items.append(data)
             _queue.append(smiles)
             assert len(_queued_items) == len(_queue)
     # First sort by size
     if SORT_TPS_BY_SIZE:
         _queued_items.sort(reverse=False, key=lambda x: x['size'])
     # order dict by combined probability
     _queued_items.sort(reverse=True, key=lambda x: x['combined_probability'])
     queue_after = len(_queue)
     print('Added {} smiles to queue'.format(queue_after - queue_before))
     new_queue = [] # resetting queue
     [new_queue.append(x['smiles']) for x in _queued_items]
     print ('New queue for compound', parent_smiles)
     for q in new_queue:
         print(q, _queued_items[new_queue.index(q)]['combined_probability'])
 
     return new_queue, _queued_items, _validated_TPs
 
 
 #---------------------------#
 # MAIN                      #
 #---------------------------#
 __main__(rr_id = EP_MODEL_ID, pkg_id = EP_PACKAGE_ID, tag = OUTPUT_FILE_TAG)
 
 
diff --git a/TP_prediction/output/TP_prediction_TEST_Sema_20.tsv b/TP_prediction/output/TP_prediction_TEST_Sema_20.tsv
new file mode 100644
index 0000000..8cf9a76
--- /dev/null
+++ b/TP_prediction/output/TP_prediction_TEST_Sema_20.tsv
@@ -0,0 +1,58 @@
+/// Pathway name: DIU, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/a5500e06-4e48-4e6f-9266-c308e1cbd219
+SMILES	name	combined_probability	rules	generation	probability	parent
+CN(C)C(=O)NC1=CC=C(C(=C1)Cl)Cl	DIU	1			0	1
+C1=C(C=C(C(=C1)Cl)Cl)NC(=O)[O-]	TP_DIU_1	0.3	bt0068	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/17bd0bd9-4874-4cce-b829-d0cf7ca3a52e	1	0.3
+CN(C)C(=O)[O-]	TP_DIU_2	0.3	bt0068	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/17bd0bd9-4874-4cce-b829-d0cf7ca3a52e	1	0.3
+CNC	TP_DIU_3	0.3	bt0068	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/17bd0bd9-4874-4cce-b829-d0cf7ca3a52e	1	0.3
+C1=C(C=C(C(=C1)Cl)Cl)N	TP_DIU_4	0.3	bt0068	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/17bd0bd9-4874-4cce-b829-d0cf7ca3a52e	1	0.3
+CNC(=O)NC1=CC=C(C(=C1)Cl)Cl	TP_DIU_5	0.2	bt0243	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/03de91cf-fda9-4be6-a822-c2aa75be89a8	1	0.2
+CN(C)C(=O)NC1=CC=C(C=C1)Cl	TP_DIU_6	0.1	bt0029	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4	1	0.1
+CN(C)C(=O)NC1=CC(=CC=C1)Cl	TP_DIU_7	0.1	bt0029	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4	1	0.1
+C=O	TP_DIU_8	0.27	bt0063	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/fbbba937-dd70-43a4-be8c-7de8fcc0f0df	2	0.2
+CN	TP_DIU_9	0.27	bt0063	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/fbbba937-dd70-43a4-be8c-7de8fcc0f0df	2	0.9
+C1=C(C(=CC(=C1Cl)Cl)O)O	TP_DIU_10	0.06	bt0065,bt0065	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02,https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02	2	0.2
+C1=C(C(=C(C(=C1)O)O)Cl)Cl	TP_DIU_11	0.06	bt0065,bt0065	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02,https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02	2	0.2
+C(=O)(N)[O-]	TP_DIU_12	0.06	bt0065	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02	2	0.2
+C1=C(C=CC(=C1)N)Cl	TP_DIU_13	0.06	bt0029	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4	2	0.2
+C1=CC(=CC(=C1)Cl)N	TP_DIU_14	0.06	bt0029	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4	2	0.2
+CNC(=O)[O-]	TP_DIU_15	0.06	bt0068	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/17bd0bd9-4874-4cce-b829-d0cf7ca3a52e	2	0.3
+C1=C(C=C(C(=C1)Cl)Cl)NC(=O)N	TP_DIU_16	0.04000000000000001	bt0243	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/03de91cf-fda9-4be6-a822-c2aa75be89a8	2	0.2
+C1=C(C=CC(=C1)NC(=O)[O-])Cl	TP_DIU_17	0.03	bt0068	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/17bd0bd9-4874-4cce-b829-d0cf7ca3a52e	2	0.3
+N	TP_DIU_18	0.162	bt0063	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/fbbba937-dd70-43a4-be8c-7de8fcc0f0df	3	0.2
+C(=C(/C(=C\C(=O)[O-])/Cl)\Cl)/C(=O)[O-]	TP_DIU_19	0.06	bt0254	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/5f07518c-501f-4e70-bb0a-1bca4f34ebb1	3	1.0
+C(=C/C(=O)[O-])/C(=C(\C(=O)[O-])/Cl)/Cl	TP_DIU_20	0.06	bt0254	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/5f07518c-501f-4e70-bb0a-1bca4f34ebb1	3	1.0
+/// Pathway name: BRO, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/f451272d-580f-47e8-99e3-54b72944fc6d
+SMILES	name	combined_probability	rules	generation	probability	parent
+CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C#N)Br	BRO	1			0	1
+CCCCCCCC(=O)[O-]	TP_BRO_1	0.6	bt0024	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b2ca8622-d481-4f9f-95d5-dd8597083fb5	1	0.6
+C1=C(C(=C(C=C1C#N)Br)O)Br	TP_BRO_2	0.6	bt0024	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b2ca8622-d481-4f9f-95d5-dd8597083fb5	1	0.6
+CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C(=O)[O-])Br	TP_BRO_3	0.4	bt0030	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/5e466030-4312-48a5-bb56-a505dba93eaa	1	0.4
+CCCCCCCC(=O)OC1=C(C=C(C=C1Br)O)Br	TP_BRO_4	0.1	bt0031	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/c1704b66-0fe7-4131-88f6-ccdb31f427f2	1	0.1
+CCCCCCCC(=O)OC1=CC=C(C=C1Br)C#N	TP_BRO_5	0.1	bt0029	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4	1	0.1
+C1=C(C(=C(C=C1C(=O)[O-])Br)O)Br	TP_BRO_6	0.24	bt0030,bt0024	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/5e466030-4312-48a5-bb56-a505dba93eaa,https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b2ca8622-d481-4f9f-95d5-dd8597083fb5	2	0.4
+C1=C(C(=C(C=C1O)Br)O)Br	TP_BRO_7	0.06	bt0031,bt0024	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/c1704b66-0fe7-4131-88f6-ccdb31f427f2,https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b2ca8622-d481-4f9f-95d5-dd8597083fb5	2	0.1
+CCCCCCCC(=O)OC1=C(C=CC=C1Br)Br	TP_BRO_8	0.04000000000000001	bt0051	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/2339e8b3-c9c6-40fd-b89a-aad5693baa18	2	0.1
+CCCCCCCC(=O)OC1=CC=C(C=C1Br)C(=O)[O-]	TP_BRO_9	0.04000000000000001	bt0029,bt0030	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4,https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/5e466030-4312-48a5-bb56-a505dba93eaa	2	0.1
+C1=C(C=C(C(=C1)O)Br)C#N	TP_BRO_10	0.03	bt0024	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b2ca8622-d481-4f9f-95d5-dd8597083fb5	2	0.3
+CCCCCCCC(=O)OC1=CC=C(C=C1Br)O	TP_BRO_11	0.010000000000000002	bt0029,bt0031	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4,https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/c1704b66-0fe7-4131-88f6-ccdb31f427f2	2	0.1
+CCCCCCCC(=O)OC1=CC=C(C=C1)C#N	TP_BRO_12	0.010000000000000002	bt0029	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4	2	0.1
+C(=C(/C(=O)[O-])\Br)/C(=O)CC(=O)[O-]	TP_BRO_13	0.03899999999999999	bt0357	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/0c79d13c-dca5-42a7-bb4e-3e2201f27042	3	0.6499999999999999
+C1=CC(=C(C(=C1)Br)O)Br	TP_BRO_14	0.024	bt0051	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/2339e8b3-c9c6-40fd-b89a-aad5693baa18	3	0.1
+C1=C(C=C(C(=C1)O)Br)C(=O)[O-]	TP_BRO_15	0.012000000000000002	bt0024	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b2ca8622-d481-4f9f-95d5-dd8597083fb5	3	0.3
+C1=C(C=C(C(=C1)O)Br)O	TP_BRO_16	0.012	bt0029	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4	3	0.2
+C1=C(C(=C(C(=C1Br)O)Br)O)O	TP_BRO_17	0.006	bt0014	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/d06a4cce-fc80-4d05-92df-cbd0df7b1cb8	3	0.1
+CCCCCCCC(=O)OC1=C(C=CC=C1)Br	TP_BRO_18	0.004000000000000001	bt0029,bt0051	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4,https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/2339e8b3-c9c6-40fd-b89a-aad5693baa18	3	0.1
+C(=C/C(=O)[O-])/C(=O)CC(=O)[O-]	TP_BRO_19	0.011699999999999997	bt0029	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4	4	0.3
+C(=C(/C(=C(\C(=O)[O-])/Br)/O)\Br)/C(=O)[O-]	TP_BRO_20	0.0042	bt0254	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/5f07518c-501f-4e70-bb0a-1bca4f34ebb1	4	0.7
+/// Pathway name: CAR, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/70ca701c-55e4-41a6-92c1-d40d4947ad1f
+SMILES	name	combined_probability	rules	generation	probability	parent
+CCNC(=O)C(C)OC(=O)NC1=CC=CC=C1	CAR	1			0	1
+C1=CC(=C(C=C1)O)O	TP_CAR_1	0.4	bt0065	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02	1	0.4
+CCNC(=O)C(C)OC(=O)N	TP_CAR_2	0.4	bt0065	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02	1	0.4
+C1=CC=C(C=C1)N	TP_CAR_3	0.2	bt0318	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/66d5b8da-a61a-43f1-b49f-3da124c0095a	1	0.2
+CCNC(=O)C(C)OC(=O)[O-]	TP_CAR_4	0.2	bt0318	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/66d5b8da-a61a-43f1-b49f-3da124c0095a	1	0.2
+C(=C/C(=O)[O-])/C=C\C(=O)[O-]	TP_CAR_5	0.27999999999999997	bt0254	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/5f07518c-501f-4e70-bb0a-1bca4f34ebb1	2	0.7
+N	TP_CAR_6	0.06	bt0065	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02	2	0.3
+/// Pathway name: IBU, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/0bb2737a-1eb0-4917-9230-75ec4e0475d6
+SMILES	name	combined_probability	rules	generation	probability	parent
+CC(C)CC1=CC=C(C=C1)C(C)C(=O)[O-]	IBU	1			0	1
diff --git a/TP_prediction/output/TP_prediction_TEST_top_2.tsv b/TP_prediction/output/TP_prediction_TEST_top_2.tsv
new file mode 100644
index 0000000..e69de29
diff --git a/TP_prediction/output/TP_prediction_TEST_top_20.tsv b/TP_prediction/output/TP_prediction_TEST_top_20.tsv
new file mode 100644
index 0000000..62c89f4
--- /dev/null
+++ b/TP_prediction/output/TP_prediction_TEST_top_20.tsv
@@ -0,0 +1,39 @@
+/// Pathway name: DIC, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/d5164686-4c13-4107-8159-d1c0907aac3d
+SMILES	name	combined_probability	rules	generation	probability	parent
+C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl	DIC	1			0	1
+C1=CC(=C(C(=C1)Cl)N)Cl	TP_DIC_1	0.6	bt0374	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/8ae1cca7-9c9d-4ce5-97a3-863196991f51	1	0.6
+C1=CC(=C(C(=C1)CC(=O)O)O)O	TP_DIC_2	0.6	bt0374	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/8ae1cca7-9c9d-4ce5-97a3-863196991f51	1	0.6
+C1=CC(=C(C=C1)N)Cl	TP_DIC_3	0.12	bt0029	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4	2	0.2
+C1=CC=C(C=C1)N	TP_DIC_4	0.024	bt0029	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af13a678-1d06-402c-ae13-cb00f8830af4	3	0.2
+C1=CC(=C(C(=C1)Cl)O)O	TP_DIC_5	0.024	bt0065	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02	3	0.2
+N	TP_DIC_6	0.024	bt0065	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02	3	0.2
+C(=C/C(=O)[O-])/C=C(\C(=O)[O-])/Cl	TP_DIC_7	0.0216	bt0254	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/5f07518c-501f-4e70-bb0a-1bca4f34ebb1	4	0.9
+C1=CC(=C(C=C1)O)O	TP_DIC_8	0.0072	bt0065	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/a3f8dcda-b54c-40a4-b0b4-b9fc1b15dd02	4	0.3
+C(=C/C(=O)[O-])/C=C\C(=O)[O-]	TP_DIC_9	0.005039999999999999	bt0254	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/5f07518c-501f-4e70-bb0a-1bca4f34ebb1	5	0.7
+C/1=CC(=O)O\C1=C/C(=O)[O-]	TP_DIC_10	0.00432	bt0181	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/85e6246d-4a80-4c93-bf18-906970d5251c	5	0.2
+C(=C/C(=O)[O-])/C(=O)CC(=O)[O-]	TP_DIC_11	0.00432	bt0313	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/28a15491-30bc-465e-bf34-a4d03bc75e40	6	1.0
+C(=CC(=O)[O-])/C(=C/C(=O)[O-])/O	TP_DIC_12	0.003888	bt0024	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b2ca8622-d481-4f9f-95d5-dd8597083fb5	6	0.9
+C(CC(=O)[O-])C(=O)CC(=O)[O-]	TP_DIC_13	0.00043200000000000004	bt0291	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/6e0e8a5f-09e2-42d9-943e-6d4a823bfcf4	7	0.1
+/// Pathway name: ATR, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/cfdfe459-6c5d-413b-a905-545ea3000404
+SMILES	name	combined_probability	rules	generation	probability	parent
+CCNC1=NC(=NC(=N1)NC(C)C)Cl	ATR	1			0	1
+CC(=O)C	TP_ATR_1	0.4	bt0339	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b330946e-f8a9-4860-86c5-1953f230c837	1	0.4
+CC(C)NC1=NC(=NC(=N1)Cl)N	TP_ATR_2	0.4	bt0339	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b330946e-f8a9-4860-86c5-1953f230c837	1	0.4
+CCNC1=NC(=NC(=N1)Cl)N	TP_ATR_3	0.4	bt0339	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b330946e-f8a9-4860-86c5-1953f230c837	1	0.4
+CC=O	TP_ATR_4	0.4	bt0339	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b330946e-f8a9-4860-86c5-1953f230c837	1	0.4
+CCNC1=NC(=NC(=N1)NC(C)C)O	TP_ATR_5	0.4	bt0330	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af745278-4d2a-44bf-b74d-91e4716c8ce1	1	0.4
+CCNC1=NC(=NC(=N1)O)N	TP_ATR_6	0.32000000000000006	bt0330	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af745278-4d2a-44bf-b74d-91e4716c8ce1	2	0.8
+CCNC1=NC(=NC(=N1)O)Cl	TP_ATR_7	0.32000000000000006	bt0330	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af745278-4d2a-44bf-b74d-91e4716c8ce1	2	0.8
+CC(C)NC1=NC(=NC(=N1)O)O	TP_ATR_8	0.30000000000000004	bt0061	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/021d3098-b5af-4083-ba0d-029d9c18a299	2	0.75
+CC(C)N	TP_ATR_9	0.30000000000000004	bt0061	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/021d3098-b5af-4083-ba0d-029d9c18a299	2	0.75
+CCN	TP_ATR_10	0.30000000000000004	bt0061	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/021d3098-b5af-4083-ba0d-029d9c18a299	2	0.75
+CC(=O)[O-]	TP_ATR_11	0.2	bt0003	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/f64df014-1e44-484b-b0fc-af35a7425f7a	2	0.5
+C1(=NC(=NC(=N1)N)N)Cl	TP_ATR_12	0.12	bt0339	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/b330946e-f8a9-4860-86c5-1953f230c837	2	0.3
+CC(C)NC1=NC(=NC(=N1)O)Cl	TP_ATR_13	0.12	bt0330	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af745278-4d2a-44bf-b74d-91e4716c8ce1	2	0.3
+CC(C)NC1=NC(=NC(=N1)O)N	TP_ATR_14	0.12	bt0330	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af745278-4d2a-44bf-b74d-91e4716c8ce1	2	0.3
+CCNC1=NC(=NC(=N1)O)O	TP_ATR_15	0.32000000000000006	bt0330	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af745278-4d2a-44bf-b74d-91e4716c8ce1	3	0.75
+N	TP_ATR_16	0.15000000000000002	bt0063	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/fbbba937-dd70-43a4-be8c-7de8fcc0f0df	3	0.1
+C1(=NC(=NC(=N1)N)O)Cl	TP_ATR_17	0.08399999999999999	bt0330	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/af745278-4d2a-44bf-b74d-91e4716c8ce1	3	0.05
+C1(=NC(=NC(=N1)O)O)N	TP_ATR_18	0.08000000000000002	bt0061	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/021d3098-b5af-4083-ba0d-029d9c18a299	3	0.25
+C1(=NC(=NC(=N1)O)O)Cl	TP_ATR_19	0.08000000000000002	bt0061	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/021d3098-b5af-4083-ba0d-029d9c18a299	3	0.25
+C1(=NC(=NC(=N1)O)O)O	TP_ATR_20	0.24000000000000005	bt0061	https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/parallel-rule/021d3098-b5af-4083-ba0d-029d9c18a299	4	0.75
diff --git a/TP_prediction/output/TP_prediction_TEST_top_3.tsv b/TP_prediction/output/TP_prediction_TEST_top_3.tsv
new file mode 100644
index 0000000..e69de29
diff --git a/TP_prediction/output/reaction_prediction_Sema_top_20.tsv b/TP_prediction/output/reaction_prediction_Sema_top_20.tsv
new file mode 100644
index 0000000..a13a054
--- /dev/null
+++ b/TP_prediction/output/reaction_prediction_Sema_top_20.tsv
@@ -0,0 +1,91 @@
+/// Pathway name: DIC, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/d5164686-4c13-4107-8159-d1c0907aac3d
+substrate_name	product_name	substrate_SMILES	product_SMILES	rules	EC_numbers	generation	combined_probability	probability
+DIC	TP_DIC_1	C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl	C1=CC(=C(C(=C1)Cl)N)Cl	bt0374	1.14.12.22	1	0.6	0.6
+DIC	TP_DIC_2	C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl	C1=CC(=C(C(=C1)CC(=O)O)O)O	bt0374	1.14.12.22	1	0.6	0.6
+TP_DIC_1	TP_DIC_3	C1=CC(=C(C(=C1)Cl)N)Cl	C1=CC(=C(C=C1)N)Cl	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	2	0.12	0.2
+TP_DIC_3	TP_DIC_4	C1=CC(=C(C=C1)N)Cl	C1=CC=C(C=C1)N	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	3	0.024	0.2
+TP_DIC_3	TP_DIC_5	C1=CC(=C(C=C1)N)Cl	C1=CC(=C(C(=C1)Cl)O)O	bt0065	1.14.13.35,1.14.12.14	3	0.024	0.2
+TP_DIC_3	TP_DIC_6	C1=CC(=C(C=C1)N)Cl	N	bt0065	1.14.13.35,1.14.12.14	3	0.024	0.2
+TP_DIC_5	TP_DIC_7	C1=CC(=C(C(=C1)Cl)O)O	C(=C/C(=O)[O-])/C=C(\C(=O)[O-])/Cl	bt0254	1.13.11.37,1.13.11.8,1.13.11.57,1.13.11.3,1.13.11.1,1.13.11.35	4	0.0216	0.9
+TP_DIC_4	TP_DIC_8	C1=CC=C(C=C1)N	C1=CC(=C(C=C1)O)O	bt0065	1.14.13.35,1.14.12.14	4	0.0072	0.3
+TP_DIC_8	TP_DIC_9	C1=CC(=C(C=C1)O)O	C(=C/C(=O)[O-])/C=C\C(=O)[O-]	bt0254	1.13.11.37,1.13.11.8,1.13.11.57,1.13.11.3,1.13.11.1,1.13.11.35	5	0.005039999999999999	0.7
+TP_DIC_7	TP_DIC_10	C(=C/C(=O)[O-])/C=C(\C(=O)[O-])/Cl	C/1=CC(=O)O\C1=C/C(=O)[O-]	bt0181	5.5.1.7	5	0.00432	0.2
+TP_DIC_10	TP_DIC_11	C/1=CC(=O)O\C1=C/C(=O)[O-]	C(=C/C(=O)[O-])/C(=O)CC(=O)[O-]	bt0313		6	0.00432	1.0
+TP_DIC_10	TP_DIC_12	C/1=CC(=O)O\C1=C/C(=O)[O-]	C(=CC(=O)[O-])/C(=C/C(=O)[O-])/O	bt0024	3.1.1.7,3.1.1.59,3.1.1.49,3.2.1.175,3.1.1.66,3.1.1.15,3.1.1.91,3.1.1.10,3.1.1.70,3.1.1.93,3.1.1.30,3.1.1.27,3.1.1.33,3.1.1.46,3.1.1.55,3.1.1.83,3.1.1.88,3.1.1.107,3.1.1.14,3.1.1.82,3.1.1.113,3.1.1.35,3.1.1.95,3.1.1.31,3.1.1.41,3.1.1.8,3.1.1.114,3.1.1.51,3.1.1.1,3.1.1.45,3.1.1.56,3.1.1.60,2.3.1.133,3.1.1.53,3.1.1.102,3.1.1.36,3.1.1.94,3.1.1.99,2.3.1.175,3.1.1.65,3.1.1.54,3.1.1.106,3.1.1.68,3.1.1.37,3.1.1.17,3.1.1.25,3.1.1.105,3.1.1.44,3.1.1.112,3.1.1.63,3.1.1.84,3.1.1.80,3.1.1.2,3.1.1.110	6	0.003888	0.9
+TP_DIC_11	TP_DIC_13	C(=C/C(=O)[O-])/C(=O)CC(=O)[O-]	C(CC(=O)[O-])C(=O)CC(=O)[O-]	bt0291	1.3.1.106,1.3.1.82,1.3.1.32,1.3.1.22,1.3.1.122,1.3.1.21,1.3.1.93,1.3.1.81,1.3.1.38,1.3.1.75,1.3.1.8,1.3.1.70,1.3.1.72,1.1.1.384	7	0.00043200000000000004	0.1
+/// Pathway name: ATR, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/cfdfe459-6c5d-413b-a905-545ea3000404
+substrate_name	product_name	substrate_SMILES	product_SMILES	rules	EC_numbers	generation	combined_probability	probability
+ATR	TP_ATR_1	CCNC1=NC(=NC(=N1)NC(C)C)Cl	CC(=O)C	bt0339		1	0.4	0.4
+ATR	TP_ATR_2	CCNC1=NC(=NC(=N1)NC(C)C)Cl	CC(C)NC1=NC(=NC(=N1)Cl)N	bt0339		1	0.4	0.4
+ATR	TP_ATR_3	CCNC1=NC(=NC(=N1)NC(C)C)Cl	CCNC1=NC(=NC(=N1)Cl)N	bt0339		1	0.4	0.4
+ATR	TP_ATR_4	CCNC1=NC(=NC(=N1)NC(C)C)Cl	CC=O	bt0339		1	0.4	0.4
+ATR	TP_ATR_5	CCNC1=NC(=NC(=N1)NC(C)C)Cl	CCNC1=NC(=NC(=N1)NC(C)C)O	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	1	0.4	0.4
+TP_ATR_3	TP_ATR_6	CCNC1=NC(=NC(=N1)Cl)N	CCNC1=NC(=NC(=N1)O)N	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	2	0.32000000000000006	0.8
+TP_ATR_3	TP_ATR_7	CCNC1=NC(=NC(=N1)Cl)N	CCNC1=NC(=NC(=N1)O)Cl	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	2	0.32000000000000006	0.8
+TP_ATR_5	TP_ATR_8	CCNC1=NC(=NC(=N1)NC(C)C)O	CC(C)NC1=NC(=NC(=N1)O)O	bt0061	3.5.4.43,3.5.4.42	2	0.30000000000000004	0.75
+TP_ATR_5	TP_ATR_9	CCNC1=NC(=NC(=N1)NC(C)C)O	CC(C)N	bt0061	3.5.4.43,3.5.4.42	2	0.30000000000000004	0.75
+TP_ATR_5	TP_ATR_10	CCNC1=NC(=NC(=N1)NC(C)C)O	CCN	bt0061	3.5.4.43,3.5.4.42	2	0.30000000000000004	0.75
+TP_ATR_4	TP_ATR_11	CC=O	CC(=O)[O-]	bt0003	1.2.1.57,1.2.1.22,1.2.1.32,1.2.1.79,1.2.1.28,1.2.1.33,1.2.1.10,1.2.1.62,1.2.1.90,1.2.1.87,1.2.1.73,1.2.1.99,1.2.1.26,1.2.1.4,1.2.1.75,1.2.1.78,1.2.3.8,1.2.1.77,1.2.1.63,1.2.1.8,1.2.1.102,1.2.3.7,1.2.1.54,1.2.1.48,1.2.1.5,1.2.1.71,1.2.1.23,1.2.1.3,1.2.1.24,1.2.1.68,1.2.3.15,1.2.1.39,1.2.1.82,1.2.3.1,1.2.1.16,1.2.1.96,1.1.1.312,1.1.3.39,1.2.1.20,1.2.3.9,1.1.3.23,1.2.1.36,1.2.3.5,1.2.1.85,1.2.1.9,1.2.1.31,1.2.1.47,1.1.3.17,1.2.1.15,1.2.1.44,1.2.1.81,1.2.1.65,1.2.3.14,1.2.1.7,1.2.1.98,1.14.13.246,1.2.1.17,1.2.1.91,1.2.1.29,1.2.1.19,1.2.1.97,1.2.1.69,1.2.1.64,1.2.1.53,1.2.1.83,1.1.1.23,1.2.1.89,1.2.1.88,1.2.1.67,1.2.1.74,1.2.1.86,1.2.1.42,1.2.1.21	2	0.2	0.5
+TP_ATR_2	TP_ATR_12	CC(C)NC1=NC(=NC(=N1)Cl)N	C1(=NC(=NC(=N1)N)N)Cl	bt0339		2	0.12	0.3
+TP_ATR_2	TP_ATR_13	CC(C)NC1=NC(=NC(=N1)Cl)N	CC(C)NC1=NC(=NC(=N1)O)Cl	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	2	0.12	0.3
+TP_ATR_2	TP_ATR_14	CC(C)NC1=NC(=NC(=N1)Cl)N	CC(C)NC1=NC(=NC(=N1)O)N	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	2	0.12	0.3
+TP_ATR_6	TP_ATR_15	CCNC1=NC(=NC(=N1)O)N	CCNC1=NC(=NC(=N1)O)O	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	3	0.32000000000000006	0.75
+TP_ATR_10	TP_ATR_16	CCN	N	bt0063	1.4.1.9,1.4.1.3,1.4.3.1,1.5.3.19,1.4.1.1,1.4.3.7,1.4.1.12,1.5.1.10,1.4.1.17,1.5.1.28,1.4.3.12,1.4.1.18,1.5.3.16,1.4.3.5,1.4.3.14,1.4.1.26,1.5.3.5,1.5.3.13,1.4.1.10,1.4.1.21,1.5.1.19,1.4.1.8,1.5.3.6,1.4.3.4,1.4.3.24,1.5.3.1,1.5.1.22,1.4.1.13,1.5.3.18,1.4.3.8,1.5.3.21,1.4.1.4,1.4.3.11,1.4.1.23,1.4.3.20,1.5.1.23,1.4.3.16,1.5.1.24,1.5.1.11,1.14.13.178,1.5.1.16,1.5.3.4,1.4.3.25,1.4.3.3,1.4.1.11,1.5.3.17,1.4.1.14,1.4.3.19,1.4.1.7,1.5.1.8,1.4.1.16,1.14.13.128,1.5.3.10,1.4.1.2,1.5.3.15,1.4.3.22,1.5.1.51,1.4.3.10,1.4.1.19,1.5.1.26,1.14.13.239,1.5.1.7,1.14.14.1,1.4.3.15,1.4.1.20,1.4.3.21,1.14.13.179,1.4.3.2,1.14.13.238,1.5.1.52,1.5.1.9	3	0.15000000000000002	0.1
+TP_ATR_12	TP_ATR_17	C1(=NC(=NC(=N1)N)N)Cl	C1(=NC(=NC(=N1)N)O)Cl	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	3	0.08399999999999999	0.05
+TP_ATR_6	TP_ATR_18	CCNC1=NC(=NC(=N1)O)N	C1(=NC(=NC(=N1)O)O)N	bt0061	3.5.4.43,3.5.4.42	3	0.08000000000000002	0.25
+TP_ATR_7	TP_ATR_19	CCNC1=NC(=NC(=N1)O)Cl	C1(=NC(=NC(=N1)O)O)Cl	bt0061	3.5.4.43,3.5.4.42	3	0.08000000000000002	0.25
+TP_ATR_15	TP_ATR_20	CCNC1=NC(=NC(=N1)O)O	C1(=NC(=NC(=N1)O)O)O	bt0061	3.5.4.43,3.5.4.42	4	0.24000000000000005	0.75
+/// Pathway name: DIU, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/a5500e06-4e48-4e6f-9266-c308e1cbd219
+substrate_name	product_name	substrate_SMILES	product_SMILES	rules	EC_numbers	generation	combined_probability	probability
+DIU	TP_DIU_1	CN(C)C(=O)NC1=CC=C(C(=C1)Cl)Cl	C1=C(C=C(C(=C1)Cl)Cl)NC(=O)[O-]	bt0068	3.5.1.131,3.5.1.110,3.5.3.9,3.5.1.20,3.5.1.84,3.5.1.59,3.5.3.21,3.5.1.7,3.5.1.53,3.5.1.6	1	0.3	0.3
+DIU	TP_DIU_2	CN(C)C(=O)NC1=CC=C(C(=C1)Cl)Cl	CN(C)C(=O)[O-]	bt0068	3.5.1.131,3.5.1.110,3.5.3.9,3.5.1.20,3.5.1.84,3.5.1.59,3.5.3.21,3.5.1.7,3.5.1.53,3.5.1.6	1	0.3	0.3
+DIU	TP_DIU_3	CN(C)C(=O)NC1=CC=C(C(=C1)Cl)Cl	CNC	bt0068	3.5.1.131,3.5.1.110,3.5.3.9,3.5.1.20,3.5.1.84,3.5.1.59,3.5.3.21,3.5.1.7,3.5.1.53,3.5.1.6	1	0.3	0.3
+DIU	TP_DIU_4	CN(C)C(=O)NC1=CC=C(C(=C1)Cl)Cl	C1=C(C=C(C(=C1)Cl)Cl)N	bt0068	3.5.1.131,3.5.1.110,3.5.3.9,3.5.1.20,3.5.1.84,3.5.1.59,3.5.3.21,3.5.1.7,3.5.1.53,3.5.1.6	1	0.3	0.3
+DIU	TP_DIU_5	CN(C)C(=O)NC1=CC=C(C(=C1)Cl)Cl	CNC(=O)NC1=CC=C(C(=C1)Cl)Cl	bt0243	1.14.13.179,1.14.13.178	1	0.2	0.2
+DIU	TP_DIU_6	CN(C)C(=O)NC1=CC=C(C(=C1)Cl)Cl	CN(C)C(=O)NC1=CC=C(C=C1)Cl	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	1	0.1	0.1
+DIU	TP_DIU_7	CN(C)C(=O)NC1=CC=C(C(=C1)Cl)Cl	CN(C)C(=O)NC1=CC(=CC=C1)Cl	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	1	0.1	0.1
+TP_DIU_3	TP_DIU_8	CNC	C=O	bt0063	1.4.1.9,1.4.1.3,1.4.3.1,1.5.3.19,1.4.1.1,1.4.3.7,1.4.1.12,1.5.1.10,1.4.1.17,1.5.1.28,1.4.3.12,1.4.1.18,1.5.3.16,1.4.3.5,1.4.3.14,1.4.1.26,1.5.3.5,1.5.3.13,1.4.1.10,1.4.1.21,1.5.1.19,1.4.1.8,1.5.3.6,1.4.3.4,1.4.3.24,1.5.3.1,1.5.1.22,1.4.1.13,1.5.3.18,1.4.3.8,1.5.3.21,1.4.1.4,1.4.3.11,1.4.1.23,1.4.3.20,1.5.1.23,1.4.3.16,1.5.1.24,1.5.1.11,1.14.13.178,1.5.1.16,1.5.3.4,1.4.3.25,1.4.3.3,1.4.1.11,1.5.3.17,1.4.1.14,1.4.3.19,1.4.1.7,1.5.1.8,1.4.1.16,1.14.13.128,1.5.3.10,1.4.1.2,1.5.3.15,1.4.3.22,1.5.1.51,1.4.3.10,1.4.1.19,1.5.1.26,1.14.13.239,1.5.1.7,1.14.14.1,1.4.3.15,1.4.1.20,1.4.3.21,1.14.13.179,1.4.3.2,1.14.13.238,1.5.1.52,1.5.1.9	2	0.27	0.2
+TP_DIU_3	TP_DIU_9	CNC	CN	bt0063	1.4.1.9,1.4.1.3,1.4.3.1,1.5.3.19,1.4.1.1,1.4.3.7,1.4.1.12,1.5.1.10,1.4.1.17,1.5.1.28,1.4.3.12,1.4.1.18,1.5.3.16,1.4.3.5,1.4.3.14,1.4.1.26,1.5.3.5,1.5.3.13,1.4.1.10,1.4.1.21,1.5.1.19,1.4.1.8,1.5.3.6,1.4.3.4,1.4.3.24,1.5.3.1,1.5.1.22,1.4.1.13,1.5.3.18,1.4.3.8,1.5.3.21,1.4.1.4,1.4.3.11,1.4.1.23,1.4.3.20,1.5.1.23,1.4.3.16,1.5.1.24,1.5.1.11,1.14.13.178,1.5.1.16,1.5.3.4,1.4.3.25,1.4.3.3,1.4.1.11,1.5.3.17,1.4.1.14,1.4.3.19,1.4.1.7,1.5.1.8,1.4.1.16,1.14.13.128,1.5.3.10,1.4.1.2,1.5.3.15,1.4.3.22,1.5.1.51,1.4.3.10,1.4.1.19,1.5.1.26,1.14.13.239,1.5.1.7,1.14.14.1,1.4.3.15,1.4.1.20,1.4.3.21,1.14.13.179,1.4.3.2,1.14.13.238,1.5.1.52,1.5.1.9	2	0.27	0.9
+TP_DIU_4	TP_DIU_10	C1=C(C=C(C(=C1)Cl)Cl)NC(=O)[O-],C1=C(C=C(C(=C1)Cl)Cl)N	C1=C(C(=CC(=C1Cl)Cl)O)O	bt0065,bt0065	1.14.13.35,1.14.12.14,1.14.13.35,1.14.12.14	2	0.06	0.2
+TP_DIU_4	TP_DIU_11	C1=C(C=C(C(=C1)Cl)Cl)NC(=O)[O-],C1=C(C=C(C(=C1)Cl)Cl)N	C1=C(C(=C(C(=C1)O)O)Cl)Cl	bt0065,bt0065	1.14.13.35,1.14.12.14,1.14.13.35,1.14.12.14	2	0.06	0.2
+TP_DIU_1	TP_DIU_12	C1=C(C=C(C(=C1)Cl)Cl)NC(=O)[O-]	C(=O)(N)[O-]	bt0065	1.14.13.35,1.14.12.14	2	0.06	0.2
+TP_DIU_4	TP_DIU_13	C1=C(C=C(C(=C1)Cl)Cl)N	C1=C(C=CC(=C1)N)Cl	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	2	0.06	0.2
+TP_DIU_4	TP_DIU_14	C1=C(C=C(C(=C1)Cl)Cl)N	C1=CC(=CC(=C1)Cl)N	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	2	0.06	0.2
+TP_DIU_5	TP_DIU_15	CNC(=O)NC1=CC=C(C(=C1)Cl)Cl	CNC(=O)[O-]	bt0068	3.5.1.131,3.5.1.110,3.5.3.9,3.5.1.20,3.5.1.84,3.5.1.59,3.5.3.21,3.5.1.7,3.5.1.53,3.5.1.6	2	0.06	0.3
+TP_DIU_5	TP_DIU_16	CNC(=O)NC1=CC=C(C(=C1)Cl)Cl	C1=C(C=C(C(=C1)Cl)Cl)NC(=O)N	bt0243	1.14.13.179,1.14.13.178	2	0.04000000000000001	0.2
+TP_DIU_6	TP_DIU_17	CN(C)C(=O)NC1=CC=C(C=C1)Cl	C1=C(C=CC(=C1)NC(=O)[O-])Cl	bt0068	3.5.1.131,3.5.1.110,3.5.3.9,3.5.1.20,3.5.1.84,3.5.1.59,3.5.3.21,3.5.1.7,3.5.1.53,3.5.1.6	2	0.03	0.3
+TP_DIU_9	TP_DIU_18	CN	N	bt0063	1.4.1.9,1.4.1.3,1.4.3.1,1.5.3.19,1.4.1.1,1.4.3.7,1.4.1.12,1.5.1.10,1.4.1.17,1.5.1.28,1.4.3.12,1.4.1.18,1.5.3.16,1.4.3.5,1.4.3.14,1.4.1.26,1.5.3.5,1.5.3.13,1.4.1.10,1.4.1.21,1.5.1.19,1.4.1.8,1.5.3.6,1.4.3.4,1.4.3.24,1.5.3.1,1.5.1.22,1.4.1.13,1.5.3.18,1.4.3.8,1.5.3.21,1.4.1.4,1.4.3.11,1.4.1.23,1.4.3.20,1.5.1.23,1.4.3.16,1.5.1.24,1.5.1.11,1.14.13.178,1.5.1.16,1.5.3.4,1.4.3.25,1.4.3.3,1.4.1.11,1.5.3.17,1.4.1.14,1.4.3.19,1.4.1.7,1.5.1.8,1.4.1.16,1.14.13.128,1.5.3.10,1.4.1.2,1.5.3.15,1.4.3.22,1.5.1.51,1.4.3.10,1.4.1.19,1.5.1.26,1.14.13.239,1.5.1.7,1.14.14.1,1.4.3.15,1.4.1.20,1.4.3.21,1.14.13.179,1.4.3.2,1.14.13.238,1.5.1.52,1.5.1.9	3	0.162	0.2
+TP_DIU_10	TP_DIU_19	C1=C(C(=CC(=C1Cl)Cl)O)O	C(=C(/C(=C\C(=O)[O-])/Cl)\Cl)/C(=O)[O-]	bt0254	1.13.11.37,1.13.11.8,1.13.11.57,1.13.11.3,1.13.11.1,1.13.11.35	3	0.06	1.0
+TP_DIU_11	TP_DIU_20	C1=C(C(=C(C(=C1)O)O)Cl)Cl	C(=C/C(=O)[O-])/C(=C(\C(=O)[O-])/Cl)/Cl	bt0254	1.13.11.37,1.13.11.8,1.13.11.57,1.13.11.3,1.13.11.1,1.13.11.35	3	0.06	1.0
+/// Pathway name: BRO, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/f451272d-580f-47e8-99e3-54b72944fc6d
+substrate_name	product_name	substrate_SMILES	product_SMILES	rules	EC_numbers	generation	combined_probability	probability
+BRO	TP_BRO_1	CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C#N)Br	CCCCCCCC(=O)[O-]	bt0024	3.1.1.7,3.1.1.59,3.1.1.49,3.2.1.175,3.1.1.66,3.1.1.15,3.1.1.91,3.1.1.10,3.1.1.70,3.1.1.93,3.1.1.30,3.1.1.27,3.1.1.33,3.1.1.46,3.1.1.55,3.1.1.83,3.1.1.88,3.1.1.107,3.1.1.14,3.1.1.82,3.1.1.113,3.1.1.35,3.1.1.95,3.1.1.31,3.1.1.41,3.1.1.8,3.1.1.114,3.1.1.51,3.1.1.1,3.1.1.45,3.1.1.56,3.1.1.60,2.3.1.133,3.1.1.53,3.1.1.102,3.1.1.36,3.1.1.94,3.1.1.99,2.3.1.175,3.1.1.65,3.1.1.54,3.1.1.106,3.1.1.68,3.1.1.37,3.1.1.17,3.1.1.25,3.1.1.105,3.1.1.44,3.1.1.112,3.1.1.63,3.1.1.84,3.1.1.80,3.1.1.2,3.1.1.110	1	0.6	0.6
+BRO	TP_BRO_2	CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C#N)Br	C1=C(C(=C(C=C1C#N)Br)O)Br	bt0024	3.1.1.7,3.1.1.59,3.1.1.49,3.2.1.175,3.1.1.66,3.1.1.15,3.1.1.91,3.1.1.10,3.1.1.70,3.1.1.93,3.1.1.30,3.1.1.27,3.1.1.33,3.1.1.46,3.1.1.55,3.1.1.83,3.1.1.88,3.1.1.107,3.1.1.14,3.1.1.82,3.1.1.113,3.1.1.35,3.1.1.95,3.1.1.31,3.1.1.41,3.1.1.8,3.1.1.114,3.1.1.51,3.1.1.1,3.1.1.45,3.1.1.56,3.1.1.60,2.3.1.133,3.1.1.53,3.1.1.102,3.1.1.36,3.1.1.94,3.1.1.99,2.3.1.175,3.1.1.65,3.1.1.54,3.1.1.106,3.1.1.68,3.1.1.37,3.1.1.17,3.1.1.25,3.1.1.105,3.1.1.44,3.1.1.112,3.1.1.63,3.1.1.84,3.1.1.80,3.1.1.2,3.1.1.110	1	0.6	0.6
+BRO	TP_BRO_3	CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C#N)Br	CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C(=O)[O-])Br	bt0030	3.5.5.7,3.5.5.4,3.5.5.2,3.5.5.6,3.5.5.5,3.5.5.1	1	0.4	0.4
+BRO	TP_BRO_4	CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C#N)Br	CCCCCCCC(=O)OC1=C(C=C(C=C1Br)O)Br	bt0031		1	0.1	0.1
+BRO	TP_BRO_5	CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C#N)Br	CCCCCCCC(=O)OC1=CC=C(C=C1Br)C#N	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	1	0.1	0.1
+TP_BRO_3	TP_BRO_6	C1=C(C(=C(C=C1C#N)Br)O)Br,CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C(=O)[O-])Br	C1=C(C(=C(C=C1C(=O)[O-])Br)O)Br	bt0030,bt0024	3.5.5.7,3.5.5.4,3.5.5.2,3.5.5.6,3.5.5.5,3.5.5.1,3.1.1.7,3.1.1.59,3.1.1.49,3.2.1.175,3.1.1.66,3.1.1.15,3.1.1.91,3.1.1.10,3.1.1.70,3.1.1.93,3.1.1.30,3.1.1.27,3.1.1.33,3.1.1.46,3.1.1.55,3.1.1.83,3.1.1.88,3.1.1.107,3.1.1.14,3.1.1.82,3.1.1.113,3.1.1.35,3.1.1.95,3.1.1.31,3.1.1.41,3.1.1.8,3.1.1.114,3.1.1.51,3.1.1.1,3.1.1.45,3.1.1.56,3.1.1.60,2.3.1.133,3.1.1.53,3.1.1.102,3.1.1.36,3.1.1.94,3.1.1.99,2.3.1.175,3.1.1.65,3.1.1.54,3.1.1.106,3.1.1.68,3.1.1.37,3.1.1.17,3.1.1.25,3.1.1.105,3.1.1.44,3.1.1.112,3.1.1.63,3.1.1.84,3.1.1.80,3.1.1.2,3.1.1.110	2	0.24	0.4
+TP_BRO_4	TP_BRO_7	C1=C(C(=C(C=C1C#N)Br)O)Br,CCCCCCCC(=O)OC1=C(C=C(C=C1Br)O)Br	C1=C(C(=C(C=C1O)Br)O)Br	bt0031,bt0024	3.1.1.7,3.1.1.59,3.1.1.49,3.2.1.175,3.1.1.66,3.1.1.15,3.1.1.91,3.1.1.10,3.1.1.70,3.1.1.93,3.1.1.30,3.1.1.27,3.1.1.33,3.1.1.46,3.1.1.55,3.1.1.83,3.1.1.88,3.1.1.107,3.1.1.14,3.1.1.82,3.1.1.113,3.1.1.35,3.1.1.95,3.1.1.31,3.1.1.41,3.1.1.8,3.1.1.114,3.1.1.51,3.1.1.1,3.1.1.45,3.1.1.56,3.1.1.60,2.3.1.133,3.1.1.53,3.1.1.102,3.1.1.36,3.1.1.94,3.1.1.99,2.3.1.175,3.1.1.65,3.1.1.54,3.1.1.106,3.1.1.68,3.1.1.37,3.1.1.17,3.1.1.25,3.1.1.105,3.1.1.44,3.1.1.112,3.1.1.63,3.1.1.84,3.1.1.80,3.1.1.2,3.1.1.110	2	0.06	0.1
+TP_BRO_3	TP_BRO_8	CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C(=O)[O-])Br	CCCCCCCC(=O)OC1=C(C=CC=C1Br)Br	bt0051	4.1.1.24,4.1.1.25,4.1.1.115,4.1.1.66,4.1.1.103,4.1.1.29,4.1.1.92,4.1.1.57,3.1.1.82,4.1.1.69,4.1.1.15,4.1.1.18,4.1.1.30,4.1.1.117,4.1.1.50,4.1.1.17,1.1.1.276,4.1.1.116,4.1.1.14,1.1.1.262,4.1.1.63,4.1.1.58,4.1.1.7,4.1.1.96,4.1.1.36,4.1.1.121,4.1.1.23,4.1.1.46,4.1.1.21,4.1.1.9,1.1.1.387,4.1.1.98,4.1.1.120,4.1.1.20,4.1.1.19,4.1.1.22,4.1.1.61,4.1.1.105,4.1.1.62,4.1.1.91,4.1.1.28,4.1.1.16,4.1.1.11,4.1.1.52,4.1.1.112,4.1.1.55,4.1.1.59,4.1.1.94,4.1.1.51,4.1.1.86,4.1.1.93,4.1.1.118,4.1.1.88,4.1.1.81,4.1.1.5,4.1.1.53,4.1.1.68	2	0.04000000000000001	0.1
+TP_BRO_5	TP_BRO_9	CCCCCCCC(=O)OC1=C(C=C(C=C1Br)C(=O)[O-])Br,CCCCCCCC(=O)OC1=CC=C(C=C1Br)C#N	CCCCCCCC(=O)OC1=CC=C(C=C1Br)C(=O)[O-]	bt0029,bt0030	1.21.99.5,1.11.1.8,1.3.1.32,3.5.5.7,3.5.5.4,3.5.5.2,3.5.5.6,3.5.5.5,3.5.5.1	2	0.04000000000000001	0.1
+TP_BRO_5	TP_BRO_10	CCCCCCCC(=O)OC1=CC=C(C=C1Br)C#N	C1=C(C=C(C(=C1)O)Br)C#N	bt0024	3.1.1.7,3.1.1.59,3.1.1.49,3.2.1.175,3.1.1.66,3.1.1.15,3.1.1.91,3.1.1.10,3.1.1.70,3.1.1.93,3.1.1.30,3.1.1.27,3.1.1.33,3.1.1.46,3.1.1.55,3.1.1.83,3.1.1.88,3.1.1.107,3.1.1.14,3.1.1.82,3.1.1.113,3.1.1.35,3.1.1.95,3.1.1.31,3.1.1.41,3.1.1.8,3.1.1.114,3.1.1.51,3.1.1.1,3.1.1.45,3.1.1.56,3.1.1.60,2.3.1.133,3.1.1.53,3.1.1.102,3.1.1.36,3.1.1.94,3.1.1.99,2.3.1.175,3.1.1.65,3.1.1.54,3.1.1.106,3.1.1.68,3.1.1.37,3.1.1.17,3.1.1.25,3.1.1.105,3.1.1.44,3.1.1.112,3.1.1.63,3.1.1.84,3.1.1.80,3.1.1.2,3.1.1.110	2	0.03	0.3
+TP_BRO_5	TP_BRO_11	CCCCCCCC(=O)OC1=C(C=C(C=C1Br)O)Br,CCCCCCCC(=O)OC1=CC=C(C=C1Br)C#N	CCCCCCCC(=O)OC1=CC=C(C=C1Br)O	bt0029,bt0031	1.21.99.5,1.11.1.8,1.3.1.32	2	0.010000000000000002	0.1
+TP_BRO_5	TP_BRO_12	CCCCCCCC(=O)OC1=CC=C(C=C1Br)C#N	CCCCCCCC(=O)OC1=CC=C(C=C1)C#N	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	2	0.010000000000000002	0.1
+TP_BRO_7	TP_BRO_13	C1=C(C(=C(C=C1O)Br)O)Br	C(=C(/C(=O)[O-])\Br)/C(=O)CC(=O)[O-]	bt0357		3	0.03899999999999999	0.6499999999999999
+TP_BRO_6	TP_BRO_14	C1=C(C(=C(C=C1C(=O)[O-])Br)O)Br	C1=CC(=C(C(=C1)Br)O)Br	bt0051	4.1.1.24,4.1.1.25,4.1.1.115,4.1.1.66,4.1.1.103,4.1.1.29,4.1.1.92,4.1.1.57,3.1.1.82,4.1.1.69,4.1.1.15,4.1.1.18,4.1.1.30,4.1.1.117,4.1.1.50,4.1.1.17,1.1.1.276,4.1.1.116,4.1.1.14,1.1.1.262,4.1.1.63,4.1.1.58,4.1.1.7,4.1.1.96,4.1.1.36,4.1.1.121,4.1.1.23,4.1.1.46,4.1.1.21,4.1.1.9,1.1.1.387,4.1.1.98,4.1.1.120,4.1.1.20,4.1.1.19,4.1.1.22,4.1.1.61,4.1.1.105,4.1.1.62,4.1.1.91,4.1.1.28,4.1.1.16,4.1.1.11,4.1.1.52,4.1.1.112,4.1.1.55,4.1.1.59,4.1.1.94,4.1.1.51,4.1.1.86,4.1.1.93,4.1.1.118,4.1.1.88,4.1.1.81,4.1.1.5,4.1.1.53,4.1.1.68	3	0.024	0.1
+TP_BRO_9	TP_BRO_15	CCCCCCCC(=O)OC1=CC=C(C=C1Br)C(=O)[O-]	C1=C(C=C(C(=C1)O)Br)C(=O)[O-]	bt0024	3.1.1.7,3.1.1.59,3.1.1.49,3.2.1.175,3.1.1.66,3.1.1.15,3.1.1.91,3.1.1.10,3.1.1.70,3.1.1.93,3.1.1.30,3.1.1.27,3.1.1.33,3.1.1.46,3.1.1.55,3.1.1.83,3.1.1.88,3.1.1.107,3.1.1.14,3.1.1.82,3.1.1.113,3.1.1.35,3.1.1.95,3.1.1.31,3.1.1.41,3.1.1.8,3.1.1.114,3.1.1.51,3.1.1.1,3.1.1.45,3.1.1.56,3.1.1.60,2.3.1.133,3.1.1.53,3.1.1.102,3.1.1.36,3.1.1.94,3.1.1.99,2.3.1.175,3.1.1.65,3.1.1.54,3.1.1.106,3.1.1.68,3.1.1.37,3.1.1.17,3.1.1.25,3.1.1.105,3.1.1.44,3.1.1.112,3.1.1.63,3.1.1.84,3.1.1.80,3.1.1.2,3.1.1.110	3	0.012000000000000002	0.3
+TP_BRO_7	TP_BRO_16	C1=C(C(=C(C=C1O)Br)O)Br	C1=C(C=C(C(=C1)O)Br)O	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	3	0.012	0.2
+TP_BRO_7	TP_BRO_17	C1=C(C(=C(C=C1O)Br)O)Br	C1=C(C(=C(C(=C1Br)O)Br)O)O	bt0014	1.14.14.1,1.14.13.240,1.14.13.244,1.14.13.7,1.14.13.29,1.14.13.243,1.14.14.20,1.14.18.1,1.11.2.6,1.14.13.44,1.14.13.62,1.14.13.33,1.14.13.127,1.14.13.2,1.14.13.23,1.14.14.9,1.14.13.20,1.14.13.4,1.11.2.5	3	0.006	0.1
+TP_BRO_9	TP_BRO_18	CCCCCCCC(=O)OC1=C(C=CC=C1Br)Br,CCCCCCCC(=O)OC1=CC=C(C=C1Br)C(=O)[O-]	CCCCCCCC(=O)OC1=C(C=CC=C1)Br	bt0029,bt0051	1.21.99.5,1.11.1.8,1.3.1.32,4.1.1.24,4.1.1.25,4.1.1.115,4.1.1.66,4.1.1.103,4.1.1.29,4.1.1.92,4.1.1.57,3.1.1.82,4.1.1.69,4.1.1.15,4.1.1.18,4.1.1.30,4.1.1.117,4.1.1.50,4.1.1.17,1.1.1.276,4.1.1.116,4.1.1.14,1.1.1.262,4.1.1.63,4.1.1.58,4.1.1.7,4.1.1.96,4.1.1.36,4.1.1.121,4.1.1.23,4.1.1.46,4.1.1.21,4.1.1.9,1.1.1.387,4.1.1.98,4.1.1.120,4.1.1.20,4.1.1.19,4.1.1.22,4.1.1.61,4.1.1.105,4.1.1.62,4.1.1.91,4.1.1.28,4.1.1.16,4.1.1.11,4.1.1.52,4.1.1.112,4.1.1.55,4.1.1.59,4.1.1.94,4.1.1.51,4.1.1.86,4.1.1.93,4.1.1.118,4.1.1.88,4.1.1.81,4.1.1.5,4.1.1.53,4.1.1.68	3	0.004000000000000001	0.1
+TP_BRO_13	TP_BRO_19	C(=C(/C(=O)[O-])\Br)/C(=O)CC(=O)[O-]	C(=C/C(=O)[O-])/C(=O)CC(=O)[O-]	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	4	0.011699999999999997	0.3
+TP_BRO_17	TP_BRO_20	C1=C(C(=C(C(=C1Br)O)Br)O)O	C(=C(/C(=C(\C(=O)[O-])/Br)/O)\Br)/C(=O)[O-]	bt0254	1.13.11.37,1.13.11.8,1.13.11.57,1.13.11.3,1.13.11.1,1.13.11.35	4	0.0042	0.7
+/// Pathway name: CAR, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/70ca701c-55e4-41a6-92c1-d40d4947ad1f
+substrate_name	product_name	substrate_SMILES	product_SMILES	rules	EC_numbers	generation	combined_probability	probability
+CAR	TP_CAR_1	CCNC(=O)C(C)OC(=O)NC1=CC=CC=C1	C1=CC(=C(C=C1)O)O	bt0065	1.14.13.35,1.14.12.14	1	0.4	0.4
+CAR	TP_CAR_2	CCNC(=O)C(C)OC(=O)NC1=CC=CC=C1	CCNC(=O)C(C)OC(=O)N	bt0065	1.14.13.35,1.14.12.14	1	0.4	0.4
+CAR	TP_CAR_3	CCNC(=O)C(C)OC(=O)NC1=CC=CC=C1	C1=CC=C(C=C1)N	bt0318	3.5.3.21	1	0.2	0.2
+CAR	TP_CAR_4	CCNC(=O)C(C)OC(=O)NC1=CC=CC=C1	CCNC(=O)C(C)OC(=O)[O-]	bt0318	3.5.3.21	1	0.2	0.2
+TP_CAR_1	TP_CAR_5	C1=CC(=C(C=C1)O)O	C(=C/C(=O)[O-])/C=C\C(=O)[O-]	bt0254	1.13.11.37,1.13.11.8,1.13.11.57,1.13.11.3,1.13.11.1,1.13.11.35	2	0.27999999999999997	0.7
+TP_CAR_3	TP_CAR_6	C1=CC=C(C=C1)N	N	bt0065	1.14.13.35,1.14.12.14	2	0.06	0.3
+/// Pathway name: IBU, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/0bb2737a-1eb0-4917-9230-75ec4e0475d6
+substrate_name	product_name	substrate_SMILES	product_SMILES	rules	EC_numbers	generation	combined_probability	probability
diff --git a/TP_prediction/output/reaction_prediction_TEST_top_2.tsv b/TP_prediction/output/reaction_prediction_TEST_top_2.tsv
new file mode 100644
index 0000000..a693edd
--- /dev/null
+++ b/TP_prediction/output/reaction_prediction_TEST_top_2.tsv
@@ -0,0 +1,8 @@
+/// Pathway name: Diclofenac, Pathway id: https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/pathway/9c732f7c-020a-42fe-9bf5-539bd15d7142
+substrate_name	product_name	substrate_SMILES	product_SMILES	rules	EC_numbers	generation	combined_probability	probability
+TP_Diclofenac_1	Diclofenac	C1=CC(=C(C(=C1)Cl)N)Cl	C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl	bt0374	1.14.12.22	1	0.6	0.6
+TP_Diclofenac_2	Diclofenac	C1=CC(=C(C(=C1)CC(=O)O)O)O	C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl	bt0374	1.14.12.22	1	0.6	0.6
+/// Pathway name: Atrazine, Pathway id: https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/pathway/8d3f1fbb-98f3-4084-9ef3-59c16e514322
+substrate_name	product_name	substrate_SMILES	product_SMILES	rules	EC_numbers	generation	combined_probability	probability
+TP_Atrazine_1	Atrazine	CC(=O)C	CCNC1=NC(=NC(=N1)NC(C)C)Cl	bt0339		1	0.4	0.4
+TP_Atrazine_2	Atrazine	CC(C)NC1=NC(=NC(=N1)Cl)N	CCNC1=NC(=NC(=N1)NC(C)C)Cl	bt0339		1	0.4	0.4
diff --git a/TP_prediction/output/reaction_prediction_TEST_top_20.tsv b/TP_prediction/output/reaction_prediction_TEST_top_20.tsv
new file mode 100644
index 0000000..fca3e1d
--- /dev/null
+++ b/TP_prediction/output/reaction_prediction_TEST_top_20.tsv
@@ -0,0 +1,37 @@
+/// Pathway name: DIC, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/d5164686-4c13-4107-8159-d1c0907aac3d
+substrate_name	product_name	substrate_SMILES	product_SMILES	rules	EC_numbers	generation	combined_probability	probability
+DIC	TP_DIC_1	C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl	C1=CC(=C(C(=C1)Cl)N)Cl	bt0374	1.14.12.22	1	0.6	0.6
+DIC	TP_DIC_2	C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl	C1=CC(=C(C(=C1)CC(=O)O)O)O	bt0374	1.14.12.22	1	0.6	0.6
+TP_DIC_1	TP_DIC_3	C1=CC(=C(C(=C1)Cl)N)Cl	C1=CC(=C(C=C1)N)Cl	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	2	0.12	0.2
+TP_DIC_3	TP_DIC_4	C1=CC(=C(C=C1)N)Cl	C1=CC=C(C=C1)N	bt0029	1.21.99.5,1.11.1.8,1.3.1.32	3	0.024	0.2
+TP_DIC_3	TP_DIC_5	C1=CC(=C(C=C1)N)Cl	C1=CC(=C(C(=C1)Cl)O)O	bt0065	1.14.13.35,1.14.12.14	3	0.024	0.2
+TP_DIC_3	TP_DIC_6	C1=CC(=C(C=C1)N)Cl	N	bt0065	1.14.13.35,1.14.12.14	3	0.024	0.2
+TP_DIC_5	TP_DIC_7	C1=CC(=C(C(=C1)Cl)O)O	C(=C/C(=O)[O-])/C=C(\C(=O)[O-])/Cl	bt0254	1.13.11.37,1.13.11.8,1.13.11.57,1.13.11.3,1.13.11.1,1.13.11.35	4	0.0216	0.9
+TP_DIC_4	TP_DIC_8	C1=CC=C(C=C1)N	C1=CC(=C(C=C1)O)O	bt0065	1.14.13.35,1.14.12.14	4	0.0072	0.3
+TP_DIC_8	TP_DIC_9	C1=CC(=C(C=C1)O)O	C(=C/C(=O)[O-])/C=C\C(=O)[O-]	bt0254	1.13.11.37,1.13.11.8,1.13.11.57,1.13.11.3,1.13.11.1,1.13.11.35	5	0.005039999999999999	0.7
+TP_DIC_7	TP_DIC_10	C(=C/C(=O)[O-])/C=C(\C(=O)[O-])/Cl	C/1=CC(=O)O\C1=C/C(=O)[O-]	bt0181	5.5.1.7	5	0.00432	0.2
+TP_DIC_10	TP_DIC_11	C/1=CC(=O)O\C1=C/C(=O)[O-]	C(=C/C(=O)[O-])/C(=O)CC(=O)[O-]	bt0313		6	0.00432	1.0
+TP_DIC_10	TP_DIC_12	C/1=CC(=O)O\C1=C/C(=O)[O-]	C(=CC(=O)[O-])/C(=C/C(=O)[O-])/O	bt0024	3.1.1.7,3.1.1.59,3.1.1.49,3.2.1.175,3.1.1.66,3.1.1.15,3.1.1.91,3.1.1.10,3.1.1.70,3.1.1.93,3.1.1.30,3.1.1.27,3.1.1.33,3.1.1.46,3.1.1.55,3.1.1.83,3.1.1.88,3.1.1.107,3.1.1.14,3.1.1.82,3.1.1.113,3.1.1.35,3.1.1.95,3.1.1.31,3.1.1.41,3.1.1.8,3.1.1.114,3.1.1.51,3.1.1.1,3.1.1.45,3.1.1.56,3.1.1.60,2.3.1.133,3.1.1.53,3.1.1.102,3.1.1.36,3.1.1.94,3.1.1.99,2.3.1.175,3.1.1.65,3.1.1.54,3.1.1.106,3.1.1.68,3.1.1.37,3.1.1.17,3.1.1.25,3.1.1.105,3.1.1.44,3.1.1.112,3.1.1.63,3.1.1.84,3.1.1.80,3.1.1.2,3.1.1.110	6	0.003888	0.9
+TP_DIC_11	TP_DIC_13	C(=C/C(=O)[O-])/C(=O)CC(=O)[O-]	C(CC(=O)[O-])C(=O)CC(=O)[O-]	bt0291	1.3.1.106,1.3.1.82,1.3.1.32,1.3.1.22,1.3.1.122,1.3.1.21,1.3.1.93,1.3.1.81,1.3.1.38,1.3.1.75,1.3.1.8,1.3.1.70,1.3.1.72,1.1.1.384	7	0.00043200000000000004	0.1
+/// Pathway name: ATR, Pathway id: https://envipath.org/package/c72d3405-a454-4038-8d34-8f05e46447e6/pathway/cfdfe459-6c5d-413b-a905-545ea3000404
+substrate_name	product_name	substrate_SMILES	product_SMILES	rules	EC_numbers	generation	combined_probability	probability
+ATR	TP_ATR_1	CCNC1=NC(=NC(=N1)NC(C)C)Cl	CC(=O)C	bt0339		1	0.4	0.4
+ATR	TP_ATR_2	CCNC1=NC(=NC(=N1)NC(C)C)Cl	CC(C)NC1=NC(=NC(=N1)Cl)N	bt0339		1	0.4	0.4
+ATR	TP_ATR_3	CCNC1=NC(=NC(=N1)NC(C)C)Cl	CCNC1=NC(=NC(=N1)Cl)N	bt0339		1	0.4	0.4
+ATR	TP_ATR_4	CCNC1=NC(=NC(=N1)NC(C)C)Cl	CC=O	bt0339		1	0.4	0.4
+ATR	TP_ATR_5	CCNC1=NC(=NC(=N1)NC(C)C)Cl	CCNC1=NC(=NC(=N1)NC(C)C)O	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	1	0.4	0.4
+TP_ATR_3	TP_ATR_6	CCNC1=NC(=NC(=N1)Cl)N	CCNC1=NC(=NC(=N1)O)N	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	2	0.32000000000000006	0.8
+TP_ATR_3	TP_ATR_7	CCNC1=NC(=NC(=N1)Cl)N	CCNC1=NC(=NC(=N1)O)Cl	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	2	0.32000000000000006	0.8
+TP_ATR_5	TP_ATR_8	CCNC1=NC(=NC(=N1)NC(C)C)O	CC(C)NC1=NC(=NC(=N1)O)O	bt0061	3.5.4.43,3.5.4.42	2	0.30000000000000004	0.75
+TP_ATR_5	TP_ATR_9	CCNC1=NC(=NC(=N1)NC(C)C)O	CC(C)N	bt0061	3.5.4.43,3.5.4.42	2	0.30000000000000004	0.75
+TP_ATR_5	TP_ATR_10	CCNC1=NC(=NC(=N1)NC(C)C)O	CCN	bt0061	3.5.4.43,3.5.4.42	2	0.30000000000000004	0.75
+TP_ATR_4	TP_ATR_11	CC=O	CC(=O)[O-]	bt0003	1.2.1.57,1.2.1.22,1.2.1.32,1.2.1.79,1.2.1.28,1.2.1.33,1.2.1.10,1.2.1.62,1.2.1.90,1.2.1.87,1.2.1.73,1.2.1.99,1.2.1.26,1.2.1.4,1.2.1.75,1.2.1.78,1.2.3.8,1.2.1.77,1.2.1.63,1.2.1.8,1.2.1.102,1.2.3.7,1.2.1.54,1.2.1.48,1.2.1.5,1.2.1.71,1.2.1.23,1.2.1.3,1.2.1.24,1.2.1.68,1.2.3.15,1.2.1.39,1.2.1.82,1.2.3.1,1.2.1.16,1.2.1.96,1.1.1.312,1.1.3.39,1.2.1.20,1.2.3.9,1.1.3.23,1.2.1.36,1.2.3.5,1.2.1.85,1.2.1.9,1.2.1.31,1.2.1.47,1.1.3.17,1.2.1.15,1.2.1.44,1.2.1.81,1.2.1.65,1.2.3.14,1.2.1.7,1.2.1.98,1.14.13.246,1.2.1.17,1.2.1.91,1.2.1.29,1.2.1.19,1.2.1.97,1.2.1.69,1.2.1.64,1.2.1.53,1.2.1.83,1.1.1.23,1.2.1.89,1.2.1.88,1.2.1.67,1.2.1.74,1.2.1.86,1.2.1.42,1.2.1.21	2	0.2	0.5
+TP_ATR_2	TP_ATR_12	CC(C)NC1=NC(=NC(=N1)Cl)N	C1(=NC(=NC(=N1)N)N)Cl	bt0339		2	0.12	0.3
+TP_ATR_2	TP_ATR_13	CC(C)NC1=NC(=NC(=N1)Cl)N	CC(C)NC1=NC(=NC(=N1)O)Cl	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	2	0.12	0.3
+TP_ATR_2	TP_ATR_14	CC(C)NC1=NC(=NC(=N1)Cl)N	CC(C)NC1=NC(=NC(=N1)O)N	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	2	0.12	0.3
+TP_ATR_6	TP_ATR_15	CCNC1=NC(=NC(=N1)O)N	CCNC1=NC(=NC(=N1)O)O	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	3	0.32000000000000006	0.75
+TP_ATR_10	TP_ATR_16	CCN	N	bt0063	1.4.1.9,1.4.1.3,1.4.3.1,1.5.3.19,1.4.1.1,1.4.3.7,1.4.1.12,1.5.1.10,1.4.1.17,1.5.1.28,1.4.3.12,1.4.1.18,1.5.3.16,1.4.3.5,1.4.3.14,1.4.1.26,1.5.3.5,1.5.3.13,1.4.1.10,1.4.1.21,1.5.1.19,1.4.1.8,1.5.3.6,1.4.3.4,1.4.3.24,1.5.3.1,1.5.1.22,1.4.1.13,1.5.3.18,1.4.3.8,1.5.3.21,1.4.1.4,1.4.3.11,1.4.1.23,1.4.3.20,1.5.1.23,1.4.3.16,1.5.1.24,1.5.1.11,1.14.13.178,1.5.1.16,1.5.3.4,1.4.3.25,1.4.3.3,1.4.1.11,1.5.3.17,1.4.1.14,1.4.3.19,1.4.1.7,1.5.1.8,1.4.1.16,1.14.13.128,1.5.3.10,1.4.1.2,1.5.3.15,1.4.3.22,1.5.1.51,1.4.3.10,1.4.1.19,1.5.1.26,1.14.13.239,1.5.1.7,1.14.14.1,1.4.3.15,1.4.1.20,1.4.3.21,1.14.13.179,1.4.3.2,1.14.13.238,1.5.1.52,1.5.1.9	3	0.15000000000000002	0.1
+TP_ATR_12	TP_ATR_17	C1(=NC(=NC(=N1)N)N)Cl	C1(=NC(=NC(=N1)N)O)Cl	bt0330	3.5.4.45,3.5.4.42,3.5.4.43,3.8.1.8	3	0.08399999999999999	0.05
+TP_ATR_6	TP_ATR_18	CCNC1=NC(=NC(=N1)O)N	C1(=NC(=NC(=N1)O)O)N	bt0061	3.5.4.43,3.5.4.42	3	0.08000000000000002	0.25
+TP_ATR_7	TP_ATR_19	CCNC1=NC(=NC(=N1)O)Cl	C1(=NC(=NC(=N1)O)O)Cl	bt0061	3.5.4.43,3.5.4.42	3	0.08000000000000002	0.25
+TP_ATR_15	TP_ATR_20	CCNC1=NC(=NC(=N1)O)O	C1(=NC(=NC(=N1)O)O)O	bt0061	3.5.4.43,3.5.4.42	4	0.24000000000000005	0.75
diff --git a/TP_prediction/output/reaction_prediction_TEST_top_3.tsv b/TP_prediction/output/reaction_prediction_TEST_top_3.tsv
new file mode 100644
index 0000000..e69de29
diff --git a/TP_prediction/util.py b/TP_prediction/util.py
index c759157..e4a3dbf 100644
--- a/TP_prediction/util.py
+++ b/TP_prediction/util.py
@@ -1,118 +1,134 @@
 import sys
 sys.path.insert(0, '../src/envipath-python/enviPath_python/')
 sys.path.insert(0, '../src/envipath-python/')
 from enviPath_python.enviPath import *
 from enviPath_python.enviPath import *
 
 def load_input(input_path):
     """
     Load input smiles and names
     :param input_path: path to input file
     :return: list of dictionaries containing smiles and name of input compounds
     """
     f = open(input_path)
     input_list = []
     for line in f:
         if line not in ['', '\n']:
             line_split = line.rstrip().split('\t')
             input_list.append({'smiles': line_split[0], 'name': line_split[1]})
     return input_list
 
 def upload_envipath_pathway(eP, result, pkg):
     """
     Upload resulting pathway dictionary to enviPath
     :param eP: enviPath object
     :param result: result list of dictionaries from pathway prediction
     :param pkg: package object where results should be uploaded
     :return: dictionary {'name': pathway name, 'id': URI of pathway}
     """
     assert 'anonymous' not in str(eP.who_am_i()), 'Upload not possible when not logged in'
     source = result[0]
     pkg.add_compound(smiles=source['smiles'],name=source['name'])
     pathway = Pathway.create(pkg, smiles=source['smiles'], name=source['name'], root_node_only=True)
     # Add the observed degradation product as a second node
     for TP in result[1:]:
-        # print('adding to pw:', TP['name'], TP['smiles'], TP['generation'], TP['parent'])
-        pathway.add_node(smiles=TP['smiles'], node_name=TP['name'], node_depth=TP['generation'])
+        # print('adding to pw:', TP['name'], TP['smiles'], TP['generation'], TP['parent_smiles'])
+        pathway.add_node(smiles=TP['smiles'], name=TP['name'], depth=TP['generation'])
         # check for the case of multiple parents:
-        for parent in TP['parent'].split(','):
+        for parent in TP['parent_smiles'].split(','):
             pathway.add_node(smiles=parent)
             pathway.add_edge(smirks='{}>>{}'.format(parent, TP['smiles']))
 
     print('New pathway created for {}: {}'.format(source['name'], pathway.id))
     return {'name': source['name'], 'id': pathway.id}
 
 def expand_smiles(smiles, rr):
     """
     Get all potential TPs by applying enviPath biotransformation and relative reasoning rules
     :param smiles: input smiles
     :param rr: relative reasoning object
     :return: list of dictionaries for each predicted TP: {'smiles': smiles,
                                                           'name': rule name,
                                                           'probability': relative reasoning probability}
     """
     res = rr.classify_smiles(smiles)
     # sort by probability
     res.sort(reverse=True, key=lambda x: x['probability'])
     return res
 
 def clean_result(result_dict):
     """
     Sorts TP list for output
     :param result_dict: result dictionary
     :return: sorted and named list of TPs
     """
     result_list = list(result_dict.values())
-    result_list.sort(key=lambda x: x['generation']) # make sure that source compound is first
     result_list.sort(reverse=True, key=lambda x: x['combined_probability'])
+    result_list.sort(key=lambda x: x['generation']) # make sure that source compound is first
     # get name of source compound
     source_name = result_list[0]['name']
+    source_smiles = result_list[0]['smiles']
     TP_count = 0
+    D = {source_smiles: source_name}
+    new_result_list = []
+    new_result_list.append(result_list[0])
     for res in result_list[1:]:
+        new_res = res
         TP_count += 1
-        res['name'] = 'TP_{}_{}'.format(source_name, TP_count)
-    return result_list
+        new_name = 'TP_{}_{}'.format(source_name, TP_count)
+        new_res['name'] = new_name
+        multiple_parents = res['parent_smiles'].split(',')
+        for p in multiple_parents:
+            new_res['parent_name'] = D[p]
+            D[res['smiles']] = new_name
+        new_result_list.append(new_res)
+    return new_result_list
 
 def result_to_compound_dict(result):
     """
     Translates result from enviPath node expansion into a compound dictionary
     :param result: list of dictionaries with predicted TP information
     :return: dictionary of TPs
     """
     compound_dict = {}
     for r in result:
         probability = float(r['probability'])
         for product_smiles in r['products']:
             if product_smiles not in compound_dict.keys():
-                compound_dict[product_smiles] = {'rules' : r['name'], 'probability': probability, 'smiles': product_smiles}
+                compound_dict[product_smiles] = {'rules' : r['name'], 'rule_IDs': r['id'], 'probability': probability, 'smiles': product_smiles}
             else:
                 # check if there's a rule with better probability
                 if probability > compound_dict[product_smiles]['probability']:
                     # update probability and rules associated to this probability
                     compound_dict[product_smiles]['probability'] = probability
                     compound_dict[product_smiles]['rules'] = r['name']
+                    compound_dict[product_smiles]['rule_IDs'] = r['id']
     return compound_dict
 
-def update_compound_entry(compound_entry, this_combined_probability, rules, this_generation, parent_smiles,
+def update_compound_entry(compound_entry, this_combined_probability, rules, rule_IDs, this_generation, parent_smiles,
                           size_metric, size_value):
     """
     Update the compound entry with new information
     :param compound_entry: dictionary of compound information
     :param this_combined_probability: new combined probability
     :param rules: new rules
+    :param rule_IDs: new rule IDs
     :param this_generation: new generation
     :param parent_smiles: new parent compound
+    :param parent_compound: new parent compound
     :param size_metric: size metric
     :param size_value: new size value
     :return: updated compound entry
     """
     if compound_entry['combined_probability'] < this_combined_probability:
         compound_entry['combined_probability'] = this_combined_probability
         compound_entry['rules'] = rules
+        compound_entry['rule_IDs'] = rule_IDs
         compound_entry['generation'] = this_generation
-        compound_entry['parent'] = parent_smiles
+        compound_entry['parent_smiles'] = parent_smiles
         compound_entry[size_metric] = size_value
     elif compound_entry['combined_probability'] == this_combined_probability:
         compound_entry['rules'] += ',{}'.format(rules)
-        compound_entry['parent'] += ',{}'.format(parent_smiles)
+        compound_entry['rule_IDs'] += ',{}'.format(rule_IDs)
+        compound_entry['parent_smiles'] += ',{}'.format(parent_smiles)
     return compound_entry