diff --git a/BIOP_Clustering.m b/BIOP_Clustering.m new file mode 100644 index 0000000..f509dff --- /dev/null +++ b/BIOP_Clustering.m @@ -0,0 +1,760 @@ +function BIOP_Clustering +%Start EasyXT +addpath('EasyXT'); +addpath('functions'); +global X; +X = EasyXT(); + +f = figure('Name', 'BIOP - Clustering WingJ', ... + 'NumberTitle', 'off', 'Visible', 'off', 'Position', [0 0 700 512], ... + 'Tag', 'clustetring_main_f', ... + 'DockControls', 'off', 'ToolBar', 'none', 'MenuBar', 'none'); + +% Move the window to the center of the screen. +movegui(f,'center'); + +% Make the window visible. +f.Visible = 'on'; + +% Add 1 panel on the left and one on the right +settingsp = uipanel(f,'Title','Settings', 'Tag', 'p_settings',... + 'Position',[.05 .05 .65 .9]); + +commandsp = uipanel(f,'Title','Actions', 'Tag', 'p_commands',... + 'Position',[.70 .05 .25 .9]); + +% Settings Tab +uitabgroup('Parent', settingsp, 'Tag', 'tab_channels'); + +% Add buttons for refreshing data, and batch +h = .1; +w = .9; +l = .05; + +uicontrol(commandsp,'Style','pushbutton','String','Refresh',... + 'Units','normalized', 'Tag', 'btn_refresh', ... + 'Position',[l .90 w h],... + 'Callback', @btn_refresh_callback); +uicontrol(commandsp,'Style','pushbutton','String','Get Sum Channel',... + 'Units','normalized', 'Tag', 'btn_sum', ... + 'Position',[l .8 w h],... + 'Callback', @btn_sum_callback); +uicontrol(commandsp,'Style','pushbutton','String','Clear Outside Sum Channel',... + 'Units','normalized', 'Tag', 'btn_clear_outside', ... + 'Position',[l .7 w h],... + 'Callback', @btn_clear_outside_callback); + +uicontrol(commandsp,'Style','pushbutton','String','Detect Spots',... + 'Units','normalized', 'Tag', 'btn_detect_spots', ... + 'Position',[l .6 w h],... + 'Callback', @btn_detect_spots_callback); + +uicontrol(commandsp,'Style','pushbutton','String','Cluster Spots',... + 'Units','normalized', 'Tag', 'btn_cluster_spots', ... + 'Position',[l .5 w h],... + 'Callback', @btn_cluster_spots_callback); + +uicontrol(commandsp,'Style','pushbutton','String','Reassign Spots',... + 'Units','normalized', 'Tag', 'btn_reassign_spots', ... + 'Position',[l .4 w h],... + 'Callback', @btn_reassign_spots_callback); + +% Load WingJ +uicontrol(commandsp,'Style','pushbutton','String','Load WingJ Data',... + 'Units','normalized', 'Tag', 'btn_wingj', ... + 'Position',[l .3 w h],... + 'Callback', @btn_wingj_callback); + +uicontrol(commandsp,'Style','pushbutton','String','Export To CSV',... + 'Units','normalized', 'Tag', 'btn_export', ... + 'Position',[l .2 w h],... + 'Callback', @btn_export_callback); + +uicontrol(commandsp,'Style','text',... + 'String','Settings',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'center', ... + 'Position',[l .10 w 0.05]); + +uicontrol(commandsp,'Style','pushbutton','String','Save',... + 'Units','normalized', 'Tag', 'btn_save', ... + 'Position',[l .05 w/2 h/2],... + 'Callback', @savebtn_callback); + +uicontrol(commandsp,'Style','pushbutton','String','load',... + 'Units','normalized', 'Tag', 'btn_load', ... + 'Position',[l+w/2 .05 w/2 h/2],... + 'Callback', @loadbtn_callback); + +% Make all the settings +% Settings Tab +tgroup = uitabgroup('Parent', settingsp, 'Tag', 'tab_channels'); + +makeChanSumTab(tgroup); +makeCleanChanTab(tgroup); +makeSpotDetectionTab(tgroup); +makeClusteringTab(tgroup); +makeReassignTab(tgroup); +makeWingJTab(tgroup) +%makeExportTab(tgroup); + +end + +function makeChanSumTab(parent) +global X; +tabTag = 'tab_chan_sum'; +tabName = 'Sum Channels'; +thisTab = findobj('Tag',tabTag); +if isempty(thisTab) + thisTab = uitab('Parent', parent, 'Title', tabName, ... + 'Tag', tabTag); + + % Add all the controls + %Control settings + %Channels of interest as checkboxes + sp = 0.05; + nChan = X.GetSize('C'); + uicontrol(thisTab,'Style','text',... + 'String','Channels to Sum',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'left', ... + 'Position',[.05 0.9 .3 sp]); + + for k=1:nChan; + cbh(k) = uicontrol(thisTab, 'Style','checkbox','String',sprintf('Channel %d',k), ... + 'Tag', sprintf('is_sum_chan_%d',k), ... + 'Value',1, ... + 'Units', 'Normalized', ... + 'Position',[.05 .9-sp*k .3 sp]); + end + + % Ask if we perform normalization + uicontrol(thisTab, 'Style','checkbox','String','Normalize Channels Before Sum', ... + 'Tag', 'is_chan_norm', ... + 'Value',1, ... + 'Units', 'Normalized', ... + 'Position',[.05 0.9-sp*(nChan+3) .5 sp]); + +end +end + +function makeCleanChanTab(parent) +tabTag = 'tab_clean'; +tabName = 'Clean Channel'; +thisTab = findobj('Tag',tabTag); +if isempty(thisTab) + thisTab = uitab('Parent', parent, 'Title', tabName, ... + 'Tag', tabTag); + + % Add all the controls + %Control position + sp = 0.05; + py = 0.89; + + % Channel for surface creation + uicontrol(thisTab,'Style','text',... + 'String','Surface Channel',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py .3 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','',... + 'Units','Normalized', ... + 'Tag', 'txt_channel_surface', ... + 'Position',[.36 py+.01 .1 sp]); + + % Smoothing Factor for Surface + uicontrol(thisTab,'Style','text',... + 'String','Surface Smoothing',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-sp .3 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','5.0',... + 'Units','Normalized', ... + 'Tag', 'txt_surface_smooth', ... + 'Position',[.36 py+.01-sp .1 sp]); + + % Surface Intensity Threshold + uicontrol(thisTab,'Style','text',... + 'String','Intensity Threshold',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-2*sp .3 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','15',... + 'Units','Normalized', ... + 'Tag', 'txt_surface_intensity_threshold', ... + 'Position',[.36 py+.01-2*sp .1 sp]); +end +end + +function makeSpotDetectionTab(parent) +tabTag = 'tab_detect'; +tabName = 'Detect Spots'; +thisTab = findobj('Tag',tabTag); +if isempty(thisTab) + thisTab = uitab('Parent', parent, 'Title', tabName, ... + 'Tag', tabTag); + + % Add all the controls + %Control position + sp = 0.05; + py = 0.89; + % Spot Detection Channel + uicontrol(thisTab,'Style','text',... + 'String','Spot Channel',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py .3 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','',... + 'Units','Normalized', ... + 'Tag', 'txt_channel_spot', ... + 'Position',[.36 py+.01 .1 sp]); + + % Spot Spot Sizes + uicontrol(thisTab,'Style','text',... + 'String','Spot Size [um]',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-sp .3 sp]); + % XY + uicontrol(thisTab,'Style','edit',... + 'String','2.8',... + 'Units','Normalized', ... + 'Tag', 'txt_spot_size_xy', ... + 'Position',[.36 py+.01-sp .1 sp]); + % Z (Optional) + uicontrol(thisTab,'Style','edit',... + 'String','2.8',... + 'Units','Normalized', ... + 'Tag', 'txt_spot_size_z', ... + 'Position',[.47 py+.01-sp .1 sp]); + + % Spot Quality Threshold + uicontrol(thisTab,'Style','text',... + 'String','Spot Quality Threshold',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-2*sp .30 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','15',... + 'Units','Normalized', ... + 'Tag', 'txt_spot_quality_threshold', ... + 'Position',[.36 py+.01-2*sp .1 sp]); + + % Remove Spots Closer than + uicontrol(thisTab,'Style','checkbox',... + 'String','Remove Spots if closer than',... + 'Tag', 'is_remove_spots', ... + 'Units','Normalized', ... + 'Position',[.05 py-3*sp .40 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','1.0',... + 'Units','Normalized', ... + 'Tag', 'txt_spot_proximity_threshold', ... + 'Position',[.45 py-3*sp .07 sp]); + + uicontrol(thisTab,'Style','text',... + 'String','um to image edge',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'left', ... + 'Position',[.53 py-3*sp-.01 .30 sp]); + + +end +end + +function makeClusteringTab(parent) +tabTag = 'tab_cluster'; +tabName = 'Cluster'; +thisTab = findobj('Tag',tabTag); +if isempty(thisTab) + thisTab = uitab('Parent', parent, 'Title', tabName, ... + 'Tag', tabTag); + + % Add all the controls + % Need 3 tabs: Manual Clustering, Brute Force and KMeans + clusMode = uitabgroup('Parent', thisTab, 'Tag', 'tab_cluster_modes'); + + %Settings for clustering tab + makeSettingsClusterTab(clusMode); + + % Manual Tab + makeManualClusterTab(clusMode); + + % Brute Force + makeBruteClusterTab(clusMode); + + % KMeans Tab + makeKMeansClusterTab(clusMode); +end +end + +function makeManualClusterTab(parent) +tabTag = 'tab_cluster_manual'; +tabName = 'Manual'; +thisTab = findobj('Tag',tabTag); +sp = .05; +py = .89; + +if isempty(thisTab) + thisTab = uitab('Parent', parent, 'Title', tabName, ... + 'Tag', tabTag); + + uicontrol(thisTab,'Style','checkbox',... + 'String','Use Manual Clustering',... + 'Tag', 'is_do_manual', ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py+sp .4 sp]); + + + uicontrol(thisTab,'Style','text',... + 'String','Number of Categories',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-sp .3 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','2',... + 'Units','Normalized', ... + 'Tag', 'txt_manual_cat_num', ... + 'Position',[.36 py+.01-sp .1 sp], ... + 'Callback', @txt_manual_cat_num_callback); + +end + +updateManualTab(thisTab); +end + +function txt_manual_cat_num_callback(hObject, eventdata, handles) +parent = findobj('Tag', 'tab_cluster_manual'); +updateManualTab(parent); +end + +function updateManualTab(parent) +global X; +% Add all the controls +% Grab all the channels that we need to build the settings for +chanIdx = getChannelIndexes(); +nChan = X.GetSize('C'); +numcat = str2num(get(findobj('Tag', 'txt_manual_cat_num'), 'String')); +py = 0.89; +sp = 0.05; + +% Make the labels for the columns but only if they do not exist already... +if isempty(findobj('Tag', 'txt_bg')) + uicontrol(parent,'Style','text',... + 'String','BG',... + 'Units','Normalized', ... + 'Tag', sprintf('txt_bg') , ... + 'HorizontalAlignment', 'center', ... + 'Position',[.26 py-2*sp .1 sp]); +end + +for n=1:(numcat-1) + l = findobj('Tag', sprintf('txt_thr_%d', n)); + if isempty(l) + thrtxt(n) = uicontrol(parent,'Style','text',... + 'String',sprintf('Thr %d', n),... + 'Tag',sprintf('txt_thr_%d', n), ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'center', ... + 'Position',[.26+n*.1 py-2*sp .1 sp], ... + 'Visible', 'on'); + else + thrtxt(n) = l; + end + set(thrtxt(n),'Visible', 'on'); + +end + + +for k=1:nChan + if (any(chanIdx==k)) + isEnabled = 'on'; + else + isEnabled = 'off'; + end + + l = findobj('Tag', sprintf('txt_chan_%d', k)); + if isempty(l) + txt(k) = uicontrol(parent,'Style','text',... + 'String',sprintf('Channel %d', k),... + 'Units','Normalized', ... + 'Tag', sprintf('txt_chan_%d',k) , ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-sp*(k+2) .2 sp]); + else + txt(k) = l; + end + set(txt(k),'Enable', isEnabled); + + l= findobj('Tag', sprintf('txt_manual_bg_ch_%d',k)); + if isempty(l) + + edt(k) = uicontrol(parent,'Style','edit',... + 'String','',... + 'Units','Normalized', ... + 'Tag', sprintf('txt_manual_bg_ch_%d',k) , ... + 'Position',[.26 py-sp*(k+2) .1 sp]); + else + edt(k) = l; + end + set(edt(k),'Enable', isEnabled); + + + + for n=1:(numcat-1) + l = findobj('Tag', sprintf('txt_manual_cat_%d_ch_%d',n,k)); + if isempty(l) + thr((k-1)*(numcat-1)+n) = uicontrol(parent,'Style','edit',... + 'String','',... + 'Units','Normalized', ... + 'Tag', sprintf('txt_manual_cat_%d_ch_%d',n,k) , ... + 'Position',[.26+n*.1 py-sp*(k+2) .1 sp], ... + 'Visible', 'on'); + else + thr((k-1)*(numcat-1)+n)= l; + end + set(thr((k-1)*(numcat-1)+n),'Enable', isEnabled); + set(thr((k-1)*(numcat-1)+n),'Visible', 'on'); + + end + + % Delete any columns that are no longer useful + for n=(numcat):10 + obj = findobj('Tag', sprintf('txt_manual_cat_%d_ch_%d',n,k)); + if ~isempty(obj) + delete(obj); + end + obj = findobj('Tag', sprintf('txt_thr_%d', n)); + if ~isempty(obj) + delete(obj); + end + end + + % Add button for manual measurement + uicontrol(parent,'Style','pushbutton','String','Fill values from spots',... + 'Units','normalized', 'Tag', 'btn_calculate_values', ... + 'Position',[.2 py-sp*(nChan+6) .4 sp*3], ... + 'Callback', @btn_calculate_values_callback); + + +end +end + +function makeBruteClusterTab(parent) +tabTag = 'tab_cluster_brute_force'; +tabName = 'Brute Force'; +thisTab = findobj('Tag',tabTag); +sp = .05; +py = .89; + +if isempty(thisTab) + thisTab = uitab('Parent', parent, 'Title', tabName, ... + 'Tag', tabTag); + + uicontrol(thisTab,'Style','checkbox',... + 'String','Use Brute Force Clustering',... + 'Tag', 'is_do_brute', ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py+sp .4 sp]); + + % Number of categories + uicontrol(thisTab,'Style','text',... + 'String','Number of Categories',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-sp .3 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','2',... + 'Units','Normalized', ... + 'Tag', 'txt_brute_cat_num', ... + 'Position',[.36 py+.01-sp .1 sp]); +end +end + +function makeKMeansClusterTab(parent) +tabTag = 'tab_cluster_kmeans'; +tabName = 'K-Means'; +thisTab = findobj('Tag',tabTag); +sp = .05; +py = .89; + +if isempty(thisTab) + thisTab = uitab('Parent', parent, 'Title', tabName, ... + 'Tag', tabTag); + + uicontrol(thisTab,'Style','checkbox',... + 'String','Use K-Means clustering',... + 'Tag', 'is_do_kmeans', ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py+sp .4 sp]); + + uicontrol(thisTab,'Style','text',... + 'String','Number of clusters',... + 'Tag', 'txt_norm_kmeans', ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-sp .3 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','15',... + 'Units','Normalized', ... + 'Tag', 'txt_kmeans_cluster_num', ... + 'Position',[.36 py+.01-sp .1 sp]); + + uicontrol(thisTab,'Style','checkbox',... + 'String','Separate K-Means per channel',... + 'Tag', 'is_sep_kmeans', ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-3*sp .5 sp], ... + 'Callback', @is_sep_kmeans_callback); + + uicontrol(thisTab,'Style','text',... + 'String','Clusters per channel',... + 'Tag', 'txt_sep_kmeans', ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-4*sp-.01 .3 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','2',... + 'Units','Normalized', ... + 'Tag', 'txt_kmeans_sep_cluster_num', ... + 'Position',[.36 py-4*sp .1 sp]); +end + +end + +function is_sep_kmeans_callback(hObject, eventdata, handles) +%Get object to enable or not +sep(1) = findobj('Tag','txt_sep_kmeans'); +sep(2) = findobj('Tag','txt_kmeans_sep_cluster_num'); + +knorm(1) = findobj('Tag','txt_norm_kmeans'); +knorm(2) = findobj('Tag','txt_kmeans_cluster_num'); + + +if get(hObject,'Value') + %Disable normal KMeans Values + knorm(1).Enable = 'off'; + knorm(2).Enable = 'off'; + + %Enable independent KMeans Values + sep(1).Enable = 'on'; + sep(2).Enable = 'on'; + +else + %Disable normal KMeans Values + knorm(1).Enable = 'on'; + knorm(2).Enable = 'on'; + + %Disable independent KMeans Values + sep(1).Enable = 'off'; + sep(2).Enable = 'off'; + +end + +end + +function makeSettingsClusterTab(parent) +tabTag = 'tab_cluster_settings'; +tabName = 'Settings'; +thisTab = findobj('Tag',tabTag); +sp = .05; +py = .89; + +if isempty(thisTab) + thisTab = uitab('Parent', parent, 'Title', tabName, ... + 'Tag', tabTag); + % Allow empty clusters? + uicontrol(thisTab,'Style','checkbox',... + 'String','No Empty Custers',... + 'Tag', 'is_no_empty_clusters', ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py+sp .4 sp]); + + % Grouping distance + uicontrol(thisTab,'Style','text',... + 'HorizontalAlignment', 'right', ... + 'String',sprintf('%s\n%s','Groups spots','if closer than [um]'),... + 'Units','Normalized', ... + 'Position',[.05 py-sp .3 sp+0.02]); + + uicontrol(thisTab,'Style','edit',... + 'String','8.5',... + 'Units','Normalized', ... + 'Tag', 'txt_grouping_distance', ... + 'Position',[.36 py+.01-sp .1 sp]); + + % Z Compensation + uicontrol(thisTab,'Style','text',... + 'String','Z Compensation factor',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-2*sp .3 sp]); + + uicontrol(thisTab,'Style','edit',... + 'String','3',... + 'Units','Normalized', ... + 'Tag', 'txt_z_compensation_factor', ... + 'Position',[.36 py+.01-2*sp .1 sp]); +end + +end + + +function makeReassignTab(parent) +tabTag = 'tab_reassign'; +tabName = 'Reassign'; +thisTab = findobj('Tag',tabTag); +sp = .05; +h= 0.05; +py = .89; + +if isempty(thisTab) + thisTab = uitab('Parent', parent, 'Title', tabName, ... + 'Tag', tabTag); + % Make one spot per cluster, spot number is cluster size? + uicontrol(thisTab,'Style','checkbox',... + 'String','Make 1 Spot / Subcluster',... + 'Tag', 'is_reassign_single_spot', ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py+sp .4 h]); + + % Grouping distance + uicontrol(thisTab,'Style','text',... + 'HorizontalAlignment', 'right', ... + 'String','Maximum distance for reassignment [um]',... + 'Units','Normalized', ... + 'Position',[.05 py-sp .5 h]); + + uicontrol(thisTab,'Style','edit',... + 'String','8.5',... + 'Units','Normalized', ... + 'Tag', 'txt_reassign_max_distance', ... + 'Position',[.56 py-sp .1 h]); + + % Z Compensation + uicontrol(thisTab,'Style','text',... + 'String','Maximum intensity distance [AU]',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-2*sp .5 h]); + + uicontrol(thisTab,'Style','edit',... + 'String','120',... + 'Units','Normalized', ... + 'Tag', 'txt_reassign_max_intensity', ... + 'Position',[.56 py-2*sp .1 h]); + + % Z Compensation + uicontrol(thisTab,'Style','text',... + 'String','Reassign if smaller than',... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-3*sp .5 h]); + + uicontrol(thisTab,'Style','edit',... + 'String','10',... + 'Units','Normalized', ... + 'Tag', 'txt_reassign_cluster_min', ... + 'Position',[.56 py-3*sp .1 h]); +end +end + +function makeWingJTab(parent) +tabTag = 'tab_wing_j'; +tabName = 'WingJ'; +thisTab = findobj('Tag',tabTag); +sp = .05; +py = .89; +h = .05; +if isempty(thisTab) + thisTab = uitab('Parent', parent, 'Title', tabName, ... + 'Tag', tabTag); + + % Make one spot per cluster, spot number is cluster size? + uicontrol(thisTab,'Style','checkbox',... + 'String','Remove Offset',... + 'Tag', 'is_wingj_remove_offset', ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py .4 h]); + + uicontrol(thisTab,'Style','checkbox',... + 'String','Flip Y Coordinate',... + 'Tag', 'is_wingj_flip_y', ... + 'Units','Normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[.05 py-sp .4 h]); + +end +end + +%% Callbacks for all buttons +function btn_refresh_callback(hObject, eventdata, handles) + +end + +function btn_sum_callback(hObject, eventdata, handles) +sumChannels(); +end + +function btn_clear_outside_callback(hObject, eventdata, handles) +clearOutside(); +end + +function btn_detect_spots_callback(hObject, eventdata, handles) +detectSpots(); +end + +function btn_cluster_spots_callback(hObject, eventdata, handles) +clusterSpots(); +end + +function btn_reassign_spots_callback(hObject, eventdata, handles) +reassignSpots(); +end + +function btn_export_callback(hObject, eventdata, handles) +exportToCSV(); +end + +function savebtn_callback(hObject, eventdata, handles) +saveSettings(); +end + +function loadbtn_callback(hObject, eventdata, handles) +loadSettings(); + +end + +function btn_calculate_values_callback(hObject, eventdata, handles) + +manualAverageInterface(); + +end + +function btn_wingj_callback(hObject, eventdata, handles) +loadWingJData(); +end + + + diff --git a/functions/clearOutside.m b/functions/clearOutside.m new file mode 100644 index 0000000..1c70cb2 --- /dev/null +++ b/functions/clearOutside.m @@ -0,0 +1,42 @@ +function clearOutside() + +global X; + + % Get the channel to create the surface from + channelCleaning = getFromTag('txt_channel_surface', 'Number'); + + % Get the channel we'll use the surface on for cleaning + sumChannel = X.GetSize('C'); + + % Gaussian smoothing value + cleaningSmooth = getFromTag('txt_surface_smooth', 'Number'); + + % Surface detection Threshold + cleaningThr = getFromTag('txt_surface_intensity_threshold', 'Number'); + + % Surface filter, just pick a big one. + cleaningFilter = '"Volume" above 200000.0 um^3'; + + % Give it a good name. + surfaceName = sprintf('Surface For Cleaning, Smooth=%0.2f, Thr=%0.2f', cleaningSmooth, cleaningThr); + + + % Use EasyXT to detect the surface + surface = X.DetectSurfaces(channelCleaning, ... + 'Smoothing', cleaningSmooth, ... + 'Threshold', cleaningThr, ... + 'Filter', cleaningFilter, ... + 'Name', surfaceName); + % Add it to the Imaris Scene. + X.AddToScene(surface); + + % We can now use EasyXT function MakeChannelFromSurfaces to clean the channel + X.MakeChannelFromSurfaces(surface, ... + 'Add Channel', true, ... + 'Mask Channel', sumChannel); + + % Add number of the new channel to the GUI (Channel for Spot Detection) + setFromTag('txt_channel_spot', X.GetSize('C')); + +end + diff --git a/functions/clusterDistances.m b/functions/clusterDistances.m new file mode 100644 index 0000000..5616767 --- /dev/null +++ b/functions/clusterDistances.m @@ -0,0 +1,45 @@ +function clusterDistances( spotData, clusterIndexes, zComp, minDist, parent ) + +global X; + +color = createLUT(max(clusterIndexes), 255); +for clus = 1:max(clusterIndexes) + + % Get indices of spots belonging to cluster clus + clusInd = find(clusterIndexes == clus); + nSpots(clus) = numel(clusInd); + + + spotPositions = spotData.posXYZ(clusInd,:); + % Cluster could be empty + if ~isempty(spotPositions) + + clusterSpotsFolder = X.CreateGroup(sprintf('Cluster %d', clus)); + X.AddToScene(clusterSpotsFolder, 'Parent', parent); + % compensate Z + spotPositions(:,3) = spotPositions(:,3) / zComp; + + % Easy to get subclusters by distance + if size(spotPositions, 1) > 1 + T = clusterdata(spotPositions,'criterion', 'distance', 'distance', 'euclidean', 'cutoff', minDist); + else + T = 1; + end + + % Get the IDs for each cluster and make a spot + subclusIds = unique(T); + for subClus = subclusIds' + idx = find(T==subClus); + tempSpot = X.CreateSpots(spotData.posXYZ(clusInd(idx),:), spotData.radii(clusInd(idx),1)', 'Name', sprintf('Subcluster %d', subClus)); + X.SetColor(tempSpot, color(clus,:)); + X.AddToScene(tempSpot, 'Parent',clusterSpotsFolder); + end + ns=length(subclusIds); + + disp(sprintf(' Cluster %d: %d Subclusters: %d Spots', clus, ns, nSpots(clus))); + end +end + + +end + diff --git a/functions/clusterSpots.m b/functions/clusterSpots.m new file mode 100644 index 0000000..2e2e89c --- /dev/null +++ b/functions/clusterSpots.m @@ -0,0 +1,160 @@ +function clusterSpots() + +global X; + +% Get the kind of clustering we will be doing +is_do_manual = getFromTag('is_do_manual'); +is_do_brute = getFromTag('is_do_brute'); +is_do_kmeans = getFromTag('is_do_kmeans'); + +% Grab the Spot Object in the Scene +nS = X.GetNumberOf('Spots'); +if nS > 1 + [~, nS] = X.SelectDialog('Spots'); +end +spots = X.GetObject('Type', 'Spots', 'Number', nS); + +% Grab the channels we will be using +chanIdx = getChannelIndexes(); + +% Grab the stats we need, namely Intensity Mean +spotsData = X.GetSelectedStatistics(spots, 'Intensity Mean'); + +% To cluster, we need an nx2 array with +% col1: spotID +% col2: Value of selected statistic +% Get the indices of the chosen statistic + +% Build what we need +selectedIds = spotsData.ids+1; +selectedChannels = cell2mat(spotsData.factors(:,2)); +selectedValues = spotsData.values; + + +% for all the Ids and all Channels, will fill all values from the chosen statistic +for i = 1:length(selectedValues) + fullSpotsDataForCluster(selectedIds(i),str2num(selectedChannels(i))) = selectedValues(i); +end + +% Finished data for clustering +spotsClusterData = fullSpotsDataForCluster(:,chanIdx); + +% Clear some memory +fullSpotsDataForCluster = []; + +%Spot Grouping +spotGrouping = getFromTag('txt_grouping_distance', 'Number'); + +% Z compensation +zComp = getFromTag('txt_z_compensation_factor', 'Number'); + +% Grouping Distance for after clustering +minDist = getFromTag('txt_grouping_distance', 'Number'); + +if is_do_manual + % Just grab all the channels and all the values and then use the + % equivalent of the brute-force to get the results + % How many categories per channel + nCat = getFromTag('txt_manual_cat_num', 'Number'); + % Make an array of edges for each channel + edges = zeros(numel(chanIdx), nCat+2); % +2 to include 0 and Infinity + edges(:,end) = Inf; + + % Everything in double loop, first channels + for c=1:numel(chanIdx) + %get BG + edges(c,2) = getFromTag(sprintf('txt_manual_bg_ch_%d',chanIdx(c)), 'Number'); + % Now for each category + for n=1:(nCat-1) + edges(c,2+n) = getFromTag(sprintf('txt_manual_cat_%d_ch_%d',n,chanIdx(c)), 'Number'); + end + end + + [edges, clusterIndexes ] = sortManual(spotsClusterData, edges); + + % create a Parent folder with the Cluster Number + manualFolder = X.CreateGroup(sprintf('Manual Clustering %d categories per channel, Z Compensation [%d]', nCat, zComp )); + X.AddToScene(manualFolder); + + + clusterDistances(spotsData, clusterIndexes, zComp, minDist, manualFolder); + disp('Manual Clustering DONE'); + edges + +end + +if is_do_brute + % Here we use a very simple method to cluster them : + % Check on each channel for the intensities and categorise them. a + % binning into N categories for each channel. + nCat = getFromTag('txt_brute_cat_num', 'Number'); + [centroids, clusterIndexes ] = sortBrute(spotsClusterData, nCat, 160, 10); + + % create a Parent folder with the Cluster Number + bruteFolder = XT.CreateGroup(sprintf('Brute Force Clustering %d categories per channel, Z Compensation [%d]', nCat, zComp )); + XT.AddToScene(bruteFolder); + + clusterDistances(spotsData, clusterIndexes, zComp, minDist, bruteFolder); + disp('Brute Force Clustering DONE'); + centroids +end + +if is_do_kmeans + % Use separate clusterings per channel? + is_sep_kmeans = getFromTag('is_sep_kmeans'); + + if is_sep_kmeans + nClusterPerChannel = getFromTag('txt_kmeans_sep_cluster_num', 'Number'); + opts = statset('Display','final'); + str = ''; + for i=1:numel(chanIdx) + [clusterIndexes(:,i), centroids(:,i)] = kmeans(spotsClusterData(:,i),nClusterPerChannel,... + 'start','plus',... + 'replicates',50,... + 'emptyaction','drop',... + 'Options',opts); + + str = [str '%d']; + end + + [C ia ic] = unique(clusterIndexes, 'rows'); + + % for the indexes, make a new array from 1 to to numger of unique + % rows + newIdx = 1:size(C,1); + + % Get the centroids + cent = []; + for c=1:numel(chanIdx) + cent = [cent centroids(C(:,c),c)]; + end + centroids = cent + % create a Parent folder with the Cluster Number + sepkMeansFolder = X.CreateGroup(sprintf('Separate K-Means With %d Clusters per Channel, Z Compensation [%d]', nClusterPerChannel, zComp )); + X.AddToScene(sepkMeansFolder); + clusterDistances(spotsData, newIdx(ic), zComp, minDist, sepkMeansFolder); + + else + + nClusters = getFromTag('txt_kmeans_cluster_num', 'Number'); + + opts = statset('Display','final'); + + [clusterIndexes, centroids] = kmeans(spotsClusterData,nClusters,... + 'start','plus',... + 'replicates',50,... + 'emptyaction','drop',... + 'Options',opts); + + % create a Parent folder with the Cluster Number + kMeansFolder = X.CreateGroup(sprintf('K-Means With %d Clusters, Z Compensation [%d]', nClusters, zComp )); + X.AddToScene(kMeansFolder); + + clusterDistances(spotsData, clusterIndexes, zComp, minDist, kMeansFolder); + disp('K-Means Clustering DONE'); + + end + centroids +end +end + diff --git a/functions/createLUT.m b/functions/createLUT.m new file mode 100644 index 0000000..ccb350d --- /dev/null +++ b/functions/createLUT.m @@ -0,0 +1,4 @@ +function col = createLUT(nClusters, maxInt) +% to avoid that colorTable get back to red. +col = hsv(round(nClusters*(1+0.25)))* maxInt; +end \ No newline at end of file diff --git a/functions/detectSpots.m b/functions/detectSpots.m new file mode 100644 index 0000000..6dda0a0 --- /dev/null +++ b/functions/detectSpots.m @@ -0,0 +1,39 @@ +function detectSpots() +global X; + +% Get the channel we'll work on +channelDetection = getFromTag('txt_channel_spot', 'Number'); + +% Get the diameter of the spots +spotDiameterXY = getFromTag('txt_spot_size_xy', 'Number'); +spotDiameterZ = getFromTag('txt_spot_size_z', 'Number'); + +% Get the quality chosen +spotQuality = getFromTag('txt_spot_quality_threshold', 'Number'); + +% Set the spot quality. If it's not set, use Imaris' auto quality. +if isempty(spotQuality) + spotFilter='"Quality" above automatic threshold'; +else + spotFilter=sprintf('"Quality" above %d', spotQuality); +end +is_remove_spots = getFromTag('is_remove_spots'); + +% Add a filter to remove spots touching the borders. +if is_remove_spots + spotDist = getFromTag('txt_spot_proximity_threshold', 'Number'); + spotFilter2 = sprintf('"Distance to Image Border XYZ" above %.3f um',spotDist); + spotFilter = [spotFilter ' ' spotFilter2]; +end + +% Need to detect spots from the new channel we previously created +newSpots = X.DetectSpots(channelDetection, ... + 'Diameter XY', spotDiameterXY, ... + 'Diameter Z', spotDiameterZ, ... + 'Spots Filter', spotFilter, ... + 'Name', sprintf('Detected Spots from Channel %d', channelDetection) ... + ); + +X.AddToScene(newSpots); +end + diff --git a/functions/exportToCSV.m b/functions/exportToCSV.m new file mode 100644 index 0000000..7727527 --- /dev/null +++ b/functions/exportToCSV.m @@ -0,0 +1,176 @@ +function exportToCSV() + +global X; + +% Imaris has the coordinates system for the dataset offset from +% the 'Imaris Origin' (0,0,0), let's make sure we subtract the XMin +% YMin and ZMin from the Dataset. +aDataSet = X.ImarisApp.GetDataSet; +aMinX = aDataSet.GetExtendMinX; +aMinY = aDataSet.GetExtendMinY; +aMinZ = aDataSet.GetExtendMinZ; + + +% File for export +% Which object to export +groupToExport = X.SelectDialog('Group'); + +% Returns cell, we just want the string. +groupToExport= groupToExport{1}; + +filename = char(X.ImarisApp.GetCurrentFileName); +[pathstr, name] = fileparts(filename); + +% make a save dialog +[FileName, PathName] = uiputfile('.csv',['Save Results from ' groupToExport],[pathstr name '.csv']); + +% Output File +exportFile = [PathName FileName]; + +disp('Getting Information on Clusters...'); +nSpots=zeros(0,1); +subclusterN=zeros(0,1); +clusterN=zeros(0,1); +XYZ = zeros(0,3); + +%Get info on the currently selected folder... +folder = X.GetObject('Name', groupToExport); + +if strfind(groupToExport, 'Reduced') + % We just need the spots and the special statistics that are related to + % them. + n = X.GetNumberOf('Spots', 'Parent', folder); + for i=1:n + spots = X.GetObject('Number',i, 'Parent', folder); + stat = X.GetSelectedStatistics(spots, 'Number of Spots'); + + nS = stat.values; + subClN = 1:numel(nS); + clN = repmat(i,1,numel(nS)); + xyz = spots.GetPositionsXYZ; + + nSpots = [nSpots nS']; + subclusterN = [subclusterN subClN]; + clusterN = [clusterN clN]; + XYZ = [XYZ; xyz]; + end + +else + + %go through children + n = X.GetNumberOf('Group', 'Parent', folder); + + + for i=1:n + clus= X.GetObject('Number',i, 'Parent', folder); + clusterName = X.GetName(clus); + %name: Cluster NUM + k = X.GetNumberOf('Spots', 'Parent', clus); + for j=1:k + spots = X.GetObject('Number',j, 'Parent', clus); + + nSpots(end+1) = size(spots.GetRadii(),1); + spotName = X.GetName(spots); + subclusterN(end+1) = str2num(spotName(11:end)); + clusterN(end+1) = str2num(clusterName(8:end)); + + xyz = mean(spots.GetPositionsXYZ,1); + XYZ(end+1,:) = xyz; + end + + end +end + +finalResTable = table(clusterN',subclusterN',nSpots', XYZ, 'VariableNames', {'ClusterNumber', 'SubclusterNumber', 'nSpots', 'XYZ'}); + +% if WingJ is there, use it... Also use tables +wingJGrp = X.GetObject('Name', 'WingJ'); +if ~isempty(wingJGrp) + nEl = X.GetNumberOf('Spots', 'Parent', wingJGrp); + + markers = X.GetObject('Name', 'Markers'); + %Get names and positions of these markers + mNames = cell(markers.GetNames); + mPos = markers.GetPositionsXYZ; + mPos = bsxfun(@minus, mPos, [aMinX aMinY aMinZ]); + + + for i=1:nEl + sp = X.GetObject('Type', 'Spots', 'Number', i, 'Parent', wingJGrp); + name = X.GetName(sp) + posStructure = sp.GetPositionsXYZ; + [~, D] = knnsearch(posStructure(:,1:2), XYZ(:,1:2)); + finalResTable = [finalResTable table(D)]; + + k = strfind(name, 'structure'); + finalResTable.Properties.VariableNames{end} = [strrep(name(k(1):end),'-','_') 'Dist']; + + %Grab the positions for AP + if ~isempty(strfind(X.GetName(sp), 'A-P')) + posStructure = bsxfun(@minus,sp.GetPositionsXYZ, [aMinX aMinY aMinZ]); + SAP = markerSigns(posStructure, XYZ); + % Find which marker this corresponds to + SmAP = markerSigns(posStructure, mPos); + + + end + %Grab the positions for VD + if ~isempty(strfind(X.GetName(sp), 'V-D')) + posStructure = bsxfun(@plus,sp.GetPositionsXYZ, [aMinX aMinY aMinZ]); + SVD = markerSigns(posStructure, XYZ); + + % Find which marker this corresponds to + SmVD = markerSigns(posStructure, mPos); + end + + end + %Finally Name this thing +idx1 = find(SAP>0 & SVD>0); +if ~isempty(idx1) + na1 = mNames{find(SmAP>0 & SmVD>0)}; + locationNames(idx1) = {na1}; +end + +idx2 = find(SAP>0 & SVD<0); +if ~isempty(idx2) + na2 = mNames{find(SmAP>0 & SmVD<0)}; + locationNames(idx2) = {na2}; +end + +idx3 = find(SAP<0 & SVD>0); +if ~isempty(idx3) + na3 = mNames{find(SmAP<0 & SmVD>0)}; + locationNames(idx3) = {na3}; +end + +idx4 = find(SAP<0 & SVD<0); +if ~isempty(idx4) + na4 = mNames{find(SmAP<0 & SmVD<0)}; + locationNames(idx4) = {na4}; +end +finalResTable.Locations = locationNames'; + +end + +finalResTable.XYZ = bsxfun(@minus, finalResTable.XYZ, [aMinX aMinY aMinZ]); + + + + + +writetable(finalResTable,exportFile); + +msgbox(['Results exported to ' exportFile] ,'Export Complete'); + +% %Prepare table for clustersTable +% % size(clusterN') +% % size(subclusterN') +% % size(nSpots') +% % size(locationNames') +% % clusterN' +% % subclusterN' +% % nSpots' +% % locationNames' +% +% clusTable = table(clusterN',subclusterN',nSpots', locationNames'); +% clustersTable(groupToExport, table2cell(clusTable)); \ No newline at end of file diff --git a/functions/getAllData.m b/functions/getAllData.m new file mode 100644 index 0000000..b5f799c --- /dev/null +++ b/functions/getAllData.m @@ -0,0 +1,89 @@ +function [allIds allSubId allClus allPos allInt allRadii allnSpots] = getAllData() +% for the current folder that is selected +% Go through the clusters +% Get the cluster number +% Get the subcluster number +% Get the positions +% Get the intensities for the needed channels + +global X; +% All data is to be appended + +% Which channels for the intensity +% get from the User Interface the list of channels of interest +channelsList = getChannelIndexes(); + +%Get the statistic on which to base clustering +chosenStat = 'Intensity Mean'; + +% Z compensation +zComp = getFromTag('txt_z_compensation_factor', 'Number'); + +% Which object to Read the data from? +nFolders = X.GetNumberOf('Group'); + +if (nFolders > 1) + sel = X.SelectDialog('Group'); +else + folder = X.GetObject('Type','Group', 'Number', 1); + sel = folder.GetName; +end + +mainFolder = X.GetObject('Type','Group', 'Name', sel); +% Iterate through the clusters +nClusters = X.GetNumberOf('Group', 'Parent', mainFolder); +allPos = []; +allIds = []; +allInt = []; +allSub = []; +allClus = []; +allnSpots = []; +allRadii = []; + +for i=1:nClusters + currCluster = X.GetObject('Type', 'Group', 'Number', i, 'Parent', mainFolder); + disp(['Currently Processing Cluster ' num2str(i)]); + % Get number of subclusters + nSubClus = X.GetNumberOf('Spots', 'Parent', currCluster); + clusName = X.GetName(currCluster); + clusNum = str2num(clusName(8:end)); + + %Iterate through each subcluster + for subClus = 1:nSubClus + + %Infer the number of the subcluster, which will give us the subID + spot = X.GetObject('Type', 'Spots', 'Number', subClus, 'Parent', currCluster); + name = X.GetName(spot); + subClusNum = str2num(name(11:end)); + + % Get the spots positions + posXYZ = spot.GetPositionsXYZ(); + nSpots = size(posXYZ,1); + allPos = [allPos ; posXYZ]; + + % Ids from the spots, simple enough? + allIds = [allIds 1:nSpots]; + + % SubIDs + allSub = [allSub; repmat(subClusNum, nSpots,1)]; + + % Cluster ID + allClus= [allClus; repmat(clusNum, nSpots,1)]; + + %Number of spots per subcluster + allnSpots = [ allnSpots nSpots ]; + + % Now the intensities + + allInt = [allInt; getStatsOnSelectedChannels(spot, chosenStat, channelsList)]; + + allRadii = [allRadii; spot.GetRadii()]; + + + end +end + +allSubId = 100000*allClus + allSub; + +end + diff --git a/functions/getChannelIndexes.m b/functions/getChannelIndexes.m new file mode 100644 index 0000000..494a5a9 --- /dev/null +++ b/functions/getChannelIndexes.m @@ -0,0 +1,10 @@ +function channel_indexes = getChannelIndexes() +global X; +nChan = X.GetSize('C'); +channel_indexes =[]; +for c=1:nChan + if get(findobj('Tag', sprintf('is_sum_chan_%d',c)),'Value'); + channel_indexes(end+1) = c; + end +end +end \ No newline at end of file diff --git a/functions/getFromTag.m b/functions/getFromTag.m new file mode 100644 index 0000000..bccb550 --- /dev/null +++ b/functions/getFromTag.m @@ -0,0 +1,20 @@ +function the_thing = getFromTag( tag_name, varargin ) +obj = findobj('Tag', tag_name); +if isprop(obj,'Style') + switch obj.Style + case 'edit' + the_thing = obj.String; + case 'text' + the_thing = obj.String; + case 'checkbox' + the_thing = obj.Value; + case 'popupmenu' + the_thing = obj.Value; + + end + if nargin == 2 && strcmp(varargin{1}, 'Number') + the_thing = str2num(the_thing); + end +end +end + diff --git a/functions/getStatsOnSelectedChannels.m b/functions/getStatsOnSelectedChannels.m new file mode 100644 index 0000000..d696577 --- /dev/null +++ b/functions/getStatsOnSelectedChannels.m @@ -0,0 +1,34 @@ +function chStat = getStatsOnSelectedChannels(spotObj, Stat, channelsArray) +global X; +spotsData = X.GetSelectedStatistics(spotObj, Stat); +% Build what we need +selectedIds = spotsData.ids+1; +selectedChannels = cell2mat(spotsData.factors(:,2)); +selectedValues = spotsData.values; + +for i = 1:length(selectedValues) + allStat(selectedIds(i),str2num(selectedChannels(i))) = selectedValues(i); +end + +chStat = allStat(:,channelsArray); + +% One spot object per channel in the BG folder +BGSpotsFolder = X.GetObject('Type', 'Group', 'Name', 'BG'); +if ~isempty(BGSpotsFolder) + % The channel number is the name of the spot object + nBG = X.GetNumberOf('Spots', 'Parent', BGSpotsFolder); + BGVals = zeros(size(channelsArray)); + for i=1:nBG + % Subtract background if it exists + BGSpots = X.GetObject('Type', 'Spots', 'Number', i); + if ~isempty(BGSpots) + BGStats = X.GetSelectedStatistics(BGSpots, 'Intensity Mean'); + name = X.GetName(BGSpots); + channel = str2num(name); + disp('Subtracting BG:'); + BGVals(channel) = BGStats.values(channel,1); + end + end + chStat = bsxfun(@minus,chStat,BGVals); +end + diff --git a/functions/intersections.m b/functions/intersections.m new file mode 100644 index 0000000..a82ca56 --- /dev/null +++ b/functions/intersections.m @@ -0,0 +1,273 @@ +function [x0,y0,iout,jout] = intersections(x1,y1,x2,y2,robust) +%INTERSECTIONS Intersections of curves. +% Computes the (x,y) locations where two curves intersect. The curves +% can be broken with NaNs or have vertical segments. +% +% Example: +% [X0,Y0] = intersections(X1,Y1,X2,Y2,ROBUST); +% +% where X1 and Y1 are equal-length vectors of at least two points and +% represent curve 1. Similarly, X2 and Y2 represent curve 2. +% X0 and Y0 are column vectors containing the points at which the two +% curves intersect. +% +% ROBUST (optional) set to 1 or true means to use a slight variation of the +% algorithm that might return duplicates of some intersection points, and +% then remove those duplicates. The default is true, but since the +% algorithm is slightly slower you can set it to false if you know that +% your curves don't intersect at any segment boundaries. Also, the robust +% version properly handles parallel and overlapping segments. +% +% The algorithm can return two additional vectors that indicate which +% segment pairs contain intersections and where they are: +% +% [X0,Y0,I,J] = intersections(X1,Y1,X2,Y2,ROBUST); +% +% For each element of the vector I, I(k) = (segment number of (X1,Y1)) + +% (how far along this segment the intersection is). For example, if I(k) = +% 45.25 then the intersection lies a quarter of the way between the line +% segment connecting (X1(45),Y1(45)) and (X1(46),Y1(46)). Similarly for +% the vector J and the segments in (X2,Y2). +% +% You can also get intersections of a curve with itself. Simply pass in +% only one curve, i.e., +% +% [X0,Y0] = intersections(X1,Y1,ROBUST); +% +% where, as before, ROBUST is optional. + +% Version: 1.12, 27 January 2010 +% Author: Douglas M. Schwarz +% Email: dmschwarz=ieee*org, dmschwarz=urgrad*rochester*edu +% Real_email = regexprep(Email,{'=','*'},{'@','.'}) + + +% Theory of operation: +% +% Given two line segments, L1 and L2, +% +% L1 endpoints: (x1(1),y1(1)) and (x1(2),y1(2)) +% L2 endpoints: (x2(1),y2(1)) and (x2(2),y2(2)) +% +% we can write four equations with four unknowns and then solve them. The +% four unknowns are t1, t2, x0 and y0, where (x0,y0) is the intersection of +% L1 and L2, t1 is the distance from the starting point of L1 to the +% intersection relative to the length of L1 and t2 is the distance from the +% starting point of L2 to the intersection relative to the length of L2. +% +% So, the four equations are +% +% (x1(2) - x1(1))*t1 = x0 - x1(1) +% (x2(2) - x2(1))*t2 = x0 - x2(1) +% (y1(2) - y1(1))*t1 = y0 - y1(1) +% (y2(2) - y2(1))*t2 = y0 - y2(1) +% +% Rearranging and writing in matrix form, +% +% [x1(2)-x1(1) 0 -1 0; [t1; [-x1(1); +% 0 x2(2)-x2(1) -1 0; * t2; = -x2(1); +% y1(2)-y1(1) 0 0 -1; x0; -y1(1); +% 0 y2(2)-y2(1) 0 -1] y0] -y2(1)] +% +% Let's call that A*T = B. We can solve for T with T = A\B. +% +% Once we have our solution we just have to look at t1 and t2 to determine +% whether L1 and L2 intersect. If 0 <= t1 < 1 and 0 <= t2 < 1 then the two +% line segments cross and we can include (x0,y0) in the output. +% +% In principle, we have to perform this computation on every pair of line +% segments in the input data. This can be quite a large number of pairs so +% we will reduce it by doing a simple preliminary check to eliminate line +% segment pairs that could not possibly cross. The check is to look at the +% smallest enclosing rectangles (with sides parallel to the axes) for each +% line segment pair and see if they overlap. If they do then we have to +% compute t1 and t2 (via the A\B computation) to see if the line segments +% cross, but if they don't then the line segments cannot cross. In a +% typical application, this technique will eliminate most of the potential +% line segment pairs. + + +% Input checks. +error(nargchk(2,5,nargin)) + +% Adjustments when fewer than five arguments are supplied. +switch nargin + case 2 + robust = true; + x2 = x1; + y2 = y1; + self_intersect = true; + case 3 + robust = x2; + x2 = x1; + y2 = y1; + self_intersect = true; + case 4 + robust = true; + self_intersect = false; + case 5 + self_intersect = false; +end + +% x1 and y1 must be vectors with same number of points (at least 2). +if sum(size(x1) > 1) ~= 1 || sum(size(y1) > 1) ~= 1 || ... + length(x1) ~= length(y1) + error('X1 and Y1 must be equal-length vectors of at least 2 points.') +end +% x2 and y2 must be vectors with same number of points (at least 2). +if sum(size(x2) > 1) ~= 1 || sum(size(y2) > 1) ~= 1 || ... + length(x2) ~= length(y2) + error('X2 and Y2 must be equal-length vectors of at least 2 points.') +end + + +% Force all inputs to be column vectors. +x1 = x1(:); +y1 = y1(:); +x2 = x2(:); +y2 = y2(:); + +% Compute number of line segments in each curve and some differences we'll +% need later. +n1 = length(x1) - 1; +n2 = length(x2) - 1; +xy1 = [x1 y1]; +xy2 = [x2 y2]; +dxy1 = diff(xy1); +dxy2 = diff(xy2); + +% Determine the combinations of i and j where the rectangle enclosing the +% i'th line segment of curve 1 overlaps with the rectangle enclosing the +% j'th line segment of curve 2. +[i,j] = find(repmat(min(x1(1:end-1),x1(2:end)),1,n2) <= ... + repmat(max(x2(1:end-1),x2(2:end)).',n1,1) & ... + repmat(max(x1(1:end-1),x1(2:end)),1,n2) >= ... + repmat(min(x2(1:end-1),x2(2:end)).',n1,1) & ... + repmat(min(y1(1:end-1),y1(2:end)),1,n2) <= ... + repmat(max(y2(1:end-1),y2(2:end)).',n1,1) & ... + repmat(max(y1(1:end-1),y1(2:end)),1,n2) >= ... + repmat(min(y2(1:end-1),y2(2:end)).',n1,1)); + +% Force i and j to be column vectors, even when their length is zero, i.e., +% we want them to be 0-by-1 instead of 0-by-0. +i = reshape(i,[],1); +j = reshape(j,[],1); + +% Find segments pairs which have at least one vertex = NaN and remove them. +% This line is a fast way of finding such segment pairs. We take +% advantage of the fact that NaNs propagate through calculations, in +% particular subtraction (in the calculation of dxy1 and dxy2, which we +% need anyway) and addition. +% At the same time we can remove redundant combinations of i and j in the +% case of finding intersections of a line with itself. +if self_intersect + remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2)) | j <= i + 1; +else + remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2)); +end +i(remove) = []; +j(remove) = []; + +% Initialize matrices. We'll put the T's and B's in matrices and use them +% one column at a time. AA is a 3-D extension of A where we'll use one +% plane at a time. +n = length(i); +T = zeros(4,n); +AA = zeros(4,4,n); +AA([1 2],3,:) = -1; +AA([3 4],4,:) = -1; +AA([1 3],1,:) = dxy1(i,:).'; +AA([2 4],2,:) = dxy2(j,:).'; +B = -[x1(i) x2(j) y1(i) y2(j)].'; + +% Loop through possibilities. Trap singularity warning and then use +% lastwarn to see if that plane of AA is near singular. Process any such +% segment pairs to determine if they are colinear (overlap) or merely +% parallel. That test consists of checking to see if one of the endpoints +% of the curve 2 segment lies on the curve 1 segment. This is done by +% checking the cross product +% +% (x1(2),y1(2)) - (x1(1),y1(1)) x (x2(2),y2(2)) - (x1(1),y1(1)). +% +% If this is close to zero then the segments overlap. + +% If the robust option is false then we assume no two segment pairs are +% parallel and just go ahead and do the computation. If A is ever singular +% a warning will appear. This is faster and obviously you should use it +% only when you know you will never have overlapping or parallel segment +% pairs. + +if robust + overlap = false(n,1); + warning_state = warning('off','MATLAB:singularMatrix'); + % Use try-catch to guarantee original warning state is restored. + try + lastwarn('') + for k = 1:n + T(:,k) = AA(:,:,k)\B(:,k); + [unused,last_warn] = lastwarn; + lastwarn('') + if strcmp(last_warn,'MATLAB:singularMatrix') + % Force in_range(k) to be false. + T(1,k) = NaN; + % Determine if these segments overlap or are just parallel. + overlap(k) = rcond([dxy1(i(k),:);xy2(j(k),:) - xy1(i(k),:)]) < eps; + end + end + warning(warning_state) + catch err + warning(warning_state) + rethrow(err) + end + % Find where t1 and t2 are between 0 and 1 and return the corresponding + % x0 and y0 values. + in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) <= 1 & T(2,:) <= 1).'; + % For overlapping segment pairs the algorithm will return an + % intersection point that is at the center of the overlapping region. + if any(overlap) + ia = i(overlap); + ja = j(overlap); + % set x0 and y0 to middle of overlapping region. + T(3,overlap) = (max(min(x1(ia),x1(ia+1)),min(x2(ja),x2(ja+1))) + ... + min(max(x1(ia),x1(ia+1)),max(x2(ja),x2(ja+1)))).'/2; + T(4,overlap) = (max(min(y1(ia),y1(ia+1)),min(y2(ja),y2(ja+1))) + ... + min(max(y1(ia),y1(ia+1)),max(y2(ja),y2(ja+1)))).'/2; + selected = in_range | overlap; + else + selected = in_range; + end + xy0 = T(3:4,selected).'; + + % Remove duplicate intersection points. + [xy0,index] = unique(xy0,'rows'); + x0 = xy0(:,1); + y0 = xy0(:,2); + + % Compute how far along each line segment the intersections are. + if nargout > 2 + sel_index = find(selected); + sel = sel_index(index); + iout = i(sel) + T(1,sel).'; + jout = j(sel) + T(2,sel).'; + end +else % non-robust option + for k = 1:n + [L,U] = lu(AA(:,:,k)); + T(:,k) = U\(L\B(:,k)); + end + + % Find where t1 and t2 are between 0 and 1 and return the corresponding + % x0 and y0 values. + in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) < 1 & T(2,:) < 1).'; + x0 = T(3,in_range).'; + y0 = T(4,in_range).'; + + % Compute how far along each line segment the intersections are. + if nargout > 2 + iout = i(in_range) + T(1,in_range).'; + jout = j(in_range) + T(2,in_range).'; + end +end + +% Plot the results (useful for debugging). +% plot(x1,y1,x2,y2,x0,y0,'ok'); diff --git a/functions/loadSettings.m b/functions/loadSettings.m new file mode 100644 index 0000000..0269b83 --- /dev/null +++ b/functions/loadSettings.m @@ -0,0 +1,32 @@ +function loadSettings() +[FileName,PathName,FilterIndex] = uigetfile('*.m','Load Settings'); +D = load([PathName FileName], '-mat'); +if ~isfield(D,'data') + return +end +D.data +% Restore all you got +f = findobj('Tag', 'clustetring_main_f'); +%Edit buttons +txt = findall(f, 'Style', 'edit'); +chk = findall(f, 'Style', 'checkbox'); +rad = findall(f, 'Style', 'radiobutton'); +controls = [txt; chk; rad]; + +for i=1:numel(D.data) + obj = findobj('Tag', D.data(i).tag); + if ~isempty(obj) + if ~isempty(D.data(i).string) + obj.String = D.data(i).string; + end + if ~isempty(D.data(i).value) + obj.Value = D.data(i).value; + end + + obj.Visible = D.data(i).visible; + end + +end + + +end \ No newline at end of file diff --git a/functions/loadWingJData.m b/functions/loadWingJData.m new file mode 100644 index 0000000..87de96f --- /dev/null +++ b/functions/loadWingJData.m @@ -0,0 +1,102 @@ +function loadWingJData() + + +isRemoveOffset = getFromTag('is_wingj_remove_offset'); +isFlipY = getFromTag('is_wingj_flip_y'); + +% Ask for files to load +[ filename, pathname ] = uigetfile('*.txt','Select Files to Load', 'MultiSelect', 'on'); +if ~iscell(filename) + disp('No files selected for WingJ Import'); + return +end + +global X; +aDataSet = X.ImarisApp.GetDataSet; +[ xy ]= X.GetVoxelSize(); +aMinX = aDataSet.GetExtendMinX; +aMinY = aDataSet.GetExtendMinY; +aMaxY = aDataSet.GetExtendMaxY; +aMinZ = aDataSet.GetExtendMinZ; + +% Look for WingJ Group +parent = X.GetObject('Type', 'Group', 'Name', 'WingJ'); +if ~isempty(parent) + X.RemoveFromScene(parent); + parent = []; +end + +%Prepare WingJ Folder +parent = X.CreateGroup('WingJ'); + +% For each file, use the file name to decide what it is. +for i=1:numel(filename) + + f = dlmread([pathname filename{i}],'\t'); + % Ignore Z + f(:,3) = 0; + + %Get name of file + [path name] = fileparts(filename{i}); + + % Calibrate from pixels to microns + fCal = f.*xy; + + %Remove offset + if isRemoveOffset + fCal = bsxfun(@minus,f.*xy,[aMinX aMinY aMinZ]); + end + + %Flip Y + if isFlipY + fCal(:,2) = aMaxY+aMinY - fCal(:,2); + end + + if findstr(name, 'A-P') + posAP = fCal; + end + + if findstr(name, 'V-D') + posVD = fCal; + end + + spot = X.CreateSpots(fCal, 1, 'Name', name); + X.AddToScene(spot, 'Parent', parent); + +end + +% Now try to find V-D A-P and add these as Measurement Points +% Find center intersection + +[xc, yc, APPos, VDPos] = intersections(posAP(:,1), posAP(:,2), posVD(:,1), posVD(:,2), true ); +xc = xc(1); +yc = yc(1); + +%Find position along curves +idxCenAP = round(APPos(1)); +idxCenVD = round(VDPos(1)); +%idxCenAP = find(posAP(:,1) == xc & posAP(:,2) == yc) +%idxCenVD = find(posVD(:,1) == xc & posVD(:,2) == yc) + + +posA = [ posAP(round(idxCenAP/2),1) posAP(round(idxCenAP/2),2) 0]; +posP = [ posAP(round((size(posAP,1)-idxCenAP)/2)+idxCenAP,1) posAP(round((size(posAP,1)-idxCenAP)/2)+idxCenAP,2) 0]; + + +posV = [ posVD(round(idxCenVD/2),1) posVD(round(idxCenVD/2),2) 0]; +posD = [ posVD(round((size(posVD,1)-idxCenVD)/2)+idxCenVD,1) posVD(round((size(posVD,1)-idxCenVD)/2)+idxCenVD,2) 0]; + +% Make the 4 points +names = {'VA' 'DA' 'VP' 'DP'}; +%test = [posA+posV; posD+posA; posV+posP; posD+posP]; +pos = [posA+posV; posD+posA; posV+posP; posD+posP] - repmat([xc yc 0],4,1); + +% Add measurement points +mp = X.CreateMeasurementPoints(pos, 'Point Names', names, 'Name', 'Markers'); + +X.AddToScene(mp, 'Parent', parent); +X.AddToScene(parent); + + +end + diff --git a/functions/manualAverageInterface.m b/functions/manualAverageInterface.m new file mode 100644 index 0000000..e452d6a --- /dev/null +++ b/functions/manualAverageInterface.m @@ -0,0 +1,96 @@ +function manualAverageInterface +global X; +global intensities; +f = figure('Name', 'BIOP - Spots Stats', ... + 'NumberTitle', 'off', 'Visible', 'off', 'Position', [0 0 300 200], ... + 'Tag', 'main_f', ... + 'DockControls', 'off', 'ToolBar', 'none', 'MenuBar', 'none'); + +% Move the window to the center of the screen. +movegui(f,'center'); + +% Make the window visible. +f.Visible = 'on'; + +l = .05; +w = .4; +h = .1; +s = 0.1; +% Refresh button +uicontrol(f,'Style','pushbutton','String','Refresh',... + 'Units','normalized', 'Tag', 'btn_stats_refresh', ... + 'Position',[0.10 .75 0.8 h*2],... + 'Callback', @btn_stats_refresh_callback); +% Info text +uicontrol(f,'Style','text','String','Spots Selected: ',... + 'Units','normalized', ... + 'HorizontalAlignment', 'right', ... + 'Position',[l .60 0.32 h]); +uicontrol(f,'Style','text','String','',... + 'Units','normalized', 'Tag', 'txt_spot_name', ... + 'HorizontalAlignment', 'left', ... + 'Position',[l+0.33 .60 0.5 h]); + +uicontrol(f,'Style','text','String','',... + 'Units','normalized', 'Tag', 'txt_spot_stats', ... + 'FontWeight', 'bold', ... + 'HorizontalAlignment', 'center', ... + 'Position',[0.05 .45 0.9 h]); + +% 'Add to' popup list +options = {}; +nChan = getChannelIndexes(); +manCat = getFromTag('txt_manual_cat_num', 'Number'); +for i=nChan + options{end+1} = sprintf('Channel %d BG',i); + for j=1:(manCat-1) + options{end+1} = sprintf('Channel %d Thr %d',i,j); + end +end + + +uicontrol(f, 'Style', 'popup',... + 'Units','normalized', 'Tag', 'popup_add_to', ... + 'String', options,... + 'Position',[l .15 0.5 h]); + +% Add to button +uicontrol(f,'Style','pushbutton','String','Add',... + 'Units','normalized', 'Tag', 'btn_add', ... + 'Position',[l+0.55 .15 0.2 .1],... + 'Callback', @btn_add_callback); +end + +function btn_stats_refresh_callback(hObject, eventdata, handles) +global X; +global intensities; +chan = getFromTag('txt_channel_spot', 'Number'); +spots = X.GetObject(); +idx = spots.GetSelectedIndices(); +stats = X.GetSelectedStatistics(spots, 'Intensity Mean', 'Channel', chan); +intensities = stats.values(idx+1); +setFromTag('txt_spot_name', X.GetName(spots)); +setFromTag('txt_spot_stats', sprintf('%d Spots, Average Intensity %.1f', numel(intensities), mean(intensities))); + + +end + +function btn_add_callback(hObject, eventdata, handles) +% Get popup options +global intensities; + +choices = get(findobj('Tag', 'popup_add_to'),'String'); +choice = choices{getFromTag('popup_add_to')}; + +expression = ['Channel (?<channel>\d+) [BGThr ]+(?<cat>[\d]*).*']; +tokenNames = regexp(choice,expression,'names'); + +if isempty(tokenNames.cat) + %BG + setFromTag(sprintf('txt_manual_bg_ch_%s',tokenNames.channel(1)), sprintf('%.1f',mean(intensities))); +else + setFromTag(sprintf('txt_manual_cat_%s_ch_%s',tokenNames.cat(1), tokenNames.channel(1)), sprintf('%.1f',mean(intensities))); +end + + +end \ No newline at end of file diff --git a/functions/reassignSpots.m b/functions/reassignSpots.m new file mode 100644 index 0000000..9fcbeea --- /dev/null +++ b/functions/reassignSpots.m @@ -0,0 +1,222 @@ +function [ output_args ] = reassignSpots() + +% TODO need to grab all this data from imaris and not from the handles... +global X; + + +[ ~, allSubId, allClus, allPos, allInt, allRadii, allnSpots ] = getAllData(); +allSubIdNew = allSubId; % New subindexes + +maxDist = getFromTag('txt_reassign_max_distance', 'Number'); +maxIntDist = getFromTag('txt_reassign_max_intensity', 'Number'); +isReduced = getFromTag('is_reassign_single_spot'); + +zComp = getFromTag('txt_z_compensation_factor', 'Number'); + +% Compensation factor +intThr = 0.2; + +% Grab only the subclusters with 3 spots or less +uniqueSubIds = unique(allSubId); +uniqueSubIdsIDX = find(allnSpots <= 3); % subclusters with less than min spot number +uniqueOtherSubIdsIDX = find(allnSpots > 3); % Other subclusters that are bigger than min spot number + + +% Build an object with only the SPOTS from the uniqueOtherSubIdsIDX indexes +otherSpotsIDX = []; +for subIdx = uniqueOtherSubIdsIDX + subID = uniqueSubIds(subIdx); + %disp(fprintf('SubCluster %d has %d spots', subID, allnSpots(subIdx))); + if ~isempty(subID) + otherSpotsIDX = [otherSpotsIDX; find(allSubId == subID)]; + end +end + +% Prepare a 'garbage' cluster so we can add it later. +garbageSubID = 1; +garbageID = max(allClus)+1; + +% Now work on each unique SubID to get the number of spots, neighbors and +% reassign them +for subIdx = uniqueSubIdsIDX + % Find the 10 nearest neighbors + % First get the position of the spots we are interested in + subID = uniqueSubIds(subIdx); + if ~isempty(subID) + % disp(['Looking at a subcluster of ' num2str(allnSpots(subIdx)) ' spots']); + + % Find the indexes of the spots that belong to this subId + spotsIDX = find(allSubId == subID); + + % disp([' Found to be from subclusters ' num2str(allSubId(spotsIDX)')]); + + + selectedSpots = allPos(spotsIDX,:); + candidateSpots = allPos(otherSpotsIDX,:); + selectedIntensities = allInt(spotsIDX,:); + + for i=1:size(selectedSpots,1) + % For a single spot + selectedSpot = selectedSpots(i,:); + + % Z compensation + selectedSpotZ = selectedSpot ./ [1 1 zComp]; + candidateSpotsZ = candidateSpots; + candidateSpotsZ(:,3) = candidateSpotsZ(:,3) / zComp; + + % Find k nearest neighbors of a given point + % Find the 10 closest points + k=10; + [IDX,D] = knnsearch(candidateSpotsZ, selectedSpotZ, 'K', k+1); + % IDX is mxk + % Remove points whose distances are > distThresh + usefulIDX = IDX(D < maxDist); + + %Make measurement points to show this + %drawMeasurementPoints(XT,candidateSpots(usefulIDX,:),selectedSpotZ ) + + %waitforbuttonpress; + + if isempty(usefulIDX) + % Do nothing, no reassignment, so put in a + % new cluster for 'garbage' + allSubIdNew(spotsIDX(i)) = garbageID * 100000 + garbageSubID; + + disp(['Spot with subIDX ' num2str(allSubId(spotsIDX(i))') ' assigned as garbage (Dist)']); + + else + + % Check for valid intensities WRT to this spot + % Get the difference of intensities for each channel between the + % current spot and all candidates + + + selectedIntensity = selectedIntensities(i,:); + candidateIntensities = allInt(otherSpotsIDX(usefulIDX),:); + [IDXInt,DInt] = knnsearch(candidateIntensities, selectedIntensity); + % Now apply the intensity tests + % Delta of intensity for each channel + deltaI = ( candidateIntensities(IDXInt,:) - selectedIntensity).^2; + sumDelta = sum(deltaI); + + DIntCorr = DInt .* max(deltaI ./ sumDelta); + + usefulIntIDX = IDXInt((DIntCorr ./intThr) < maxIntDist); + if isempty(usefulIntIDX) + % Do nothing, no reassignment, so put in a + % new cluster for 'garbage' + allSubIdNew(spotsIDX(i)) = garbageID * 100000 + garbageSubID; + disp(['Spot with subIDX ' num2str(allSubId(spotsIDX(i))') ' assigned as garbage (Int)']); + + else + % Ready to reassign spots + % Final spot IDs selected from the Distance KNN search + subIDFromDist = allSubId(otherSpotsIDX(IDX),:); + + % Final spot IDs selected from the Intensity KNN search + subIDFromInt = subIDFromDist(IDXInt,:); + + allSubIdNew(spotsIDX(i)) = subIDFromInt; + + + disp(['>> Spot with subIDX ' num2str(allSubId(spotsIDX(i))') ' reassigned to subIXD ' num2str(allSubIdNew(spotsIDX(i))')]); + disp('>>Distances'); + + + D(D < maxDist)' + + disp('>>Intensities'); + deltaI + DIntCorr + + end + end + end + end +end +% finish reassignment using the new subIDs + +% Get the new clusters +clusters = ( allSubIdNew - mod(allSubIdNew,100000) ) / 100000; +subClus = mod(allSubIdNew,100000); + +clusterNumber = max(clusters); +color = createLUT(clusterNumber, 255); + +%Now recreate a group +if (isReduced) + clusterSpotsParentFolder = X.CreateGroup('Reordered Clusters Reduced'); + X.AddToScene(clusterSpotsParentFolder); + + leftClusters = unique(clusters); + + + for cId = leftClusters' + thePos = zeros(0,3); + theRad = zeros(0,3); + theNs = zeros(0,1); + %Make a spots object for each subcluster average + localSubClus = subClus(find(clusters == cId)); + + % Get the unique subcluster ID + leftSubs = unique(localSubClus); + + for sId = leftSubs' + % Find all the spots that are there and create the spot + ids = find(clusters == cId & subClus == sId); + thePos(end+1,:) = mean(allPos(ids,:),1); + theRad(end+1,:) = mean(allRadii((ids),:),1); + theNs(end+1) = size(allPos(ids,1),1); + end + tempSpot = X.CreateSpots(thePos, sqrt(theNs), 'Name', sprintf('Cluster %d', cId)); + X.AddToScene(tempSpot, 'Parent',clusterSpotsParentFolder); + tempColor = color(cId,:); + X.SetColor(tempSpot, tempColor); + + % Add the Stat + X.AddStatistic(tempSpot, 'Number of Spots', theNs); + end + + + +else + + clusterSpotsParentFolder = X.CreateGroup('Reordered Clusters'); + X.AddToScene(clusterSpotsParentFolder); + + + % Find the clusters + leftClusters = unique(clusters); + + disp('Reassigning Points in Imaris...'); + + % Loop through the clusters + for cId = leftClusters' + % Make a folder + clusterSpotsFolder = X.CreateGroup(sprintf('Cluster %d', cId)); + X.AddToScene(clusterSpotsFolder, 'Parent', clusterSpotsParentFolder); + % Find which subclusters are in this cluster + localSubClus = subClus(find(clusters == cId)); + + % Get the unique subcluster ID + leftSubs = unique(localSubClus); + + % Now create a spot for each subcluster that is here + for sId = leftSubs' + % Find all the spots that are there and create the spot + ids = find(clusters == cId & subClus == sId); + s = sprintf('Cluster %d, Subcluster %d has %d spots', cId, sId, size(ids,1)); + disp(s); + tempSpot = X.CreateSpots(allPos((ids),:), allRadii((ids),:), 'Name', sprintf('Subcluster %d', sId)); + X.AddToScene(tempSpot, 'Parent',clusterSpotsFolder); + tempColor = color(cId,:); + X.SetColor(tempSpot, tempColor); + end + + + end +end + +disp('Done Reassigning'); +end + diff --git a/functions/saveSettings.m b/functions/saveSettings.m new file mode 100644 index 0000000..c47a034 --- /dev/null +++ b/functions/saveSettings.m @@ -0,0 +1,24 @@ +function saveSettings() +% Controls we need to save are 'edit', 'checkbox', 'radio' +% so go through all of them and save them in a cell array with the tag and +% the value or string +f = findobj('Tag', 'clustetring_main_f'); +%Edit buttons +txt = findall(f, 'Style', 'edit'); +chk = findall(f, 'Style', 'checkbox'); +rad = findall(f, 'Style', 'radiobutton'); + +controls = [txt; chk; rad]; +data = struct(); + +for i=1:numel(controls) + data(i).tag = controls(i).Tag; + data(i).string = controls(i).String; + data(i).value = controls(i).Value; + data(i).visible = controls(i).Visible; +end + +% Save this somewhere +[FileName,PathName,FilterIndex] = uiputfile('settings.m','Save Settings'); +save([PathName FileName],'data'); +end \ No newline at end of file diff --git a/functions/setFromTag.m b/functions/setFromTag.m new file mode 100644 index 0000000..25f1abc --- /dev/null +++ b/functions/setFromTag.m @@ -0,0 +1,14 @@ +function setFromTag( tag_name, value ) +obj = findobj('Tag', tag_name); +if isprop(obj,'Style') + switch obj.Style + case 'edit' + obj.String = num2str(value); + case 'text' + obj.String = num2str(value); + case 'checkbox' + obj.Value = value; + end + end +end + diff --git a/functions/sortBrute.m b/functions/sortBrute.m new file mode 100644 index 0000000..bfb7d13 --- /dev/null +++ b/functions/sortBrute.m @@ -0,0 +1,24 @@ +function [ centroids, finalIdx ] = sortBrute(data, nCat, theMax, bg) + +% Divide the Max by the number of categories +step = (theMax-bg) / (nCat); + +edges = bg:step:(step*nCat); +edges = [0 edges Inf]; + +finalIdx = zeros(size(data,1),1); + +for i=1:size(data,2) + [~, idx] = histc(data(:,i), edges); + idx(idx==0) = 1; + finalIdx(:,i) = idx; + +end + +[uClusters] = unique(finalIdx, 'rows'); + +% Index each row of data. + +%Return the centroids +centroids = (uClusters-1)*step - step/2 + bg; +centroids(uClusters==1) = bg/2; \ No newline at end of file diff --git a/functions/sortManual.m b/functions/sortManual.m new file mode 100644 index 0000000..b304ba3 --- /dev/null +++ b/functions/sortManual.m @@ -0,0 +1,19 @@ +function [ centroids, finalIdx ] = sortManual(data, edges) + +for i=1:size(data,2) + [~, idx] = histc(data(:,i), edges(i,:)); + finalIdx(:,i) = idx; + +end + +[C ia ic] = unique(finalIdx, 'rows'); + +% for the indexes, make a new array from 1 to to numger of unique +% rows +newIdx = 1:size(C,1); +centroids = []; +for i=1:size(C,2) + centroids = [centroids edges(C(:,i)+2)]; +end + +finalIdx = newIdx(ic)'; diff --git a/functions/sumChannels.m b/functions/sumChannels.m new file mode 100644 index 0000000..9916cef --- /dev/null +++ b/functions/sumChannels.m @@ -0,0 +1,47 @@ +function sumChannels() +% Get EasyXT +global X; + +is_chan_norm = getFromTag('is_chan_norm'); + + + +% get from the User Interface the list of channels of interest +channels = getChannelIndexes(); + + +% Normalize channels before sum? +if (is_chan_norm) + dataset = X.ImarisApp.GetDataSet(); + +for i=1:numel(channels) + channel = channels(i); + chanVol = double(typecast(dataset.GetDataVolumeAs1DArrayBytes(channel-1, 0), 'uint8')); + theMin = min(chanVol); + theMax = max(chanVol); + + chanVol = uint8(((chanVol-theMin) ./ (theMax-theMin) ) .* 256); + + dataset.SetDataVolumeAs1DArrayBytes(chanVol, channel-1, 0); +end + + + + +% create the string containing channels of interest +stringToAddChannel = ''; +for index = 1:(numel(channels)-1) %from 1 to ((the length of the Channel's array) -1) + chNbr = num2str(channels(index),'%d'); %convert number to string + stringToAddChannel = strcat(stringToAddChannel,' ch',chNbr,' + ');% concatenate strings with previous +end + +chNbr = num2str(channels(end),'%d'); +stringToAddChannel = strcat(stringToAddChannel,' ch',chNbr);% string containing channels of interest + +% Make sure that it's set as a cell array... Why I am not sure... +expression = {stringToAddChannel}; + +sumChannel = X.ChannelMath(expression); + +end +