diff --git a/Makefile b/Makefile
index dac6fb4..98385ff 100644
--- a/Makefile
+++ b/Makefile
@@ -1,5 +1,7 @@
 init:
 	git lfs install
+	git lfs pull
 	conda install git pip
 	pip install -r requirements.txt
-	pip install -e git+https://github.com/lorsbach/enviPath-python@develop#egg=enviPath-python
\ No newline at end of file
+	pip install -e git+https://github.com/lorsbach/enviPath-python@develop#egg=enviPath-python
+	if [ ! -d TP_prediction/output ]; then mkdir TP_prediction/output; fi
\ No newline at end of file
diff --git a/TP_prediction/find_best_TPs.py b/TP_prediction/find_best_TPs.py
index d8c322c..4ed03ee 100644
--- a/TP_prediction/find_best_TPs.py
+++ b/TP_prediction/find_best_TPs.py
@@ -1,228 +1,231 @@
+import sys
+sys.path.insert(0, '../src/envipath-python/enviPath_python/')
+sys.path.insert(0, '../src/envipath-python/')
 from enviPath_python.enviPath import *
 from enviPath_python.enviPath import *
 from util import *
 import getpass
 
 #---------------------------#
 # enviPath SETTINGS         #
 #---------------------------#
 
 # Define the instance to use
 INSTANCE_HOST = 'https://envipath.org'
-USERNAME = 'jasmin' # TODO USER: enter your username
+USERNAME = '' # TODO USER: enter your username
 
 # MODEL # TODO USER: Select model for relative reasoning. Default: Standard model BBD - ML - ECC - 2022
 # New enviPath - default relative reasoning model on envipath: BBD - ML - ECC - 2022
 EP_MODEL_ID = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/646afb6c-6cfc-4d4b-8d22-e196d849ec73'
 # New enviPath - BBD+SOIL relative reasoning model on envipath: BBD+SOIL - ML - ECC - 2022
 # rr_id = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/0aec0115-941d-4e33-a844-4431d3ec598d'
 # New enviPath - BBD+SOIL relative reasoning model on envipath: BBD+SLUDGE - ML - ECC - 2022
 # rr_id = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/2a41e599-f962-4268-b7d1-5f1cb252b937'
 # New enviPath - BBD+SOIL relative reasoning model on envipath: BBD+SOIL+SLUDGE - ML - ECC - 2022
 # rr_id = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55/relative-reasoning/76bd8654-e02f-4fbd-98df-bf61411f9b92'
 
 # PACKAGE - # TODO USER: prepare a new package (manually) and add it's URI here - make sure it is empty when running script!
 EP_PACKAGE_ID = 'https://envipath.org/package/de0cdca1-c3ff-44ed-8ffd-f29c269bfa55' # Test package
 # List of output packages used for Sludge TP paper
 # pkg_id_1 = 'https://envipath.org/package/0915fad3-b889-4aa8-ac98-0707b717be57' # Package for results using BBD - ML - ECC - 2022 model
 # pkg_id_2 = 'https://envipath.org/package/80cf58b1-21e2-4c28-9cc6-dc69c6445bdf' # Package for results using BBD+SOIL - ML - ECC - 2022 model
 # pkg_id_3 = 'https://envipath.org/package/7d64aa85-2e3c-413f-a538-4d5f2bfd4662' # Package for results using BBD+SLUDGE - ML - ECC - 2022 model
 # pkg_id_4 = 'https://envipath.org/package/11f2acd5-5209-4d49-ad77-93f6f6965886' # Package for results using BBD+SOIL+SLUDGE - ML - ECC - 2022 model
 
 
 #---------------------------#
 # PATHWAY SEARCH SETTINGS   #
 #---------------------------#
 # These are the default settings used for the Sludge TP paper.
 # They can be modified to direct the pathway search towards a specific objective.
 
 # Maximum number of TPs to predict
-MAX_TP = 1
+MAX_TP = 50
 
 # Lower probability threshold
 PROBABILITY_THRESHOLD = -1 # any value equal to or lower than the threshold will be excluded
 
 # Set probabilities of 0 to 0.01 to continue having a weighting scheme downstream of the pathway
 INCLUDE_0_PROBABILITIES = False
 
 # Follow moiety - only compounds containing moiety in SMILES will be expanded
 MOIETY = "" # e.g., "C(F)(F)F"
 
 # To prioritize small compounds in the queue
 SORT_TPS_BY_SIZE = False
 
 # Follow labeled atoms
 FOLLOW_LABELED_ATOM = False
 ATOM_LABEL = '14'
 
 #---------------------------#
 # FILE PATH SETTINGS        #
 #---------------------------#
 # Input/output files
 INPUT_FILE_PATH = 'input/input_structures.tsv'
 OUTPUT_DIRECTORY = 'output/'
 OUTPUT_FILE_TAG = 'TEST'
 
 
 #---------------------------#
 # CONNECT TO ENVIPATH       #
 #---------------------------#
 eP = enviPath(INSTANCE_HOST)
 password = getpass.getpass()
 eP.login(USERNAME, password)
 
 
 #---------------------------#
 # FUNCTIONS                 #
 #---------------------------#
 def __main__(rr_id, pkg_id, tag):
     """
     Main function, predicts pathways for a list of input smiles
     Output: pathways are saved to specified enviPath package, TP list as .tsv file to output folder
     :param rr_id: URI of enviPath relative reasoning mode to be used
     :param pkg_id: URI of enviPath package to store resulting pathways
     :param tag: string tag to attach to output files for identification
     """
     rr = RelativeReasoning(eP.requester, id=rr_id)
     pkg = Package(eP.requester, id=pkg_id)
     input_list = load_input(INPUT_FILE_PATH)
     output_file_path = '{}TP_prediction_{}_top_{}.tsv'.format(OUTPUT_DIRECTORY, tag, MAX_TP)
     outfile = open(output_file_path, 'w')
     for compound_input in input_list:
         result = predict_TPs(compound_input['smiles'], compound_input['name'], rr)
         result_list = clean_result(result) # sort and name TPs
         pathway_info = upload_envipath_pathway(eP, result_list, pkg)
         print_result(outfile, result_list, pathway_info) # continuous writing of result file
 
 
 
 def print_result(open_file, result, pathway = None):
     """
     Prints output to open file
     :param open_file: writable file object
     :param result: clean result dictionary from predict_TPs() function
     :param pathway: pathway URI from upload_envipath_pathway() function
     """
     open_file.write('///') # signifies new pathway entry
     if pathway:
         open_file.write(' Pathway name: {}, Pathway id: {}'.format(pathway['name'], pathway['id']))
     open_file.write('\n')
     header= ('SMILES\tname\tcombined_probability\trules\tgeneration\tprobability\tparent\n')
     open_file.write(header)
     for TP in result:
         open_file.write('{}\t{}\t{}\t{}\t{}\t{}\t{}\n'.format(TP['smiles'],
                                               TP['name'],
                                               TP['combined_probability'],
                                               TP['rules'],
                                               TP['generation'],
                                               TP['probability'],
                                               TP['parent'])
                         )
 
 def predict_TPs(input_smiles, input_name, rr):
     """
     Pathway prediction for single compound
     :param input_smiles: input smiles of parent compound
     :param input_name: name of parent compound
     :param rr: relative reasoning object
     :return: dictionary of resulting TPs
     """
     print('\n### PREDICT TPs FOR COMPOUND {} ###\n'.format(input_name))
     num_TP = -1 # counter starts at -1, because source compound is also in the TP list
     validated_TPs = {}  # container for resulting predictions
     queued_items = [{'probability': 1, 'combined_probability': 1, 'smiles': input_smiles, 'generation': 0, 'parent': '',
                      'rules': '', 'name': input_name, 'size': len(input_smiles)}]
     queue = [input_smiles]  # queue is updated after each cycle to have top TP first, list of smiles
     while num_TP < MAX_TP:
         if len(queue) == 0:
             print('\nEmpty queue - The exploration of has converged at {} predicted TPs'.format(num_TP))
             return validated_TPs # stop TP prediction
         smiles = queue.pop(0) # get top item in queue
         data = queued_items.pop(0) # remove data from queued items
         result_list = expand_smiles(smiles, rr)  # create children
         TP_dict = result_to_compound_dict(result_list)
         queue, queued_items, validated_TPs = update_queue(queue, queued_items, validated_TPs, TP_dict, data)
         validated_TPs[smiles] = data
         num_TP += 1
     return validated_TPs
 
 
 def update_queue(_queue,_queued_items, _validated_TPs, _TPs, _parent_data):
     """
     Update queue with TPs predicted in current iteration
     :param _queue: ordered list of smiles to explore
     :param _queued_items: ordered list of compound dictionaries, same order as _queue
     :param _validated_TPs: list of already validated TPs for resulting pathway
     :param _TPs: predicted TPs from current iteration, to be evaluated and added to queue
     :param _parent_data: compound dictionary of the parent compound of _TPs
     :return: new_queue: new ordered list of smiles to explore
     :return _queued_items: new ordered list of compound dictionaries
     :return: _validated_TPs: updated list of already validated TPs
     """
     parent_probability = _parent_data['combined_probability']
     parent_generation = _parent_data['generation']
     parent_smiles = _parent_data['smiles']
     queue_before = len(_queue)
     for smiles in _TPs:
         data = _TPs[smiles]
         # If the probability is 0 , we don't consider the TP further
         this_probability = data['probability']
         if this_probability <= PROBABILITY_THRESHOLD:
             continue
         # If a moiety is given and it is not in SMILES, we don't follow the TP further
         if MOIETY not in smiles:
             continue
         if FOLLOW_LABELED_ATOM and ATOM_LABEL not in smiles:
             continue
         if INCLUDE_0_PROBABILITIES and this_probability == 0:
             this_probability = 0.01
         # add combined probability
         this_combined_probability = parent_probability * this_probability
         this_generation = parent_generation + 1
         rules = data['rules']
         # first, check if compound already in validated. if yes, update
         if smiles in _validated_TPs.keys():
             _validated_TPs[smiles] = update_compound_entry(_validated_TPs[smiles],
                                                            this_combined_probability, rules,
                                                            this_generation, parent_smiles, size_metric='size',
                                                            size_value=len(smiles))
         # next, check if compound is already in queue. if yes, update
         elif smiles in _queue:
             index = _queue.index(smiles)
             assert smiles == _queued_items[index]['smiles'], \
                 'smiles {} does not match smiles in {}'.format(smiles, _queued_items[index])
             _queued_items[index] = update_compound_entry(_queued_items[index],
                                                            this_combined_probability, rules,
                                                            this_generation, parent_smiles, size_metric='size',
                                                            size_value=len(smiles))
         # else, add new item to queue
         else:
             data['combined_probability'] = this_combined_probability
             data['generation'] = this_generation
             data['parent'] = parent_smiles
             data['carbon_count'] = smiles.upper().count('C')
             _queued_items.append(data)
             _queue.append(smiles)
             assert len(_queued_items) == len(_queue)
     # First sort by size
     if SORT_TPS_BY_SIZE:
         _queued_items.sort(reverse=False, key=lambda x: x['size'])
     # order dict by combined probability
     _queued_items.sort(reverse=True, key=lambda x: x['combined_probability'])
     queue_after = len(_queue)
     print('Added {} smiles to queue'.format(queue_after - queue_before))
     new_queue = [] # resetting queue
     [new_queue.append(x['smiles']) for x in _queued_items]
     print ('New queue for compound', parent_smiles)
     for q in new_queue:
         print(q, _queued_items[new_queue.index(q)]['combined_probability'])
 
     return new_queue, _queued_items, _validated_TPs
 
 
 #---------------------------#
 # MAIN                      #
 #---------------------------#
 __main__(rr_id = EP_MODEL_ID, pkg_id = EP_PACKAGE_ID, tag = OUTPUT_FILE_TAG)
 
 
diff --git a/TP_prediction/util.py b/TP_prediction/util.py
index db1fc81..c759157 100644
--- a/TP_prediction/util.py
+++ b/TP_prediction/util.py
@@ -1,115 +1,118 @@
+import sys
+sys.path.insert(0, '../src/envipath-python/enviPath_python/')
+sys.path.insert(0, '../src/envipath-python/')
 from enviPath_python.enviPath import *
 from enviPath_python.enviPath import *
 
 def load_input(input_path):
     """
     Load input smiles and names
     :param input_path: path to input file
     :return: list of dictionaries containing smiles and name of input compounds
     """
     f = open(input_path)
     input_list = []
     for line in f:
         if line not in ['', '\n']:
             line_split = line.rstrip().split('\t')
             input_list.append({'smiles': line_split[0], 'name': line_split[1]})
     return input_list
 
 def upload_envipath_pathway(eP, result, pkg):
     """
     Upload resulting pathway dictionary to enviPath
     :param eP: enviPath object
     :param result: result list of dictionaries from pathway prediction
     :param pkg: package object where results should be uploaded
     :return: dictionary {'name': pathway name, 'id': URI of pathway}
     """
     assert 'anonymous' not in str(eP.who_am_i()), 'Upload not possible when not logged in'
     source = result[0]
     pkg.add_compound(smiles=source['smiles'],name=source['name'])
     pathway = Pathway.create(pkg, smiles=source['smiles'], name=source['name'], root_node_only=True)
     # Add the observed degradation product as a second node
     for TP in result[1:]:
         # print('adding to pw:', TP['name'], TP['smiles'], TP['generation'], TP['parent'])
         pathway.add_node(smiles=TP['smiles'], node_name=TP['name'], node_depth=TP['generation'])
         # check for the case of multiple parents:
         for parent in TP['parent'].split(','):
             pathway.add_node(smiles=parent)
             pathway.add_edge(smirks='{}>>{}'.format(parent, TP['smiles']))
 
     print('New pathway created for {}: {}'.format(source['name'], pathway.id))
     return {'name': source['name'], 'id': pathway.id}
 
 def expand_smiles(smiles, rr):
     """
     Get all potential TPs by applying enviPath biotransformation and relative reasoning rules
     :param smiles: input smiles
     :param rr: relative reasoning object
     :return: list of dictionaries for each predicted TP: {'smiles': smiles,
                                                           'name': rule name,
                                                           'probability': relative reasoning probability}
     """
     res = rr.classify_smiles(smiles)
     # sort by probability
     res.sort(reverse=True, key=lambda x: x['probability'])
     return res
 
 def clean_result(result_dict):
     """
     Sorts TP list for output
     :param result_dict: result dictionary
     :return: sorted and named list of TPs
     """
     result_list = list(result_dict.values())
     result_list.sort(key=lambda x: x['generation']) # make sure that source compound is first
     result_list.sort(reverse=True, key=lambda x: x['combined_probability'])
     # get name of source compound
     source_name = result_list[0]['name']
     TP_count = 0
     for res in result_list[1:]:
         TP_count += 1
         res['name'] = 'TP_{}_{}'.format(source_name, TP_count)
     return result_list
 
 def result_to_compound_dict(result):
     """
     Translates result from enviPath node expansion into a compound dictionary
     :param result: list of dictionaries with predicted TP information
     :return: dictionary of TPs
     """
     compound_dict = {}
     for r in result:
         probability = float(r['probability'])
         for product_smiles in r['products']:
             if product_smiles not in compound_dict.keys():
                 compound_dict[product_smiles] = {'rules' : r['name'], 'probability': probability, 'smiles': product_smiles}
             else:
                 # check if there's a rule with better probability
                 if probability > compound_dict[product_smiles]['probability']:
                     # update probability and rules associated to this probability
                     compound_dict[product_smiles]['probability'] = probability
                     compound_dict[product_smiles]['rules'] = r['name']
     return compound_dict
 
 def update_compound_entry(compound_entry, this_combined_probability, rules, this_generation, parent_smiles,
                           size_metric, size_value):
     """
     Update the compound entry with new information
     :param compound_entry: dictionary of compound information
     :param this_combined_probability: new combined probability
     :param rules: new rules
     :param this_generation: new generation
     :param parent_smiles: new parent compound
     :param size_metric: size metric
     :param size_value: new size value
     :return: updated compound entry
     """
     if compound_entry['combined_probability'] < this_combined_probability:
         compound_entry['combined_probability'] = this_combined_probability
         compound_entry['rules'] = rules
         compound_entry['generation'] = this_generation
         compound_entry['parent'] = parent_smiles
         compound_entry[size_metric] = size_value
     elif compound_entry['combined_probability'] == this_combined_probability:
         compound_entry['rules'] += ',{}'.format(rules)
         compound_entry['parent'] += ',{}'.format(parent_smiles)
     return compound_entry
diff --git a/readme.md b/readme.md
index f9f460b..ee467c2 100644
--- a/readme.md
+++ b/readme.md
@@ -1,51 +1,49 @@
 # TP_predict - Predict TPs and create suspect lists
 
 This collection of scripts allows the user to reproduce the TP prediction and data analyses presented in the following publication:
 
 Trostel, L. & Coll, C., Fenner, K., Hafner, J. Synergy of predictive and analytical methods advances elucidating biotransformation processes in activated sludge, 2023.
 [insert DOI]
 
 The tools can further be used to perform the same predictions and analyses on a different set of compounds.
 
 ## Content
 
 * **TP_prediction**: Script to predict TPs and corresponding biodegradation pathways
 * **File_conversion**: Conversion of prediction output to input for suspect screening tools
   * Prediction_output_to_mass_list
   * SMILES_to_mass_and_inclusion_list
 * **Additional_analyses**
   * Compare_methods
   * Analyse_cutoff_thresholds
 
 Specific user guidance can be found in the README.md files of the content folders.
 
 ## How to
 To fetch the code from the git repository, open a terminal and run:
 ```
 $ git clone [insert link]
 ```
-Optional: To get the input/output data presented in the manuscript, additionally get the lfs files
+Go to the newly created directory:
 ```
-$ git lfs install
-$ git lfs pull
+$ cd TP_predict
 ```
-To install the dependencies, go to the nicepath directory and run:
+To set up TP_predict and install the dependencies, run:
 ```
-$ cd TP_predict
 $ make
 ```
 
 ## Installation and requirements
 The scripts requires rdkit for python, which is easiest installed in a conda environment.
 All scripts have been developed and tested in Python version 3.6 on Mac, Linux and Windows operating systems.
 
 ### Anaconda step by step guide for non-python users:
 
 1. [Download Anaconda](https://docs.anaconda.com/anaconda/install/index.html) and install it, then run `Anaconda Navigator`
 2. create new environment under the `Environment` tab, select python version 3.6.13
 3. go to environments, click `play button` on newly created environment, open Terminal
 4. run following lines individually (need to confirm: type `y` and press `enter`)(might take a while): `conda install -c rdkit rdkit` and `pip install pubchempy`
 5. check if pandas is installed and active according to [this Tutorial](https://docs.anaconda.com/anaconda/navigator/tutorials/pandas/)	
 6. open `Anaconda Navigator`, go to `Home` tab, check if `Applications on` is set to the new environment
 7. click `gear icon` on `Spyder` > install specific version > 5.0.5 and wait for installation to finish
 8. click `launch button` below `Spyder`
diff --git a/requirements.txt b/requirements.txt
index 8e46a2b..5d1b87c 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,8 +1,9 @@
 networkx
 numpy
 pandas
 rdkit
 matplotlib
 seaborn
 pubchempy
-matplotlib
\ No newline at end of file
+matplotlib
+requests
\ No newline at end of file