diff --git a/VERSION b/VERSION index a58941b..840ca8c 100644 --- a/VERSION +++ b/VERSION @@ -1 +1 @@ -1.3 \ No newline at end of file +1.4 \ No newline at end of file diff --git a/examples/2d/base/square_simplified.py b/examples/2d/base/square_simplified.py new file mode 100644 index 0000000..fa0e984 --- /dev/null +++ b/examples/2d/base/square_simplified.py @@ -0,0 +1,13 @@ +import numpy as np +from rrompy.hfengines.linear_problem.bidimensional import \ + HelmholtzSquareSimplifiedDomainProblemEngine as HSSDPE +verb = 0 + +mu0 = [4 ** .5, 1.5 ** .5] +solver = HSSDPE(kappa = 2.5, theta = np.pi / 3, mu0 = mu0, n = 50, + verbosity = verb) +uh = solver.solve(mu0)[0] +solver.plotmesh() +print(solver.norm(uh)) +solver.plot(uh) +solver.plot(solver.residual(uh, mu0)[0], 'res') diff --git a/examples/2d/pod/square_simplified_pod.py b/examples/2d/pod/square_simplified_pod.py new file mode 100644 index 0000000..e8c47bf --- /dev/null +++ b/examples/2d/pod/square_simplified_pod.py @@ -0,0 +1,106 @@ +import numpy as np +from rrompy.hfengines.linear_problem.bidimensional import \ + HelmholtzSquareSimplifiedDomainProblemEngine as HSSDPE +from rrompy.reduction_methods.centered import RationalPade as RP +from rrompy.reduction_methods.distributed import RationalInterpolant as RI +from rrompy.reduction_methods.centered import RBCentered as RBC +from rrompy.reduction_methods.distributed import RBDistributed as RBD +from rrompy.parameter.parameter_sampling import (QuadratureSampler as QS, + RandomSampler as RS) + +verb = 0 +size = 2 + +MN = 4 +R = (MN + 2) * (MN + 1) // 2 +S = [5] * 2 +assert R < np.prod(S) + +samples = "centered" +samples = "distributed" +algo = "rational" +#algo = "RB" +sampling = "quadrature" +sampling = "random" + +if size == 1: # small + mu0 = [4 ** .5, 1.5 ** .5] + mutar = [5 ** .5, 1.75 ** .5] + murange = [[2 ** .5, 1. ** .5], [6 ** .5, 2. ** .5]] +elif size == 2: # medium + mu0 = [4 ** .5, 1.75 ** .5] + mutar = [5 ** .5, 1.25 ** .5] + murange = [[1 ** .5, 1. ** .5], [7 ** .5, 2.5 ** .5]] +elif size == 3: # large + mu0 = [6 ** .5, 4 ** .5] + mutar = [2 ** .5, 2.5 ** .5] + murange = [[0 ** .5, 2 ** .5], [12 ** .5, 6 ** .5]] +elif size == 4: # crowded + mu0 = [10 ** .5, 2 ** .5] + mutar = [9 ** .5, 2.25 ** .5] + murange = [[8 ** .5, 1.5 ** .5], [12 ** .5, 2.5 ** .5]] + +solver = HSSDPE(kappa = 2.5, theta = np.pi / 3, mu0 = mu0, n = 20, + verbosity = verb) + +rescaling = [lambda x: np.power(x, 2.)] * 2 +rescalingInv = [lambda x: np.power(x, .5)] * 2 +if algo == "rational": + params = {'N':MN, 'M':MN, 'S':S, 'POD':True} + if samples == "distributed": + params['polybasis'] = "CHEBYSHEV" + method = RI + else: + params['S'] = np.prod(params['S']) + method = RP +else: #if algo == "RB": + params = {'R':R, 'S':S, 'POD':True} + if samples == "distributed": + method = RBD + else: + params['S'] = np.prod(params['S']) + method = RBC + +if samples == "distributed": + if sampling == "quadrature": + params['sampler'] = QS(murange, "CHEBYSHEV", scaling = rescaling, + scalingInv = rescalingInv) + else: # if sampling == "random": + params['sampler'] = RS(murange, "SOBOL", scaling = rescaling, + scalingInv = rescalingInv) + params['S'] = np.prod(params['S']) + +approx = method(solver, mu0 = mu0, approxParameters = params, + verbosity = verb) + +approx.setupApprox() +approx.plotApprox(mutar, name = 'u_app') +approx.plotHF(mutar, name = 'u_HF') +approx.plotErr(mutar, name = 'err') +approx.plotRes(mutar, name = 'res') +appErr, solNorm = approx.normErr(mutar), approx.normHF(mutar) +resNorm, RHSNorm = approx.normRes(mutar), approx.normRHS(mutar) +print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, + np.divide(appErr, solNorm))) +print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, + np.divide(resNorm, RHSNorm))) + +if algo == "rational": + from matplotlib import pyplot as plt + mu1 = np.linspace(murange[0][0]**2, murange[1][0]**2, 100) + mu2 = np.linspace(murange[0][1]**2, murange[1][1]**2, 100) + mu1s = np.power(mu1, .5) + mu2s = np.power(mu2, .5) + Mu1, Mu2 = np.meshgrid(mu1, mu2) + mus = [(m1, m2) for m2 in mu2s for m1 in mu1s] + Z = approx.trainedModel.getQVal(mus).reshape(Mu1.shape) + plt.figure(figsize = (15, 7)) + p = plt.contourf(Mu1, Mu2, np.log(np.abs(Z)), 50) + plt.contour(Mu1, Mu2, np.real(Z), [0.], linestyles = 'dashed') + plt.contour(Mu1, Mu2, np.imag(Z), [0.], linewidths = 1, + linestyles = 'dotted') + plt.plot(approx.mus(0) ** 2, approx.mus(1) ** 2, 'kx') + plt.colorbar(p) + plt.grid() + plt.show() + \ No newline at end of file diff --git a/examples/2d/pod/square_simplified_pod_hermite.py b/examples/2d/pod/square_simplified_pod_hermite.py new file mode 100644 index 0000000..453cf0c --- /dev/null +++ b/examples/2d/pod/square_simplified_pod_hermite.py @@ -0,0 +1,107 @@ +import numpy as np +from rrompy.hfengines.linear_problem.bidimensional import \ + HelmholtzSquareSimplifiedDomainProblemEngine as HSSDPE +from rrompy.reduction_methods.centered import RationalPade as RP +from rrompy.reduction_methods.distributed import RationalInterpolant as RI +from rrompy.reduction_methods.centered import RBCentered as RBC +from rrompy.reduction_methods.distributed import RBDistributed as RBD +from rrompy.parameter.parameter_sampling import (QuadratureSampler as QS, + RandomSampler as RS, + ManualSampler as MS) + +verb = 0 +size = 2 + +MN = 4 +R = (MN + 2) * (MN + 1) // 2 +S0 = [3] * 2 +S = [25] +assert R < np.prod(S) + +samples = "centered" +samples = "distributed" +algo = "rational" +#algo = "RB" +sampling = "quadrature" +#sampling = "random" + +if size == 1: # small + mu0 = [4 ** .5, 1.5 ** .5] + mutar = [5 ** .5, 1.75 ** .5] + murange = [[2 ** .5, 1. ** .5], [6 ** .5, 2. ** .5]] +elif size == 2: # medium + mu0 = [4 ** .5, 1.75 ** .5] + mutar = [4.5 ** .5, 1.25 ** .5] + murange = [[1 ** .5, 1. ** .5], [7 ** .5, 2.5 ** .5]] +elif size == 3: # large + mu0 = [6 ** .5, 4 ** .5] + mutar = [2 ** .5, 2.5 ** .5] + murange = [[0 ** .5, 2 ** .5], [12 ** .5, 6 ** .5]] +elif size == 4: # crowded + mu0 = [10 ** .5, 2 ** .5] + mutar = [9 ** .5, 2.25 ** .5] + murange = [[8 ** .5, 1.5 ** .5], [12 ** .5, 2.5 ** .5]] + +solver = HSSDPE(kappa = 2.5, theta = np.pi / 3, mu0 = mu0, n = 20, + verbosity = verb) + +rescaling = [lambda x: np.power(x, 2.)] * 2 +rescalingInv = [lambda x: np.power(x, .5)] * 2 +if algo == "rational": + params = {'N':MN, 'M':MN, 'S':S, 'POD':True} + if samples == "distributed": + params['polybasis'] = "CHEBYSHEV" + method = RI + else: + method = RP +else: #if algo == "RB": + params = {'R':R, 'S':S, 'POD':True} + if samples == "distributed": + method = RBD + else: + method = RBC + +if samples == "distributed": + if sampling == "quadrature": + sampler0 = QS(murange, "CHEBYSHEV", scaling = rescaling, + scalingInv = rescalingInv) + else: # if sampling == "random": + sampler0 = RS(murange, "SOBOL", scaling = rescaling, + scalingInv = rescalingInv) + S0 = np.prod(S0) +params['sampler'] = MS(murange, points = sampler0.generatePoints(S0)) + +approx = method(solver, mu0 = mu0, approxParameters = params, + verbosity = verb) + +approx.setupApprox() +approx.plotApprox(mutar, name = 'u_app') +approx.plotHF(mutar, name = 'u_HF') +approx.plotErr(mutar, name = 'err') +approx.plotRes(mutar, name = 'res') +appErr, solNorm = approx.normErr(mutar), approx.normHF(mutar) +resNorm, RHSNorm = approx.normRes(mutar), approx.normRHS(mutar) +print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, + np.divide(appErr, solNorm))) +print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, + np.divide(resNorm, RHSNorm))) + +if algo == "rational": + from matplotlib import pyplot as plt + mu1 = np.linspace(murange[0][0]**2, murange[1][0]**2, 100) + mu2 = np.linspace(murange[0][1]**2, murange[1][1]**2, 100) + mu1s = np.power(mu1, .5) + mu2s = np.power(mu2, .5) + Mu1, Mu2 = np.meshgrid(mu1, mu2) + mus = [(m1, m2) for m2 in mu2s for m1 in mu1s] + Z = approx.trainedModel.getQVal(mus).reshape(Mu1.shape) + plt.figure(figsize = (15, 7)) + p = plt.contourf(Mu1, Mu2, np.log(np.abs(Z)), 50) + plt.contour(Mu1, Mu2, np.real(Z), [0.], linestyles = 'dashed') + plt.contour(Mu1, Mu2, np.imag(Z), [0.], linewidths = 1, + linestyles = 'dotted') + plt.plot(approx.mus(0) ** 2, approx.mus(1) ** 2, 'kx') + plt.colorbar(p) + plt.grid() + plt.show() + \ No newline at end of file diff --git a/examples/airfoil/solver.py b/examples/airfoil/solver.py index beb7bb2..c292d3a 100644 --- a/examples/airfoil/solver.py +++ b/examples/airfoil/solver.py @@ -1,40 +1,40 @@ import numpy as np import fenics as fen from airfoil_engine import AirfoilScatteringEngine verb = 0 #################### homog = True homog = False #################### k0 = 5e2 * 2 * np.pi / 340 kappa = 5e2 * 2 * np.pi / 340 theta = np.pi * - 45 / 180. mesh = fen.Mesh('../data/mesh/airfoil2412_1.xml') solver = AirfoilScatteringEngine(kappa, theta, verbosity = verb, degree_threshold = 8) uinc = solver.liftDirichletData(k0) if homog: - uhtot = solver.solve(kappa, homogeneized = homog) + uhtot = solver.solve(kappa, homogeneized = homog)[0] uh = uhtot + uinc else: - uh = solver.solve(kappa, homogeneized = homog) + uh = solver.solve(kappa, homogeneized = homog)[0] uhtot = uh - uinc print(solver.norm(uh)) print(solver.norm(uhtot)) solver.plot(fen.project(solver.diffusivity[0], solver.V).vector(), what = 'Real', name = 'a') solver.plot(uinc, what = 'Real', name = 'u_inc') solver.plot(uh, what = 'ABS') solver.plot(uhtot, what = 'ABS', name = 'u + u_inc') solver.outParaviewTimeDomain(uh, omega = kappa, forceNewFile = False, filename = "out/out_{}_".format(kappa)) solver.outParaviewTimeDomain(uhtot, omega = kappa, forceNewFile = False, filename = "out/outT_{}_".format(kappa)) diff --git a/examples/base/helmholtz_resonator.py b/examples/base/helmholtz_resonator.py index a1a7a80..d5d1d9a 100644 --- a/examples/base/helmholtz_resonator.py +++ b/examples/base/helmholtz_resonator.py @@ -1,72 +1,40 @@ from matplotlib import pyplot as plt import fenics as fen import mshr import ufl from rrompy.hfengines.linear_problem import HelmholtzProblemEngine as HPE p = plt.jet() n = 50 boundary = mshr.Polygon([fen.Point(0, 0), fen.Point(6, 0), fen.Point(6, 1), fen.Point(1.3, 1), fen.Point(1.3, 1.2), fen.Point(1.65, 1.2), fen.Point(1.65, 2.2), fen.Point(.65, 2.2), fen.Point(.65, 1.2), fen.Point(1, 1.2), fen.Point(1, 1), fen.Point(0, 1)]) mesh = mshr.generate_mesh(boundary, n) -class Resonator(fen.SubDomain): - def inside(self, x, on_boundary): - return fen.between(x[1], (1.25, 2.25)) -class Noslip(fen.SubDomain): - def inside(self, x, on_boundary): - return on_boundary -class Inlet(fen.SubDomain): - def inside(self, x, on_boundary): - return on_boundary and fen.near(x[0], 0.) -class Outlet(fen.SubDomain): - def inside(self, x, on_boundary): - return on_boundary and fen.near(x[0], 6.) -class Liner(fen.SubDomain): - def inside(self, x, on_boundary): - return on_boundary and fen.near(x[1], 2.25) -resonator = Resonator() -noslip = Noslip() -inlet = Inlet() -outlet = Outlet() -liner = Liner() - -sub_domains = fen.MeshFunction("size_t", mesh, mesh.topology().dim()) -sub_domains.set_all(0) -resonator.mark(sub_domains, 1) - -boundaries = fen.MeshFunction("size_t", mesh, mesh.topology().dim() - 1) -noslip.mark(boundaries, 0) -inlet.mark(boundaries, 1) -outlet.mark(boundaries, 2) -liner.mark(boundaries, 3) - for k in range(10): kappa = .25 + .05 * k ZR = 10. x, y = fen.SpatialCoordinate(mesh)[:] - solver = HPE() + solver = HPE(kappa) solver.V = fen.FunctionSpace(mesh, "P", 3) - solver.omega = kappa - solver.RobinBoundary = lambda x, on_b: on_b and (fen.near(x[0], 6.) - or fen.near(x[1], 2.25)) + solver.RobinBoundary = (lambda x, on_b: on_b and (fen.near(x[0], 6.) + or fen.near(x[1], 2.25))) solver.NeumannBoundary = "REST" solver.signR = + 1. solver.NeumannDatum = [fen.Constant(0.), ufl.conditional(ufl.And(ufl.gt(y, 0.), ufl.lt(y, 1.)), fen.Constant(kappa), fen.Constant(0.))] solver.RobinDatumH = [fen.Constant(0.), ufl.conditional(ufl.gt(y, 1.25), fen.Constant(kappa / ZR), fen.Constant(kappa))] - uh = solver.solve(kappa) + uh = solver.solve(kappa)[0] solver.plot(uh, name = "k={}".format(kappa)) print(solver.norm(uh)) - \ No newline at end of file + diff --git a/examples/base/matrix_solver.py b/examples/base/matrix_solver.py index 2e5d1ec..5db946c 100644 --- a/examples/base/matrix_solver.py +++ b/examples/base/matrix_solver.py @@ -1,29 +1,30 @@ import numpy as np import scipy.sparse as sp from rrompy.hfengines.base import MatrixEngineBase as MEB test = 2 N = 100 verb = 0 solver = MEB(verbosity = verb) +solver.npar = 1 solver.nAs = 2 mu = 5.001 if test == 1: solver.As = [sp.spdiags([np.arange(1, 1 + N)], [0], N, N), - sp.eye(N)] elif test == 2: solver.setSolver("SOLVE") fftB = np.fft.fft(np.eye(N)) * N**-.5 solver.As = [fftB.dot(np.multiply(np.arange(1, 1 + N), fftB.conj()).T), - np.eye(N)] solver.nbs = 1 solver.bs = [np.random.randn(N) + 1.j * np.random.randn(N)] -uh = solver.solve(mu) +uh = solver.solve(mu)[0] print(solver.norm(uh)) solver.plot(uh) -solver.plot(solver.residual(uh, mu), 'res') +solver.plot(solver.residual(uh, mu)[0], 'res') diff --git a/examples/base/solver.py b/examples/base/solver.py index 90522cf..f0487f4 100644 --- a/examples/base/solver.py +++ b/examples/base/solver.py @@ -1,75 +1,75 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleProblemEngine as HSBPE from rrompy.hfengines.linear_problem import \ HelmholtzSquareTransmissionProblemEngine as HSTPE from rrompy.hfengines.linear_problem import \ HelmholtzBoxScatteringProblemEngine as HBSPE from rrompy.hfengines.linear_problem import \ HelmholtzCavityScatteringProblemEngine as HCSPE testNo = 4 verb = 0 if testNo == 1: solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 20, verbosity = verb) mu = 12.**.5 solver.setSolver("BICG", {"tol" : 1e-15}) - uh = solver.solve(mu) + uh = solver.solve(mu)[0] solver.plotmesh() print(solver.norm(uh)) solver.plot(uh) - solver.plot(solver.residual(uh, mu), 'res') + solver.plot(solver.residual(uh, mu)[0], 'res') ########### elif testNo in [2, -2]: solver = HSTPE(nT = 1, nB = 2, theta = np.pi * 20 / 180, kappa = 4., n = 50, verbosity = verb) mu = 4. uref = solver.liftDirichletData(mu) if testNo > 0: - uh = solver.solve(mu) + uh = solver.solve(mu)[0] utot = uh - uref else: - utot = solver.solve(mu, homogeneized = True) + utot = solver.solve(mu, homogeneized = True)[0] uh = utot + uref print(solver.norm(uh)) print(solver.norm(uref)) solver.plot(uh) solver.plot(uref, name = 'u_Dir') solver.plot(utot, name = 'u_tot') - solver.plot(solver.residual(uh, mu), 'res') - solver.plot(solver.residual(utot, mu, homogeneized = True), 'res_tot') + solver.plot(solver.residual(uh, mu)[0], 'res') + solver.plot(solver.residual(utot, mu, homogeneized = True)[0], 'res_tot') ########### elif testNo in [3, -3]: solver = HBSPE(R = 5, kappa = 12**.5, theta = - np.pi * 60 / 180, n = 30, verbosity = verb) mu = 12**.5 uref = solver.liftDirichletData(mu) if testNo > 0: - uh = solver.solve(mu) + uh = solver.solve(mu)[0] utot = uh - uref else: - utot = solver.solve(mu, homogeneized = True) + utot = solver.solve(mu, homogeneized = True)[0] uh = utot + uref solver.plotmesh() print(solver.norm(uh)) print(solver.norm(utot)) solver.plot(uh) solver.plot(utot, name = 'u_tot') - solver.plot(solver.residual(uh, mu), 'res') - solver.plot(solver.residual(utot, mu, homogeneized = True), 'res_tot') + solver.plot(solver.residual(uh, mu)[0], 'res') + solver.plot(solver.residual(utot, mu, homogeneized = True)[0], 'res_tot') ########### elif testNo == 4: solver = HCSPE(kappa = 5, n = 30, verbosity = verb) mu = 10 - uh = solver.solve(mu) + uh = solver.solve(mu)[0] solver.plotmesh() print(solver.norm(uh)) solver.plot(uh) - solver.plot(solver.residual(uh, mu), 'res') + solver.plot(solver.residual(uh, mu)[0], 'res') diff --git a/examples/diapason/diapason_engine.py b/examples/diapason/diapason_engine.py index 186cdcb..355781d 100644 --- a/examples/diapason/diapason_engine.py +++ b/examples/diapason/diapason_engine.py @@ -1,133 +1,131 @@ import numpy as np import fenics as fen import ufl from rrompy.hfengines.vector_linear_problem import \ LinearElasticityHelmholtzProblemEngine as LEHPE from rrompy.hfengines.vector_linear_problem import \ LinearElasticityHelmholtzProblemEngineDamped as LEHPED class DiapasonEngine(LEHPE): def __init__(self, kappa:float, c:float, rho:float, E:float, nu:float, T:float, theta:float, phi:float, meshNo : int = 1, deg : int = 1, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = kappa, degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.omega = kappa mesh = fen.Mesh("../data/mesh/diapason_{}.xml".format(meshNo)) subdomains = fen.MeshFunction("size_t", mesh, ("../data/mesh/diapason_{}_physical_" "region.xml").format(meshNo)) meshBall = fen.SubMesh(mesh, subdomains, 2) meshFork = fen.SubMesh(mesh, subdomains, 1) Hball = np.max(meshBall.coordinates()[:, 1]) #.00257 Ltot = np.max(mesh.coordinates()[:, 1]) #.1022 Lhandle = np.max(meshFork.coordinates()[:, 1]) #.026 Lrod = Ltot - Lhandle #.0762 L2var = (Lrod / 4.) ** 2. Ehandle_ratio = 3. rhohandle_ratio = 1.5 kWave = (np.cos(theta) * np.cos(phi), np.sin(phi), np.sin(theta) * np.cos(phi)) x, y, z = fen.SpatialCoordinate(mesh)[:] yCorr = y - Ltot compPlane = kWave[0] * x + kWave[1] * y + kWave[2] * z xPlane, yPlane, zPlane = (xx - compPlane * xx for xx in (x, y, z)) xOrtho, yOrtho, zOrtho = (compPlane * xx for xx in (x, y, z)) forcingBase = (T / (2. * np.pi * L2var)**.5 * fen.exp(- (xPlane**2. + yPlane**2. + zPlane**2.) / (2.*L2var))) forcingWeight = np.real(kappa) / c * (xOrtho + yOrtho + zOrtho) neumannDatum = [ufl.as_vector(tuple(forcingBase * fen.cos(forcingWeight) * kWavedir for kWavedir in kWave)), ufl.as_vector(tuple(forcingBase * fen.sin(forcingWeight) * kWavedir for kWavedir in kWave))] lambda_ = E * nu / (1. + nu) / (1. - 2. * nu) mu_ = E / (1. + nu) lambda_eff = ufl.conditional(ufl.ge(y, Lhandle), fen.Constant(lambda_), fen.Constant(Ehandle_ratio * lambda_)) mu_eff = ufl.conditional(ufl.ge(y, Lhandle), fen.Constant(mu_), fen.Constant(Ehandle_ratio * mu_)) rho_eff = ufl.conditional(ufl.ge(y, Lhandle), fen.Constant(rho), fen.Constant(rhohandle_ratio * rho)) self.lambda_ = lambda_eff self.mu_ = mu_eff self.rho_ = rho_eff self.V = fen.VectorFunctionSpace(mesh, "P", deg) self.DirichletBoundary = lambda x, on_b: on_b and x[1] < Hball self.NeumannBoundary = "REST" self.forcingTerm = neumannDatum class DiapasonEngineDamped(LEHPED): def __init__(self, kappa:float, c:float, rho:float, E:float, nu:float, T:float, theta:float, phi:float, dampingEta:float, meshNo : int = 1, deg : int = 1, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = kappa, degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) self.eta = dampingEta - self.omega = kappa mesh = fen.Mesh("../data/mesh/diapason_{}.xml".format(meshNo)) subdomains = fen.MeshFunction("size_t", mesh, ("../data/mesh/diapason_{}_physical_" "region.xml").format(meshNo)) meshBall = fen.SubMesh(mesh, subdomains, 2) meshFork = fen.SubMesh(mesh, subdomains, 1) Hball = np.max(meshBall.coordinates()[:, 1]) #.00257 Ltot = np.max(mesh.coordinates()[:, 1]) #.1022 Lhandle = np.max(meshFork.coordinates()[:, 1]) #.026 Lrod = Ltot - Lhandle #.0762 L2var = (Lrod / 4.) ** 2. Ehandle_ratio = 3. rhohandle_ratio = 1.5 kWave = (np.cos(theta) * np.cos(phi), np.sin(phi), np.sin(theta) * np.cos(phi)) x, y, z = fen.SpatialCoordinate(mesh)[:] yCorr = y - Ltot compPlane = kWave[0] * x + kWave[1] * y + kWave[2] * z xPlane, yPlane, zPlane = (xx - compPlane * xx for xx in (x, y, z)) xOrtho, yOrtho, zOrtho = (compPlane * xx for xx in (x, y, z)) forcingBase = (T / (2. * np.pi * L2var)**.5 * fen.exp(- (xPlane**2. + yPlane**2. + zPlane**2.) / (2.*L2var))) forcingWeight = np.real(kappa) / c * (xOrtho + yOrtho + zOrtho) neumannDatum = [ufl.as_vector(tuple(forcingBase * fen.cos(forcingWeight) * kWavedir for kWavedir in kWave)), ufl.as_vector(tuple(forcingBase * fen.sin(forcingWeight) * kWavedir for kWavedir in kWave))] lambda_ = E * nu / (1. + nu) / (1. - 2. * nu) mu_ = E / (1. + nu) lambda_eff = ufl.conditional(ufl.ge(y, Lhandle), fen.Constant(lambda_), fen.Constant(Ehandle_ratio * lambda_)) mu_eff = ufl.conditional(ufl.ge(y, Lhandle), fen.Constant(mu_), fen.Constant(Ehandle_ratio * mu_)) rho_eff = ufl.conditional(ufl.ge(y, Lhandle), fen.Constant(rho), fen.Constant(rhohandle_ratio * rho)) self.lambda_ = lambda_eff self.mu_ = mu_eff self.rho_ = rho_eff self.V = fen.VectorFunctionSpace(mesh, "P", deg) self.DirichletBoundary = lambda x, on_b: on_b and x[1] < Hball self.NeumannBoundary = "REST" self.forcingTerm = neumannDatum diff --git a/examples/diapason/greedy.py b/examples/diapason/greedy.py index cd24a8c..1d86efe 100644 --- a/examples/diapason/greedy.py +++ b/examples/diapason/greedy.py @@ -1,179 +1,178 @@ import numpy as np import fenics as fen import ufl from rrompy.hfengines.vector_linear_problem import \ LinearElasticityHelmholtzProblemEngine as LEHPE from rrompy.hfengines.vector_linear_problem import \ LinearElasticityHelmholtzProblemEngineDamped as LEHPED from rrompy.reduction_methods.distributed_greedy import \ RationalInterpolantGreedy as Pade from rrompy.reduction_methods.distributed_greedy import \ RBDistributedGreedy as RB from rrompy.solver.fenics import L2NormMatrix verb = 2 timed = False algo = "Pade" #algo = "RB" polyBasis = "LEGENDRE" polyBasis = "CHEBYSHEV" #polyBasis = "MONOMIAL" if timed: verb = 0 dampingEta = 0 * 1e4 / 2. / np.pi k0s = np.linspace(2.5e2, 7.5e3, 100) k0s = np.linspace(2.5e3, 1.5e4, 100) k0s = np.linspace(5.0e4, 1.0e5, 100) k0s = np.linspace(2.0e5, 2.5e5, 100) k0 = np.mean(np.power(k0s, 2.)) ** .5 # [Hz] kl, kr = min(k0s), max(k0s) params = {'muBounds':[kl, kr], 'nTestPoints':500, 'Delta':0, 'greedyTol':1e-2, 'S':2, 'polybasis':polyBasis, 'robustTol':2e-16, 'interpRcond':None, 'errorEstimatorKind':'EXACT'} theta = 20. * np.pi / 180. phi = 10. * np.pi / 180. mesh = fen.Mesh("../data/mesh/diapason_1.xml") subdomains = fen.MeshFunction("size_t", mesh, "../data/mesh/diapason_1_physical_region.xml") meshBall = fen.SubMesh(mesh, subdomains, 2) meshFork = fen.SubMesh(mesh, subdomains, 1) Hball = np.max(meshBall.coordinates()[:, 1]) #.00257 Ltot = np.max(mesh.coordinates()[:, 1]) #.1022 Lhandle = np.max(meshFork.coordinates()[:, 1]) #.026 Lrod = Ltot - Lhandle #.0762 L2var = (Lrod / 4.) ** 2. Ehandle_ratio = 3. rhohandle_ratio = 1.5 c = 3.e2 rho = 8e3 * (2. * np.pi) ** 2. E = 1.93e11 nu = .3 T = 1e6 lambda_ = E * nu / (1. + nu) / (1. - 2. * nu) mu_ = E / (1. + nu) kWave = (np.cos(theta) * np.cos(phi), np.sin(phi), np.sin(theta) * np.cos(phi)) x, y, z = fen.SpatialCoordinate(mesh)[:] yCorr = y - Ltot compPlane = kWave[0] * x + kWave[1] * y + kWave[2] * z xPlane, yPlane, zPlane = (xx - compPlane * xx for xx in (x, y, z)) xOrtho, yOrtho, zOrtho = (compPlane * xx for xx in (x, y, z)) forcingBase = (T / (2. * np.pi * L2var)**.5 * fen.exp(- (xPlane**2. + yPlane**2. + zPlane**2.) / (2.*L2var))) forcingWeight = np.real(k0) / c * (xOrtho + yOrtho + zOrtho) neumannDatum = [ufl.as_vector( tuple(forcingBase * fen.cos(forcingWeight) * kWavedir for kWavedir in kWave)), ufl.as_vector( tuple(forcingBase * fen.sin(forcingWeight) * kWavedir for kWavedir in kWave))] lambda_eff = ufl.conditional(ufl.ge(y, Lhandle), fen.Constant(lambda_), fen.Constant(Ehandle_ratio * lambda_)) mu_eff = ufl.conditional(ufl.ge(y, Lhandle), fen.Constant(mu_), fen.Constant(Ehandle_ratio * mu_)) rho_eff = ufl.conditional(ufl.ge(y, Lhandle), fen.Constant(rho), fen.Constant(rhohandle_ratio * rho)) ### if dampingEta > 0: - solver = LEHPED(degree_threshold = 8, verbosity = 0) + solver = LEHPED(mu0 = np.real(k0), degree_threshold = 8, verbosity = 0) solver.eta = dampingEta else: - solver = LEHPE(degree_threshold = 8, verbosity = 0) -solver.omega = np.real(k0) + solver = LEHPE(mu0 = np.real(k0), degree_threshold = 8, verbosity = 0) solver.lambda_ = lambda_eff solver.mu_ = mu_eff solver.rho_ = rho_eff solver.V = fen.VectorFunctionSpace(mesh, "P", 1) solver.DirichletBoundary = lambda x, on_b: on_b and x[1] < Hball solver.NeumannBoundary = "REST" solver.forcingTerm = neumannDatum if algo == "Pade": approx = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb) else: params.pop("Delta") params.pop("polybasis") params.pop("robustTol") params.pop("interpRcond") params.pop("errorEstimatorKind") approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb) approx.initEstimatorNormEngine(L2NormMatrix(solver.V)) if timed: from time import clock start_time = clock() approx.greedy() print("Time: ", clock() - start_time) else: approx.greedy(True) polesApp = approx.getPoles() print("Poles:\n", polesApp) approx.samplingEngine.verbosity = 0 approx.verbosity = 0 kl, kr = np.real(kl), np.real(kr) from matplotlib import pyplot as plt normApp = np.zeros(len(k0s)) norm = np.zeros_like(normApp) res = np.zeros_like(normApp) err = np.zeros_like(normApp) for j in range(len(k0s)): normApp[j] = approx.normApprox(k0s[j]) norm[j] = approx.normHF(k0s[j]) res[j] = (approx.estimatorNormEngine.norm(approx.getRes(k0s[j])) / approx.estimatorNormEngine.norm(approx.getRHS(k0s[j]))) err[j] = approx.normErr(k0s[j]) / norm[j] resApp = approx.errorEstimator(k0s) res[res < 1e-5 * approx.greedyTol] = np.nan resApp[resApp < 1e-5 * approx.greedyTol] = np.nan err[err < 1e-8 * approx.greedyTol] = np.nan plt.figure() plt.semilogy(k0s, norm) plt.semilogy(k0s, normApp, '--') plt.semilogy(np.real(approx.mus), 1.05*np.max(norm)*np.ones_like(approx.mus, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, res) plt.semilogy(k0s, resApp, '--') plt.semilogy(np.real(approx.mus), approx.greedyTol*np.ones_like(approx.mus, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, err) plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() mask = (np.real(polesApp) < kl) | (np.real(polesApp) > kr) print("Outliers:", polesApp[mask]) polesAppEff = polesApp[~mask] plt.figure() plt.plot(np.real(polesAppEff), np.imag(polesAppEff), 'kx') plt.axis('equal') plt.grid() plt.show() plt.close() diff --git a/examples/diapason/solver.py b/examples/diapason/solver.py index 518bf22..9cf3c78 100644 --- a/examples/diapason/solver.py +++ b/examples/diapason/solver.py @@ -1,36 +1,36 @@ import numpy as np from diapason_engine import DiapasonEngine, DiapasonEngineDamped verb = 2 dampingEta = 0 * 1e4 / 2. / np.pi k0 = 1.8e3 # [Hz] ktar = 1.8e3 # [Hz] theta = 20. * np.pi / 180. phi = 10. * np.pi / 180. c = 3.e2 rho = 8e3 * (2. * np.pi) ** 2. E = 1.93e11 nu = .3 T = 1e6 ### if np.isclose(dampingEta, 0.): rescaling = lambda x: np.power(x, 2.) rescalingInv = lambda x: np.power(x, .5) solver = DiapasonEngine(kappa = k0, c = c, rho = rho, E = E, nu = nu, T = T, theta = theta, phi = phi, meshNo = 1, degree_threshold = 8, verbosity = 0) else: rescaling = lambda x: x rescalingInv = lambda x: x solver = DiapasonEngineDamped(kappa = k0, c = c, rho = rho, E = E, nu = nu, T = T, theta = theta, phi = phi, dampingEta = dampingEta, meshNo = 1, degree_threshold = 8, verbosity = 0) -uh = solver.solve(ktar) +uh = solver.solve(ktar)[0] solver.outParaviewTimeDomain(uh, omega = 2. * np.pi * ktar, filename = "out/outT{}_{}_".format(ktar, dampingEta), forceNewFile = False) diff --git a/examples/from_papers/greedy_internalBox.py b/examples/from_papers/greedy_internalBox.py index 72c798a..3ec5bbe 100644 --- a/examples/from_papers/greedy_internalBox.py +++ b/examples/from_papers/greedy_internalBox.py @@ -1,112 +1,111 @@ import numpy as np import fenics as fen from rrompy.hfengines.linear_problem import HelmholtzProblemEngine as HPE from rrompy.reduction_methods.distributed_greedy import \ RationalInterpolantGreedy as Pade from rrompy.reduction_methods.distributed_greedy import \ RBDistributedGreedy as RB from rrompy.solver.fenics import L2NormMatrix dim = 3 verb = 2 timed = False algo = "Pade" -#algo = "RB" +algo = "RB" polyBasis = "LEGENDRE" #polyBasis = "CHEBYSHEV" #polyBasis = "MONOMIAL" k0s = np.power(np.linspace(500 ** 2., 2250 ** 2., 200), .5) k0 = np.mean(np.power(k0s, 2.)) ** .5 kl, kr = min(k0s), max(k0s) params = {'muBounds':[kl, kr], 'nTestPoints':500, 'Delta':0, 'greedyTol':1e-2, 'S':2, 'basis':polyBasis} if dim == 2: mesh = fen.RectangleMesh(fen.Point(0., 0.), fen.Point(.1, .15), 10, 15) x, y = fen.SpatialCoordinate(mesh)[:] f = fen.exp(- 1e2 * (x + y)) else:#if dim == 3: mesh = fen.BoxMesh(fen.Point(0., 0., 0.), fen.Point(.1, .15, .25), 4, 6,10) x, y, z = fen.SpatialCoordinate(mesh)[:] f = fen.exp(- 1e2 * (x + y + z)) -solver = HPE(verbosity = verb) -solver.omega = np.real(k0) +solver = HPE(np.real(k0), verbosity = verb) solver.V = fen.FunctionSpace(mesh, "P", 3) solver.refractionIndex = fen.Constant(1. / 54.6) solver.forcingTerm = f solver.NeumannBoundary = "ALL" ######### if algo == "Pade": approx = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb) else: approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb) approx.initEstimatorNormEngine(L2NormMatrix(solver.V)) if timed: from time import clock start_time = clock() approx.greedy() print("Time: ", clock() - start_time) else: approx.greedy(True) approx.samplingEngine.verbosity = 0 approx.verbosity = 0 kl, kr = np.real(kl), np.real(kr) from matplotlib import pyplot as plt normApp = np.zeros(len(k0s)) norm = np.zeros_like(normApp) res = np.zeros_like(normApp) err = np.zeros_like(normApp) for j in range(len(k0s)): normApp[j] = approx.normApprox(k0s[j]) norm[j] = approx.normHF(k0s[j]) res[j] = (approx.estimatorNormEngine.norm(approx.getRes(k0s[j])) / approx.estimatorNormEngine.norm(approx.getRHS(k0s[j]))) err[j] = approx.normErr(k0s[j]) / approx.normHF(k0s[j]) resApp = approx.errorEstimator(k0s) plt.figure() plt.plot(k0s, norm) plt.plot(k0s, normApp, '--') -plt.plot(np.real(approx.mus), - 1.05*np.max(norm)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.plot(np.real(approx.mus(0)), + 1.05*np.max(norm)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, res) plt.semilogy(k0s, resApp, '--') -plt.semilogy(np.real(approx.mus), - 4.*np.max(resApp)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.semilogy(np.real(approx.mus(0)), + 4.*np.max(resApp)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, err) plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() polesApp = approx.getPoles() mask = (np.real(polesApp) < kl) | (np.real(polesApp) > kr) print("Outliers:", polesApp[mask]) polesApp = polesApp[~mask] plt.figure() plt.plot(np.real(polesApp), np.imag(polesApp), 'kx') plt.axis('equal') plt.grid() plt.show() plt.close() diff --git a/examples/from_papers/greedy_scatteringAirfoil.py b/examples/from_papers/greedy_scatteringAirfoil.py index e261c9a..5b5bd75 100644 --- a/examples/from_papers/greedy_scatteringAirfoil.py +++ b/examples/from_papers/greedy_scatteringAirfoil.py @@ -1,149 +1,149 @@ import numpy as np import fenics as fen import ufl from rrompy.hfengines.linear_problem import \ HelmholtzBoxScatteringProblemEngine as HSP from rrompy.reduction_methods.distributed_greedy import \ RationalInterpolantGreedy as Pade from rrompy.reduction_methods.distributed_greedy import \ RBDistributedGreedy as RB from rrompy.solver.fenics import fenONE, L2NormMatrix verb = 2 timed = False algo = "Pade" #algo = "RB" polyBasis = "LEGENDRE" #polyBasis = "CHEBYSHEV" #polyBasis = "MONOMIAL" homog = True homog = False k0s = np.linspace(5, 20, 25) k0 = np.mean(k0s) kl, kr = min(k0s), max(k0s) params = {'muBounds':[kl, kr], 'nTestPoints':500, 'Delta':0, - 'greedyTol':1e-2, 'S':2, 'basis':polyBasis} + 'greedyTol':1e-2, 'S':2, 'polybasis':polyBasis} ######### PI = np.pi R = 2 def Dboundary(x, on_boundary): return on_boundary and (x[0]**2+x[1]**2)**.5 < .95 * R kappa = 10 theta = PI * - 45 / 180. mu = 1.1 epsilon = .1 mesh = fen.Mesh('../data/mesh/airfoil.xml') c, s = np.cos(theta), np.sin(theta) x, y = fen.SpatialCoordinate(mesh)[:] u0R = - fen.cos(kappa * (c * x + s * y)) u0I = - fen.sin(kappa * (c * x + s * y)) checkReal = x**2-x+y**2 rhop5 = ((x**2+y**2)/((x-1)**2+y**2))**.25 phiroot1 = fen.atan(-y/(x**2-x+y**2)) / 2 phiroot2 = fen.atan(-y/(x**2-x+y**2)) / 2 - PI * ufl.sign(-y/(x**2-x+y**2)) / 2 kappam1 = (((rhop5*fen.cos(phiroot1)+.5)**2.+(rhop5*fen.sin(phiroot1))**2.)/ ((rhop5*fen.cos(phiroot1)-1.)**2.+(rhop5*fen.sin(phiroot1))**2.) )**.5 - mu kappam2 = (((rhop5*fen.cos(phiroot2)+.5)**2.+(rhop5*fen.sin(phiroot2))**2.)/ ((rhop5*fen.cos(phiroot2)-1.)**2.+(rhop5*fen.sin(phiroot2))**2.) )**.5 - mu Heps1 = .9 * .5 * (1 + kappam1/epsilon + fen.sin(PI*kappam1/epsilon) / PI) + .1 Heps2 = .9 * .5 * (1 + kappam2/epsilon + fen.sin(PI*kappam2/epsilon) / PI) + .1 cTT = ufl.conditional(ufl.le(kappam1, epsilon), Heps1, fenONE) c_F = fen.Constant(.1) cFT = ufl.conditional(ufl.le(kappam2, epsilon), Heps2, fenONE) c_F = fen.Constant(.1) cT = ufl.conditional(ufl.ge(kappam1, - epsilon), cTT, c_F) cF = ufl.conditional(ufl.ge(kappam2, - epsilon), cFT, c_F) a = ufl.conditional(ufl.ge(checkReal, 0.), cT, cF) solver = HSP(R, np.real(k0), theta, n = 1, verbosity = verb, degree_threshold = 8) solver.omega = np.real(k0) solver.V = fen.FunctionSpace(mesh, "P", 3) solver.diffusivity = a solver.DirichletBoundary = Dboundary solver.RobinBoundary = "REST" solver.DirichletDatum = [u0R, u0I] ######### if algo == "Pade": approx = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) else: approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.initEstimatorNormEngine(L2NormMatrix(solver.V)) if timed: from time import clock start_time = clock() approx.greedy() print("Time: ", clock() - start_time) else: approx.greedy(True) approx.samplingEngine.verbosity = 0 approx.verbosity = 0 kl, kr = np.real(kl), np.real(kr) from matplotlib import pyplot as plt normApp = np.zeros(len(k0s)) norm = np.zeros_like(normApp) res = np.zeros_like(normApp) err = np.zeros_like(normApp) for j in range(len(k0s)): normApp[j] = approx.normApprox(k0s[j]) norm[j] = approx.normHF(k0s[j]) res[j] = (approx.estimatorNormEngine.norm( approx.getRes(k0s[j], homogeneized=homog)) / approx.estimatorNormEngine.norm( approx.getRHS(k0s[j], homogeneized=homog))) err[j] = approx.normErr(k0s[j]) / approx.normHF(k0s[j]) resApp = approx.errorEstimator(k0s) plt.figure() plt.plot(k0s, norm) plt.plot(k0s, normApp, '--') -plt.plot(np.real(approx.mus), - 1.05*np.max(norm)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.plot(np.real(approx.mus(0)), + 1.05*np.max(norm)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, res) plt.semilogy(k0s, resApp, '--') -plt.semilogy(np.real(approx.mus), - 4.*np.max(resApp)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.semilogy(np.real(approx.mus(0)), + 4.*np.max(resApp)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, err) plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() polesApp = approx.getPoles() mask = (np.real(polesApp) < kl) | (np.real(polesApp) > kr) print("Outliers:", polesApp[mask]) polesApp = polesApp[~mask] plt.figure() plt.plot(np.real(polesApp), np.imag(polesApp), 'kx') plt.axis('equal') plt.grid() plt.show() plt.close() diff --git a/examples/from_papers/pod_membrane_centered.py b/examples/from_papers/pod_membrane_centered.py deleted file mode 100644 index aada78c..0000000 --- a/examples/from_papers/pod_membrane_centered.py +++ /dev/null @@ -1,71 +0,0 @@ -import fenics as fen -import numpy as np -from rrompy.hfengines.linear_problem import HelmholtzProblemEngine as HPE -from rrompy.reduction_methods.centered import RationalPade as TP - -verb = 0 - -k0 = 10 -ktars = np.linspace(78**.5, 122**.5, 50) - -def boundaryNeumann(x, on_boundary): - return on_boundary and x[1] > .25 and x[0] > 0.995 and x[0] < 1.005 - -meshname = '../data/mesh/crack_coarse.xml' -#meshname = '../data/mesh/crack_fine.xml' -mesh = fen.Mesh(meshname) - -x, y = fen.SpatialCoordinate(mesh)[:] -x0, y0 = .5, .5 -Rr, Ri = .1, .1 -forcingTerm = fen.exp(- ((x - x0)**2 + (y - y0)**2) / 2 / Rr**2) - -solver = HPE(verbosity = verb) -solver.omega = np.real(k0) -solver.V = fen.FunctionSpace(mesh, "P", 3) -solver.forcingTerm = forcingTerm -solver.NeumannBoundary = boundaryNeumann -solver.DirichletBoundary = 'rest' - -appPoles = {} -Emax = 13 -params = {'N':6, 'M':0, 'E':6, 'POD':True} - -approxPade = TP(solver, mu0 = k0, approxParameters = params, - verbosity = verb) -for E in range(6, Emax + 1): - approxPade.E = E - appPoles[E] = np.sort(approxPade.getPoles()) - -a = fen.dot(fen.grad(solver.u), fen.grad(solver.v)) * fen.dx -A = fen.assemble(a) -fen.DirichletBC(solver.V, fen.Constant(0.), - solver.DirichletBoundary).apply(A) -AMat = fen.as_backend_type(A).mat() -Ar, Ac, Av = AMat.getValuesCSR() -import scipy.sparse as scsp -A = scsp.csr_matrix((Av, Ac, Ar), shape = AMat.size) - -m = fen.dot(solver.u, solver.v) * fen.dx -M = fen.assemble(m) -fen.DirichletBC(solver.V, fen.Constant(0.), - solver.DirichletBoundary).apply(M) -MMat = fen.as_backend_type(M).mat() -Mr, Mc, Mv = MMat.getValuesCSR() -import scipy.sparse as scsp -M = scsp.csr_matrix((Mv, Mc, Mr), shape = MMat.size) - -poles = scsp.linalg.eigs(A, k = 7, M = M, sigma = 100., - return_eigenvectors = False) -II = np.argsort(np.abs(poles - k0)) -poles = poles[II] -print('Exact', end = ': ') -[print('{},{}'.format(np.real(x), np.imag(x)), end = ',') for x in poles] -print() - -for E in range(6, Emax + 1): - print(E, end = ': ') - [print('{},{}'.format(np.real(x), np.imag(x)), end = ',')\ - for x in np.sort(appPoles[E])] - print() - diff --git a/examples/from_papers/pod_scatteringAirfoil.py b/examples/from_papers/pod_scatteringAirfoil.py index aaaabcf..0c5de0b 100644 --- a/examples/from_papers/pod_scatteringAirfoil.py +++ b/examples/from_papers/pod_scatteringAirfoil.py @@ -1,142 +1,144 @@ import numpy as np import fenics as fen import ufl from rrompy.hfengines.linear_problem import \ HelmholtzBoxScatteringProblemEngine as HSP from rrompy.reduction_methods.centered import RationalPade as PC from rrompy.reduction_methods.centered import RBCentered as RBC from rrompy.reduction_methods.distributed import RationalInterpolant as PD from rrompy.reduction_methods.distributed import RBDistributed as RBD from rrompy.parameter.parameter_sampling import QuadratureSampler as QS from rrompy.solver.fenics import fenONE from operator import itemgetter def subdict(d, ks): return dict(zip(ks, itemgetter(*ks)(d))) verb = 0 #################### homog = True #homog = False #################### test = "solve" test = "Centered" test = "Distributed" plotSamples = True k0 = 10 kLeft, kRight = 8 + 0.j, 12 + 0.j ktar = 11 ktars = np.linspace(8, 12, 21) + 0.j PI = np.pi R = 2 def Dboundary(x, on_boundary): return on_boundary and (x[0]**2+x[1]**2)**.5 < .95 * R kappa = 10 theta = PI * - 45 / 180. mu = 1.1 epsilon = .1 mesh = fen.Mesh('../data/mesh/airfoil.xml') c, s = np.cos(theta), np.sin(theta) x, y = fen.SpatialCoordinate(mesh)[:] u0R = - fen.cos(kappa * (c * x + s * y)) u0I = - fen.sin(kappa * (c * x + s * y)) checkReal = x**2-x+y**2 rhop5 = ((x**2+y**2)/((x-1)**2+y**2))**.25 phiroot1 = fen.atan(-y/(x**2-x+y**2)) / 2 phiroot2 = fen.atan(-y/(x**2-x+y**2)) / 2 - PI * ufl.sign(-y/(x**2-x+y**2)) / 2 kappam1 = (((rhop5*fen.cos(phiroot1)+.5)**2.+(rhop5*fen.sin(phiroot1))**2.)/ ((rhop5*fen.cos(phiroot1)-1.)**2.+(rhop5*fen.sin(phiroot1))**2.) )**.5 - mu kappam2 = (((rhop5*fen.cos(phiroot2)+.5)**2.+(rhop5*fen.sin(phiroot2))**2.)/ ((rhop5*fen.cos(phiroot2)-1.)**2.+(rhop5*fen.sin(phiroot2))**2.) )**.5 - mu Heps1 = .9 * .5 * (1 + kappam1/epsilon + fen.sin(PI*kappam1/epsilon) / PI) + .1 Heps2 = .9 * .5 * (1 + kappam2/epsilon + fen.sin(PI*kappam2/epsilon) / PI) + .1 cTT = ufl.conditional(ufl.le(kappam1, epsilon), Heps1, fenONE) c_F = fen.Constant(.1) cFT = ufl.conditional(ufl.le(kappam2, epsilon), Heps2, fenONE) c_F = fen.Constant(.1) cT = ufl.conditional(ufl.ge(kappam1, - epsilon), cTT, c_F) cF = ufl.conditional(ufl.ge(kappam2, - epsilon), cFT, c_F) a = ufl.conditional(ufl.ge(checkReal, 0.), cT, cF) ### solver = HSP(R, np.abs(k0), theta, n = 1, verbosity = verb, degree_threshold = 8) solver.V = fen.FunctionSpace(mesh, "P", 3) solver.diffusivity = a solver.DirichletBoundary = Dboundary solver.RobinBoundary = "REST" solver.DirichletDatum = [u0R, u0I] ### if test == "solve": uinc = solver.liftDirichletData(k0) if homog: - uhtot = solver.solve(k0, homogeneized = homog) + uhtot = solver.solve(k0, homogeneized = homog)[0] uh = uhtot + uinc else: - uh = solver.solve(k0, homogeneized = homog) + uh = solver.solve(k0, homogeneized = homog)[0] uhtot = uh - uinc print(solver.norm(uh)) print(solver.norm(uhtot)) solver.plot(fen.project(a, solver.V).vector(), what = 'Real', name = 'a') solver.plot(uinc, what = 'Real', name = 'u_inc') solver.plot(uh, what = 'ABS') solver.plot(uhtot, what = 'ABS', name = 'u + u_inc') elif test in ["Centered", "Distributed"]: if test == "Centered": params = {'N':8, 'M':8, 'R':8, 'E':8, 'POD':True} parPade = subdict(params, ['N', 'M', 'E', 'POD']) parRB = subdict(params, ['R', 'E', 'POD']) approxPade = PC(solver, mu0 = k0, approxParameters = parPade, verbosity = verb, homogeneized = homog) approxRB = RBC(solver, mu0 = k0, approxParameters = parRB, verbosity = verb, homogeneized = homog) else: - params = {'N':8, 'M':8, 'R':9, 'S':9, 'POD':True, 'basis':"CHEBYSHEV", + params = {'N':8, 'M':8, 'R':9, 'S':9, 'POD':True, + 'polybasis':"CHEBYSHEV", 'sampler':QS([kLeft, kRight], "CHEBYSHEV")} - parPade = subdict(params, ['N', 'M', 'S', 'POD', 'basis', 'sampler']) + parPade = subdict(params, ['N', 'M', 'S', 'POD', 'polybasis', + 'sampler']) parRB = subdict(params, ['R', 'S', 'POD', 'sampler']) approxPade = PD(solver, mu0 = np.mean([kLeft, kRight]), approxParameters = parPade, verbosity = verb, homogeneized = homog) approxRB = RBD(solver, mu0 = np.mean([kLeft, kRight]), approxParameters = parRB, verbosity = verb, homogeneized = homog) approxPade.setupApprox() approxRB.setupApprox() if plotSamples: approxPade.plotSamples() approxPade.plotHF(ktar, name = 'u_HF') approxPade.plotApprox(ktar, name = 'u_Pade''') approxPade.plotErr(ktar, name = 'err_Pade''') approxPade.plotRes(ktar, name = 'res_Pade''') approxRB.plotApprox(ktar, name = 'u_RB') approxRB.plotErr(ktar, name = 'err_RB') approxRB.plotRes(ktar, name = 'res_RB') HFNorm, RHSNorm = approxPade.normHF(ktar), approxPade.normRHS(ktar) PadeRes, PadeErr = approxPade.normRes(ktar), approxPade.normErr(ktar) RBRes, RBErr = approxRB.normRes(ktar), approxRB.normErr(ktar) print('HFNorm:\t{}\nRHSNorm:\t{}'.format(HFNorm, RHSNorm)) print('PadeRes:\t{}\nPadeErr:\t{}'.format(PadeRes, PadeErr)) print('RBRes:\t{}\nRBErr:\t{}'.format(RBRes, RBErr)) print('\nPoles Pade'':') print(approxPade.getPoles()) diff --git a/examples/greedy/matrix_greedy.py b/examples/greedy/matrix_greedy.py index f0c7e7f..c8e5db2 100644 --- a/examples/greedy/matrix_greedy.py +++ b/examples/greedy/matrix_greedy.py @@ -1,112 +1,113 @@ import numpy as np import scipy.sparse as sp from matplotlib import pyplot as plt from rrompy.hfengines.base import MatrixEngineBase as MEB from rrompy.reduction_methods.distributed_greedy import \ RationalInterpolantGreedy as Pade from rrompy.reduction_methods.distributed_greedy import \ RBDistributedGreedy as RB test = 1 timed = False method = "Pade" -#method = "RB" +method = "RB" verb = 200 errorEstimatorKind = "BARE" #errorEstimatorKind = "BASIC" #errorEstimatorKind = "EXACT" N = 100 solver = MEB(verbosity = verb) +solver.npar = 1 solver.nAs = 2 if test == 1: solver.As = [sp.spdiags([np.arange(1, 1 + N)], [0], N, N), - sp.eye(N)] elif test == 2: solver.setSolver("SOLVE") fftB = np.fft.fft(np.eye(N)) * N**-.5 solver.As = [fftB.dot(np.multiply(np.arange(1, 1 + N), fftB.conj()).T), - np.eye(N)] np.random.seed(420) solver.nbs = 1 solver.bs = [np.random.randn(N) + 1.j * np.random.randn(N)] mu0 = 10.25 murange = [1.25, 19.25] mutars = np.linspace(murange[0], murange[1], 500) if method == "Pade": params = {'muBounds':murange, 'nTestPoints':200, 'Delta':0, 'S':5, 'greedyTol':1e-2, 'polybasis':"CHEBYSHEV", 'errorEstimatorKind':errorEstimatorKind} approx = Pade(solver, mu0 = mu0, approxParameters = params, verbosity = verb) elif method == "RB": params = {'muBounds':murange, 'nTestPoints':500, 'greedyTol':1e-2, 'S':5} approx = RB(solver, mu0 = mu0, approxParameters = params, verbosity = verb) if timed: from time import clock start_time = clock() approx.greedy() print("Time: ", clock() - start_time) else: approx.greedy(True) approx.samplingEngine.verbosity = 0 approx.trainedModel.verbosity = 0 approx.verbosity = 0 normApp = np.zeros(len(mutars)) norm = np.zeros_like(normApp) res = np.zeros_like(normApp) err = np.zeros_like(normApp) for j in range(len(mutars)): normApp[j] = approx.normApprox(mutars[j]) norm[j] = approx.normHF(mutars[j]) res[j] = (approx.estimatorNormEngine.norm(approx.getRes(mutars[j])) / approx.estimatorNormEngine.norm(approx.getRHS(mutars[j]))) err[j] = approx.normErr(mutars[j]) / approx.normHF(mutars[j]) resApp = approx.errorEstimator(mutars) plt.figure() plt.semilogy(mutars, norm) plt.semilogy(mutars, normApp, '--') plt.semilogy(np.real(approx.mus(0)), - 1.25*np.max(norm)*np.ones_like(approx.mus, dtype = float), 'rx') + 1.25*np.max(norm)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim(murange) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(mutars, res) plt.semilogy(mutars, resApp, '--') plt.semilogy(np.real(approx.mus(0)), - 4.*np.max(resApp)*np.ones_like(approx.mus, dtype = float), 'rx') + 4.*np.max(resApp)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim(murange) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(mutars, err) plt.xlim(murange) plt.grid() plt.show() plt.close() polesTrue = np.arange(1, 1 + N) polesTrue = polesTrue[polesTrue >= murange[0]] polesTrue = polesTrue[polesTrue <= murange[1]] polesApp = approx.getPoles() mask = (np.real(polesApp) < murange[0]) | (np.real(polesApp) > murange[1]) print("Outliers:", polesApp[mask]) polesApp = polesApp[~mask] plt.figure() plt.plot(np.real(polesApp), np.imag(polesApp), 'kx') plt.plot(polesTrue, np.zeros_like(polesTrue), 'm.') plt.axis('equal') plt.grid() plt.show() plt.close() diff --git a/examples/greedy/parametricDomain.py b/examples/greedy/parametricDomain.py index d1d5910..7284438 100644 --- a/examples/greedy/parametricDomain.py +++ b/examples/greedy/parametricDomain.py @@ -1,102 +1,105 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleDomainProblemEngine as HSBDPE from rrompy.reduction_methods.distributed_greedy import \ RationalInterpolantGreedy as Pade from rrompy.reduction_methods.distributed_greedy import \ RBDistributedGreedy as RB from rrompy.solver.fenics import L2NormMatrix verb = 2 timed = False algo = "Pade" -#algo = "RB" +algo = "RB" polyBasis = "LEGENDRE" -#polyBasis = "CHEBYSHEV" +polyBasis = "CHEBYSHEV" #polyBasis = "MONOMIAL" errorEstimatorKind = "BARE" #errorEstimatorKind = "BASIC" #errorEstimatorKind = "EXACT" k0s = np.power(np.linspace(9, 19, 100), .5) k0 = np.mean(np.power(k0s, 2.)) ** .5 kl, kr = min(k0s), max(k0s) params = {'muBounds':[kl, kr], 'nTestPoints':500, 'Delta':0, 'greedyTol':1e-2, 'S':2, 'polybasis':polyBasis, 'errorEstimatorKind':errorEstimatorKind} if timed: verb = 0 solver = HSBDPE(kappa = 12 ** .5, theta = np.pi / 3, n = 20, mu0 = k0, degree_threshold = 15, verbosity = verb) solver.omega = np.real(k0) if algo == "Pade": approx = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb) else: + params.pop('Delta') + params.pop('polybasis') + params.pop('errorEstimatorKind') approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb) approx.initEstimatorNormEngine(np.abs(k0) ** 2. * L2NormMatrix(solver.V)) if timed: from time import clock start_time = clock() approx.greedy() print("Time: ", clock() - start_time) else: approx.greedy(True) approx.samplingEngine.verbosity = 0 approx.verbosity = 0 from matplotlib import pyplot as plt normApp = np.zeros(len(k0s)) norm = np.zeros_like(normApp) res = np.zeros_like(normApp) err = np.zeros_like(normApp) for j in range(len(k0s)): normApp[j] = approx.normApprox(k0s[j]) norm[j] = approx.normHF(k0s[j]) res[j] = (approx.estimatorNormEngine.norm(approx.getRes(k0s[j])) / approx.estimatorNormEngine.norm(approx.getRHS(k0s[j]))) err[j] = approx.normErr(k0s[j]) / approx.normHF(k0s[j]) resApp = approx.errorEstimator(k0s) plt.figure() plt.semilogy(k0s, norm) plt.semilogy(k0s, normApp, '--') -plt.semilogy(np.real(approx.mus), - 1.25*np.max(norm)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.semilogy(np.real(approx.mus(0)), + 1.25*np.max(norm)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, res) plt.semilogy(k0s, resApp, '--') -plt.semilogy(np.real(approx.mus), - 4.*np.max(resApp)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.semilogy(np.real(approx.mus(0)), + 4.*np.max(resApp)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, err) plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() polesApp = approx.getPoles() mask = (np.real(polesApp) < kl) | (np.real(polesApp) > kr) print("Outliers:", polesApp[mask]) polesApp = polesApp[~mask] plt.figure() plt.plot(np.real(polesApp), np.imag(polesApp), 'kx') plt.axis('equal') plt.grid() plt.show() plt.close() diff --git a/examples/greedy/squareBubbleHomog.py b/examples/greedy/squareBubbleHomog.py index 800fbf0..dbe5516 100644 --- a/examples/greedy/squareBubbleHomog.py +++ b/examples/greedy/squareBubbleHomog.py @@ -1,114 +1,117 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleProblemEngine as HSBPE from rrompy.reduction_methods.distributed_greedy import \ RationalInterpolantGreedy as Pade from rrompy.reduction_methods.distributed_greedy import \ RBDistributedGreedy as RB from rrompy.utilities.base import squareResonances from rrompy.solver.fenics import L2NormMatrix verb = 2 timed = False algo = "Pade" #algo = "RB" polyBasis = "LEGENDRE" #polyBasis = "CHEBYSHEV" #polyBasis = "MONOMIAL" errorEstimatorKind = "BARE" #errorEstimatorKind = "BASIC" #errorEstimatorKind = "EXACT" k0s = np.power(np.linspace(95, 149, 250), .5) #k0s = np.power(np.linspace(95, 129, 100), .5) #k0s = np.power(np.linspace(95, 109, 100), .5) k0 = np.mean(np.power(k0s, 2.)) ** .5 kl, kr = min(k0s), max(k0s) polesexact = np.unique(np.power(squareResonances(kl**2., kr**2., False), .5)) params = {'muBounds':[kl, kr], 'nTestPoints':500, 'Delta':0, 'greedyTol':1e-2, 'S':10, 'polybasis':polyBasis, 'errorEstimatorKind':errorEstimatorKind, 'interactive':False} if timed: verb = 0 solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 20, verbosity = verb) solver.omega = np.real(k0) if algo == "Pade": approx = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb) else: + params.pop('Delta') + params.pop('polybasis') + params.pop('errorEstimatorKind') approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb) approx.initEstimatorNormEngine(L2NormMatrix(solver.V)) if timed: from time import clock start_time = clock() approx.greedy() print("Time: ", clock() - start_time) else: approx.greedy(True) approx.samplingEngine.verbosity = 0 approx.trainedModel.verbosity = 0 approx.verbosity = 0 from matplotlib import pyplot as plt normApp = np.zeros_like(k0s) norm = np.zeros_like(k0s) res = np.zeros_like(k0s) err = np.zeros_like(k0s) for j in range(len(k0s)): normApp[j] = approx.normApprox(k0s[j]) norm[j] = approx.normHF(k0s[j]) res[j] = (approx.estimatorNormEngine.norm(approx.getRes(k0s[j])) / approx.estimatorNormEngine.norm(approx.getRHS(k0s[j]))) err[j] = approx.normErr(k0s[j]) / approx.normHF(k0s[j]) resApp = approx.errorEstimator(k0s) plt.figure() plt.semilogy(k0s, norm) plt.semilogy(k0s, normApp, '--') plt.semilogy(polesexact, 2.*np.max(norm)*np.ones_like(polesexact, dtype = float), 'm.') -plt.semilogy(np.real(approx.mus), - 4.*np.max(norm)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.semilogy(np.real(approx.mus(0)), + 4.*np.max(norm)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, res) plt.semilogy(k0s, resApp, '--') plt.semilogy(polesexact, 2.*np.max(resApp)*np.ones_like(polesexact, dtype = float), 'm.') -plt.semilogy(np.real(approx.mus), - 4.*np.max(resApp)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.semilogy(np.real(approx.mus(0)), + 4.*np.max(resApp)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, err) plt.semilogy(polesexact, 2.*np.max(err)*np.ones_like(polesexact, dtype = float), 'm.') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() polesApp = approx.getPoles() mask = (np.real(polesApp) < kl) | (np.real(polesApp) > kr) print("Outliers:", polesApp[mask]) polesApp = polesApp[~mask] plt.figure() plt.plot(np.real(polesApp), np.imag(polesApp), 'kx') plt.plot(np.real(polesexact), np.imag(polesexact), 'm.') plt.axis('equal') plt.grid() plt.show() plt.close() diff --git a/examples/greedy/squareScatteringHomog.py b/examples/greedy/squareScatteringHomog.py index f0f2ca7..a32cb08 100644 --- a/examples/greedy/squareScatteringHomog.py +++ b/examples/greedy/squareScatteringHomog.py @@ -1,104 +1,104 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzCavityScatteringProblemEngine as HCSPE from rrompy.reduction_methods.distributed_greedy import \ RationalInterpolantGreedy as Pade from rrompy.reduction_methods.distributed_greedy import \ RBDistributedGreedy as RB from rrompy.solver.fenics import L2NormMatrix verb = 2 timed = False algo = "Pade" -#algo = "RB" +algo = "RB" polyBasis = "LEGENDRE" polyBasis = "CHEBYSHEV" #polyBasis = "MONOMIAL" errorEstimatorKind = "BARE" errorEstimatorKind = "BASIC" #errorEstimatorKind = "EXACT" k0s = np.linspace(10, 15, 100) k0 = np.mean(k0s) kl, kr = min(k0s), max(k0s) params = {'muBounds':[kl, kr], 'nTestPoints':500, 'Delta':0, 'greedyTol':5e-3, 'S':2, 'polybasis':polyBasis, 'errorEstimatorKind':errorEstimatorKind} if timed: verb = 0 solver = HCSPE(kappa = 5, n = 20, verbosity = verb) solver.omega = np.real(k0) if algo == "Pade": approx = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb) else: params.pop('Delta') params.pop('polybasis') params.pop('errorEstimatorKind') approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb) approx.initEstimatorNormEngine(L2NormMatrix(solver.V)) if timed: from time import clock start_time = clock() approx.greedy() print("Time: ", clock() - start_time) else: approx.greedy(True) approx.samplingEngine.verbosity = 0 approx.trainedModel.verbosity = 0 approx.verbosity = 0 from matplotlib import pyplot as plt normApp = np.zeros(len(k0s)) norm = np.zeros_like(normApp) res = np.zeros_like(normApp) err = np.zeros_like(normApp) for j in range(len(k0s)): normApp[j] = approx.normApprox(k0s[j]) norm[j] = approx.normHF(k0s[j]) res[j] = (approx.estimatorNormEngine.norm(approx.getRes(k0s[j])) / approx.estimatorNormEngine.norm(approx.getRHS(k0s[j]))) err[j] = approx.normErr(k0s[j]) / approx.normHF(k0s[j]) resApp = approx.errorEstimator(k0s) plt.figure() plt.plot(k0s, norm) plt.plot(k0s, normApp, '--') -plt.plot(np.real(approx.mus), - 1.25*np.max(norm)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.plot(np.real(approx.mus(0)), + 1.25*np.max(norm)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, res) plt.semilogy(k0s, resApp, '--') -plt.semilogy(np.real(approx.mus), - 4.*np.max(resApp)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.semilogy(np.real(approx.mus(0)), + 4.*np.max(resApp)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, err) plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() polesApp = approx.getPoles() mask = (np.real(polesApp) < kl) | (np.real(polesApp) > kr) print("Outliers:", polesApp[mask]) polesApp = polesApp[~mask] plt.figure() plt.plot(np.real(polesApp), np.imag(polesApp), 'kx') plt.axis('equal') plt.grid() plt.show() plt.close() diff --git a/examples/greedy/squareTransmissionNonHomog.py b/examples/greedy/squareTransmissionNonHomog.py index a6f9804..f729c20 100644 --- a/examples/greedy/squareTransmissionNonHomog.py +++ b/examples/greedy/squareTransmissionNonHomog.py @@ -1,113 +1,116 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareTransmissionProblemEngine as HSTPE from rrompy.reduction_methods.distributed_greedy import \ RationalInterpolantGreedy as Pade from rrompy.reduction_methods.distributed_greedy import \ RBDistributedGreedy as RB from rrompy.solver.fenics import L2NormMatrix timed = False verb = 2 algo = "Pade" #algo = "RB" polyBasis = "LEGENDRE" #polyBasis = "CHEBYSHEV" #polyBasis = "MONOMIAL" homog = True #homog = False errorEstimatorKind = "BARE" errorEstimatorKind = "BASIC" #errorEstimatorKind = "EXACT" k0s = np.power(np.linspace(4, 15, 100), .5) k0 = np.mean(np.power(k0s, 2.)) ** .5 kl, kr = min(k0s), max(k0s) rescaling = lambda x: np.power(x, 2.) rescalingInv = lambda x: np.power(x, .5) params = {'muBounds':[kl, kr], 'nTestPoints':500, 'Delta':0, 'greedyTol':1e-2, 'S':5, 'polybasis':polyBasis, 'errorEstimatorKind':errorEstimatorKind} solver = HSTPE(nT = 1, nB = 2, theta = np.pi * 20 / 180, kappa = 4., n = 20, verbosity = verb) solver.omega = np.real(k0) if algo == "Pade": approx = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) else: + params.pop('Delta') + params.pop('polybasis') + params.pop('errorEstimatorKind') approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.initEstimatorNormEngine(L2NormMatrix(solver.V)) if timed: from time import clock start_time = clock() approx.greedy() print("Time: ", clock() - start_time) else: approx.greedy(True) approx.samplingEngine.verbosity = 0 approx.verbosity = 0 from matplotlib import pyplot as plt normApp = np.zeros(len(k0s)) norm = np.zeros_like(normApp) res = np.zeros_like(normApp) err = np.zeros_like(normApp) for j in range(len(k0s)): normApp[j] = approx.normApprox(k0s[j]) norm[j] = approx.normHF(k0s[j]) res[j] = (approx.estimatorNormEngine.norm( approx.getRes(k0s[j], homogeneized=homog)) / approx.estimatorNormEngine.norm( approx.getRHS(k0s[j], homogeneized=homog))) err[j] = approx.normErr(k0s[j]) / approx.normHF(k0s[j]) resApp = approx.errorEstimator(k0s) polesApp = approx.getPoles() polesApp = polesApp[np.abs(np.imag(polesApp)) < 1e-3] plt.figure() plt.semilogy(k0s, norm) plt.semilogy(k0s, normApp, '--') -plt.semilogy(np.real(approx.mus), - 4.*np.max(norm)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.semilogy(np.real(approx.mus(0)), + 4.*np.max(norm)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.semilogy(np.real(polesApp), 2.*np.max(norm)*np.ones_like(polesApp, dtype = float), 'k.') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, res) plt.semilogy(k0s, resApp, '--') -plt.semilogy(np.real(approx.mus), - 4.*np.max(resApp)*np.ones_like(approx.mus, dtype = float), 'rx') +plt.semilogy(np.real(approx.mus(0)), + 4.*np.max(resApp)*np.ones(approx.mus.shape, dtype = float), 'rx') plt.semilogy(np.real(polesApp), 2.*np.max(resApp)*np.ones_like(polesApp, dtype = float), 'k.') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() plt.figure() plt.semilogy(k0s, err) plt.semilogy(np.real(polesApp), 2.*np.max(err)*np.ones_like(polesApp, dtype = float), 'k.') plt.xlim([kl, kr]) plt.grid() plt.show() plt.close() polesApp = approx.getPoles() mask = (np.real(polesApp) < kl) | (np.real(polesApp) > kr) print("Outliers:", polesApp[mask]) polesApp = polesApp[~mask] plt.figure() plt.plot(np.real(polesApp), np.imag(polesApp), 'kx') plt.axis('equal') plt.grid() plt.show() plt.close() diff --git a/examples/pod/PolesCentered.py b/examples/pod/PolesCentered.py index cf7f98c..aee0e2e 100644 --- a/examples/pod/PolesCentered.py +++ b/examples/pod/PolesCentered.py @@ -1,68 +1,68 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleProblemEngine as HSBPE from rrompy.reduction_methods.centered import RationalPade as Pade from rrompy.reduction_methods.centered import RBCentered as RB from rrompy.utilities.base import squareResonances verb = 0 k0 = (12+0.j) ** .5 Nmin, Nmax = 2, 10 Nvals = np.arange(Nmin, Nmax + 1, 2) -params = {'N':Nmin, 'M':0, 'Emax':Nmax, 'POD':True}#, 'robustTol':1e-14} +params = {'N':Nmin, 'M':0, 'S':Nmin + 1, 'POD':True}#, 'robustTol':1e-14} #boolCon = lambda x : np.abs(np.imag(x)) < 1e-1 * np.abs(np.real(x) # - np.real(z0)) #cleanupParameters = {'boolCondition':boolCon, 'residueCheck':True} solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 25, verbosity = verb) solver.omega = np.real(k0) approxP = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb)#, # equilibration = True, cleanupParameters = cleanupParameters) approxR = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb) rP, rE = [None] * len(Nvals), [None] * len(Nvals) verbose = 1 for j, N in enumerate(Nvals): if verbose > 0: print('N = E = {}'.format(N)) - approxP.approxParameters = {'N':N, 'E':N} - approxR.approxParameters = {'R':N, 'E':N} + approxP.approxParameters = {'N':N, 'S':N+1} + approxR.approxParameters = {'R':N, 'S':N+1} if verbose > 1: print(approxP.approxParameters) print(approxR.approxParameters) rP[j] = approxP.getPoles() rE[j] = approxR.getPoles() if verbose > 2: print(rP) print(rE) from matplotlib import pyplot as plt plotRows = int(np.ceil(len(Nvals) / 3)) fig, axes = plt.subplots(plotRows, 3, figsize = (15, 3.5 * plotRows)) for j, N in enumerate(Nvals): i1, i2 = int(np.floor(j / 3)), j % 3 axes[i1, i2].set_title('N = E = {}'.format(N)) axes[i1, i2].plot(np.real(rP[j]), np.imag(rP[j]), 'Xb', label="Pade'", markersize = 8) axes[i1, i2].plot(np.real(rE[j]), np.imag(rE[j]), 'Pr', label="RB", markersize = 8) axes[i1, i2].axhline(linewidth=1, color='k') xmin, xmax = axes[i1, i2].get_xlim() height = (xmax - xmin) / 2. res = np.power(squareResonances(xmin**2., xmax**2., False), .5) axes[i1, i2].plot(res, np.zeros_like(res), 'ok', markersize = 4) axes[i1, i2].plot(np.real(k0), np.imag(k0), 'om', markersize = 5) axes[i1, i2].plot(np.real(k0) * np.ones(2), 1.5 * height * np.arange(-1, 3, 2), '--m') axes[i1, i2].grid() axes[i1, i2].set_xlim(xmin, xmax) axes[i1, i2].set_ylim(- height, height) p = axes[i1, i2].legend() plt.tight_layout() for j in range((len(Nvals) - 1) % 3 + 1, 3): axes[plotRows - 1, j].axis('off') diff --git a/examples/pod/PolesDistributed.py b/examples/pod/PolesDistributed.py index 1fd76a4..ee0987b 100644 --- a/examples/pod/PolesDistributed.py +++ b/examples/pod/PolesDistributed.py @@ -1,47 +1,48 @@ from matplotlib import pyplot as plt import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleProblemEngine as HSBPE from rrompy.reduction_methods.distributed import RationalInterpolant as RI from rrompy.parameter.parameter_sampling import QuadratureSampler as QS from rrompy.utilities.base import squareResonances verb = 0 -ks = [1, 46 ** .5] -solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 20, - verbosity = verb) +ks = [1., 46. ** .5] +solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 20, verbosity = verb) k0 = np.mean(np.power(ks, 2.)) ** .5 k0 = 3.46104724 solver.omega = np.real(k0) rescaling = lambda x: np.power(x, 2.) rescalingInv = lambda x: np.power(x, .5) -nsets = 15 -paramsPade = {'S':2, 'POD':True, 'basis':"LEGENDRE", +nsets = 12 +paramsPade = {'S':2, 'POD':True, 'polybasis':"LEGENDRE", 'sampler':QS(ks, "UNIFORM", rescaling, rescalingInv)} approx = RI(solver, mu0 = k0, approxParameters = paramsPade, verbosity = verb) poles = [None] * nsets +samples = [None] * nsets polesexact = np.unique(np.power( squareResonances(ks[0]**2., ks[1]**2., False), .5)) for i in range(1, nsets + 1): print("N = {}".format(4 * i)) approx.approxParameters = {'N': 4 * i, 'M': 4 * i, 'S': 4 * i + 1} approx.setupApprox() poles[i - 1] = approx.getPoles() + samples[i - 1] = (approx.mus ** 2.).data for i in range(1, nsets + 1): plt.figure() plt.plot(np.real(poles[i - 1]), np.imag(poles[i - 1]), 'kx') plt.plot(polesexact, np.zeros_like(polesexact), 'm.') - plt.plot(k0, 0, 'r*') + plt.plot(np.real(samples[i - 1]), np.imag(samples[i - 1]), 'r*') plt.xlim(ks) plt.ylim((ks[0] - ks[1]) / 2., (ks[1] - ks[0]) / 2.) plt.title("N = {}, Neff = {}".format(4 * i, len(poles[i - 1]))) plt.grid() plt.show() plt.close() diff --git a/examples/pod/RBCentered.py b/examples/pod/RBCentered.py index 9e2a88c..d3bb17a 100644 --- a/examples/pod/RBCentered.py +++ b/examples/pod/RBCentered.py @@ -1,99 +1,100 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleProblemEngine as HSBPE from rrompy.hfengines.linear_problem import \ HelmholtzSquareTransmissionProblemEngine as HSTPE from rrompy.hfengines.linear_problem import \ HelmholtzBoxScatteringProblemEngine as HBSPE from rrompy.reduction_methods.centered import RBCentered as RB -testNo = -1 +testNo = 3 verb = 100 homog = True #homog = False loadName = "RBCenteredModel.pkl" if testNo in [1, -1]: if testNo > 0: - params = {'E':4, 'R':4, 'POD':True} + params = {'S':5, 'R':4, 'POD':True} k0 = 12 ** .5 ktar = 10.5 ** .5 solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 40, verbosity = verb) if testNo > 0: approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb) approx.setupApprox() # approx.plotSamples() else: - approx = RB(solver, mu0 = 0, verbosity = verb) + approx = RB(solver, mu0 = 0, approxParameters = {'S':1}, + verbosity = verb) approx.loadTrainedModel(loadName) approx.plotApprox(ktar, name = 'u_RB') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) if testNo > 0: approx.storeTrainedModel("RBCenteredModel", forceNewFile = False) print(approx.trainedModel.data.__dict__) ############ elif testNo == 2: - params = {'E':7, 'R':7, 'POD':True} - k0 = 16**.5 + params = {'S':8, 'R':7, 'POD':True} + k0 = 16.**.5 ktar = 15**.5 solver = HSTPE(nT = 2, nB = 1, theta = np.pi * 45/180, kappa = 3., n = 50, verbosity = verb) solver.omega = np.real(k0) approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.setupApprox() # approx.plotSamples() approx.plotApprox(ktar, name = 'u_RB') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) ############ elif testNo == 3: - params = {'E':8, 'POD':True} - k0 = 3 - ktar = 4.25+.5j + params = {'S':10, 'POD':True} + k0 = 3. + ktar = 4. + 0.j solver = HBSPE(R = 5, kappa = 3, theta = - np.pi * 75 / 180, - n = 30, verbosity = verb) + n = 40, verbosity = verb) solver.omega = np.real(k0) approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.setupApprox() # approx.plotSamples() approx.plotApprox(ktar, name = 'u_RB') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) diff --git a/examples/pod/RBDistributed.py b/examples/pod/RBDistributed.py index f8f1a0c..606cfe2 100644 --- a/examples/pod/RBDistributed.py +++ b/examples/pod/RBDistributed.py @@ -1,110 +1,112 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleProblemEngine as HSBPE from rrompy.hfengines.linear_problem import \ HelmholtzSquareTransmissionProblemEngine as HSTPE from rrompy.hfengines.linear_problem import \ HelmholtzBoxScatteringProblemEngine as HBSPE from rrompy.reduction_methods.distributed import RBDistributed as RB from rrompy.parameter.parameter_sampling import QuadratureSampler as QS -testNo = -1 +testNo = 1 verb = 100 homog = True #homog = False loadName = "RBDistributedModel.pkl" if testNo in [1, -1]: if testNo > 0: k0s = np.power([10 + 0.j, 14 + 0.j], .5) k0 = np.mean(np.power(k0s, 2.)) ** .5 rescaling = lambda x: np.power(x, 2.) rescalingInv = lambda x: np.power(x, .5) params = {'S':5, 'R':4, 'POD':True, 'sampler':QS(k0s, "CHEBYSHEV", rescaling, rescalingInv)} ktar = (11 + .5j) ** .5 solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 40, verbosity = verb) if testNo > 0: approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb) approx.setupApprox() # approx.plotSamples() else: - approx = RB(solver, mu0 = 0, verbosity = verb) + approx = RB(solver, mu0 = 0, + approxParameters = {'S':1, 'muBounds':[0, 1]}, + verbosity = verb) approx.loadTrainedModel(loadName) approx.plotApprox(ktar, name = 'u_RB') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) if testNo > 0: approx.storeTrainedModel("RBDistributedModel", forceNewFile = False) print(approx.trainedModel.data.__dict__) ############ elif testNo == 2: k0s = [3.85 + 0.j, 4.15 + 0.j] k0 = np.mean(k0s) ktar = 4 + .15j rescaling = lambda x: np.power(x, 2.) rescalingInv = lambda x: np.power(x, .5) params = {'S':10, 'R':9, 'POD':True, 'sampler':QS(k0s, "CHEBYSHEV", rescaling, rescalingInv)} solver = HSTPE(nT = 2, nB = 1, theta = np.pi * 45/180, kappa = 4., n = 50, verbosity = verb) solver.omega = np.real(k0) approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.setupApprox() # approx.plotSamples() approx.plotApprox(ktar, name = 'u_RB') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) ############ elif testNo == 3: - k0s = [2, 5] + k0s = [2., 5.] k0 = np.mean(k0s) ktar = 4.5 - 0.j params = {'S':15, 'R':10, 'POD':True, 'sampler':QS(k0s, "CHEBYSHEV")} solver = HBSPE(R = 7, kappa = 3, theta = - np.pi * 75 / 180, n = 40, verbosity = verb) solver.omega = np.real(k0) approx = RB(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.setupApprox() # approx.plotSamples() approx.plotApprox(ktar, name = 'u_RB') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) diff --git a/examples/pod/RationalHermiteInterpolant.py b/examples/pod/RationalHermiteInterpolant.py index dfad96b..abbed8f 100644 --- a/examples/pod/RationalHermiteInterpolant.py +++ b/examples/pod/RationalHermiteInterpolant.py @@ -1,134 +1,139 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleProblemEngine as HSBPE from rrompy.hfengines.linear_problem import \ HelmholtzSquareTransmissionProblemEngine as HSTPE from rrompy.hfengines.linear_problem import \ HelmholtzBoxScatteringProblemEngine as HBSPE from rrompy.reduction_methods.distributed import RationalInterpolant as RI from rrompy.parameter.parameter_sampling import (QuadratureSampler as QS, ManualSampler as MS) -testNo = 1 +testNo = 3 verb = 100 polyBasis = "CHEBYSHEV" -polyBasis = "LEGENDRE" -polyBasis = "MONOMIAL" +#polyBasis = "LEGENDRE" +#polyBasis = "MONOMIAL" rep = "REPEAT" #rep = "TILE" homog = True #homog = False if testNo == 1: k0s = np.power([10 + 0.j, 14 + 0.j], .5) k0 = np.mean(np.power(k0s, 2.)) ** .5 rescaling = lambda x: np.power(x, 2.) rescalingInv = lambda x: np.power(x, .5) samplerBase = QS(k0s, "CHEBYSHEV", rescaling, rescalingInv) + S = 8 if rep == "REPEAT": - points = np.repeat(samplerBase.generatePoints(2)[0], - int(np.ceil(params["S"] / 2))) + points = np.repeat(samplerBase.generatePoints(2).data, + int(np.ceil(S / 2))) else: # if rep == "TILE": - points = np.tile(samplerBase.generatePoints(2)[0], - int(np.ceil(params["S"] / 2))) - params = {'N':7, 'M':6, 'S':8, 'POD':True, 'polybasis':polyBasis, - 'sampler':MS(k0s, points = points)} + points = np.tile(samplerBase.generatePoints(2).data, + int(np.ceil(S / 2))) + params = {'N':7, 'M':6, 'S':S, 'POD':True, 'polybasis':polyBasis, + 'sampler':MS(k0s, points = points, scaling = rescaling, + scalingInv = rescalingInv)} ktar = (11 + .5j) ** .5 solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 40, verbosity = verb) solver.omega = np.real(k0) approx = RI(solver, mu0 = k0, approxParameters = params, verbosity = verb) approx.setupApprox() approx.plotApprox(ktar, name = 'u_Pade''') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) print('\nPoles Pade'':') print(approx.getPoles()) ############ elif testNo == 2: k0s = [3.85 + 0.j, 4.15 + 0.j] k0 = np.mean(k0s) ktar = 4 + 0.j rescaling = lambda x: np.power(x, 2.) rescalingInv = lambda x: np.power(x, .5) samplerBase = QS(k0s, "CHEBYSHEV", rescaling, rescalingInv) + S = 10 if rep == "REPEAT": - points = np.repeat(samplerBase.generatePoints(5)[0], - int(np.ceil(params["S"] / 5))) + points = np.repeat(samplerBase.generatePoints(5).data, + int(np.ceil(S / 5))) else: # if rep == "TILE": - points = np.tile(samplerBase.generatePoints(5)[0], - int(np.ceil(params["S"] / 5))) - params = {'N':8, 'M':9, 'S':10, 'POD':True, 'polybasis':polyBasis, - 'sampler':MS(k0s, points = points)} + points = np.tile(samplerBase.generatePoints(5).data, + int(np.ceil(S / 5))) + params = {'N':8, 'M':9, 'S':S, 'POD':True, 'polybasis':polyBasis, + 'sampler':MS(k0s, points = points, rescale = rescaling, + rescaleInv = rescalingInv)} solver = HSTPE(nT = 2, nB = 1, theta = np.pi * 45/180, kappa = 4., n = 50, verbosity = verb) solver.omega = np.real(k0) approx = RI(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.setupApprox() # approx.plotSamples() approx.plotApprox(ktar, name = 'u_Pade''') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) print('\nPoles Pade'':') print(approx.getPoles()) ############ elif testNo == 3: - k0s = [2, 5] + k0s = [2., 5.] k0 = np.mean(k0s) - ktar = 4.5 - .1j + ktar = 4.5 - 0.j samplerBase = QS(k0s, "CHEBYSHEV") + S = 15 if rep == "REPEAT": - points = np.repeat(samplerBase.generatePoints(5)[0], - int(np.ceil(params["S"] / 5))) + points = np.repeat(samplerBase.generatePoints(5).data, + int(np.ceil(S / 5))) else: # if rep == "TILE": - points = np.tile(samplerBase.generatePoints(5)[0], - int(np.ceil(params["S"] / 5))) - params = {'N':14, 'M':14, 'S':15, 'POD':True, 'polybasis':polyBasis, + points = np.tile(samplerBase.generatePoints(5).data, + int(np.ceil(S / 5))) + params = {'N':14, 'M':14, 'S':S, 'POD':True, 'polybasis':polyBasis, 'sampler':MS(k0s, points = points)} solver = HBSPE(R = 7, kappa = 3, theta = - np.pi * 75 / 180, n = 40, verbosity = verb) solver.omega = np.real(k0) approx = RI(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.setupApprox() # approx.plotSamples() approx.plotApprox(ktar, name = 'u_Pade''') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) print('\nPoles Pade'':') print(approx.getPoles()) diff --git a/examples/pod/RationalInterpolant.py b/examples/pod/RationalInterpolant.py index 75deafd..397ee94 100644 --- a/examples/pod/RationalInterpolant.py +++ b/examples/pod/RationalInterpolant.py @@ -1,122 +1,125 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleProblemEngine as HSBPE from rrompy.hfengines.linear_problem import \ HelmholtzSquareTransmissionProblemEngine as HSTPE from rrompy.hfengines.linear_problem import \ HelmholtzBoxScatteringProblemEngine as HBSPE from rrompy.reduction_methods.distributed import RationalInterpolant as RI from rrompy.parameter.parameter_sampling import QuadratureSampler as QS -testNo = 1 +testNo = 3 verb = 100 polyBasis = "CHEBYSHEV" polyBasis = "LEGENDRE" #polyBasis = "MONOMIAL" homog = True #homog = False loadName = "RationalInterpolantModel.pkl" if testNo in [1, -1]: if testNo > 0: k0s = np.power([10 + 0.j, 14 + 0.j], .5) k0 = np.mean(np.power(k0s, 2.)) ** .5 rescaling = lambda x: np.power(x, 2.) rescalingInv = lambda x: np.power(x, .5) params = {'N':4, 'M':3, 'S':5, 'POD':True, 'polybasis':polyBasis, 'sampler':QS(k0s, "CHEBYSHEV", rescaling, rescalingInv)} ktar = (11 + .5j) ** .5 solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 40, verbosity = verb) if testNo > 0: solver.omega = np.real(k0) approx = RI(solver, mu0 = k0, approxParameters = params, verbosity = verb) approx.setupApprox() # approx.plotSamples() else: - approx = RI(solver, mu0 = 0, verbosity = verb) + approx = RI(solver, mu0 = 0, + approxParameters = {'S':1, 'muBounds':[0, 1]}, + verbosity = verb) approx.loadTrainedModel(loadName) approx.plotApprox(ktar, name = 'u_Pade''') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) print('\nPoles Pade'':') print(approx.getPoles()) if testNo > 0: - approx.storeTrainedModel("RationalInterpolantModel", forceNewFile = False) + approx.storeTrainedModel("RationalInterpolantModel", + forceNewFile = False) print(approx.trainedModel.data.__dict__) ############ elif testNo == 2: k0s = [3.85 + 0.j, 4.15 + 0.j] k0 = np.mean(k0s) ktar = 4 + 0.j rescaling = lambda x: np.power(x, 2.) rescalingInv = lambda x: np.power(x, .5) params = {'N':8, 'M':9, 'S':10, 'POD':True, 'polybasis':polyBasis, 'sampler':QS(k0s, "CHEBYSHEV", rescaling, rescalingInv)} solver = HSTPE(nT = 2, nB = 1, theta = np.pi * 45/180, kappa = 4., n = 50, verbosity = verb) solver.omega = np.real(k0) approx = RI(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.setupApprox() # approx.plotSamples() approx.plotApprox(ktar, name = 'u_Pade''') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) print('\nPoles Pade'':') print(approx.getPoles()) ############ elif testNo == 3: - k0s = [2, 5] + k0s = [2., 5.] k0 = np.mean(k0s) - ktar = 4.5 - .1j - params = {'N':10, 'M':10, 'S':11, 'POD':True, 'polybasis':polyBasis, + ktar = 4.5 - 0.j + params = {'N':10, 'M':9, 'S':15, 'POD':True, 'polybasis':polyBasis, 'sampler':QS(k0s, "CHEBYSHEV")} solver = HBSPE(R = 7, kappa = 3, theta = - np.pi * 75 / 180, n = 40, verbosity = verb) solver.omega = np.real(k0) approx = RI(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.setupApprox() # approx.plotSamples() approx.plotApprox(ktar, name = 'u_Pade''') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) print('\nPoles Pade'':') print(approx.getPoles()) diff --git a/examples/pod/RationalPade.py b/examples/pod/RationalPade.py index 0de6bb3..8d9e1a5 100644 --- a/examples/pod/RationalPade.py +++ b/examples/pod/RationalPade.py @@ -1,105 +1,106 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleProblemEngine as HSBPE from rrompy.hfengines.linear_problem import \ HelmholtzSquareTransmissionProblemEngine as HSTPE from rrompy.hfengines.linear_problem import \ HelmholtzBoxScatteringProblemEngine as HBSPE from rrompy.reduction_methods.centered import RationalPade as Pade -testNo = -1 +testNo = 3 verb = 100 homog = True #homog = False loadName = "RationalPadeModel.pkl" if testNo in [1, -1]: if testNo > 0: - params = {'N':4, 'M':3, 'E':4, 'POD':True} + params = {'N':4, 'M':3, 'S':5, 'POD':True} k0 = 12 ** .5 ktar = 10.5 ** .5 solver = HSBPE(kappa = 12 ** .5, theta = np.pi / 3, n = 40, verbosity = verb) if testNo > 0: approx = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb) approx.setupApprox() # approx.plotSamples() else: - approx = Pade(solver, mu0 = 0, verbosity = verb) + approx = Pade(solver, mu0 = 0, approxParameters = {'S':1}, + verbosity = verb) approx.loadTrainedModel(loadName) approx.plotApprox(ktar, name = 'u_Pade''') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) print('\nPoles Pade'':') print(approx.getPoles()) if testNo > 0: approx.storeTrainedModel("RationalPadeModel", forceNewFile = False) print(approx.trainedModel.data.__dict__) ############ elif testNo == 2: - params = {'N':6, 'M':7, 'E':7, 'POD':True} + params = {'N':6, 'M':7, 'S':8, 'POD':True} k0 = 16 ** .5 ktar = 15 ** .5 solver = HSTPE(nT = 2, nB = 1, theta = np.pi * 45/180, kappa = 4., n = 50, verbosity = verb) solver.omega = np.real(k0) approx = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.setupApprox() # approx.plotSamples() approx.plotApprox(ktar, name = 'u_Pade''') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) print('\nPoles Pade'':') print(approx.getPoles()) ############ elif testNo == 3: - params = {'N':7, 'M':8, 'E':8, 'POD':True} - k0 = 3 - ktar = 4.+0.j + params = {'M':9, 'N':9, 'S':10, 'POD':True} + k0 = 3. + ktar = 4. + 0.j - solver = HBSPE(R = 5, kappa = 3, theta = - np.pi * 75 / 180, n = 30, + solver = HBSPE(R = 5, kappa = 3, theta = - np.pi * 75 / 180, n = 40, verbosity = verb) solver.omega = np.real(k0) approx = Pade(solver, mu0 = k0, approxParameters = params, verbosity = verb, homogeneized = homog) approx.setupApprox() - approx.plotSamples() +# approx.plotSamples() approx.plotApprox(ktar, name = 'u_Pade''') approx.plotHF(ktar, name = 'u_HF') approx.plotErr(ktar, name = 'err') approx.plotRes(ktar, name = 'res') appErr, solNorm = approx.normErr(ktar), approx.normHF(ktar) resNorm, RHSNorm = approx.normRes(ktar), approx.normRHS(ktar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) print('\nPoles Pade'':') print(approx.getPoles()) diff --git a/examples/pod/laplaceGaussianCentered.py b/examples/pod/laplaceGaussianCentered.py index 7fc8762..924d282 100644 --- a/examples/pod/laplaceGaussianCentered.py +++ b/examples/pod/laplaceGaussianCentered.py @@ -1,48 +1,47 @@ -import numpy as np from rrompy.hfengines.linear_problem import LaplaceDiskGaussian as LDG from rrompy.reduction_methods.centered import RationalPade as Pade -from rrompy.reduction_methods.centered import RBCentered as RBC +from rrompy.reduction_methods.centered import RBCentered as RB from operator import itemgetter def subdict(d, ks): return dict(zip(ks, itemgetter(*ks)(d))) testNo = 2 verb = 0 if testNo == 1: mu = 4. solver = LDG(n = 40, verbosity = verb) - uh = solver.solve(mu) + uh = solver.solve(mu)[0] solver.plotmesh() print(solver.norm(uh)) solver.plot(uh) ############ if testNo == 2: - params = {'N':8, 'M':8, 'E':8, 'POD':True} + params = {'N':8, 'M':8, 'S':9, 'POD':True} mu0 = 0. solver = LDG(n = 20, degree_threshold = 15, verbosity = verb) approxP = Pade(solver, mu0 = mu0, approxParameters = params, verbosity = verb) - paramsRB = subdict(params, ['E', 'POD']) + paramsRB = subdict(params, ['S', 'POD']) approxR = RB(solver, mu0 = mu0, approxParameters = paramsRB, verbosity = verb) approxP.setupApprox() approxR.setupApprox() # approxP.plotSamples() mutar = 3.25 approxP.plotHF(mutar, name = 'u_HF') approxP.plotApprox(mutar, name = 'u_Pade''') approxR.plotApprox(mutar, name = 'u_RB') approxP.plotErr(mutar, name = 'err_Pade''') approxR.plotErr(mutar, name = 'err_RB') solNorm = approxP.normHF(mutar) appPErr = approxP.normErr(mutar) appRErr = approxR.normErr(mutar) print(('SolNorm:\t{}\nErrRelP:\t{}\nErrRelR:\t{}').format(solNorm, appPErr / solNorm, appRErr / solNorm)) diff --git a/examples/pod/matrix_pod.py b/examples/pod/matrix_pod.py index c69d0ac..99e79d8 100644 --- a/examples/pod/matrix_pod.py +++ b/examples/pod/matrix_pod.py @@ -1,79 +1,80 @@ import numpy as np import scipy.sparse as sp from matplotlib import pyplot as plt from rrompy.hfengines.base import MatrixEngineBase as MEB from rrompy.reduction_methods.centered import RationalPade as RP from rrompy.reduction_methods.distributed import RationalInterpolant as RI from rrompy.reduction_methods.centered import RBCentered as RBC from rrompy.reduction_methods.distributed import RBDistributed as RBD from rrompy.parameter.parameter_sampling import QuadratureSampler as QS test = 2 method = "RationalPade" #method = "RationalInterpolant" #method = "RBCentered" #method = "RBDistributed" verb = 0 N = 100 solver = MEB(verbosity = verb) +solver.npar = 1 solver.nAs = 2 if test == 1: solver.As = [sp.spdiags([np.arange(1, 1 + N)], [0], N, N), - sp.eye(N)] elif test == 2: solver.setSolver("SOLVE") fftB = np.fft.fft(np.eye(N)) * N**-.5 solver.As = [fftB.dot(np.multiply(np.arange(1, 1 + N), fftB.conj()).T), - np.eye(N)] np.random.seed(420) solver.nbs = 1 solver.bs = [np.random.randn(N) + 1.j * np.random.randn(N)] mu0 = 10.25 mutar = 12.5 murange = [5.25, 15.25] if method == "RationalPade": - params = {'N':10, 'M':9, 'E':10, 'POD':True} + params = {'N':10, 'M':9, 'S':11, 'POD':True} approx = RP(solver, mu0 = mu0, approxParameters = params, verbosity = verb) elif method == "RationalInterpolant": params = {'N':10, 'M':9, 'S':11, 'POD':True, 'polybasis':"CHEBYSHEV", 'sampler':QS(murange, "CHEBYSHEV")} approx = RI(solver, mu0 = mu0, approxParameters = params, verbosity = verb) elif method == "RBCentered": - params = {'R':10, 'E':10, 'POD':True} + params = {'R':10, 'S':11, 'POD':True} approx = RBC(solver, mu0 = mu0, approxParameters = params, verbosity = verb) elif method == "RBDistributed": params = {'R':10, 'S':11, 'POD':True, 'sampler':QS(murange, "CHEBYSHEV")} approx = RBD(solver, mu0 = mu0, approxParameters = params, verbosity = verb) approx.setupApprox() approx.plotApprox(mutar, name = 'u_app') approx.plotHF(mutar, name = 'u_HF') approx.plotErr(mutar, name = 'err') approx.plotRes(mutar, name = 'res') appErr, solNorm = approx.normErr(mutar), approx.normHF(mutar) resNorm, RHSNorm = approx.normRes(mutar), approx.normRHS(mutar) print(('SolNorm:\t{}\nErr:\t{}\nErrRel:\t{}').format(solNorm, appErr, np.divide(appErr, solNorm))) print(('RHSNorm:\t{}\nRes:\t{}\nResRel:\t{}').format(RHSNorm, resNorm, np.divide(resNorm, RHSNorm))) polesTrue = np.arange(1, 1 + N) polesTrue = polesTrue[polesTrue >= murange[0]] polesTrue = polesTrue[polesTrue <= murange[1]] polesApp = approx.getPoles() mask = (np.real(polesApp) < murange[0]) | (np.real(polesApp) > murange[1]) print("Outliers:", polesApp[mask]) polesApp = polesApp[~mask] plt.figure() plt.plot(np.real(polesApp), np.imag(polesApp), 'kx') plt.plot(polesTrue, np.zeros_like(polesTrue), 'm.') plt.axis('equal') plt.grid() plt.show() plt.close() diff --git a/examples/pod/parametricDomain.py b/examples/pod/parametricDomain.py index 2def70a..8f3c124 100644 --- a/examples/pod/parametricDomain.py +++ b/examples/pod/parametricDomain.py @@ -1,52 +1,52 @@ import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzSquareBubbleDomainProblemEngine as HSBDPE from rrompy.reduction_methods.centered import RationalPade as Pade from rrompy.reduction_methods.centered import RBCentered as RB from operator import itemgetter def subdict(d, ks): return dict(zip(ks, itemgetter(*ks)(d))) testNo = 2 verb = 0 if testNo == 1: mu = 7 ** .5 solver = HSBDPE(kappa = 12 ** .5, theta = np.pi / 3, n = 40, mu0 = mu, - degree_threshold = 15, verbosity = verb) + degree_threshold = 10, verbosity = verb) - uh = solver.solve(mu) + uh = solver.solve(mu)[0] solver.plotmesh() print(solver.norm(uh)) solver.plot(uh) ############ if testNo == 2: - params = {'N':8, 'M':8, 'E':8, 'POD':True} + params = {'M':8, 'N':8, 'S':9, 'POD':True} mu0 = 7 ** .5 - mutar = (7. + .1j) ** .5 + mutar = 6.75 ** .5 solver = HSBDPE(kappa = 12 ** .5, theta = np.pi / 3, n = 40, mu0 = mu0, - degree_threshold = 15, verbosity = verb) + degree_threshold = 10, verbosity = verb) approxP = Pade(solver, mu0 = mu0, approxParameters = params, verbosity = verb) - paramsRB = subdict(params, ['E', 'POD']) + paramsRB = subdict(params, ['S', 'POD']) approxR = RB(solver, mu0 = mu0, approxParameters = paramsRB, verbosity = verb) approxP.setupApprox() approxR.setupApprox() # approxP.plotSamples() approxP.plotHF(mutar, name = 'u_HF') approxP.plotApprox(mutar, name = 'u_Pade''') approxR.plotApprox(mutar, name = 'u_RB') approxP.plotErr(mutar, name = 'err_Pade''') approxR.plotErr(mutar, name = 'err_RB') solNorm = approxP.normHF(mutar) appPErr = approxP.normErr(mutar) appRErr = approxR.normErr(mutar) print(('SolNorm:\t{}\nErrRelP:\t{}\nErrRelR:\t{}').format(solNorm, appPErr / solNorm, appRErr / solNorm)) print('\nPoles Pade'':') print(approxP.getPoles()) diff --git a/examples/pod/scatteringSquare.py b/examples/pod/scatteringSquare.py index a60fd5d..2656d80 100644 --- a/examples/pod/scatteringSquare.py +++ b/examples/pod/scatteringSquare.py @@ -1,86 +1,85 @@ -from copy import copy import numpy as np from rrompy.hfengines.linear_problem import \ HelmholtzCavityScatteringProblemEngine as CSPE from rrompy.reduction_methods.centered import RationalPade as PC from rrompy.reduction_methods.distributed import RationalInterpolant as PD from rrompy.reduction_methods.centered import RBCentered as RBC from rrompy.reduction_methods.distributed import RBDistributed as RBD from rrompy.parameter.parameter_sampling import QuadratureSampler as QS from operator import itemgetter def subdict(d, ks): return dict(zip(ks, itemgetter(*ks)(d))) verb = 0 #################### test = "solve" -test = "Centered" -test = "Distributed" +#test = "Centered" +#test = "Distributed" plotSamples = True k0 = 10 kLeft, kRight = 9, 11 ktar = 9.5 ktars = np.linspace(8.5, 11.5, 125) #ktars = np.array([k0]) kappa = 5 n = 50 solver = CSPE(kappa = kappa, n = n, verbosity = verb) solver.omega = k0 if test == "solve": - uh = solver.solve(k0) + uh = solver.solve(k0)[0] print(solver.norm(uh)) solver.plot(uh, what = ['ABS', 'REAL']) elif test in ["Centered", "Distributed"]: if test == "Centered": - params = {'N':8, 'M':7, 'R':8, 'E':8, 'POD':True} - parPade = subdict(params, ['N', 'M', 'E', 'POD']) - parRB = subdict(params, ['R', 'E', 'POD']) + params = {'N':8, 'M':7, 'R':8, 'S':9, 'POD':True} + parPade = subdict(params, ['N', 'M', 'S', 'POD']) + parRB = subdict(params, ['R', 'S', 'POD']) approxPade = PC(solver, mu0 = k0, approxParameters = parPade, verbosity = verb) approxRB = RBC(solver, mu0 = k0, approxParameters = parRB, verbosity = verb) else: - params = {'N':8, 'M':8, 'R':9, 'S':9, 'POD':True, 'basis':"MONOMIAL", - 'sampler':QS([kLeft, kRight], "CHEBYSHEV")} - params = {'N':8, 'M':8, 'R':9, 'S':9, 'POD':True, 'basis':"CHEBYSHEV", + params = {'N':8, 'M':8, 'R':9, 'S':9, 'POD':True, + 'polybasis':"CHEBYSHEV", 'sampler':QS([kLeft, kRight], "CHEBYSHEV")} - parPade = subdict(params, ['N', 'M', 'S', 'POD', 'basis']) - parRB = subdict(params, ['R', 'S', 'POD']) + parPade = subdict(params, ['N', 'M', 'S', 'POD', 'polybasis', + 'sampler']) + parRB = subdict(params, ['R', 'S', 'POD', 'sampler']) approxPade = PD(solver, mu0 = np.mean([kLeft, kRight]), approxParameters = parPade, verbosity = verb) approxRB = RBD(solver, mu0 = np.mean([kLeft, kRight]), approxParameters = parRB, verbosity = verb) approxPade.setupApprox() approxRB.setupApprox() if plotSamples: approxPade.plotSamples() PadeErr, solNorm = approxPade.normErr(ktar), approxPade.normHF(ktar) RBErr = approxRB.normErr(ktar) print(('SolNorm:\t{}\nErrPade:\t{}\nErrRelPade:\t{}\nErrRB:\t\t{}' '\nErrRelRB:\t{}').format(solNorm, PadeErr, np.divide(PadeErr, solNorm), RBErr, np.divide(RBErr, solNorm))) print('\nPoles Pade'':') print(approxPade.getPoles()) print('\nPoles RB:') print(approxRB.getPoles()) approxPade.plotHF(ktar, name = 'u_ex') approxPade.plotApprox(ktar, name = 'u_Pade''') approxRB.plotApprox(ktar, name = 'u_RB') approxPade.plotErr(ktar, name = 'errPade''') approxRB.plotErr(ktar, name = 'errRB') diff --git a/rrompy/hfengines/base/boundary_conditions.py b/rrompy/hfengines/base/boundary_conditions.py index 1c4e302..6993762 100644 --- a/rrompy/hfengines/base/boundary_conditions.py +++ b/rrompy/hfengines/base/boundary_conditions.py @@ -1,126 +1,126 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from fenics import SubDomain, AutoSubDomain from rrompy.utilities.base.types import GenExpr from rrompy.solver.fenics import bdrFalse from rrompy.utilities.exception_manager import RROMPyException __all__ = ['BoundaryConditions'] class BoundaryConditions: """ Boundary conditions manager. Attributes: DirichletBoundary: Callable returning True when on Dirichlet boundary. NeumannBoundary: Callable returning True when on Neumann boundary. RobinBoundary: Callable returning True when on Robin boundary. """ allowedKinds = ["Dirichlet", "Neumann", "Robin"] def __init__(self, kind : str = None): if kind is None: return kind = kind[0].upper() + kind[1:].lower() if kind in self.allowedKinds: getattr(self.__class__, kind + "Boundary", None).fset(self, "ALL") else: raise RROMPyException("BC kind not recognized.") def name(self) -> str: return self.__class__.__name__ def __str__(self) -> str: return self.name() def __repr__(self) -> str: return self.__str__() + " at " + hex(id(self)) def _generalManagement(self, kind:str, value:GenExpr): if isinstance(value, (str,)): value = value.upper() if value.upper() == "ALL": self._complementaryManagementAll(kind) elif value.upper() == "REST": self._complementaryManagementRest(kind) else: raise RROMPyException("Wildcard not recognized.") elif callable(value): self._standardManagementCallable(kind, value) elif isinstance(value, (SubDomain,)): self._standardManagement(kind, value) else: raise RROMPyException(kind + "Boundary type not recognized.") def _complementaryManagementAll(self, kind:str): if kind not in self.allowedKinds: raise RROMPyException("BC kind not recognized.") for k in self.allowedKinds: if k != kind: self._standardManagementCallable(k, bdrFalse) self._complementaryManagementRest(kind) def _complementaryManagementRest(self, kind:str): if kind not in self.allowedKinds: raise RROMPyException("BC kind not recognized.") otherBCs = [] for k in self.allowedKinds: if k != kind: if hasattr(self, "_" + k + "Rest"): - self._standardManagement(k, bdrFalse) + self._standardManagementCallable(k, bdrFalse) otherBCs += [getattr(self, k + "Boundary")] def restCall(x, on_boundary): return (on_boundary and not any([bc.inside(x, on_boundary) for bc in otherBCs])) self._standardManagementCallable(kind, restCall) super().__setattr__("_" + kind + "Rest", 1) def _standardManagementCallable(self, kind:str, bc:callable): bcSD = AutoSubDomain(bc) self._standardManagement(kind, bcSD) def _standardManagement(self, kind:str, bc:SubDomain): super().__setattr__("_" + kind + "Boundary", bc) if hasattr(self, "_" + kind + "Rest"): super().__delattr__("_" + kind + "Rest") @property def DirichletBoundary(self): """Function handle to DirichletBoundary.""" return self._DirichletBoundary @DirichletBoundary.setter def DirichletBoundary(self, DirichletBoundary): self._generalManagement("Dirichlet", DirichletBoundary) @property def NeumannBoundary(self): """Function handle to NeumannBoundary.""" return self._NeumannBoundary @NeumannBoundary.setter def NeumannBoundary(self, NeumannBoundary): self._generalManagement("Neumann", NeumannBoundary) @property def RobinBoundary(self): """Function handle to RobinBoundary.""" return self._RobinBoundary @RobinBoundary.setter def RobinBoundary(self, RobinBoundary): self._generalManagement("Robin", RobinBoundary) diff --git a/rrompy/hfengines/base/matrix_engine_base.py b/rrompy/hfengines/base/matrix_engine_base.py index ca82039..cb3e2e6 100644 --- a/rrompy/hfengines/base/matrix_engine_base.py +++ b/rrompy/hfengines/base/matrix_engine_base.py @@ -1,365 +1,421 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # +from abc import abstractmethod import numpy as np import scipy.sparse as scsp from matplotlib import pyplot as plt from copy import deepcopy as copy from rrompy.utilities.base.types import (Np1D, Np2D, ScOp, strLst, Tuple, List, DictAny, paramVal, paramList, sampList) -from rrompy.utilities.base import purgeList, getNewFilename, verbosityDepth +from rrompy.utilities.base import (purgeList, getNewFilename, verbosityDepth, + multibinom) +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD, hashIdxToDerivative as hashI) from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert from rrompy.parameter import checkParameter, checkParameterList from rrompy.sampling import sampleList, emptySampleList from rrompy.solver import setupSolver __all__ = ['MatrixEngineBase'] class MatrixEngineBase: """ Generic solver for parametric matrix problems. Attributes: verbosity: Verbosity level. As: Scipy sparse array representation (in CSC format) of As. bs: Numpy array representation of bs. bsH: Numpy array representation of homogeneized bs. energyNormMatrix: Scipy sparse matrix representing inner product. """ - npar = 1 nAs, nbs = 1, 1 - rescalingExp = 1. def __init__(self, verbosity : int = 10, timestamp : bool = True): self.verbosity = verbosity self.timestamp = timestamp self.resetAs() self.resetbs() self.setSolver("SPSOLVE", {"use_umfpack" : False}) + self.npar = 0 def name(self) -> str: return self.__class__.__name__ def __str__(self) -> str: return self.name() def __repr__(self) -> str: return self.__str__() + " at " + hex(id(self)) def __dir_base__(self): return [x for x in self.__dir__() if x[:2] != "__"] + @property + def npar(self): + """Value of npar.""" + return self._npar + @npar.setter + def npar(self, npar): + nparOld = self._npar if hasattr(self, "_npar") else -1 + if npar != nparOld: + self.rescalingExp = [1.] * npar + self._npar = npar + @property def nbsH(self) -> int: return max(self.nbs, self.nAs) def spacedim(self): return self.As[0].shape[1] - def checkParameter(self, mu:paramVal): + def checkParameter(self, mu:paramList): return checkParameter(mu, self.npar) def checkParameterList(self, mu:paramList): return checkParameterList(mu, self.npar) def buildEnergyNormForm(self): # eye """ Build sparse matrix (in CSR format) representative of scalar product. """ self.energyNormMatrix = np.eye(self.spacedim()) def innerProduct(self, u:Np2D, v:Np2D, onlyDiag : bool = False) -> Np2D: """Scalar product.""" if not hasattr(self, "energyNormMatrix"): if self.verbosity >= 20: verbosityDepth("INIT", "Assembling energy matrix.", timestamp = self.timestamp) self.buildEnergyNormForm() if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling energy matrix.", timestamp = self.timestamp) if not isinstance(u, (np.ndarray,)): u = u.data if not isinstance(v, (np.ndarray,)): v = v.data if onlyDiag: return np.sum(self.energyNormMatrix.dot(u) * v.conj(), axis = 0) return v.T.conj().dot(self.energyNormMatrix.dot(u)) def norm(self, u:Np2D) -> Np1D: return np.abs(self.innerProduct(u, u, onlyDiag = True)) ** .5 - def checkAInBounds(self, der : int = 0): + def checkAInBounds(self, derI : int = 0): """Check if derivative index is oob for operator of linear system.""" - if der < 0 or der >= self.nAs: + if derI < 0 or derI >= self.nAs: d = self.spacedim() return scsp.csr_matrix((np.zeros(0), np.zeros(0), np.zeros(d + 1)), shape = (d, d), dtype = np.complex) - def checkbInBounds(self, der : int = 0, homogeneized : bool = False): + def checkbInBounds(self, derI : int = 0, homogeneized : bool = False): """Check if derivative index is oob for RHS of linear system.""" nbs = self.nbsH if homogeneized else self.nbs - if der < 0 or der >= nbs: + if derI < 0 or derI >= nbs: return np.zeros(self.spacedim(), dtype = np.complex) def resetAs(self): """Reset (derivatives of) operator of linear system.""" self.resetbsH() self.setAs([None] * self.nAs) def resetbs(self): """Reset (derivatives of) RHS of linear system.""" self.resetbsH() self.setbs([None] * self.nbs) def resetbsH(self): """Reset (derivatives of) homogeneized RHS of linear system.""" self.setbsH([None] * self.nbsH) def setAs(self, As:List[Np2D]): """Assign terms of operator of linear system.""" if len(As) != self.nAs: raise RROMPyException(("Expected number {} of terms of As not " "matching given list length {}.").format(self.nAs, len(As))) self.As = [copy(A) for A in As] def setbs(self, bs:List[Np1D]): """Assign terms of RHS of linear system.""" if len(bs) != self.nbs: raise RROMPyException(("Expected number {} of terms of bs not " "matching given list length {}.").format(self.nbs, len(bs))) self.bs = [copy(b) for b in bs] def setbsH(self, bsH:List[Np1D]): """Assign terms of homogeneized RHS of linear system.""" if len(bsH) != self.nbsH: raise RROMPyException(("Expected number {} of terms of bsH not " "matching given list length {}.").format(self.nbsH, len(bsH))) self.bsH = [copy(bH) for bH in bsH] - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: - """Return (derivative of) operator of linear system.""" + def _assembleA(self, mu : paramVal = [], der : List[int] = 0, + derI : int = None) -> ScOp: + """Assemble (derivative of) operator of linear system.""" mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) + if not hasattr(der, "__len__"): der = [der] * self.npar + if derI is None: derI = hashD(der) + Anull = self.checkAInBounds(derI) if Anull is not None: return Anull - As0 = self.As[der] - coeff = 1. - for j in range(der + 1, self.nAs): - coeff = coeff * mu(0) * j / (j - der) - As0 = As0 + coeff * self.As[j] + As0 = self.As[derI] + for j in range(derI + 1, self.nAs): + derIdx = hashI(j, self.npar) + diffIdx = [x - y for (x, y) in zip(derIdx, der)] + if np.all([x >= 0 for x in diffIdx]): + coeff = multibinom(derIdx, diffIdx) + for d in range(self.npar): + coeff *= mu(0, d) ** (self.rescalingExp[d] * diffIdx[d]) + As0 = As0 + coeff * self.As[j] return As0 - def affineLinearSystemA(self, mu : paramVal = ()) -> List[Np2D]: + @abstractmethod + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: + """ + Assemble terms of operator of linear system and return it (or its + derivative) at a given parameter. + """ + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + for j in range(derI, self.nAs): + if self.As[j] is None: self.As[j] = 0. + return self._assembleA(mu, der, derI) + + def affineLinearSystemA(self, mu : paramVal = []) -> List[Np2D]: """ Assemble affine blocks of operator of linear system (just linear blocks). """ As = [None] * self.nAs for j in range(self.nAs): - As[j] = self.A(mu, j) + As[j] = self.A(mu, hashI(j, self.npar)) return As - def affineWeightsA(self, mu : paramVal = ()) -> List[str]: + def affineWeightsA(self, mu : paramVal = []) -> List[str]: """ Assemble affine blocks of operator of linear system (just affine weights). Stored as strings for the sake of pickling. """ mu = self.checkParameter(mu) - lambdasA = ["np.ones_like(mu(0))"] - mu0Eff = np.power(mu(0), self.rescalingExp) + lambdasA = ["1."] + mu0Eff = mu ** self.rescalingExp for j in range(1, self.nAs): - lambdasA += ["np.power(np.power(mu(0), {1}) - {2}, {0})".format( - j, self.rescalingExp, mu0Eff)] + lambdasA += ["np.prod((mu ** ({1}) - [{0}]) ** ({2}))".format( + ','.join([str(x) for x in mu0Eff[0]]), + self.rescalingExp, hashI(j, self.npar))] return lambdasA - def affineBlocksA(self, mu : paramVal = ())\ + def affineBlocksA(self, mu : paramVal = [])\ -> Tuple[List[Np2D], List[str]]: """Assemble affine blocks of operator of linear system.""" return self.affineLinearSystemA(mu), self.affineWeightsA(mu) - def b(self, mu : paramVal = (), der : int = 0, - homogeneized : bool = False) -> Np1D: - """Return (derivative of) (homogeneized) RHS of linear system.""" + def _assembleb(self, mu : paramVal = [], der : List[int] = 0, + derI : int = None, homogeneized : bool = False) -> ScOp: + """Assemble (derivative of) (homogeneized) RHS of linear system.""" mu = self.checkParameter(mu) - bnull = self.checkbInBounds(der, homogeneized) + if not hasattr(der, "__len__"): der = [der] * self.npar + if derI is None: derI = hashD(der) + bnull = self.checkbInBounds(derI) if bnull is not None: return bnull bs = self.bsH if homogeneized else self.bs - b = bs[der] - coeff = 1. - for j in range(der + 1, len(bs)): - coeff = coeff * mu(0) * j / (j - der) - b = b + coeff * bs[j] + b = bs[derI] + for j in range(derI + 1, len(bs)): + derIdx = hashI(j, self.npar) + diffIdx = [x - y for (x, y) in zip(derIdx, der)] + if np.all([x >= 0 for x in diffIdx]): + coeff = multibinom(derIdx, diffIdx) + for d in range(self.npar): + coeff *= mu(0, d) ** (self.rescalingExp[d] * diffIdx[d]) + b = b + coeff * bs[j] return b - def affineLinearSystemb(self, mu : paramVal = (), homogeneized : bool = False)\ - -> List[Np1D]: + @abstractmethod + def b(self, mu : paramVal = [], der : List[int] = 0, + homogeneized : bool = False) -> Np1D: + """ + Assemble terms of (homogeneized) RHS of linear system and return it (or + its derivative) at a given parameter. + """ + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + if homogeneized: + for j in range(derI, self.nbsH): + if self.bsH[j] is None: self.bsH[j] = 0. + else: + for j in range(derI, self.nbs): + if self.bs[j] is None: self.bs[j] = 0. + return self._assembleb(mu, der, derI, homogeneized) + + def affineLinearSystemb(self, mu : paramVal = [], + homogeneized : bool = False) -> List[Np1D]: """ Assemble affine blocks of RHS of linear system (just linear blocks). """ nbs = self.nbsH if homogeneized else self.nbs bs = [None] * nbs for j in range(nbs): - bs[j] = self.b(mu, j, homogeneized) + bs[j] = self.b(mu, hashI(j, self.npar), homogeneized) return bs - def affineWeightsb(self, mu : paramVal = (), + def affineWeightsb(self, mu : paramVal = [], homogeneized : bool = False) -> List[str]: """ Assemble affine blocks of RHS of linear system (just affine weights). Stored as strings for the sake of pickling. """ mu = self.checkParameter(mu) nbs = self.nbsH if homogeneized else self.nbs - lambdasb = ["np.ones_like(mu(0))"] - mu0Eff = np.power(mu(0), self.rescalingExp) + lambdasb = ["1."] + mu0Eff = mu ** self.rescalingExp for j in range(1, nbs): - lambdasb += ["np.power(np.power(mu(0), {1}) - {2}, {0})".format( - j, self.rescalingExp, mu0Eff)] + lambdasb += ["np.prod((mu ** ({1}) - [{0}]) ** ({2}))".format( + ','.join([str(x) for x in mu0Eff[0]]), + self.rescalingExp, hashI(j, self.npar))] return lambdasb - def affineBlocksb(self, mu : paramVal = (), homogeneized : bool = False)\ + def affineBlocksb(self, mu : paramVal = [], homogeneized : bool = False)\ -> Tuple[List[Np1D], List[str]]: """Assemble affine blocks of RHS of linear system.""" return (self.affineLinearSystemb(mu, homogeneized), self.affineWeightsb(mu, homogeneized)) def setSolver(self, solverType:str, solverArgs : DictAny = {}): """Choose solver type and parameters.""" self._solver, self._solverArgs = setupSolver(solverType, solverArgs) - def solve(self, mu : paramList = [()], RHS : sampList = None, + def solve(self, mu : paramList = [], RHS : sampList = None, homogeneized : bool = False) -> sampList: """ Find solution of linear system. Args: mu: parameter value. RHS: RHS of linear system. If None, defaults to that of parametric system. Defaults to None. """ - mu, wasPar = self.checkParameterList(mu) - if len(mu) == 0: return + mu, _ = self.checkParameterList(mu) + if mu.shape[0] == 0: mu.reset((1, self.npar), mu.dtype) if RHS is None: RHS = [self.b(m, homogeneized = homogeneized) for m in mu] RHS = sampleList(RHS) mult = 0 if len(RHS) == 1 else 1 RROMPyAssert(mult * (len(mu) - 1) + 1, len(RHS), "Sample size") sol = emptySampleList() for j in range(len(mu)): u = self._solver(self.A(mu[j]), RHS[mult * j], self._solverArgs) if j == 0: sol.reset((len(u), len(mu)), dtype = u.dtype) sol[j] = u - if wasPar: sol = sol[0] return sol - def residual(self, u:sampList, mu : paramList = [()], + def residual(self, u:sampList, mu : paramList = [], homogeneized : bool = False) -> sampList: """ Find residual of linear system for given approximate solution. Args: u: numpy complex array with function dofs. If None, set to 0. mu: parameter value. """ - mu, wasPar = self.checkParameterList(mu) - if len(mu) == 0: return + mu, _ = self.checkParameterList(mu) + if mu.shape[0] == 0: mu.reset((1, self.npar), mu.dtype) if u is not None: u = sampleList(u) mult = 0 if len(u) == 1 else 1 RROMPyAssert(mult * (len(mu) - 1) + 1, len(u), "Sample size") res = emptySampleList() for j in range(len(mu)): b = self.b(mu[j], homogeneized = homogeneized) if u is None: r = b else: r = b - self.A(mu[j]).dot(u[mult * j]) if j == 0: res.reset((len(r), len(mu)), dtype = r.dtype) res[j] = r - if wasPar: res = res[0] return res def plot(self, u:Np1D, name : str = "u", save : str = None, what : strLst = 'all', saveFormat : str = "eps", saveDPI : int = 100, show : bool = True, **figspecs): """ Do some nice plots of the complex-valued function with given dofs. Args: u: numpy complex array with function dofs. name(optional): Name to be shown as title of the plots. Defaults to 'u'. save(optional): Where to save plot(s). Defaults to None, i.e. no saving. what(optional): Which plots to do. If list, can contain 'ABS', 'PHASE', 'REAL', 'IMAG'. If str, same plus wildcard 'ALL'. Defaults to 'ALL'. saveFormat(optional): Format for saved plot(s). Defaults to "eps". saveDPI(optional): DPI for saved plot(s). Defaults to 100. show(optional): Whether to show figure. Defaults to True. figspecs(optional key args): Optional arguments for matplotlib figure creation. """ if isinstance(what, (str,)): if what.upper() == 'ALL': what = ['ABS', 'PHASE', 'REAL', 'IMAG'] else: what = [what] what = purgeList(what, ['ABS', 'PHASE', 'REAL', 'IMAG'], listname = self.name() + ".what", baselevel = 1) if len(what) == 0: return if 'figsize' not in figspecs.keys(): figspecs['figsize'] = (13. * len(what) / 4, 3) subplotcode = 100 + len(what) * 10 idxs = np.arange(self.spacedim()) plt.figure(**figspecs) plt.jet() if 'ABS' in what: subplotcode = subplotcode + 1 plt.subplot(subplotcode) plt.plot(idxs, np.abs(u)) plt.title("|{0}|".format(name)) if 'PHASE' in what: subplotcode = subplotcode + 1 plt.subplot(subplotcode) plt.plot(idxs, np.angle(u)) plt.title("phase({0})".format(name)) if 'REAL' in what: subplotcode = subplotcode + 1 plt.subplot(subplotcode) plt.plot(idxs, np.real(u)) plt.title("Re({0})".format(name)) if 'IMAG' in what: subplotcode = subplotcode + 1 plt.subplot(subplotcode) plt.plot(idxs, np.imag(u)) plt.title("Im({0})".format(name)) if save is not None: save = save.strip() plt.savefig(getNewFilename("{}_fig_".format(save), saveFormat), format = saveFormat, dpi = saveDPI) if show: plt.show() plt.close() diff --git a/rrompy/hfengines/base/problem_engine_base.py b/rrompy/hfengines/base/problem_engine_base.py index 77fe6d4..fa33798 100644 --- a/rrompy/hfengines/base/problem_engine_base.py +++ b/rrompy/hfengines/base/problem_engine_base.py @@ -1,365 +1,330 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # -from abc import abstractmethod from os import path, mkdir import fenics as fen import numpy as np from matplotlib import pyplot as plt -from rrompy.utilities.base.types import (Np1D, ScOp, strLst, FenFunc, Tuple, - List, paramVal) +from copy import deepcopy as copy +from rrompy.utilities.base.types import (Np1D, strLst, FenFunc, Tuple, List, + paramVal) from rrompy.utilities.base import purgeList, getNewFilename, verbosityDepth from rrompy.solver.fenics import L2NormMatrix from .boundary_conditions import BoundaryConditions from .matrix_engine_base import MatrixEngineBase from rrompy.utilities.exception_manager import RROMPyException __all__ = ['ProblemEngineBase'] class ProblemEngineBase(MatrixEngineBase): """ Generic solver for parametric problems. Attributes: verbosity: Verbosity level. BCManager: Boundary condition manager. V: Real FE space. u: Generic trial functions for variational form evaluation. v: Generic test functions for variational form evaluation. As: Scipy sparse array representation (in CSC format) of As. bs: Numpy array representation of bs. energyNormMatrix: Scipy sparse matrix representing inner product over V. - bsmu: Mu value of last bs evaluation. - liftDirichletDatamu: Mu value of last Dirichlet datum evaluation. liftedDirichletDatum: Dofs of Dirichlet datum lifting. mu0BC: Mu value of last Dirichlet datum lifting. degree_threshold: Threshold for ufl expression interpolation degree. """ - npar = 0 - def __init__(self, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): super().__init__(verbosity = verbosity, timestamp = timestamp) self.BCManager = BoundaryConditions("Dirichlet") self.V = fen.FunctionSpace(fen.UnitSquareMesh(10, 10), "P", 1) - self.bsmu = np.nan - self.liftDirichletDatamu = np.nan self.mu0BC = np.nan self.degree_threshold = degree_threshold + self.npar = 0 @property def V(self): """Value of V.""" return self._V @V.setter def V(self, V): self.resetAs() self.resetbs() if not type(V).__name__ == 'FunctionSpace': raise RROMPyException("V type not recognized.") self._V = V self.u = fen.TrialFunction(V) self.v = fen.TestFunction(V) def spacedim(self): return self.V.dim() def buildEnergyNormForm(self): """ Build sparse matrix (in CSR format) representative of scalar product. """ self.energyNormMatrix = L2NormMatrix(self.V) - def setDirichletDatum(self, mu : paramVal = ()): - """Set Dirichlet datum if parametric.""" - if hasattr(self, "liftedDirichletDatum"): - self.liftDirichletDatamu = mu - - def liftDirichletData(self, mu : paramVal = ()) -> Np1D: + def liftDirichletData(self, mu : paramVal = []) -> Np1D: """Lift Dirichlet datum.""" - self.setDirichletDatum(mu) - if self.liftDirichletDatamu != mu: + mu = self.checkParameter(mu) + if mu != self.mu0BC: + self.mu0BC = copy(mu) try: liftRe = fen.interpolate(self.DirichletDatum[0], self.V) except: liftRe = fen.project(self.DirichletDatum[0], self.V) try: liftIm = fen.interpolate(self.DirichletDatum[1], self.V) except: liftIm = fen.project(self.DirichletDatum[1], self.V) self.liftedDirichletDatum = (np.array(liftRe.vector()) + 1.j * np.array(liftIm.vector())) return self.liftedDirichletDatum def reduceQuadratureDegree(self, fun:FenFunc, name:str): """Check whether to reduce compiler parameters to degree threshold.""" if not np.isinf(self.degree_threshold): from ufl.algorithms.estimate_degrees import ( estimate_total_polynomial_degree as ETPD) try: deg = ETPD(fun) except: return False if deg > self.degree_threshold: if self.verbosity >= 15: verbosityDepth("MAIN", ("Reducing quadrature degree from " "{} to {} for {}.").format( deg, self.degree_threshold, name), timestamp = self.timestamp) return True return False def iterReduceQuadratureDegree(self, funsNames:List[Tuple[FenFunc, str]]): """ Iterate reduceQuadratureDegree over list and define reduce compiler parameters. """ if funsNames is not None: for fun, name in funsNames: if self.reduceQuadratureDegree(fun, name): return {"quadrature_degree" : self.degree_threshold} return {} - @abstractmethod - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: - """Assemble (derivative of) operator of linear system.""" - mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if Anull is not None: return Anull - if self.As[der] is None: - self.As[der] = 0. - return self.As[der] - - @abstractmethod - def b(self, mu : paramVal = (), der : int = 0, - homogeneized : bool = False) -> Np1D: - """Assemble (derivative of) RHS of linear system.""" - mu = self.checkParameter(mu) - bnull = self.checkbInBounds(der, homogeneized) - if bnull is not None: return bnull - b = self.bsH[der] if homogeneized else self.bs[der] - if b is None: - if homogeneized: - self.bsH[der] = 0. - else: - self.bs[der] = 0. - b = 0. - return b - def plot(self, u:Np1D, name : str = "u", save : str = None, what : strLst = 'all', saveFormat : str = "eps", saveDPI : int = 100, show : bool = True, **figspecs): """ Do some nice plots of the complex-valued function with given dofs. Args: u: numpy complex array with function dofs. name(optional): Name to be shown as title of the plots. Defaults to 'u'. save(optional): Where to save plot(s). Defaults to None, i.e. no saving. what(optional): Which plots to do. If list, can contain 'ABS', 'PHASE', 'REAL', 'IMAG'. If str, same plus wildcard 'ALL'. Defaults to 'ALL'. saveFormat(optional): Format for saved plot(s). Defaults to "eps". saveDPI(optional): DPI for saved plot(s). Defaults to 100. show(optional): Whether to show figure. Defaults to True. figspecs(optional key args): Optional arguments for matplotlib figure creation. """ if isinstance(what, (str,)): if what.upper() == 'ALL': what = ['ABS', 'PHASE', 'REAL', 'IMAG'] else: what = [what] what = purgeList(what, ['ABS', 'PHASE', 'REAL', 'IMAG'], listname = self.name() + ".what", baselevel = 1) if len(what) == 0: return if 'figsize' not in figspecs.keys(): figspecs['figsize'] = (13. * len(what) / 4, 3) subplotcode = 100 + len(what) * 10 plt.figure(**figspecs) plt.jet() if 'ABS' in what: uAb = fen.Function(self.V) uAb.vector().set_local(np.abs(u)) subplotcode = subplotcode + 1 plt.subplot(subplotcode) p = fen.plot(uAb, title = "|{0}|".format(name)) plt.colorbar(p) if 'PHASE' in what: uPh = fen.Function(self.V) uPh.vector().set_local(np.angle(u)) subplotcode = subplotcode + 1 plt.subplot(subplotcode) p = fen.plot(uPh, title = "phase({0})".format(name)) plt.colorbar(p) if 'REAL' in what: uRe = fen.Function(self.V) uRe.vector().set_local(np.real(u)) subplotcode = subplotcode + 1 plt.subplot(subplotcode) p = fen.plot(uRe, title = "Re({0})".format(name)) plt.colorbar(p) if 'IMAG' in what: uIm = fen.Function(self.V) uIm.vector().set_local(np.imag(u)) subplotcode = subplotcode + 1 plt.subplot(subplotcode) p = fen.plot(uIm, title = "Im({0})".format(name)) plt.colorbar(p) if save is not None: save = save.strip() plt.savefig(getNewFilename("{}_fig_".format(save), saveFormat), format = saveFormat, dpi = saveDPI) if show: plt.show() plt.close() def plotmesh(self, name : str = "Mesh", save : str = None, saveFormat : str = "eps", saveDPI : int = 100, show : bool = True, **figspecs): """ Do a nice plot of the mesh. Args: u: numpy complex array with function dofs. name(optional): Name to be shown as title of the plots. Defaults to 'u'. save(optional): Where to save plot(s). Defaults to None, i.e. no saving. saveFormat(optional): Format for saved plot(s). Defaults to "eps". saveDPI(optional): DPI for saved plot(s). Defaults to 100. show(optional): Whether to show figure. Defaults to True. figspecs(optional key args): Optional arguments for matplotlib figure creation. """ plt.figure(**figspecs) fen.plot(self.V.mesh()) if save is not None: save = save.strip() plt.savefig(getNewFilename("{}_msh_".format(save), saveFormat), format = saveFormat, dpi = saveDPI) if show: plt.show() plt.close() def outParaview(self, u:Np1D, name : str = "u", filename : str = "out", time : float = 0., what : strLst = 'all', forceNewFile : bool = True, folder : bool = False, filePW = None): """ Output complex-valued function with given dofs to ParaView file. Args: u: numpy complex array with function dofs. name(optional): Base name to be used for data output. filename(optional): Name of output file. time(optional): Timestamp. what(optional): Which plots to do. If list, can contain 'MESH', 'ABS', 'PHASE', 'REAL', 'IMAG'. If str, same plus wildcard 'ALL'. Defaults to 'ALL'. forceNewFile(optional): Whether to create new output file. folder(optional): Whether to create an additional folder layer. filePW(optional): Fenics File entity (for time series). """ if isinstance(what, (str,)): if what.upper() == 'ALL': what = ['MESH', 'ABS', 'PHASE', 'REAL', 'IMAG'] else: what = [what] what = purgeList(what, ['MESH', 'ABS', 'PHASE', 'REAL', 'IMAG'], listname = self.name() + ".what", baselevel = 1) if len(what) == 0: return if filePW is None: if folder: if not path.exists(filename + "/"): mkdir(filename) idxpath = filename.rfind("/") filename += "/" + filename[idxpath + 1 :] if forceNewFile: filePW = fen.File(getNewFilename(filename, "pvd")) else: filePW = fen.File("{}.pvd".format(filename)) if what == ['MESH']: filePW << (self.V.mesh(), time) if 'ABS' in what: uAb = fen.Function(self.V, name = "{}_ABS".format(name)) uAb.vector().set_local(np.abs(u)) filePW << (uAb, time) if 'PHASE' in what: uPh = fen.Function(self.V, name = "{}_PHASE".format(name)) uPh.vector().set_local(np.angle(u)) filePW << (uPh, time) if 'REAL' in what: uRe = fen.Function(self.V, name = "{}_REAL".format(name)) uRe.vector().set_local(np.real(u)) filePW << (uRe, time) if 'IMAG' in what: uIm = fen.Function(self.V, name = "{}_IMAG".format(name)) uIm.vector().set_local(np.imag(u)) filePW << (uIm, time) return filePW def outParaviewTimeDomain(self, u:Np1D, omega:float, timeFinal : float = None, periodResolution : int = 20, name : str = "u", filename : str = "out", forceNewFile : bool = True, folder : bool = False): """ Output complex-valued function with given dofs to ParaView file, converted to time domain. Args: u: numpy complex array with function dofs. omega: frequency. timeFinal(optional): final time of simulation. periodResolution(optional): number of time steps per period. name(optional): Base name to be used for data output. filename(optional): Name of output file. forceNewFile(optional): Whether to create new output file. folder(optional): Whether to create an additional folder layer. """ if folder: if not path.exists(filename + "/"): mkdir(filename) idxpath = filename.rfind("/") filename += "/" + filename[idxpath + 1 :] if forceNewFile: filePW = fen.File(getNewFilename(filename, "pvd")) else: filePW = fen.File("{}.pvd".format(filename)) omega = np.abs(omega) t = 0. dt = 2. * np.pi / omega / periodResolution if timeFinal is None: timeFinal = 2. * np.pi / omega - dt for j in range(int(np.ceil(timeFinal / dt)) + 1): ut = fen.Function(self.V, name = name) ut.vector().set_local(np.real(u) * np.cos(omega * t) + np.imag(u) * np.sin(omega * t)) filePW << (ut, t) t += dt return filePW diff --git a/rrompy/hfengines/base/vector_problem_engine_base.py b/rrompy/hfengines/base/vector_problem_engine_base.py index ab8e70c..8fba867 100644 --- a/rrompy/hfengines/base/vector_problem_engine_base.py +++ b/rrompy/hfengines/base/vector_problem_engine_base.py @@ -1,200 +1,197 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import fenics as fen import numpy as np from matplotlib import pyplot as plt from rrompy.utilities.base.types import Np1D, strLst from rrompy.utilities.base import purgeList, getNewFilename from .problem_engine_base import ProblemEngineBase __all__ = ['VectorProblemEngineBase'] class VectorProblemEngineBase(ProblemEngineBase): """ Generic solver for parametric vector problems. Attributes: verbosity: Verbosity level. BCManager: Boundary condition manager. V: Real FE space. u: Generic trial functions for variational form evaluation. v: Generic test functions for variational form evaluation. As: Scipy sparse array representation (in CSC format) of As. bs: Numpy array representation of bs. energyNormMatrix: Scipy sparse matrix representing inner product over V. - bsmu: Mu value of last bs evaluation. - liftDirichletDatamu: Mu value of last Dirichlet datum evaluation. liftedDirichletDatum: Dofs of Dirichlet datum lifting. mu0BC: Mu value of last Dirichlet datum lifting. degree_threshold: Threshold for ufl expression interpolation degree. """ - nAs, nbs = 1, 1 - def __init__(self, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): super().__init__(degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) self.V = fen.VectorFunctionSpace(fen.UnitSquareMesh(10, 10), "P", 1) + self.npar = 0 def plot(self, u:Np1D, name : str = "u", save : str = None, what : strLst = 'all', saveFormat : str = "eps", saveDPI : int = 100, show : bool = True, **figspecs): """ Do some nice plots of the complex-valued function with given dofs. Args: u: numpy complex array with function dofs. name(optional): Name to be shown as title of the plots. Defaults to 'u'. save(optional): Where to save plot(s). Defaults to None, i.e. no saving. what(optional): Which plots to do. If list, can contain 'ABS', 'PHASE', 'REAL', 'IMAG'. If str, same plus wildcard 'ALL'. Defaults to 'ALL'. saveFormat(optional): Format for saved plot(s). Defaults to "eps". saveDPI(optional): DPI for saved plot(s). Defaults to. show(optional): Whether to show figure. Defaults to True. figspecs(optional key args): Optional arguments for matplotlib figure creation. """ if isinstance(what, (str,)): if what.upper() == 'ALL': what = ['ABS', 'PHASE', 'REAL', 'IMAG'] else: what = [what] what = purgeList(what, ['ABS', 'PHASE', 'REAL', 'IMAG'], listname = self.name() + ".what", baselevel = 1) if 'figsize' not in figspecs.keys(): figspecs['figsize'] = (13. * max(len(what), 1) / 4, 3) if len(what) > 0: for j in range(self.V.num_sub_spaces()): subplotcode = 100 + len(what) * 10 II = self.V.sub(j).dofmap().dofs() Vj = self.V.sub(j).collapse() plt.figure(**figspecs) plt.jet() if 'ABS' in what: uAb = fen.Function(Vj) uAb.vector().set_local(np.abs(u[II])) subplotcode = subplotcode + 1 plt.subplot(subplotcode) p = fen.plot(uAb, title = "|{}_comp{}|".format(name, j)) plt.colorbar(p) if 'PHASE' in what: uPh = fen.Function(Vj) uPh.vector().set_local(np.angle(u[II])) subplotcode = subplotcode + 1 plt.subplot(subplotcode) p = fen.plot(uPh, title = "phase({}_comp{})".format(name, j)) plt.colorbar(p) if 'REAL' in what: uRe = fen.Function(Vj) uRe.vector().set_local(np.real(u[II])) subplotcode = subplotcode + 1 plt.subplot(subplotcode) p = fen.plot(uRe, title = "Re({}_comp{})".format(name, j)) plt.colorbar(p) if 'IMAG' in what: uIm = fen.Function(Vj) uIm.vector().set_local(np.imag(u[II])) subplotcode = subplotcode + 1 plt.subplot(subplotcode) p = fen.plot(uIm, title = "Im({}_comp{})".format(name, j)) plt.colorbar(p) if save is not None: save = save.strip() plt.savefig(getNewFilename("{}_comp{}_fig_".format(save, j), saveFormat), format = saveFormat, dpi = saveDPI) if show: plt.show() plt.close() try: if len(what) > 1: figspecs['figsize'] = (2. / len(what) * figspecs['figsize'][0], figspecs['figsize'][1]) elif len(what) == 0: figspecs['figsize'] = (2. * figspecs['figsize'][0], figspecs['figsize'][1]) if len(what) == 0 or 'ABS' in what or 'REAL' in what: uVRe = fen.Function(self.V) uVRe.vector().set_local(np.real(u)) plt.figure(**figspecs) plt.jet() p = fen.plot(uVRe, title = "{}_Re".format(name), mode = "displacement") plt.colorbar(p) if save is not None: save = save.strip() plt.savefig(getNewFilename("{}_disp_Re_fig_".format(save), saveFormat), format = saveFormat, dpi = saveDPI) plt.show() plt.close() if 'ABS' in what or 'IMAG' in what: uVIm = fen.Function(self.V) uVIm.vector().set_local(np.imag(u)) plt.figure(**figspecs) plt.jet() p = fen.plot(uVIm, title = "{}_Im".format(name), mode = "displacement") plt.colorbar(p) if save is not None: save = save.strip() plt.savefig(getNewFilename("{}_disp_Im_fig_".format(save, j), saveFormat), format = saveFormat, dpi = saveDPI) if show: plt.show() plt.close() except: pass def plotmesh(self, name : str = "Mesh", save : str = None, saveFormat : str = "eps", saveDPI : int = 100, show : bool = True, **figspecs): """ Do a nice plot of the mesh. Args: u: numpy complex array with function dofs. name(optional): Name to be shown as title of the plots. Defaults to 'u'. save(optional): Where to save plot(s). Defaults to None, i.e. no saving. saveFormat(optional): Format for saved plot(s). Defaults to "eps". saveDPI(optional): DPI for saved plot(s). Defaults to 100. show(optional): Whether to show figure. Defaults to True. figspecs(optional key args): Optional arguments for matplotlib figure creation. """ plt.figure(**figspecs) fen.plot(self.V.mesh()) if save is not None: save = save.strip() plt.savefig(getNewFilename("{}_msh_".format(save), saveFormat), format = saveFormat, dpi = saveDPI) if show: plt.show() plt.close() diff --git a/rrompy/hfengines/linear_problem/__init__.py b/rrompy/hfengines/linear_problem/__init__.py index 8bd37a1..e5a035c 100644 --- a/rrompy/hfengines/linear_problem/__init__.py +++ b/rrompy/hfengines/linear_problem/__init__.py @@ -1,49 +1,47 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from .laplace_base_problem_engine import LaplaceBaseProblemEngine from .helmholtz_problem_engine import HelmholtzProblemEngine from .scattering_problem_engine import ScatteringProblemEngine from .helmholtz_box_scattering_problem_engine import \ HelmholtzBoxScatteringProblemEngine from .helmholtz_cavity_scattering_problem_engine import \ HelmholtzCavityScatteringProblemEngine from .helmholtz_square_bubble_problem_engine import \ HelmholtzSquareBubbleProblemEngine from .helmholtz_square_bubble_domain_problem_engine import \ HelmholtzSquareBubbleDomainProblemEngine from .helmholtz_square_transmission_problem_engine import \ HelmholtzSquareTransmissionProblemEngine from .laplace_disk_gaussian import LaplaceDiskGaussian -from .laplace_disk_gaussian_2 import LaplaceDiskGaussian2 __all__ = [ 'LaplaceBaseProblemEngine', 'HelmholtzProblemEngine', 'ScatteringProblemEngine', 'HelmholtzBoxScatteringProblemEngine', 'HelmholtzCavityScatteringProblemEngine', 'HelmholtzSquareBubbleProblemEngine', 'HelmholtzSquareBubbleDomainProblemEngine', 'HelmholtzSquareTransmissionProblemEngine', - 'LaplaceDiskGaussian', - 'LaplaceDiskGaussian2' + 'LaplaceDiskGaussian' ] diff --git a/rrompy/parameter/__init__.py b/rrompy/hfengines/linear_problem/bidimensional/__init__.py similarity index 71% copy from rrompy/parameter/__init__.py copy to rrompy/hfengines/linear_problem/bidimensional/__init__.py index fe6a417..03b8e69 100644 --- a/rrompy/parameter/__init__.py +++ b/rrompy/hfengines/linear_problem/bidimensional/__init__.py @@ -1,31 +1,29 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # -from .parameter import parameter -from .parameter_list import (parameterList, emptyParameterList, checkParameter, - checkParameterList) +from .laplace_disk_gaussian_2 import LaplaceDiskGaussian2 +from .helmholtz_square_simplified_domain_problem_engine import \ + HelmholtzSquareSimplifiedDomainProblemEngine __all__ = [ - 'parameter', - 'parameterList', - 'emptyParameterList', - 'checkParameter', - 'checkParameterList' + 'LaplaceDiskGaussian2', + 'HelmholtzSquareSimplifiedDomainProblemEngine' ] + diff --git a/rrompy/hfengines/linear_problem/bidimensional/helmholtz_square_simplified_domain_problem_engine.py b/rrompy/hfengines/linear_problem/bidimensional/helmholtz_square_simplified_domain_problem_engine.py new file mode 100644 index 0000000..026f3b4 --- /dev/null +++ b/rrompy/hfengines/linear_problem/bidimensional/helmholtz_square_simplified_domain_problem_engine.py @@ -0,0 +1,133 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +import numpy as np +import scipy.sparse as scsp +import fenics as fen +from rrompy.utilities.base.types import ScOp, List, paramVal +from rrompy.solver.fenics import fenZERO +from rrompy.hfengines.linear_problem.helmholtz_problem_engine import ( + HelmholtzProblemEngine) +from rrompy.utilities.base import verbosityDepth +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD) + +__all__ = ['HelmholtzSquareSimplifiedDomainProblemEngine'] + +class HelmholtzSquareSimplifiedDomainProblemEngine(HelmholtzProblemEngine): + """ + Solver for square Helmholtz problems with parametric laplacian. + - \dxx u - mu_2**2 \dyy u - mu_1**2 * u = f in \Omega_mu = [0,\pi]^2 + u = 0 on \partial\Omega + """ + + nAs, nbs = 3, 1 + + def __init__(self, kappa:float, theta:float, n:int, + mu0 : paramVal = [12. ** .5, 1.], + degree_threshold : int = np.inf, verbosity : int = 10, + timestamp : bool = True): + super().__init__(mu0 = mu0, degree_threshold = degree_threshold, + verbosity = verbosity, timestamp = timestamp) + self.npar = 2 + self.rescalingExp = [2., 2.] + pi = np.pi + mesh = fen.RectangleMesh(fen.Point(0, 0), fen.Point(pi, pi), n, n) + self.V = fen.FunctionSpace(mesh, "P", 3) + + c, s = np.cos(theta), np.sin(theta) + x, y = fen.SpatialCoordinate(mesh)[:] + C = 16. / pi ** 4. + bR = C * 2 * (x * (pi - x) + y * (pi - y)) + bI = C * 2 * kappa * (c * (pi - 2 * x) * y * (pi - y) + + s * x * (pi - x) * (pi - 2 * y)) + wR = fen.cos(kappa * (c * x + s * y)) + wI = fen.sin(kappa * (c * x + s * y)) + self.forcingTerm = [bR * wR + bI * wI, bI * wR - bR * wI] + + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: + """Assemble (derivative of) operator of linear system.""" + mu = self.checkParameter(mu) + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + self.autoSetDS() + if derI <= 0 and self.As[0] is None: + if self.verbosity >= 20: + verbosityDepth("INIT", "Assembling operator term A0.", + timestamp = self.timestamp) + DirichletBC0 = fen.DirichletBC(self.V, fenZERO, + self.DirichletBoundary) + a0Re = fen.dot(self.u.dx(0), self.v.dx(0)) * fen.dx + A0Re = fen.assemble(a0Re) + DirichletBC0.apply(A0Re) + A0ReMat = fen.as_backend_type(A0Re).mat() + A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() + self.As[0] = scsp.csr_matrix((A0Rev, A0Rec, A0Rer), + shape = A0ReMat.size, + dtype = np.complex) + if self.verbosity >= 20: + verbosityDepth("DEL", "Done assembling operator term.", + timestamp = self.timestamp) + if derI <= 1 and self.As[1] is None: + if self.verbosity >= 20: + verbosityDepth("INIT", "Assembling operator term A2.", + timestamp = self.timestamp) + DirichletBC0 = fen.DirichletBC(self.V, fenZERO, + self.DirichletBoundary) + nRe, nIm = self.refractionIndex + n2Re, n2Im = nRe * nRe - nIm * nIm, 2 * nRe * nIm + parsRe = self.iterReduceQuadratureDegree(zip([n2Re], + ["refractionIndexSquaredReal"])) + parsIm = self.iterReduceQuadratureDegree(zip([n2Im], + ["refractionIndexSquaredImag"])) + a2Re = - n2Re * fen.dot(self.u, self.v) * fen.dx + a2Im = - n2Im * fen.dot(self.u, self.v) * fen.dx + A2Re = fen.assemble(a2Re, form_compiler_parameters = parsRe) + A2Im = fen.assemble(a2Im, form_compiler_parameters = parsIm) + DirichletBC0.zero(A2Re) + DirichletBC0.zero(A2Im) + A2ReMat = fen.as_backend_type(A2Re).mat() + A2ImMat = fen.as_backend_type(A2Im).mat() + A2Rer, A2Rec, A2Rev = A2ReMat.getValuesCSR() + A2Imr, A2Imc, A2Imv = A2ImMat.getValuesCSR() + self.As[1] = (scsp.csr_matrix((A2Rev, A2Rec, A2Rer), + shape = A2ReMat.size) + + 1.j * scsp.csr_matrix((A2Imv, A2Imc, A2Imr), + shape = A2ImMat.size)) + if self.verbosity >= 20: + verbosityDepth("DEL", "Done assembling operator term.", + timestamp = self.timestamp) + if derI <= 2 and self.As[2] is None: + if self.verbosity >= 20: + verbosityDepth("INIT", "Assembling operator term A2.", + timestamp = self.timestamp) + DirichletBC0 = fen.DirichletBC(self.V, fenZERO, + self.DirichletBoundary) + a2Re = fen.dot(self.u.dx(1), self.v.dx(1)) * fen.dx + A2Re = fen.assemble(a2Re, form_compiler_parameters = parsRe) + DirichletBC0.zero(A2Re) + A2ReMat = fen.as_backend_type(A2Re).mat() + A2Rer, A2Rec, A2Rev = A2ReMat.getValuesCSR() + self.As[2] = scsp.csr_matrix((A2Rev, A2Rec, A2Rer), + shape = A2ReMat.size, + dtype = np.complex) + if self.verbosity >= 20: + verbosityDepth("DEL", "Done assembling operator term.", + timestamp = self.timestamp) + return self._assembleA(mu, der, derI) + diff --git a/rrompy/hfengines/linear_problem/bidimensional/laplace_disk_gaussian_2.py b/rrompy/hfengines/linear_problem/bidimensional/laplace_disk_gaussian_2.py new file mode 100644 index 0000000..b27b96c --- /dev/null +++ b/rrompy/hfengines/linear_problem/bidimensional/laplace_disk_gaussian_2.py @@ -0,0 +1,128 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +import numpy as np +import fenics as fen +from rrompy.utilities.base.types import Np1D, Tuple, List, FenExpr, paramVal +from rrompy.hfengines.linear_problem.laplace_disk_gaussian import ( + LaplaceDiskGaussian) +from rrompy.solver.fenics import fenZERO, fenONE +from rrompy.utilities.base import verbosityDepth +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD, hashIdxToDerivative as hashI) +from rrompy.utilities.exception_manager import RROMPyException + +__all__ = ['LaplaceDiskGaussian2'] + +class LaplaceDiskGaussian2(LaplaceDiskGaussian): + """ + Solver for disk Laplace problems with parametric forcing term center. + - \Delta u = C exp(-.5 * ||\cdot - (mu1, mu2)||^2) in \Omega = B(0, 5) + u = 0 on \partial\Omega. + """ + + nAs, nbs = 1, 1 + + def __init__(self, n:int, mu0 : paramVal = [0., 0.], + degree_threshold : int = np.inf, verbosity : int = 10, + timestamp : bool = True): + super().__init__(n = n, mu0 = mu0, degree_threshold = degree_threshold, + verbosity = verbosity, timestamp = timestamp) + self.npar = 2 + + def getForcingTerm(self, mu : paramVal = []) -> Tuple[FenExpr, FenExpr]: + """Compute forcing term.""" + mu = self.checkParameter(mu) + if mu != self.forcingTermMu: + if self.verbosity >= 25: + verbosityDepth("INIT", ("Assembling base expression for " + "forcing term."), + timestamp = self.timestamp) + x, y = fen.SpatialCoordinate(self.V.mesh())[:] + C = np.exp(-.5 * (mu(0, 0) ** 2. + mu(0, 1) ** 2.)) + CR, CI = np.real(C), np.imag(C) + f0 = (2 * np.pi) ** -.5 * fen.exp(-.5 * (x ** 2. + y ** 2.)) + muxR, muxI = np.real(mu(0, 0)), np.imag(mu(0, 0)) + muyR, muyI = np.real(mu(0, 1)), np.imag(mu(0, 1)) + f1R = fen.exp(muxR * x + muyR * y) * fen.cos(muxI * x + muyI * y) + f1I = fen.exp(muxR * x + muyR * y) * fen.sin(muxI * x + muyI * y) + self.forcingTerm = [f0 * (CR * f1R - CI * f1I), + f0 * (CR * f1I + CI * f1R)] + self.forcingTermMu = mu + if self.verbosity >= 25: + verbosityDepth("DEL", "Done assembling base expression.", + timestamp = self.timestamp) + return self.forcingTerm + + def computebsFactors(self): + pass + + def getExtraFactorB(self, mu : paramVal = [], + derI : int = 0) -> Tuple[FenExpr, FenExpr]: + if derI == 0: return [fenONE, fenZERO] + raise RROMPyException("Not implemented.") + + def b(self, mu : paramVal = [], der : List[int] = 0, + homogeneized : bool = False) -> Np1D: + """Assemble (derivative of) RHS of linear system.""" + mu = self.checkParameter(mu) + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + nbsTot = self.nbsH if homogeneized else self.nbs + bs = self.bsH if homogeneized else self.bs + if homogeneized and self.mu0 != self.mu0BC: + self.liftDirichletData(self.mu0) + for j in range(derI, nbsTot): + if True or bs[j] is None: + if self.verbosity >= 20: + verbosityDepth("INIT", ("Assembling forcing term " + "b{}.").format(j), + timestamp = self.timestamp) + if j < self.nbs: + fRe, fIm = self.getForcingTerm(mu) + cRe, cIm = self.getExtraFactorB(mu, j) + cfRe, cfIm = cRe * fRe - cIm * fIm, cRe * fIm + cIm * fRe + else: + cfRe, cfIm = fenZERO, fenZERO + parsRe = self.iterReduceQuadratureDegree(zip([cfRe], + ["forcingTermDer{}Real".format(j)])) + parsIm = self.iterReduceQuadratureDegree(zip([cfIm], + ["forcingTermDer{}Imag".format(j)])) + L0Re = fen.dot(cfRe, self.v) * fen.dx + L0Im = fen.dot(cfIm, self.v) * fen.dx + b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) + b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) + if homogeneized: + Ader = self.A(self.mu0, hashI(j)) + b0Re[:] -= np.real(Ader.dot(self.liftedDirichletDatum)) + b0Im[:] -= np.imag(Ader.dot(self.liftedDirichletDatum)) + DirichletBC0 = fen.DirichletBC(self.V, fenZERO, + self.DirichletBoundary) + DirichletBC0.apply(b0Re) + DirichletBC0.apply(b0Im) + if homogeneized: + self.bsH[j] = np.array(b0Re[:] + 1.j * b0Im[:], + dtype = np.complex) + else: + self.bs[j] = np.array(b0Re[:] + 1.j * b0Im[:], + dtype = np.complex) + if self.verbosity >= 20: + verbosityDepth("DEL", "Done assembling forcing term.", + timestamp = self.timestamp) + return self._assembleb(mu - self.mu0, der, derI, homogeneized) + diff --git a/rrompy/hfengines/linear_problem/helmholtz_box_scattering_problem_engine.py b/rrompy/hfengines/linear_problem/helmholtz_box_scattering_problem_engine.py index b2728a5..94dd364 100644 --- a/rrompy/hfengines/linear_problem/helmholtz_box_scattering_problem_engine.py +++ b/rrompy/hfengines/linear_problem/helmholtz_box_scattering_problem_engine.py @@ -1,58 +1,57 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import fenics as fen from .scattering_problem_engine import ScatteringProblemEngine __all__ = ['HelmholtzBoxScatteringProblemEngine'] class HelmholtzBoxScatteringProblemEngine(ScatteringProblemEngine): """ Solver for scattering problem outside a box with parametric wavenumber. - \Delta u - omega^2 * n^2 * u = 0 in \Omega u = 0 on \Gamma_D \partial_nu - i k u = 0 on \Gamma_R with exact solution a transmitted plane wave. """ + def __init__(self, R:float, kappa:float, theta:float, n:int, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = [kappa], degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.omega = kappa - import mshr scatterer = mshr.Polygon([fen.Point(-1, -.5), fen.Point(1, -.5), fen.Point(1, .5), fen.Point(.8, .5), fen.Point(.8, -.3), fen.Point(-.8, -.3), fen.Point(-.8, .5), fen.Point(-1, .5),]) mesh = mshr.generate_mesh(mshr.Circle(fen.Point(0, 0), R)-scatterer, n) self.V = fen.FunctionSpace(mesh, "P", 3) self.DirichletBoundary = (lambda x, on_boundary: on_boundary and (x[0]**2+x[1]**2)**.5 < .95 * R) self.RobinBoundary = "REST" c, s = np.cos(theta), np.sin(theta) x, y = fen.SpatialCoordinate(mesh)[:] u0R = - fen.cos(kappa * (c * x + s * y)) u0I = - fen.sin(kappa * (c * x + s * y)) self.DirichletDatum = [u0R, u0I] diff --git a/rrompy/hfengines/linear_problem/helmholtz_cavity_scattering_problem_engine.py b/rrompy/hfengines/linear_problem/helmholtz_cavity_scattering_problem_engine.py index 6349830..976eaa5 100644 --- a/rrompy/hfengines/linear_problem/helmholtz_cavity_scattering_problem_engine.py +++ b/rrompy/hfengines/linear_problem/helmholtz_cavity_scattering_problem_engine.py @@ -1,59 +1,58 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import fenics as fen from .scattering_problem_engine import ScatteringProblemEngine __all__ = ['HelmholtzCavityScatteringProblemEngine'] class HelmholtzCavityScatteringProblemEngine(ScatteringProblemEngine): """ Solver for scattering problem inside a cavity with parametric wavenumber. - \Delta u - omega^2 * n^2 * u = 0 in \Omega u = 0 on \Gamma_D \partial_nu - i k u = 0 on \Gamma_R with exact solution a transmitted plane wave. """ + def __init__(self, kappa:float, n:int, gamma : float = 0., signR : int = -1, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = [kappa], degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) self.signR = signR - self.omega = kappa - pi = np.pi mesh = fen.RectangleMesh(fen.Point(0, 0), fen.Point(pi, pi), n, n) self.V = fen.FunctionSpace(mesh, "P", 3) self.RobinBoundary = (lambda x, on_boundary: on_boundary and np.isclose(x[1], np.pi)) self.DirichletBoundary = "REST" x, y = fen.SpatialCoordinate(mesh)[:] C = 4. / pi ** 4. bR = C * (2 * (x * (pi - x) + y * (2 * pi - y)) + (kappa * gamma) ** 2. * x * (pi - x) * y * (2 * pi - y)) bI = C * signR * 2 * kappa * (gamma * (pi - 2 * x) * y * (pi - y) + 2 * x * (pi - x) * (pi - y)) wR = fen.cos(kappa * signR * (gamma * x + y)) wI = fen.sin(kappa * signR * (gamma * x + y)) self.forcingTerm = [bR * wR + bI * wI, bI * wR - bR * wI] diff --git a/rrompy/hfengines/linear_problem/helmholtz_problem_engine.py b/rrompy/hfengines/linear_problem/helmholtz_problem_engine.py index d88ba37..1ceeba4 100644 --- a/rrompy/hfengines/linear_problem/helmholtz_problem_engine.py +++ b/rrompy/hfengines/linear_problem/helmholtz_problem_engine.py @@ -1,165 +1,161 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import scipy.sparse as scsp import fenics as fen from .laplace_base_problem_engine import LaplaceBaseProblemEngine -from rrompy.utilities.base.types import ScOp, paramVal +from rrompy.utilities.base.types import List, ScOp, paramVal from rrompy.solver.fenics import fenZERO, fenONE from rrompy.utilities.base import verbosityDepth +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD) __all__ = ['HelmholtzProblemEngine'] class HelmholtzProblemEngine(LaplaceBaseProblemEngine): """ Solver for generic Helmholtz problems with parametric wavenumber. - \nabla \cdot (a \nabla u) - omega^2 * n**2 * u = f in \Omega u = u0 on \Gamma_D \partial_nu = g1 on \Gamma_N \partial_nu + h u = g2 on \Gamma_R Attributes: verbosity: Verbosity level. BCManager: Boundary condition manager. V: Real FE space. u: Generic trial functions for variational form evaluation. v: Generic test functions for variational form evaluation. As: Scipy sparse array representation (in CSC format) of As. bs: Numpy array representation of bs. bsH: Numpy array representation of homogeneized bs. energyNormMatrix: Scipy sparse matrix representing inner product over V. - bsmu: Mu value of last bs evaluation. - liftDirichletDatamu: Mu value of last Dirichlet datum evaluation. liftedDirichletDatum: Dofs of Dirichlet datum lifting. mu0BC: Mu value of last Dirichlet datum lifting. degree_threshold: Threshold for ufl expression interpolation degree. omega: Value of omega. diffusivity: Value of a. refractionIndex: Value of n. forcingTerm: Value of f. DirichletDatum: Value of u0. NeumannDatum: Value of g1. RobinDatumG: Value of g2. RobinDatumH: Value of h. DirichletBoundary: Function handle to \Gamma_D. NeumannBoundary: Function handle to \Gamma_N. RobinBoundary: Function handle to \Gamma_R. ds: Boundary measure 2-tuple (resp. for Neumann and Robin boundaries). A0: Scipy sparse array representation (in CSC format) of A0. A1: Scipy sparse array representation (in CSC format) of A1. b0: Numpy array representation of b0. dsToBeSet: Whether ds needs to be set. """ - npar = 1 nAs = 2 - rescalingExp = 2. - def __init__(self, degree_threshold : int = np.inf, verbosity : int = 10, - timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + def __init__(self, mu0 : paramVal = [0.], degree_threshold : int = np.inf, + verbosity : int = 10, timestamp : bool = True): + super().__init__(mu0 = mu0, degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.omega = 1. + self.rescalingExp = [2.] self.refractionIndex = fenONE @property def refractionIndex(self): """Value of n.""" return self._refractionIndex @refractionIndex.setter def refractionIndex(self, refractionIndex): self.resetAs() if not isinstance(refractionIndex, (list, tuple,)): refractionIndex = [refractionIndex, fenZERO] self._refractionIndex = refractionIndex - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: """Assemble (derivative of) operator of linear system.""" mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if Anull is not None: return Anull - self.autoSetDS() - if der <= 0 and self.As[0] is None: + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + if derI <= 0 and self.As[0] is None: + self.autoSetDS() if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A0.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZERO, self.DirichletBoundary) aRe, aIm = self.diffusivity hRe, hIm = self.RobinDatumH termNames = ["diffusivity", "RobinDatumH"] parsRe = self.iterReduceQuadratureDegree(zip( [aRe, hRe], [x + "Real" for x in termNames])) parsIm = self.iterReduceQuadratureDegree(zip( [aIm, hIm], [x + "Imag" for x in termNames])) a0Re = (aRe * fen.dot(fen.grad(self.u), fen.grad(self.v)) * fen.dx + hRe * fen.dot(self.u, self.v) * self.ds(1)) a0Im = (aIm * fen.dot(fen.grad(self.u), fen.grad(self.v)) * fen.dx + hIm * fen.dot(self.u, self.v) * self.ds(1)) A0Re = fen.assemble(a0Re, form_compiler_parameters = parsRe) A0Im = fen.assemble(a0Im, form_compiler_parameters = parsIm) DirichletBC0.apply(A0Re) DirichletBC0.zero(A0Im) A0ReMat = fen.as_backend_type(A0Re).mat() A0ImMat = fen.as_backend_type(A0Im).mat() A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() A0Imr, A0Imc, A0Imv = A0ImMat.getValuesCSR() self.As[0] = (scsp.csr_matrix((A0Rev, A0Rec, A0Rer), shape = A0ReMat.size) + 1.j * scsp.csr_matrix((A0Imv, A0Imc, A0Imr), shape = A0ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der <= 1 and self.As[1] is None: + if derI <= 1 and self.As[1] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A1.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZERO, self.DirichletBoundary) nRe, nIm = self.refractionIndex n2Re, n2Im = nRe * nRe - nIm * nIm, 2 * nRe * nIm parsRe = self.iterReduceQuadratureDegree(zip([n2Re], ["refractionIndexSquaredReal"])) parsIm = self.iterReduceQuadratureDegree(zip([n2Im], ["refractionIndexSquaredImag"])) a1Re = - n2Re * fen.dot(self.u, self.v) * fen.dx a1Im = - n2Im * fen.dot(self.u, self.v) * fen.dx A1Re = fen.assemble(a1Re, form_compiler_parameters = parsRe) A1Im = fen.assemble(a1Im, form_compiler_parameters = parsIm) DirichletBC0.zero(A1Re) DirichletBC0.zero(A1Im) A1ReMat = fen.as_backend_type(A1Re).mat() A1ImMat = fen.as_backend_type(A1Im).mat() A1Rer, A1Rec, A1Rev = A1ReMat.getValuesCSR() A1Imr, A1Imc, A1Imv = A1ImMat.getValuesCSR() self.As[1] = (scsp.csr_matrix((A1Rev, A1Rec, A1Rer), shape = A1ReMat.size) + 1.j * scsp.csr_matrix((A1Imv, A1Imc, A1Imr), shape = A1ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der == 0: - return self.As[0] + mu(0) ** 2. * self.As[1] - return self.As[1] + return self._assembleA(mu, der, derI) diff --git a/rrompy/hfengines/linear_problem/helmholtz_square_bubble_domain_problem_engine.py b/rrompy/hfengines/linear_problem/helmholtz_square_bubble_domain_problem_engine.py index f4e7ea0..d8f039d 100644 --- a/rrompy/hfengines/linear_problem/helmholtz_square_bubble_domain_problem_engine.py +++ b/rrompy/hfengines/linear_problem/helmholtz_square_bubble_domain_problem_engine.py @@ -1,249 +1,245 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import scipy.sparse as scsp import fenics as fen -from rrompy.utilities.base.types import Np1D, ScOp, Tuple, FenExpr, paramVal +from rrompy.utilities.base.types import (Np1D, ScOp, Tuple, List, FenExpr, + paramVal) from rrompy.solver.fenics import fenZERO from .helmholtz_problem_engine import HelmholtzProblemEngine from rrompy.utilities.base import verbosityDepth -from rrompy.parameter import parameter +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD, hashIdxToDerivative as hashI) __all__ = ['HelmholtzSquareBubbleDomainProblemEngine'] class HelmholtzSquareBubbleDomainProblemEngine(HelmholtzProblemEngine): """ Solver for square bubble Helmholtz problems with parametric domain heigth. - \Delta u - kappa^2 * u = f in \Omega_mu = [0,\pi] x [0,\mu\pi] u = 0 on \Gamma_mu = \partial\Omega_mu with exact solution square bubble times plane wave. """ - + nAs, nbs = 3, 20 - rescalingExp = 1. - def __init__(self, kappa:float, theta:float, n:int, mu0 : np.complex = 1., + def __init__(self, kappa:float, theta:float, n:int, mu0 : paramVal = [1.], degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = mu0, degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.omega = kappa self.kappa = kappa self.theta = theta - self.mu0 = parameter(mu0) self.forcingTermMu = np.nan - mesh = fen.RectangleMesh(fen.Point(0,0), fen.Point(np.pi,np.pi), n, n) self.V = fen.FunctionSpace(mesh, "P", 3) - + self.rescalingExp = [1.] + def buildEnergyNormForm(self): # H1 """ Build sparse matrix (in CSR format) representative of scalar product. """ - mudxM = np.abs(self.mu0(0)) * (fen.dot(self.u.dx(0), self.v.dx(0)) - + fen.dot(self.u, self.v)) - imudy = 1. / np.abs(self.mu0(0)) * fen.dot(self.u.dx(1), self.v.dx(1)) + mudxM = np.abs(self.mu0(0, 0)) * (fen.dot(self.u.dx(0), self.v.dx(0)) + + fen.dot(self.u, self.v)) + imudy = 1. / np.abs(self.mu0(0, 0)) * fen.dot(self.u.dx(1), + self.v.dx(1)) normMatFen = fen.assemble((mudxM + imudy) * fen.dx) normMat = fen.as_backend_type(normMatFen).mat() self.energyNormMatrix = scsp.csr_matrix(normMat.getValuesCSR()[::-1], shape = normMat.size) - def getForcingTerm(self, mu : paramVal = ()) -> Tuple[FenExpr, FenExpr]: + def getForcingTerm(self, mu : paramVal = []) -> Tuple[FenExpr, FenExpr]: """Compute forcing term.""" mu = self.checkParameter(mu) if mu != self.forcingTermMu: if self.verbosity >= 25: verbosityDepth("INIT", ("Assembling base expression for " "forcing term."), timestamp = self.timestamp) pi = np.pi c, s = np.cos(self.theta), np.sin(self.theta) x, y = fen.SpatialCoordinate(self.V.mesh())[:] - muR, muI = np.real(mu(0)), np.imag(mu(0)) - mu2R, mu2I = np.real(mu(0) ** 2.), np.imag(mu(0) ** 2.) + muR, muI = np.real(mu(0, 0)), np.imag(mu(0, 0)) + mu2R, mu2I = np.real(mu(0, 0) ** 2.), np.imag(mu(0, 0) ** 2.) C = 16. / pi ** 4. bR = C * (2 * (x * (pi - x) + y * (pi - y)) + (self.kappa * s) ** 2. * (mu2R - 1.) * x * (pi - x) * y * (pi - y)) bI = C * (2 * self.kappa * (c * (pi - 2 * x) * y * (pi - y) + s * x * (pi - x) * (pi - 2 * y)) + (self.kappa * s) ** 2. * mu2I * x * (pi - x) * y * (pi - y)) wR = (fen.cos(self.kappa * (c * x + s * muR * y)) * fen.exp(self.kappa * s * muI * y)) wI = (fen.sin(self.kappa * (c * x + s * muR * y)) * fen.exp(self.kappa * s * muI * y)) self.forcingTerm = [bR * wR + bI * wI, bI * wR - bR * wI] self.forcingTermMu = mu if self.verbosity >= 25: verbosityDepth("DEL", "Done assembling base expression.", timestamp = self.timestamp) return self.forcingTerm - def getExtraFactorB(self, mu : paramVal = (), - der : int = 0) -> Tuple[FenExpr, FenExpr]: + def getExtraFactorB(self, mu : paramVal = [], + derI : int = 0) -> Tuple[FenExpr, FenExpr]: """Compute extra expression in RHS.""" mu = self.checkParameter(mu) def getPowMinusj(x, power): powR = x ** power powI = fenZERO if power % 2 == 1: powR, powI = powI, powR if (power + 3) % 4 < 2: powR, powI = - powR, - powI return powR, powI if self.verbosity >= 25: verbosityDepth("INIT", ("Assembling auxiliary expression for " "forcing term derivative."), timestamp = self.timestamp) from scipy.special import factorial as fact y = fen.SpatialCoordinate(self.V.mesh())[1] - powR, powI = [(self.kappa * np.sin(self.theta)) ** der * k\ - for k in getPowMinusj(y, der)] - mu2R, mu2I = np.real(mu(0) ** 2.), np.imag(mu(0) ** 2.) + powR, powI = [(self.kappa * np.sin(self.theta)) ** derI * k\ + for k in getPowMinusj(y, derI)] + mu2R, mu2I = np.real(mu(0, 0) ** 2.), np.imag(mu(0, 0) ** 2.) exprR = mu2R * powR - mu2I * powI exprI = mu2I * powR + mu2R * powI - if der >= 1: - muR, muI = np.real(2. * mu(0)), np.imag(2. * mu(0)) - powR, powI = [(self.kappa * np.sin(self.theta)) ** (der - 1) * k\ - * der for k in getPowMinusj(y, der - 1)] + if derI >= 1: + muR, muI = np.real(2. * mu(0, 0)), np.imag(2. * mu(0, 0)) + powR, powI = [(self.kappa * np.sin(self.theta)) ** (derI - 1) * k\ + * derI for k in getPowMinusj(y, derI - 1)] exprR += muR * powR - muI * powI exprI += muI * powR + muR * powI - if der >= 2: - powR, powI = [(self.kappa * np.sin(self.theta)) ** (der - 2) * k\ - * der * (der - 1) for k in getPowMinusj(y, der - 2)] + if derI >= 2: + powR, powI = [(self.kappa * np.sin(self.theta)) ** (derI - 2) * k\ + * derI * (derI - 1) for k in getPowMinusj(y, derI - 2)] exprR += powR exprI += powI - fac = fact(der) + fac = fact(derI) if self.verbosity >= 25: verbosityDepth("DEL", "Done assembling auxiliary expression.", timestamp = self.timestamp) return [exprR / fac, exprI / fac] - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: """Assemble (derivative of) operator of linear system.""" mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if Anull is not None: return Anull + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) self.autoSetDS() - if der <= 0 and self.As[0] is None: + if derI <= 0 and self.As[0] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A0.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZERO, self.DirichletBoundary) a0Re = fen.dot(self.u.dx(1), self.v.dx(1)) * fen.dx A0Re = fen.assemble(a0Re) DirichletBC0.apply(A0Re) A0ReMat = fen.as_backend_type(A0Re).mat() A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() self.As[0] = scsp.csr_matrix((A0Rev, A0Rec, A0Rer), shape = A0ReMat.size, dtype = np.complex) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der <= 2 and self.As[2] is None: + if derI <= 1 and self.As[1] is None: self.As[1] = 0. + if derI <= 2 and self.As[2] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A2.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZERO, self.DirichletBoundary) nRe, nIm = self.refractionIndex n2Re, n2Im = nRe * nRe - nIm * nIm, 2 * nRe * nIm k2Re, k2Im = np.real(self.omega ** 2), np.imag(self.omega ** 2) k2n2Re = k2Re * n2Re - k2Im * n2Im k2n2Im = k2Re * n2Im + k2Im * n2Re parsRe = self.iterReduceQuadratureDegree(zip([k2n2Re], ["kappaSquaredRefractionIndexSquaredReal"])) parsIm = self.iterReduceQuadratureDegree(zip([k2n2Im], ["kappaSquaredRefractionIndexSquaredImag"])) a2Re = (fen.dot(self.u.dx(0), self.v.dx(0)) - k2n2Re * fen.dot(self.u, self.v)) * fen.dx a2Im = - k2n2Im * fen.dot(self.u, self.v) * fen.dx A2Re = fen.assemble(a2Re, form_compiler_parameters = parsRe) A2Im = fen.assemble(a2Im, form_compiler_parameters = parsIm) DirichletBC0.zero(A2Re) DirichletBC0.zero(A2Im) A2ReMat = fen.as_backend_type(A2Re).mat() A2ImMat = fen.as_backend_type(A2Im).mat() A2Rer, A2Rec, A2Rev = A2ReMat.getValuesCSR() A2Imr, A2Imc, A2Imv = A2ImMat.getValuesCSR() self.As[2] = (scsp.csr_matrix((A2Rev, A2Rec, A2Rer), shape = A2ReMat.size) + 1.j * scsp.csr_matrix((A2Imv, A2Imc, A2Imr), shape = A2ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der == 0: - return self.As[0] + mu(0) ** 2 * self.As[2] - if der == 1: - return 2. * mu(0) * self.As[2] - return self.As[2] + return self._assembleA(mu, der, derI) - def b(self, mu : paramVal = (), der : int = 0, + def b(self, mu : paramVal = [], der : List[int] = 0, homogeneized : bool = False) -> Np1D: """Assemble (derivative of) RHS of linear system.""" mu = self.checkParameter(mu) - bnull = self.checkbInBounds(der, homogeneized) - if bnull is not None: return bnull - if homogeneized and self.mu0BC != mu: - self.u0BC = self.liftDirichletData(mu) - if self.bsmu != mu: - self.bsmu = mu - self.resetbs() - b = self.bsH[der] if homogeneized else self.bs[der] - if b is None: - if self.verbosity >= 20: - verbosityDepth("INIT", ("Assembling forcing term " - "b{}.").format(der), - timestamp = self.timestamp) - if der < self.nbs: - fRe, fIm = self.getForcingTerm(mu) - cRe, cIm = self.getExtraFactorB(mu, der) - cfRe = cRe * fRe - cIm * fIm - cfIm = cRe * fIm + cIm * fRe - else: - cfRe, cfIm = fenZERO, fenZERO - parsRe = self.iterReduceQuadratureDegree(zip([cfRe], - ["forcingTermDer{}Real".format(der)])) - parsIm = self.iterReduceQuadratureDegree(zip([cfIm], - ["forcingTermDer{}Imag".format(der)])) - L0Re = fen.dot(cfRe, self.v) * fen.dx - L0Im = fen.dot(cfIm, self.v) * fen.dx - b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) - b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) - if homogeneized: - Ader = self.A(mu, der) - b0Re[:] -= np.real(Ader.dot(self.u0BC)) - b0Im[:] -= np.imag(Ader.dot(self.u0BC)) - DirichletBC0 = fen.DirichletBC(self.V, fenZERO, - self.DirichletBoundary) - DirichletBC0.apply(b0Re) - DirichletBC0.apply(b0Im) - b = np.array(b0Re[:] + 1.j * b0Im[:], dtype = np.complex) - if homogeneized: - self.bsH[der] = b - else: - self.bs[der] = b - if self.verbosity >= 20: - verbosityDepth("DEL", "Done assembling forcing term.", - timestamp = self.timestamp) - return b + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + nbsTot = self.nbsH if homogeneized else self.nbs + bs = self.bsH if homogeneized else self.bs + if homogeneized and self.mu0 != self.mu0BC: + self.liftDirichletData(self.mu0) + for j in range(derI, nbsTot): + if bs[j] is None: + if self.verbosity >= 20: + verbosityDepth("INIT", ("Assembling forcing term " + "b{}.").format(j), + timestamp = self.timestamp) + if j < self.nbs: + fRe, fIm = self.getForcingTerm(self.mu0) + cRe, cIm = self.getExtraFactorB(self.mu0, j) + cfRe, cfIm = cRe * fRe - cIm * fIm, cRe * fIm + cIm * fRe + else: + cfRe, cfIm = fenZERO, fenZERO + parsRe = self.iterReduceQuadratureDegree(zip([cfRe], + ["forcingTermDer{}Real".format(j)])) + parsIm = self.iterReduceQuadratureDegree(zip([cfIm], + ["forcingTermDer{}Imag".format(j)])) + L0Re = fen.dot(cfRe, self.v) * fen.dx + L0Im = fen.dot(cfIm, self.v) * fen.dx + b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) + b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) + if homogeneized: + Ader = self.A(self.mu0, hashI(j)) + b0Re[:] -= np.real(Ader.dot(self.liftedDirichletDatum)) + b0Im[:] -= np.imag(Ader.dot(self.liftedDirichletDatum)) + DirichletBC0 = fen.DirichletBC(self.V, fenZERO, + self.DirichletBoundary) + DirichletBC0.apply(b0Re) + DirichletBC0.apply(b0Im) + if homogeneized: + self.bsH[j] = np.array(b0Re[:] + 1.j * b0Im[:], + dtype = np.complex) + else: + self.bs[j] = np.array(b0Re[:] + 1.j * b0Im[:], + dtype = np.complex) + if self.verbosity >= 20: + verbosityDepth("DEL", "Done assembling forcing term.", + timestamp = self.timestamp) + return self._assembleb(mu - self.mu0, der, derI, homogeneized) diff --git a/rrompy/hfengines/linear_problem/helmholtz_square_bubble_problem_engine.py b/rrompy/hfengines/linear_problem/helmholtz_square_bubble_problem_engine.py index 13d9c30..1fc3ca8 100644 --- a/rrompy/hfengines/linear_problem/helmholtz_square_bubble_problem_engine.py +++ b/rrompy/hfengines/linear_problem/helmholtz_square_bubble_problem_engine.py @@ -1,53 +1,52 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import fenics as fen from .helmholtz_problem_engine import HelmholtzProblemEngine __all__ = ['HelmholtzSquareBubbleProblemEngine'] class HelmholtzSquareBubbleProblemEngine(HelmholtzProblemEngine): """ Solver for square bubble Helmholtz problems with parametric wavenumber. - \Delta u - omega^2 * u = f in \Omega u = 0 on \Gamma_D with exact solution square bubble times plane wave. """ + def __init__(self, kappa:float, theta:float, n:int, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = [kappa], degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.omega = kappa - pi = np.pi mesh = fen.RectangleMesh(fen.Point(0, 0), fen.Point(pi, pi), n, n) self.V = fen.FunctionSpace(mesh, "P", 3) c, s = np.cos(theta), np.sin(theta) x, y = fen.SpatialCoordinate(mesh)[:] C = 16. / pi ** 4. bR = C * 2 * (x * (pi - x) + y * (pi - y)) bI = C * 2 * kappa * (c * (pi - 2 * x) * y * (pi - y) + s * x * (pi - x) * (pi - 2 * y)) wR = fen.cos(kappa * (c * x + s * y)) wI = fen.sin(kappa * (c * x + s * y)) self.forcingTerm = [bR * wR + bI * wI, bI * wR - bR * wI] diff --git a/rrompy/hfengines/linear_problem/helmholtz_square_transmission_problem_engine.py b/rrompy/hfengines/linear_problem/helmholtz_square_transmission_problem_engine.py index 07b4665..fbc05fc 100644 --- a/rrompy/hfengines/linear_problem/helmholtz_square_transmission_problem_engine.py +++ b/rrompy/hfengines/linear_problem/helmholtz_square_transmission_problem_engine.py @@ -1,75 +1,74 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import fenics as fen import ufl from .helmholtz_problem_engine import HelmholtzProblemEngine __all__ = ['HelmholtzSquareTransmissionProblemEngine'] class HelmholtzSquareTransmissionProblemEngine(HelmholtzProblemEngine): """ Solver for square transmission Helmholtz problems with parametric wavenumber. - \Delta u - omega^2 * n^2 * u = 0 in \Omega u = 0 on \Gamma_D with exact solution a transmitted plane wave. """ + def __init__(self, nT:float, nB:float, kappa:float, theta:float, n:int, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = [kappa], degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.omega = kappa - mesh = fen.RectangleMesh(fen.Point(-np.pi/2, -np.pi/2), fen.Point(np.pi/2, np.pi/2), n, n) self.V = fen.FunctionSpace(mesh, "P", 3) dx, dy = np.cos(theta), np.sin(theta) Kx = kappa * nB * dx Ky = kappa * (nT**2. - (nB * dx)**2. + 0.j)**.5 T = 2 * kappa * nB * dy / (Ky + kappa * nB * dy) x, y = fen.SpatialCoordinate(mesh)[:] TR, TI = np.real(T), np.imag(T) if np.isclose(np.imag(Ky), 0.): u0RT = (TR * fen.cos(Kx * x + np.real(Ky) * y) - TI * fen.sin(Kx * x + np.real(Ky) * y)) u0IT = (TR * fen.sin(Kx * x + np.real(Ky) * y) + TI * fen.cos(Kx * x + np.real(Ky) * y)) else: u0RT = fen.exp(- np.imag(Ky) * y) * (TR * fen.cos(Kx * x) - TI * fen.sin(Kx * x)) u0IT = fen.exp(- np.imag(Ky) * y) * (TR * fen.sin(Kx * x) + TI * fen.cos(Kx * x)) u0RB = (fen.cos(kappa * nB * (dx * x + dy * y)) + (TR - 1) * fen.cos(kappa * nB * (dx*x - dy*y)) - TI * fen.sin(kappa * nB * (dx*x - dy*y))) u0IB = (fen.sin(kappa * nB * (dx * x + dy * y)) + (TR - 1) * fen.sin(kappa * nB * (dx*x - dy*y)) + TI * fen.cos(kappa * nB * (dx*x - dy*y))) u0R = ufl.conditional(ufl.ge(y, 0.), u0RT, u0RB) u0I = ufl.conditional(ufl.ge(y, 0.), u0IT, u0IB) self.refractionIndex = ufl.conditional(ufl.ge(y, 0.), fen.Constant(nT), fen.Constant(nB)) self.DirichletDatum = [u0R, u0I] diff --git a/rrompy/hfengines/linear_problem/laplace_base_problem_engine.py b/rrompy/hfengines/linear_problem/laplace_base_problem_engine.py index 8684ca4..cbab415 100644 --- a/rrompy/hfengines/linear_problem/laplace_base_problem_engine.py +++ b/rrompy/hfengines/linear_problem/laplace_base_problem_engine.py @@ -1,317 +1,321 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import scipy.sparse as scsp import fenics as fen from rrompy.hfengines.base.problem_engine_base import ProblemEngineBase -from rrompy.utilities.base.types import Np1D, ScOp, paramVal, paramList +from rrompy.utilities.base.types import Np1D, List, ScOp, paramVal, paramList from rrompy.solver.fenics import fenZERO, fenONE, H1NormMatrix from rrompy.utilities.base import verbosityDepth +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD) +from rrompy.parameter import checkParameter __all__ = ['LaplaceBaseProblemEngine'] class LaplaceBaseProblemEngine(ProblemEngineBase): """ Solver for generic Laplace problems. - \nabla \cdot (a \nabla u) = f in \Omega u = u0 on \Gamma_D \partial_nu = g1 on \Gamma_N \partial_nu + h u = g2 on \Gamma_R Attributes: verbosity: Verbosity level. BCManager: Boundary condition manager. V: Real FE space. u: Generic trial functions for variational form evaluation. v: Generic test functions for variational form evaluation. As: Scipy sparse array representation (in CSC format) of As. bs: Numpy array representation of bs. bsH: Numpy array representation of homogeneized bs. energyNormMatrix: Scipy sparse matrix representing inner product over V. - bsmu: Mu value of last bs evaluation. - liftDirichletDatamu: Mu value of last Dirichlet datum evaluation. liftedDirichletDatum: Dofs of Dirichlet datum lifting. mu0BC: Mu value of last Dirichlet datum lifting. degree_threshold: Threshold for ufl expression interpolation degree. omega: Value of omega. diffusivity: Value of a. forcingTerm: Value of f. DirichletDatum: Value of u0. NeumannDatum: Value of g1. RobinDatumG: Value of g2. RobinDatumH: Value of h. DirichletBoundary: Function handle to \Gamma_D. NeumannBoundary: Function handle to \Gamma_N. RobinBoundary: Function handle to \Gamma_R. ds: Boundary measure 2-tuple (resp. for Neumann and Robin boundaries). A0: Scipy sparse array representation (in CSC format) of A0. b0: Numpy array representation of b0. dsToBeSet: Whether ds needs to be set. """ - def __init__(self, degree_threshold : int = np.inf, verbosity : int = 10, - timestamp : bool = True): + def __init__(self, mu0 : paramVal = [], degree_threshold : int = np.inf, + verbosity : int = 10, timestamp : bool = True): super().__init__(degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.omega = 0. + self.mu0 = checkParameter(mu0) + self.npar = self.mu0.shape[1] + self.omega = np.abs(self.mu0(0, 0)) if self.npar > 0 else 0. self.diffusivity = fenONE self.forcingTerm = fenZERO self.DirichletDatum = fenZERO self.NeumannDatum = fenZERO self.RobinDatumG = fenZERO self.RobinDatumH = fenZERO @property def V(self): """Value of V.""" return self._V @V.setter def V(self, V): ProblemEngineBase.V.fset(self, V) self.dsToBeSet = True @property def diffusivity(self): """Value of a.""" return self._diffusivity @diffusivity.setter def diffusivity(self, diffusivity): self.resetAs() if not isinstance(diffusivity, (list, tuple,)): diffusivity = [diffusivity, fenZERO] self._diffusivity = diffusivity @property def forcingTerm(self): """Value of f.""" return self._forcingTerm @forcingTerm.setter def forcingTerm(self, forcingTerm): self.resetbs() if not isinstance(forcingTerm, (list, tuple,)): forcingTerm = [forcingTerm, fenZERO] self._forcingTerm = forcingTerm @property def DirichletDatum(self): """Value of u0.""" return self._DirichletDatum @DirichletDatum.setter def DirichletDatum(self, DirichletDatum): self.resetbs() if not isinstance(DirichletDatum, (list, tuple,)): DirichletDatum = [DirichletDatum, fenZERO] self._DirichletDatum = DirichletDatum @property def NeumannDatum(self): """Value of g1.""" return self._NeumannDatum @NeumannDatum.setter def NeumannDatum(self, NeumannDatum): self.resetbs() if not isinstance(NeumannDatum, (list, tuple,)): NeumannDatum = [NeumannDatum, fenZERO] self._NeumannDatum = NeumannDatum @property def RobinDatumG(self): """Value of g2.""" return self._RobinDatumG @RobinDatumG.setter def RobinDatumG(self, RobinDatumG): self.resetbs() if not isinstance(RobinDatumG, (list, tuple,)): RobinDatumG = [RobinDatumG, fenZERO] self._RobinDatumG = RobinDatumG @property def RobinDatumH(self): """Value of h.""" return self._RobinDatumH @RobinDatumH.setter def RobinDatumH(self, RobinDatumH): self.resetAs() if not isinstance(RobinDatumH, (list, tuple,)): RobinDatumH = [RobinDatumH, fenZERO] self._RobinDatumH = RobinDatumH @property def DirichletBoundary(self): """Function handle to DirichletBoundary.""" return self.BCManager.DirichletBoundary @DirichletBoundary.setter def DirichletBoundary(self, DirichletBoundary): self.resetAs() self.resetbs() self.BCManager.DirichletBoundary = DirichletBoundary @property def NeumannBoundary(self): """Function handle to NeumannBoundary.""" return self.BCManager.NeumannBoundary @NeumannBoundary.setter def NeumannBoundary(self, NeumannBoundary): self.resetAs() self.resetbs() self.dsToBeSet = True self.BCManager.NeumannBoundary = NeumannBoundary @property def RobinBoundary(self): """Function handle to RobinBoundary.""" return self.BCManager.RobinBoundary @RobinBoundary.setter def RobinBoundary(self, RobinBoundary): self.resetAs() self.resetbs() self.dsToBeSet = True self.BCManager.RobinBoundary = RobinBoundary def autoSetDS(self): """Set FEniCS boundary measure based on boundary function handles.""" if self.dsToBeSet: if self.verbosity >= 20: verbosityDepth("INIT", "Initializing boundary measures.", timestamp = self.timestamp) mesh = self.V.mesh() NB = self.NeumannBoundary RB = self.RobinBoundary boundary_markers = fen.MeshFunction("size_t", mesh, mesh.topology().dim() - 1) NB.mark(boundary_markers, 0) RB.mark(boundary_markers, 1) self.ds = fen.Measure("ds", domain = mesh, subdomain_data = boundary_markers) self.dsToBeSet = False if self.verbosity >= 20: verbosityDepth("DEL", "Done initializing boundary measures.", timestamp = self.timestamp) def buildEnergyNormForm(self): """ Build sparse matrix (in CSR format) representative of scalar product. """ self.energyNormMatrix = H1NormMatrix(self.V, np.abs(self.omega)**2) - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: """Assemble (derivative of) operator of linear system.""" mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if Anull is not None: return Anull - self.autoSetDS() - if self.As[0] is None: + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + if derI <= 0 and self.As[0] is None: + self.autoSetDS() if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A0.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZERO, self.DirichletBoundary) aRe, aIm = self.diffusivity hRe, hIm = self.RobinDatumH termNames = ["diffusivity", "RobinDatumH"] parsRe = self.iterReduceQuadratureDegree(zip([aRe, hRe], [x + "Real" for x in termNames])) parsIm = self.iterReduceQuadratureDegree(zip([aIm, hIm], [x + "Imag" for x in termNames])) a0Re = (aRe * fen.dot(fen.grad(self.u), fen.grad(self.v)) * fen.dx + hRe * fen.dot(self.u, self.v) * self.ds(1)) a0Im = (aIm * fen.dot(fen.grad(self.u), fen.grad(self.v)) * fen.dx + hIm * fen.dot(self.u, self.v) * self.ds(1)) A0Re = fen.assemble(a0Re, form_compiler_parameters = parsRe) A0Im = fen.assemble(a0Im, form_compiler_parameters = parsIm) DirichletBC0.apply(A0Re) DirichletBC0.zero(A0Im) A0ReMat = fen.as_backend_type(A0Re).mat() A0ImMat = fen.as_backend_type(A0Im).mat() A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() A0Imr, A0Imc, A0Imv = A0ImMat.getValuesCSR() self.As[0] = (scsp.csr_matrix((A0Rev, A0Rec, A0Rer), shape = A0ReMat.size) + 1.j * scsp.csr_matrix((A0Imv, A0Imc, A0Imr), shape = A0ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - return self.As[0] + return self._assembleA(mu, der, derI) - def b(self, mu : paramVal = (), der : int = 0, + def b(self, mu : paramVal = [], der : List[int] = 0, homogeneized : bool = False) -> Np1D: """Assemble (derivative of) RHS of linear system.""" mu = self.checkParameter(mu) - bnull = self.checkbInBounds(der, homogeneized) - if bnull is not None: return bnull - if homogeneized and self.mu0BC != mu: - self.u0BC = self.liftDirichletData(mu) - if max(self.nbs, self.nAs * homogeneized) > 1 and self.bsmu != mu: - self.bsmu = mu - self.resetbs() - b = self.bsH[der] if homogeneized else self.bs[der] - if b is None: - self.autoSetDS() - if self.verbosity >= 20: - verbosityDepth("INIT", ("Assembling forcing term " - "b{}.").format(der), - timestamp = self.timestamp) - if der == 0: - fRe, fIm = self.forcingTerm - g1Re, g1Im = self.NeumannDatum - g2Re, g2Im = self.RobinDatumG - else: - fRe, fIm = fenZERO, fenZERO - g1Re, g1Im = fenZERO, fenZERO - g2Re, g2Im = fenZERO, fenZERO - termNames = ["forcingTerm", "NeumannDatum", "RobinDatumG"] - parsRe = self.iterReduceQuadratureDegree(zip( + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + nbsTot = self.nbsH if homogeneized else self.nbs + bs = self.bsH if homogeneized else self.bs + if homogeneized and self.mu0 != self.mu0BC: + self.liftDirichletData(self.mu0) + for j in range(derI, nbsTot): + if bs[j] is None: + self.autoSetDS() + if self.verbosity >= 20: + verbosityDepth("INIT", ("Assembling forcing term " + "b{}.").format(j), + timestamp = self.timestamp) + if derI == 0: + fRe, fIm = self.forcingTerm + g1Re, g1Im = self.NeumannDatum + g2Re, g2Im = self.RobinDatumG + else: + fRe, fIm = fenZERO, fenZERO + g1Re, g1Im = fenZERO, fenZERO + g2Re, g2Im = fenZERO, fenZERO + termNames = ["forcingTerm", "NeumannDatum", "RobinDatumG"] + parsRe = self.iterReduceQuadratureDegree(zip( [fRe, g1Re, g2Re], [x + "Real" for x in termNames])) - parsIm = self.iterReduceQuadratureDegree(zip( + parsIm = self.iterReduceQuadratureDegree(zip( [fIm, g1Im, g2Im], [x + "Imag" for x in termNames])) - L0Re = (fen.dot(fRe, self.v) * fen.dx - + fen.dot(g1Re, self.v) * self.ds(0) - + fen.dot(g2Re, self.v) * self.ds(1)) - L0Im = (fen.dot(fIm, self.v) * fen.dx - + fen.dot(g1Im, self.v) * self.ds(0) - + fen.dot(g2Im, self.v) * self.ds(1)) - b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) - b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) - if homogeneized: - Ader = self.A(mu, der) - b0Re[:] -= np.real(Ader.dot(self.u0BC)) - b0Im[:] -= np.imag(Ader.dot(self.u0BC)) - DBCR = fen.DirichletBC(self.V, fenZERO, self.DirichletBoundary) - DBCI = fen.DirichletBC(self.V, fenZERO, self.DirichletBoundary) - else: - DBCR = fen.DirichletBC(self.V, self.DirichletDatum[0], - self.DirichletBoundary) - DBCI = fen.DirichletBC(self.V, self.DirichletDatum[1], - self.DirichletBoundary) - DBCR.apply(b0Re) - DBCI.apply(b0Im) - b = np.array(b0Re[:] + 1.j * b0Im[:], dtype = np.complex) - if homogeneized: - self.bsH[der] = b - else: - self.bs[der] = b - if self.verbosity >= 20: - verbosityDepth("DEL", "Done assembling forcing term.", - timestamp = self.timestamp) - return b + L0Re = (fen.dot(fRe, self.v) * fen.dx + + fen.dot(g1Re, self.v) * self.ds(0) + + fen.dot(g2Re, self.v) * self.ds(1)) + L0Im = (fen.dot(fIm, self.v) * fen.dx + + fen.dot(g1Im, self.v) * self.ds(0) + + fen.dot(g2Im, self.v) * self.ds(1)) + b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) + b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) + if homogeneized: + Ader = self.A(self.mu0, der) + b0Re[:] -= np.real(Ader.dot(self.liftedDirichletDatum)) + b0Im[:] -= np.imag(Ader.dot(self.liftedDirichletDatum)) + DBCR = fen.DirichletBC(self.V, fenZERO, + self.DirichletBoundary) + DBCI = fen.DirichletBC(self.V, fenZERO, + self.DirichletBoundary) + else: + DBCR = fen.DirichletBC(self.V, self.DirichletDatum[0], + self.DirichletBoundary) + DBCI = fen.DirichletBC(self.V, self.DirichletDatum[1], + self.DirichletBoundary) + DBCR.apply(b0Re) + DBCI.apply(b0Im) + b = np.array(b0Re[:] + 1.j * b0Im[:], dtype = np.complex) + if homogeneized: + self.bsH[j] = b + else: + self.bs[j] = b + if self.verbosity >= 20: + verbosityDepth("DEL", "Done assembling forcing term.", + timestamp = self.timestamp) + return self._assembleb(mu - self.mu0, der, derI, homogeneized) diff --git a/rrompy/hfengines/linear_problem/laplace_disk_gaussian.py b/rrompy/hfengines/linear_problem/laplace_disk_gaussian.py index 75ebb43..cbd6187 100644 --- a/rrompy/hfengines/linear_problem/laplace_disk_gaussian.py +++ b/rrompy/hfengines/linear_problem/laplace_disk_gaussian.py @@ -1,163 +1,163 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import fenics as fen from rrompy.utilities.base.types import Np1D, Tuple, FenExpr, paramVal from .laplace_base_problem_engine import LaplaceBaseProblemEngine from rrompy.solver.fenics import fenZERO, fenONE from rrompy.utilities.base import verbosityDepth +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD, hashIdxToDerivative as hashI) __all__ = ['LaplaceDiskGaussian'] class LaplaceDiskGaussian(LaplaceBaseProblemEngine): """ Solver for disk Laplace problems with parametric forcing term center. - \Delta u = C exp(-.5 * ||\cdot - (mu, 0)||^2) in \Omega = B(0, 5) u = 0 on \partial\Omega. """ - - npar = 1 + nbs = 20 - def __init__(self, n:int, degree_threshold : int = np.inf, + def __init__(self, n:int, mu0 : paramVal = [0.], degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = mu0, degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) self.computebsFactors() self.forcingTermMu = np.nan import mshr mesh = mshr.generate_mesh(mshr.Circle(fen.Point(0., 0.), 5.), n) self.V = fen.FunctionSpace(mesh, "P", 3) - def getForcingTerm(self, mu : paramVal = ()) -> Tuple[FenExpr, FenExpr]: + def getForcingTerm(self, mu : paramVal = []) -> Tuple[FenExpr, FenExpr]: """Compute forcing term.""" mu = self.checkParameter(mu) if mu != self.forcingTermMu: if self.verbosity >= 25: verbosityDepth("INIT", ("Assembling base expression for " "forcing term."), timestamp = self.timestamp) x, y = fen.SpatialCoordinate(self.V.mesh())[:] - C = np.exp(-.5 * mu(0) ** 2.) + C = np.exp(-.5 * mu(0, 0) ** 2.) CR, CI = np.real(C), np.imag(C) f0 = (2 * np.pi) ** -.5 * fen.exp(-.5 * (x ** 2. + y ** 2.)) - muR, muI = np.real(mu(0)), np.imag(mu(0)) + muR, muI = np.real(mu(0, 0)), np.imag(mu(0, 0)) f1R = fen.exp(muR * x) * fen.cos(muI * x) f1I = fen.exp(muR * x) * fen.sin(muI * x) self.forcingTerm = [f0 * (CR * f1R - CI * f1I), f0 * (CR * f1I + CI * f1R)] self.forcingTermMu = mu if self.verbosity >= 25: verbosityDepth("DEL", "Done assembling base expression.", timestamp = self.timestamp) return self.forcingTerm def computebsFactors(self): self.bsFactors = np.zeros((self.nbs, self.nbs), dtype = float) self.bsFactors[0, 0] = 1. self.bsFactors[1, 1] = 1. for j in range(2, self.nbs): l = (j + 1) % 2 + 1 J = np.arange(l, j + 1, 2) self.bsFactors[j, J] = self.bsFactors[j - 1, J - 1] if l == 2: l = 0 J = np.arange(l, j, 2) self.bsFactors[j, J] += np.multiply(- 1 - J, self.bsFactors[j - 1, J + 1]) self.bsFactors[j, l : j + 2 : 2] /= j - def getExtraFactorB(self, mu : paramVal = (), - der : int = 0) -> Tuple[FenExpr, FenExpr]: + def getExtraFactorB(self, mu : paramVal = [], + derI : int = 0) -> Tuple[FenExpr, FenExpr]: """Compute extra expression in RHS.""" mu = self.checkParameter(mu) if self.verbosity >= 25: verbosityDepth("INIT", ("Assembling auxiliary expression for " "forcing term derivative."), timestamp = self.timestamp) - muR, muI = np.real(mu(0)), np.imag(mu(0)) + muR, muI = np.real(mu(0, 0)), np.imag(mu(0, 0)) x = fen.SpatialCoordinate(self.V.mesh())[0] - l = der % 2 + l = derI % 2 if l == 0: powR, powI = fenONE, fenZERO else: powR, powI = x - muR, fen.Constant(muI) - exprR, exprI = [self.bsFactors[der, l] * k for k in [powR, powI]] - for j in range(l + 2, der + 1, 2): + exprR, exprI = [self.bsFactors[derI, l] * k for k in [powR, powI]] + for j in range(l + 2, derI + 1, 2): for _ in range(2): powR, powI = (powR * (x - muR) - powI * muI, powR * muI + powI * (x - muR)) - exprR += self.bsFactors[der, j] * powR - exprI += self.bsFactors[der, j] * powI + exprR += self.bsFactors[derI, j] * powR + exprI += self.bsFactors[derI, j] * powI if self.verbosity >= 25: verbosityDepth("DEL", "Done assembling auxiliary expression.", timestamp = self.timestamp) return[exprR, exprI] - def b(self, mu : paramVal = (), der : int = 0, + def b(self, mu : paramVal = [], der : int = 0, homogeneized : bool = False) -> Np1D: """Assemble (derivative of) RHS of linear system.""" mu = self.checkParameter(mu) - bnull = self.checkbInBounds(der, homogeneized) - if bnull is not None: return bnull - if homogeneized and self.mu0BC != mu: - self.u0BC = self.liftDirichletData(mu) - if self.bsmu != mu: - self.bsmu = mu - self.resetbs() - b = self.bsH[der] if homogeneized else self.bs[der] - if b is None: - if self.verbosity >= 20: - verbosityDepth("INIT", "Assembling forcing term b{}.".format( - der), - timestamp = self.timestamp) - if der < self.nbs: - fRe, fIm = self.getForcingTerm(mu) - cRe, cIm = self.getExtraFactorB(mu, der) - cfRe = cRe * fRe - cIm * fIm - cfIm = cRe * fIm + cIm * fRe - else: - cfRe, cfIm = fenZERO, fenZERO - parsRe = self.iterReduceQuadratureDegree(zip([cfRe], - ["forcingTermDer{}Real".format(der)])) - parsIm = self.iterReduceQuadratureDegree(zip([cfIm], - ["forcingTermDer{}Imag".format(der)])) - L0Re = fen.dot(cfRe, self.v) * fen.dx - L0Im = fen.dot(cfIm, self.v) * fen.dx - b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) - b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) - if homogeneized: - Ader = self.A(mu, der) - b0Re[:] -= np.real(Ader.dot(self.u0BC)) - b0Im[:] -= np.imag(Ader.dot(self.u0BC)) - DirichletBC0 = fen.DirichletBC(self.V, fenZERO, - self.DirichletBoundary) - DirichletBC0.apply(b0Re) - DirichletBC0.apply(b0Im) - b = np.array(b0Re[:] + 1.j * b0Im[:], dtype = np.complex) - if homogeneized: - self.bsH[der] = b - else: - self.bs[der] = b - if self.verbosity >= 20: - verbosityDepth("DEL", "Done assembling forcing term.", - timestamp = self.timestamp) - return b + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + nbsTot = self.nbsH if homogeneized else self.nbs + bs = self.bsH if homogeneized else self.bs + if homogeneized and self.mu0 != self.mu0BC: + self.liftDirichletData(self.mu0) + for j in range(derI, nbsTot): + if bs[j] is None: + if self.verbosity >= 20: + verbosityDepth("INIT", ("Assembling forcing term " + "b{}.").format(j), + timestamp = self.timestamp) + if j < self.nbs: + fRe, fIm = self.getForcingTerm(self.mu0) + cRe, cIm = self.getExtraFactorB(self.mu0, j) + cfRe, cfIm = cRe * fRe - cIm * fIm, cRe * fIm + cIm * fRe + else: + cfRe, cfIm = fenZERO, fenZERO + parsRe = self.iterReduceQuadratureDegree(zip([cfRe], + ["forcingTermDer{}Real".format(j)])) + parsIm = self.iterReduceQuadratureDegree(zip([cfIm], + ["forcingTermDer{}Imag".format(j)])) + L0Re = fen.dot(cfRe, self.v) * fen.dx + L0Im = fen.dot(cfIm, self.v) * fen.dx + b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) + b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) + if homogeneized: + Ader = self.A(self.mu0, hashI(j)) + b0Re[:] -= np.real(Ader.dot(self.liftedDirichletDatum)) + b0Im[:] -= np.imag(Ader.dot(self.liftedDirichletDatum)) + DirichletBC0 = fen.DirichletBC(self.V, fenZERO, + self.DirichletBoundary) + DirichletBC0.apply(b0Re) + DirichletBC0.apply(b0Im) + if homogeneized: + self.bsH[j] = np.array(b0Re[:] + 1.j * b0Im[:], + dtype = np.complex) + else: + self.bs[j] = np.array(b0Re[:] + 1.j * b0Im[:], + dtype = np.complex) + if self.verbosity >= 20: + verbosityDepth("DEL", "Done assembling forcing term.", + timestamp = self.timestamp) + return self._assembleb(mu - self.mu0, der, derI, homogeneized) diff --git a/rrompy/hfengines/linear_problem/laplace_disk_gaussian_2.py b/rrompy/hfengines/linear_problem/laplace_disk_gaussian_2.py deleted file mode 100644 index 09638b6..0000000 --- a/rrompy/hfengines/linear_problem/laplace_disk_gaussian_2.py +++ /dev/null @@ -1,133 +0,0 @@ -# Copyright (C) 2018 by the RROMPy authors -# -# This file is part of RROMPy. -# -# RROMPy is free software: you can redistribute it and/or modify -# it under the terms of the GNU Lesser General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# RROMPy is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public License -# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. -# - -import numpy as np -import fenics as fen -from rrompy.utilities.base.types import Np1D, Tuple, FenExpr, paramVal -from .laplace_base_problem_engine import LaplaceBaseProblemEngine -from rrompy.solver.fenics import fenZERO, fenONE -from rrompy.utilities.base import verbosityDepth -from rrompy.utilities.exception_manager import RROMPyException - -__all__ = ['LaplaceDiskGaussian2'] - -class LaplaceDiskGaussian2(LaplaceBaseProblemEngine): - """ - Solver for disk Laplace problems with parametric forcing term center. - - \Delta u = C exp(-.5 * ||\cdot - (mu1, mu2)||^2) in \Omega = B(0, 5) - u = 0 on \partial\Omega. - """ - - npar = 2 - nAs, nbs = 1, 1 - - def __init__(self, n:int, degree_threshold : int = np.inf, - verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, - verbosity = verbosity, timestamp = timestamp) -# self.computebsFactors() - self.forcingTermMu = np.nan - - import mshr - mesh = mshr.generate_mesh(mshr.Circle(fen.Point(0., 0.), 5.), n) - self.V = fen.FunctionSpace(mesh, "P", 3) - - def getForcingTerm(self, mu : paramVal = ()) -> Tuple[FenExpr, FenExpr]: - """Compute forcing term.""" - mu = self.checkParameter(mu) - if mu != self.forcingTermMu: - if self.verbosity >= 25: - verbosityDepth("INIT", ("Assembling base expression for " - "forcing term."), - timestamp = self.timestamp) - x, y = fen.SpatialCoordinate(self.V.mesh())[:] - C = np.exp(-.5 * (mu(0) ** 2. + mu(1) ** 2.)) - CR, CI = np.real(C), np.imag(C) - f0 = (2 * np.pi) ** -.5 * fen.exp(-.5 * (x ** 2. + y ** 2.)) - muxR, muxI = np.real(mu(0)), np.imag(mu(0)) - muyR, muyI = np.real(mu(1)), np.imag(mu(1)) - f1R = fen.exp(muxR * x + muyR * y) * fen.cos(muxI * x + muyI * y) - f1I = fen.exp(muxR * x + muyR * y) * fen.sin(muxI * x + muyI * y) - self.forcingTerm = [f0 * (CR * f1R - CI * f1I), - f0 * (CR * f1I + CI * f1R)] - self.forcingTermMu = mu - if self.verbosity >= 25: - verbosityDepth("DEL", "Done assembling base expression.", - timestamp = self.timestamp) - return self.forcingTerm - - def computebsFactors(self): - raise RROMPyException("Not implemented.") - - def getExtraFactorB(self, mu : paramVal = (), - der : int = 0) -> Tuple[FenExpr, FenExpr]: - raise RROMPyException("Not implemented.") - - def b(self, mu : paramVal = (), der : int = 0, - homogeneized : bool = False) -> Np1D: - """Assemble (derivative of) RHS of linear system.""" - mu = self.checkParameter(mu) - bnull = self.checkbInBounds(der, homogeneized) - if der > 0: - raise RROMPyException("Not implemented.") - if bnull is not None: return bnull - if homogeneized and self.mu0BC != mu: - self.u0BC = self.liftDirichletData(mu) - if self.bsmu != mu: - self.bsmu = mu - self.resetbs() - b = self.bsH[der] if homogeneized else self.bs[der] - if b is None: - if self.verbosity >= 20: - verbosityDepth("INIT", "Assembling forcing term b{}.".format( - der), - timestamp = self.timestamp) - if der < self.nbs: - fRe, fIm = self.getForcingTerm(mu) -# cRe, cIm = self.getExtraFactorB(mu, der) - cRe, cIm = fenONE, fenZERO - cfRe = cRe * fRe - cIm * fIm - cfIm = cRe * fIm + cIm * fRe - else: - cfRe, cfIm = fenZERO, fenZERO - parsRe = self.iterReduceQuadratureDegree(zip([cfRe], - ["forcingTermDer{}Real".format(der)])) - parsIm = self.iterReduceQuadratureDegree(zip([cfIm], - ["forcingTermDer{}Imag".format(der)])) - L0Re = fen.dot(cfRe, self.v) * fen.dx - L0Im = fen.dot(cfIm, self.v) * fen.dx - b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) - b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) - if homogeneized: - Ader = self.A(mu, der) - b0Re[:] -= np.real(Ader.dot(self.u0BC)) - b0Im[:] -= np.imag(Ader.dot(self.u0BC)) - DirichletBC0 = fen.DirichletBC(self.V, fenZERO, - self.DirichletBoundary) - DirichletBC0.apply(b0Re) - DirichletBC0.apply(b0Im) - b = np.array(b0Re[:] + 1.j * b0Im[:], dtype = np.complex) - if homogeneized: - self.bsH[der] = b - else: - self.bs[der] = b - if self.verbosity >= 20: - verbosityDepth("DEL", "Done assembling forcing term.", - timestamp = self.timestamp) - return b - diff --git a/rrompy/hfengines/linear_problem/scattering_problem_engine.py b/rrompy/hfengines/linear_problem/scattering_problem_engine.py index 644f61f..2a6b838 100644 --- a/rrompy/hfengines/linear_problem/scattering_problem_engine.py +++ b/rrompy/hfengines/linear_problem/scattering_problem_engine.py @@ -1,178 +1,174 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from numpy import inf import scipy.sparse as scsp import fenics as fen -from rrompy.utilities.base.types import ScOp, paramVal +from rrompy.utilities.base.types import List, ScOp, paramVal from rrompy.solver.fenics import fenZERO from rrompy.utilities.base import verbosityDepth from .helmholtz_problem_engine import HelmholtzProblemEngine +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD) from rrompy.utilities.exception_manager import RROMPyWarning __all__ = ['ScatteringProblemEngine'] class ScatteringProblemEngine(HelmholtzProblemEngine): """ Solver for scattering problems with parametric wavenumber. - \nabla \cdot (a \nabla u) - omega^2 * n**2 * u = f in \Omega u = u0 on \Gamma_D \partial_nu = g1 on \Gamma_N \partial_nu +- i omega u = g2 on \Gamma_R Attributes: verbosity: Verbosity level. BCManager: Boundary condition manager. V: Real FE space. u: Generic trial functions for variational form evaluation. v: Generic test functions for variational form evaluation. As: Scipy sparse array representation (in CSC format) of As. bs: Numpy array representation of bs. bsH: Numpy array representation of homogeneized bs. energyNormMatrix: Scipy sparse matrix representing inner product over V. - bsmu: Mu value of last bs evaluation. - liftDirichletDatamu: Mu value of last Dirichlet datum evaluation. liftedDirichletDatum: Dofs of Dirichlet datum lifting. mu0BC: Mu value of last Dirichlet datum lifting. degree_threshold: Threshold for ufl expression interpolation degree. signR: Sign in ABC. omega: Value of omega. diffusivity: Value of a. forcingTerm: Value of f. DirichletDatum: Value of u0. NeumannDatum: Value of g1. RobinDatumG: Value of g2. DirichletBoundary: Function handle to \Gamma_D. NeumannBoundary: Function handle to \Gamma_N. RobinBoundary: Function handle to \Gamma_R. ds: Boundary measure 2-tuple (resp. for Neumann and Robin boundaries). A0: Scipy sparse array representation (in CSC format) of A0. A1: Scipy sparse array representation (in CSC format) of A1. A2: Scipy sparse array representation (in CSC format) of A2. b0: Numpy array representation of b0. dsToBeSet: Whether ds needs to be set. """ nAs = 3 - rescalingExp = 1. signR = - 1. - def __init__(self, degree_threshold : int = inf, verbosity : int = 10, - timestamp : bool = True): + def __init__(self, mu0 : paramVal = [0.], degree_threshold : int = inf, + verbosity : int = 10, timestamp : bool = True): self.silenceWarnings = True - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = mu0, degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) del self.silenceWarnings + self.rescalingExp = [1.] @property def RobinDatumH(self): """Value of h.""" return self.signR * self.omega @RobinDatumH.setter def RobinDatumH(self, RobinDatumH): if not hasattr(self, "silenceWarnings"): RROMPyWarning(("Scattering problems do not allow changes of h. " "Ignoring assignment.")) return - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: """Assemble (derivative of) operator of linear system.""" mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if Anull is not None: return Anull - self.autoSetDS() - if der <= 0 and self.As[0] is None: + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + if derI <= 0 and self.As[0] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A0.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZERO, self.DirichletBoundary) aRe, aIm = self.diffusivity parsRe = self.iterReduceQuadratureDegree(zip([aRe], ["diffusivityReal"])) parsIm = self.iterReduceQuadratureDegree(zip([aIm], ["diffusivityImag"])) a0Re = aRe * fen.dot(fen.grad(self.u), fen.grad(self.v)) * fen.dx a0Im = aIm * fen.dot(fen.grad(self.u), fen.grad(self.v)) * fen.dx A0Re = fen.assemble(a0Re, form_compiler_parameters = parsRe) A0Im = fen.assemble(a0Im, form_compiler_parameters = parsIm) DirichletBC0.apply(A0Re) DirichletBC0.zero(A0Im) A0ReMat = fen.as_backend_type(A0Re).mat() A0ImMat = fen.as_backend_type(A0Im).mat() A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() A0Imr, A0Imc, A0Imv = A0ImMat.getValuesCSR() self.As[0] = (scsp.csr_matrix((A0Rev, A0Rec, A0Rer), shape = A0ReMat.size) + 1.j * scsp.csr_matrix((A0Imv, A0Imc, A0Imr), shape = A0ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der <= 1 and self.As[1] is None: + if derI <= 1 and self.As[1] is None: + self.autoSetDS() if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A1.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZERO, self.DirichletBoundary) a1 = fen.dot(self.u, self.v) * self.ds(1) A1 = fen.assemble(a1) DirichletBC0.zero(A1) A1Mat = fen.as_backend_type(A1).mat() A1r, A1c, A1v = A1Mat.getValuesCSR() self.As[1] = self.signR * 1.j * scsp.csr_matrix((A1v, A1c, A1r), shape = A1Mat.size) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der <= 2 and self.As[2] is None: + if derI <= 2 and self.As[2] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A2.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZERO, self.DirichletBoundary) nRe, nIm = self.refractionIndex n2Re, n2Im = nRe * nRe - nIm * nIm, 2 * nRe * nIm parsRe = self.iterReduceQuadratureDegree(zip([n2Re], ["refractionIndexSquaredReal"])) parsIm = self.iterReduceQuadratureDegree(zip([n2Im], ["refractionIndexSquaredImag"])) a2Re = - n2Re * fen.dot(self.u, self.v) * fen.dx a2Im = - n2Im * fen.dot(self.u, self.v) * fen.dx A2Re = fen.assemble(a2Re, form_compiler_parameters = parsRe) A2Im = fen.assemble(a2Im, form_compiler_parameters = parsIm) DirichletBC0.zero(A2Re) DirichletBC0.zero(A2Im) A2ReMat = fen.as_backend_type(A2Re).mat() A2ImMat = fen.as_backend_type(A2Im).mat() A2Rer, A2Rec, A2Rev = A2ReMat.getValuesCSR() A2Imr, A2Imc, A2Imv = A2ImMat.getValuesCSR() self.As[2] = (scsp.csr_matrix((A2Rev, A2Rec, A2Rer), shape = A2ReMat.size) + 1.j * scsp.csr_matrix((A2Imv, A2Imc, A2Imr), shape = A2ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der == 0: - return self.As[0] + mu(0) * self.As[1] + mu(0) ** 2. * self.As[2] - if der == 1: - return self.As[1] + 2 * mu(0) * self.As[2] - return self.As[2] + return self._assembleA(mu, der, derI) diff --git a/rrompy/hfengines/vector_linear_problem/__init__.py b/rrompy/hfengines/vector_linear_problem/__init__.py index 5f715f2..80da6f5 100644 --- a/rrompy/hfengines/vector_linear_problem/__init__.py +++ b/rrompy/hfengines/vector_linear_problem/__init__.py @@ -1,36 +1,34 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from .linear_elasticity_problem_engine import LinearElasticityProblemEngine from .linear_elasticity_helmholtz_problem_engine import LinearElasticityHelmholtzProblemEngine from .linear_elasticity_helmholtz_problem_engine_damped import LinearElasticityHelmholtzProblemEngineDamped from .linear_elasticity_beam_poisson_ratio import LinearElasticityBeamPoissonRatio -from .linear_elasticity_beam_elasticity_constants import LinearElasticityBeamElasticityConstants from .linear_elasticity_helmholtz_archway_frequency import LinearElasticityHelmholtzArchwayFrequency __all__ = [ 'LinearElasticityProblemEngine', 'LinearElasticityHelmholtzProblemEngine', 'LinearElasticityHelmholtzProblemEngineDamped', 'LinearElasticityBeamPoissonRatio', - 'LinearElasticityBeamElasticityConstants', 'LinearElasticityHelmholtzArchwayFrequency' ] diff --git a/rrompy/parameter/__init__.py b/rrompy/hfengines/vector_linear_problem/bidimensional/__init__.py similarity index 71% copy from rrompy/parameter/__init__.py copy to rrompy/hfengines/vector_linear_problem/bidimensional/__init__.py index fe6a417..3311e14 100644 --- a/rrompy/parameter/__init__.py +++ b/rrompy/hfengines/vector_linear_problem/bidimensional/__init__.py @@ -1,31 +1,26 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # -from .parameter import parameter -from .parameter_list import (parameterList, emptyParameterList, checkParameter, - checkParameterList) +from .linear_elasticity_beam_elasticity_constants import LinearElasticityBeamElasticityConstants __all__ = [ - 'parameter', - 'parameterList', - 'emptyParameterList', - 'checkParameter', - 'checkParameterList' + 'LinearElasticityBeamElasticityConstants' ] + diff --git a/rrompy/hfengines/vector_linear_problem/linear_elasticity_beam_poisson_ratio.py b/rrompy/hfengines/vector_linear_problem/bidimensional/linear_elasticity_beam_elasticity_constants.py similarity index 53% copy from rrompy/hfengines/vector_linear_problem/linear_elasticity_beam_poisson_ratio.py copy to rrompy/hfengines/vector_linear_problem/bidimensional/linear_elasticity_beam_elasticity_constants.py index 993c25c..cd4023a 100644 --- a/rrompy/hfengines/vector_linear_problem/linear_elasticity_beam_poisson_ratio.py +++ b/rrompy/hfengines/vector_linear_problem/bidimensional/linear_elasticity_beam_elasticity_constants.py @@ -1,154 +1,150 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import scipy.sparse as scsp import fenics as fen -from .linear_elasticity_problem_engine import LinearElasticityProblemEngine +from rrompy.hfengines.vector_linear_problem.\ + linear_elasticity_beam_poisson_ratio import LinearElasticityBeamPoissonRatio from rrompy.solver.fenics import fenZEROS -from rrompy.utilities.base.types import Np1D, ScOp, paramVal +from rrompy.utilities.base.types import Np1D, List, ScOp, paramVal from rrompy.utilities.base import verbosityDepth +from rrompy.utilities.exception_manager import RROMPyException -__all__ = ['LinearElasticityBeamPoissonRatio'] +__all__ = ['LinearElasticityBeamElasticityConstants'] -class LinearElasticityBeamPoissonRatio(LinearElasticityProblemEngine): +class LinearElasticityBeamElasticityConstants( + LinearElasticityBeamPoissonRatio): """ Solver for linear elasticity problem of a beam subject to its own weight, - with parametric Poisson's ratio. + with parametric Joung modulus and Poisson's ratio. - div(lambda_ * div(u) * I + 2 * mu_ * epsilon(u)) = rho_ * g in \Omega u = 0 on \Gamma_D \partial_nu = 0 on \Gamma_N """ - - npar = 1 - nAs, nbs = 2, 3 - - def __init__(self, n:int, rho_:float, g:float, E:float, nu0:float, + + nAs, nbs = 5, 4 + + def __init__(self, n:int, rho_:float, g:float, E0:float, nu0:float, length:float, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = [nu0, E0], degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.lambda_ = E * nu0 / (1. + nu0) / (1. - 2 * nu0) - self.mu_ = E / (1. + nu0) mesh = fen.RectangleMesh(fen.Point(0., 0.), fen.Point(length, 1), n, max(int(n / length), 1)) self.V = fen.VectorFunctionSpace(mesh, "P", 1) - self.forcingTerm = [fen.Constant((0., - rho_ * g / E)), fenZEROS(2)] + self.forcingTerm = [fen.Constant((0., - rho_ * g)), fenZEROS(2)] self.DirichletBoundary = lambda x, on_b: on_b and fen.near(x[0], 0.) self.NeumannBoundary = "REST" - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: """Assemble (derivative of) operator of linear system.""" mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if Anull is not None: return Anull + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) self.autoSetDS() - if der <= 1 and self.As[0] is None: + if derI <= 0 and self.As[0] is None: self.As[0] = 0. + if derI <= 1 and self.As[1] is None: self.As[1] = 0. + if derI <= 4 and self.As[2] is None: if self.verbosity >= 20: - verbosityDepth("INIT", "Assembling operator term A0.", + verbosityDepth("INIT", "Assembling operator term A2.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(2), self.DirichletBoundary) epsilon = lambda u: .5 * (fen.grad(u) + fen.nabla_grad(u)) - a0Re = 2 * fen.inner(epsilon(self.u), epsilon(self.v)) * fen.dx + a0Re = fen.inner(epsilon(self.u), epsilon(self.v)) * fen.dx A0Re = fen.assemble(a0Re) DirichletBC0.apply(A0Re) A0ReMat = fen.as_backend_type(A0Re).mat() A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() - self.As[0] = scsp.csr_matrix((A0Rev, A0Rec, A0Rer), + self.As[2] = scsp.csr_matrix((A0Rev, A0Rec, A0Rer), shape = A0ReMat.size, dtype = np.complex) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der <= 1 and self.As[1] is None: + if derI <= 3 and self.As[3] is None: self.As[3] = 0. + if derI <= 4 and self.As[4] is None: if self.verbosity >= 20: - verbosityDepth("INIT", "Assembling operator term A1.", + verbosityDepth("INIT", "Assembling operator term A4.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(2), self.DirichletBoundary) a1Re = fen.div(self.u) * fen.div(self.v) * fen.dx A1Re = fen.assemble(a1Re) DirichletBC0.apply(A1Re) A1ReMat = fen.as_backend_type(A1Re).mat() A1Rer, A1Rec, A1Rev = A1ReMat.getValuesCSR() - self.As[1] = (scsp.csr_matrix((A1Rev, A1Rec, A1Rer), - shape = A1ReMat.size, - dtype = np.complex) - - 2. * self.As[0]) + self.As[4] = 2. * (scsp.csr_matrix((A1Rev, A1Rec, A1Rer), + shape = A1ReMat.size, + dtype = np.complex) + - self.As[2]) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der == 0: - return self.As[0] + mu(0) * self.As[1] - return self.As[1] + return self._assembleA(mu, der, derI) - def b(self, mu : paramVal = (), der : int = 0, + def b(self, mu : paramVal = [], der : List[int] = 0, homogeneized : bool = False) -> Np1D: """Assemble (derivative of) RHS of linear system.""" + RROMPyAssert(homogeneized, False, "Homogeneized") mu = self.checkParameter(mu) - assert homogeneized == False - bnull = self.checkbInBounds(der) - if bnull is not None: return bnull - if self.nbs > 1 and self.bsmu != mu: - self.bsmu = mu - self.resetbs() - b = self.bsH[der] if homogeneized else self.bs[der] - if b is None: + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + if derI <= 3 and self.bs[0] is None: self.autoSetDS() if self.verbosity >= 20: - verbosityDepth("INIT", ("Assembling forcing term " - "b{}.").format(der), + verbosityDepth("INIT", "Assembling forcing term b0.", timestamp = self.timestamp) - if self.bs[0] is None and der > 0: self.b(mu, 0) - if der == 0: - fRe, fIm = self.forcingTerm - parsRe = self.iterReduceQuadratureDegree(zip( - [fRe], + fRe, fIm = self.forcingTerm + parsRe = self.iterReduceQuadratureDegree(zip([fRe], ["forcingTermReal"])) - parsIm = self.iterReduceQuadratureDegree(zip( - [fIm], + parsIm = self.iterReduceQuadratureDegree(zip([fIm], ["forcingTermImag"])) - L0Re = fen.inner(fRe, self.v) * fen.dx - L0Im = fen.inner(fIm, self.v) * fen.dx - b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) - b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) - DBCR = fen.DirichletBC(self.V, self.DirichletDatum[0], - self.DirichletBoundary) - DBCI = fen.DirichletBC(self.V, self.DirichletDatum[1], - self.DirichletBoundary) - DBCR.apply(b0Re) - DBCI.apply(b0Im) - b = (1. - mu(0) - 2 * mu(0) ** 2) * np.array( - b0Re[:] + 1.j * b0Im[:], dtype = np.complex) - elif der == 1: - b = ((- 1. - 4 * mu(0)) / (1. - mu(0) - 2 * mu(0) ** 2) - * self.bs[0]) - elif der == 2: - b = - 2. / (1. - mu(0) - 2 * mu(0) ** 2.) * self.bs[0] - if homogeneized: - self.bsH[der] = b - else: - self.bs[der] = b + L0Re = fen.inner(fRe, self.v) * fen.dx + L0Im = fen.inner(fIm, self.v) * fen.dx + b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) + b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) + DBCR = fen.DirichletBC(self.V, self.DirichletDatum[0], + self.DirichletBoundary) + DBCI = fen.DirichletBC(self.V, self.DirichletDatum[1], + self.DirichletBoundary) + DBCR.apply(b0Re) + DBCI.apply(b0Im) + self.bs[0] = np.array(b0Re[:] + 1.j * b0Im[:], dtype = np.complex) + if derI <= 1 and self.bs[1] is None: + if self.verbosity >= 20: + verbosityDepth("INIT", "Assembling forcing term b1.", + timestamp = self.timestamp) + self.bs[1] = - self.bs[0] + if self.verbosity >= 20: + verbosityDepth("DEL", "Done assembling forcing term.", + timestamp = self.timestamp) + if derI <= 2 and self.bs[2] is None: self.bs[2] = 0. + if derI <= 3 and self.bs[3] is None: + if self.verbosity >= 20: + verbosityDepth("INIT", "Assembling forcing term b3.", + timestamp = self.timestamp) + self.bs[3] = - 2. * self.bs[0] if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling forcing term.", timestamp = self.timestamp) - return b + return self._assembleb(mu, der, derI, homogeneized) diff --git a/rrompy/hfengines/vector_linear_problem/linear_elasticity_beam_elasticity_constants.py b/rrompy/hfengines/vector_linear_problem/linear_elasticity_beam_elasticity_constants.py deleted file mode 100644 index ea08455..0000000 --- a/rrompy/hfengines/vector_linear_problem/linear_elasticity_beam_elasticity_constants.py +++ /dev/null @@ -1,100 +0,0 @@ -# Copyright (C) 2018 by the RROMPy authors -# -# This file is part of RROMPy. -# -# RROMPy is free software: you can redistribute it and/or modify -# it under the terms of the GNU Lesser General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# RROMPy is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public License -# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. -# - -import numpy as np -import scipy.sparse as scsp -import fenics as fen -from .linear_elasticity_problem_engine import LinearElasticityProblemEngine -from rrompy.solver.fenics import fenZEROS -from rrompy.utilities.base.types import Np1D, ScOp, paramVal -from rrompy.utilities.base import verbosityDepth -from rrompy.utilities.exception_manager import RROMPyException - -__all__ = ['LinearElasticityBeamElasticityConstants'] - -class LinearElasticityBeamElasticityConstants(LinearElasticityProblemEngine): - """ - Solver for linear elasticity problem of a beam subject to its own weight, - with parametric Joung modulus and Poisson's ratio. - - div(lambda_ * div(u) * I + 2 * mu_ * epsilon(u)) = rho_ * g in \Omega - u = 0 on \Gamma_D - \partial_nu = 0 on \Gamma_N - """ - - npar = 2 - nAs, nbs = 1, 1 - - def __init__(self, n:int, rho_:float, g:float, E0:float, nu0:float, - length:float, degree_threshold : int = np.inf, - verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, - verbosity = verbosity, timestamp = timestamp) - self.lambda_ = E0 * nu0 / (1. + nu0) / (1. - 2 * nu0) - self.mu_ = E0 / (1. + nu0) - - mesh = fen.RectangleMesh(fen.Point(0., 0.), fen.Point(length, 1), - n, max(int(n / length), 1)) - self.V = fen.VectorFunctionSpace(mesh, "P", 1) - - self.forcingTerm = [fen.Constant((0., - rho_ * g)), fenZEROS(2)] - self.DirichletBoundary = lambda x, on_b: on_b and fen.near(x[0], 0.) - self.NeumannBoundary = "REST" - - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: - """Assemble (derivative of) operator of linear system.""" - mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if der > 0: - raise RROMPyException("Not implemented.") - if Anull is not None: return Anull - self.autoSetDS() - if self.Asmu != mu: - self.Asmu = mu - self.resetAs() - A = self.As[der] - if A is None: - if self.verbosity >= 20: - verbosityDepth("INIT", "Assembling operator term A0.", - timestamp = self.timestamp) - DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(2), - self.DirichletBoundary) - m_ = mu(0) / (1. + mu(1)) - l_ = m_ * mu(1) / (1. - 2 * mu(1)) - lambda_Re, lambda_Im = np.real(l_), np.imag(l_) - mu_Re, mu_Im = np.real(m_), np.imag(m_) - epsilon = lambda u: .5 * (fen.grad(u) + fen.nabla_grad(u)) - a0Re = (mu_Re * fen.inner(epsilon(self.u), epsilon(self.v)) - + lambda_Re * fen.div(self.u) * fen.div(self.v)) * fen.dx - a0Im = (mu_Im * fen.inner(epsilon(self.u), epsilon(self.v)) - + lambda_Im * fen.div(self.u) * fen.div(self.v)) * fen.dx - A0Re = fen.assemble(a0Re) - A0Im = fen.assemble(a0Im) - DirichletBC0.apply(A0Re) - DirichletBC0.apply(A0Im) - A0ReMat = fen.as_backend_type(A0Re).mat() - A0ImMat = fen.as_backend_type(A0Im).mat() - A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() - A0Imr, A0Imc, A0Imv = A0ImMat.getValuesCSR() - A = (scsp.csr_matrix((A0Rev, A0Rec, A0Rer), shape = A0ReMat.size) - + 1.j * scsp.csr_matrix((A0Imv, A0Imc, A0Imr), shape = A0ImMat.size)) - self.As[0] = A - if self.verbosity >= 20: - verbosityDepth("DEL", "Done assembling operator term.", - timestamp = self.timestamp) - return A - diff --git a/rrompy/hfengines/vector_linear_problem/linear_elasticity_beam_poisson_ratio.py b/rrompy/hfengines/vector_linear_problem/linear_elasticity_beam_poisson_ratio.py index 993c25c..b6ffcc5 100644 --- a/rrompy/hfengines/vector_linear_problem/linear_elasticity_beam_poisson_ratio.py +++ b/rrompy/hfengines/vector_linear_problem/linear_elasticity_beam_poisson_ratio.py @@ -1,154 +1,149 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import scipy.sparse as scsp import fenics as fen from .linear_elasticity_problem_engine import LinearElasticityProblemEngine from rrompy.solver.fenics import fenZEROS -from rrompy.utilities.base.types import Np1D, ScOp, paramVal +from rrompy.utilities.base.types import Np1D, List, ScOp, paramVal from rrompy.utilities.base import verbosityDepth +from rrompy.utilities.exception_manager import RROMPyAssert +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD) __all__ = ['LinearElasticityBeamPoissonRatio'] class LinearElasticityBeamPoissonRatio(LinearElasticityProblemEngine): """ Solver for linear elasticity problem of a beam subject to its own weight, with parametric Poisson's ratio. - div(lambda_ * div(u) * I + 2 * mu_ * epsilon(u)) = rho_ * g in \Omega u = 0 on \Gamma_D \partial_nu = 0 on \Gamma_N """ - - npar = 1 + nAs, nbs = 2, 3 - + def __init__(self, n:int, rho_:float, g:float, E:float, nu0:float, length:float, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = [nu0], degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.lambda_ = E * nu0 / (1. + nu0) / (1. - 2 * nu0) - self.mu_ = E / (1. + nu0) + self.E_ = E mesh = fen.RectangleMesh(fen.Point(0., 0.), fen.Point(length, 1), n, max(int(n / length), 1)) self.V = fen.VectorFunctionSpace(mesh, "P", 1) self.forcingTerm = [fen.Constant((0., - rho_ * g / E)), fenZEROS(2)] self.DirichletBoundary = lambda x, on_b: on_b and fen.near(x[0], 0.) self.NeumannBoundary = "REST" - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: """Assemble (derivative of) operator of linear system.""" mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if Anull is not None: return Anull + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) self.autoSetDS() - if der <= 1 and self.As[0] is None: + if derI <= 1 and self.As[0] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A0.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(2), self.DirichletBoundary) epsilon = lambda u: .5 * (fen.grad(u) + fen.nabla_grad(u)) - a0Re = 2 * fen.inner(epsilon(self.u), epsilon(self.v)) * fen.dx + a0Re = self.E_ * fen.inner(epsilon(self.u), + epsilon(self.v)) * fen.dx A0Re = fen.assemble(a0Re) DirichletBC0.apply(A0Re) A0ReMat = fen.as_backend_type(A0Re).mat() A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() self.As[0] = scsp.csr_matrix((A0Rev, A0Rec, A0Rer), shape = A0ReMat.size, dtype = np.complex) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der <= 1 and self.As[1] is None: + if derI <= 1 and self.As[1] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A1.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(2), self.DirichletBoundary) - a1Re = fen.div(self.u) * fen.div(self.v) * fen.dx + a1Re = self.E_ * fen.div(self.u) * fen.div(self.v) * fen.dx A1Re = fen.assemble(a1Re) DirichletBC0.apply(A1Re) A1ReMat = fen.as_backend_type(A1Re).mat() A1Rer, A1Rec, A1Rev = A1ReMat.getValuesCSR() - self.As[1] = (scsp.csr_matrix((A1Rev, A1Rec, A1Rer), - shape = A1ReMat.size, - dtype = np.complex) - - 2. * self.As[0]) + self.As[1] = 2. * (scsp.csr_matrix((A1Rev, A1Rec, A1Rer), + shape = A1ReMat.size, + dtype = np.complex) + - self.As[0]) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der == 0: - return self.As[0] + mu(0) * self.As[1] - return self.As[1] + return self._assembleA(mu, der, derI) - def b(self, mu : paramVal = (), der : int = 0, + def b(self, mu : paramVal = [], der : List[int] = 0, homogeneized : bool = False) -> Np1D: """Assemble (derivative of) RHS of linear system.""" + RROMPyAssert(homogeneized, False, "Homogeneized") mu = self.checkParameter(mu) - assert homogeneized == False - bnull = self.checkbInBounds(der) - if bnull is not None: return bnull - if self.nbs > 1 and self.bsmu != mu: - self.bsmu = mu - self.resetbs() - b = self.bsH[der] if homogeneized else self.bs[der] - if b is None: + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + if derI <= 2 and self.bs[0] is None: self.autoSetDS() if self.verbosity >= 20: - verbosityDepth("INIT", ("Assembling forcing term " - "b{}.").format(der), + verbosityDepth("INIT", "Assembling forcing term b0.", timestamp = self.timestamp) - if self.bs[0] is None and der > 0: self.b(mu, 0) - if der == 0: - fRe, fIm = self.forcingTerm - parsRe = self.iterReduceQuadratureDegree(zip( - [fRe], + fRe, fIm = self.forcingTerm + parsRe = self.iterReduceQuadratureDegree(zip([fRe], ["forcingTermReal"])) - parsIm = self.iterReduceQuadratureDegree(zip( - [fIm], + parsIm = self.iterReduceQuadratureDegree(zip([fIm], ["forcingTermImag"])) - L0Re = fen.inner(fRe, self.v) * fen.dx - L0Im = fen.inner(fIm, self.v) * fen.dx - b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) - b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) - DBCR = fen.DirichletBC(self.V, self.DirichletDatum[0], - self.DirichletBoundary) - DBCI = fen.DirichletBC(self.V, self.DirichletDatum[1], - self.DirichletBoundary) - DBCR.apply(b0Re) - DBCI.apply(b0Im) - b = (1. - mu(0) - 2 * mu(0) ** 2) * np.array( - b0Re[:] + 1.j * b0Im[:], dtype = np.complex) - elif der == 1: - b = ((- 1. - 4 * mu(0)) / (1. - mu(0) - 2 * mu(0) ** 2) - * self.bs[0]) - elif der == 2: - b = - 2. / (1. - mu(0) - 2 * mu(0) ** 2.) * self.bs[0] - if homogeneized: - self.bsH[der] = b - else: - self.bs[der] = b + L0Re = fen.inner(fRe, self.v) * fen.dx + L0Im = fen.inner(fIm, self.v) * fen.dx + b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) + b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) + DBCR = fen.DirichletBC(self.V, self.DirichletDatum[0], + self.DirichletBoundary) + DBCI = fen.DirichletBC(self.V, self.DirichletDatum[1], + self.DirichletBoundary) + DBCR.apply(b0Re) + DBCI.apply(b0Im) + self.bs[0] = np.array(b0Re[:] + 1.j * b0Im[:], dtype = np.complex) + if derI <= 1 and self.bs[1] is None: + if self.verbosity >= 20: + verbosityDepth("INIT", "Assembling forcing term b1.", + timestamp = self.timestamp) + self.bs[1] = - self.bs[0] + if self.verbosity >= 20: + verbosityDepth("DEL", "Done assembling forcing term.", + timestamp = self.timestamp) + + if derI <= 2 and self.bs[2] is None: + if self.verbosity >= 20: + verbosityDepth("INIT", "Assembling forcing term b2.", + timestamp = self.timestamp) + self.bs[2] = - 2. * self.bs[0] if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling forcing term.", timestamp = self.timestamp) - return b + return self._assembleb(mu, der, derI, homogeneized) diff --git a/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_archway_frequency.py b/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_archway_frequency.py index fa8ffef..50548f4 100644 --- a/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_archway_frequency.py +++ b/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_archway_frequency.py @@ -1,67 +1,66 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import fenics as fen from .linear_elasticity_helmholtz_problem_engine import \ LinearElasticityHelmholtzProblemEngine from rrompy.solver.fenics import fenZEROS __all__ = ['LinearElasticityHelmholtzArchwayFrequency'] class LinearElasticityHelmholtzArchwayFrequency( LinearElasticityHelmholtzProblemEngine): """ Solver for archway linear elasticity Helmholtz problem with parametric wavenumber. - div(lambda_ * div(u) * I + 2 * mu_ * epsilon(u)) - rho_ * omega^2 * u = rho_ * g / omega in \Omega u = 0 on \Gamma_D \partial_nu = 0 on \Gamma_N """ - + def __init__(self, kappa:float, n:int, rho_:float, T:float, lambda_:float, mu_:float, R:float, r:float, degree_threshold : int = np.inf, verbosity : int = 10, timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + super().__init__(mu0 = [kappa], degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.omega = kappa self.lambda_ = lambda_ self.mu_ = mu_ self.rho_ = rho_ import mshr domain = (mshr.Circle(fen.Point(0, 0), R) - mshr.Circle(fen.Point(0, 0), r) - mshr.Rectangle(fen.Point(-1.05*R, -1.05*R), fen.Point(1.05*R, 0))) mesh = mshr.generate_mesh(domain, n) self.V = fen.VectorFunctionSpace(mesh, "P", 1) import ufl x, y = fen.SpatialCoordinate(mesh)[:] NeumannNonZero = ufl.And(ufl.gt(y, r), ufl.And(ufl.ge(x, -.25 * R), ufl.le(x, .25 * R))) self.NeumannDatum = [ufl.as_vector((0., ufl.conditional(NeumannNonZero, fen.Constant(T), 0.))), fenZEROS(2)] self.DirichletBoundary = lambda x, on_b: on_b and fen.near(x[1], 0.) self.NeumannBoundary = "REST" diff --git a/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_problem_engine.py b/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_problem_engine.py index bc7cc37..fb278ff 100644 --- a/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_problem_engine.py +++ b/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_problem_engine.py @@ -1,184 +1,181 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from scipy.sparse import csr_matrix import fenics as fen from .linear_elasticity_problem_engine import LinearElasticityProblemEngine -from rrompy.utilities.base.types import ScOp, paramVal +from rrompy.utilities.base.types import List, ScOp, paramVal from rrompy.solver.fenics import fenZERO, fenZEROS, fenONE, elasticNormMatrix from rrompy.utilities.base import verbosityDepth +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD) __all__ = ['LinearElasticityHelmholtzProblemEngine'] class LinearElasticityHelmholtzProblemEngine(LinearElasticityProblemEngine): """ Solver for generic linear elasticity Helmholtz problems with parametric wavenumber. - div(lambda_ * div(u) * I + 2 * mu_ * epsilon(u)) - rho_ * mu^2 * u = f in \Omega u = u0 on \Gamma_D \partial_nu = g1 on \Gamma_N \partial_nu + h u = g2 on \Gamma_R Attributes: verbosity: Verbosity level. BCManager: Boundary condition manager. V: Real vector FE space. u: Generic vector trial functions for variational form evaluation. v: Generic vector test functions for variational form evaluation. As: Scipy sparse array representation (in CSC format) of As. bs: Numpy array representation of bs. energyNormMatrix: Scipy sparse matrix representing inner product over V. - bsmu: Mu value of last bs evaluation. - liftDirichletDatamu: Mu value of last Dirichlet datum evaluation. liftedDirichletDatum: Dofs of Dirichlet datum lifting. mu0BC: Mu value of last Dirichlet datum lifting. degree_threshold: Threshold for ufl expression interpolation degree. omega: Value of omega. lambda_: Value of lambda_. mu_: Value of mu_. forcingTerm: Value of f. DirichletDatum: Value of u0. NeumannDatum: Value of g1. RobinDatumG: Value of g2. RobinDatumH: Value of h. DirichletBoundary: Function handle to \Gamma_D. NeumannBoundary: Function handle to \Gamma_N. RobinBoundary: Function handle to \Gamma_R. ds: Boundary measure 2-tuple (resp. for Neumann and Robin boundaries). A0: Scipy sparse array representation (in CSC format) of A0. A1: Scipy sparse array representation (in CSC format) of A1. b0: Numpy array representation of b0. dsToBeSet: Whether ds needs to be set. """ - npar = 1 nAs = 2 - rescalingExp = 2. - def __init__(self, degree_threshold : int = np.inf, verbosity : int = 10, - timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + def __init__(self, mu0 : paramVal = [0.], degree_threshold : int = np.inf, + verbosity : int = 10, timestamp : bool = True): + super().__init__(mu0 = [mu0], degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) - self.omega = 1. + self.omega = np.abs(self.mu0(0, 0)) self.rho_ = fenONE + self.rescalingExp = [2.] @property def rho_(self): """Value of rho_.""" return self._rho_ @rho_.setter def rho_(self, rho_): self.resetAs() if not isinstance(rho_, (list, tuple,)): rho_ = [rho_, fenZERO] self._rho_ = rho_ def buildEnergyNormForm(self): # energy + omega norm """ Build sparse matrix (in CSR format) representative of scalar product. """ lambda_Re, _ = self.lambda_ mu_Re, _ = self.mu_ r_Re, _ = self.rho_ self.energyNormMatrix = elasticNormMatrix(self.V, lambda_Re, mu_Re, np.abs(self.omega)**2 * r_Re) - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: """Assemble (derivative of) operator of linear system.""" mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if Anull is not None: return Anull + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) self.autoSetDS() - if der <= 0 and self.As[0] is None: + if derI <= 0 and self.As[0] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A0.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(self.V.mesh().topology().dim()), self.DirichletBoundary) lambda_Re, lambda_Im = self.lambda_ mu_Re, mu_Im = self.mu_ hRe, hIm = self.RobinDatumH termNames = ["lambda_", "mu_", "RobinDatumH"] parsRe = self.iterReduceQuadratureDegree(zip( [lambda_Re, mu_Re, hRe], [x + "Real" for x in termNames])) parsIm = self.iterReduceQuadratureDegree(zip( [lambda_Im, mu_Re, hIm], [x + "Imag" for x in termNames])) epsilon = lambda u: 0.5 * (fen.grad(u) + fen.nabla_grad(u)) sigma = lambda u, l_, m_: ( l_ * fen.div(u) * fen.Identity(u.geometric_dimension()) + 2. * m_ * epsilon(u)) a0Re = (fen.inner(sigma(self.u, lambda_Re, mu_Re), epsilon(self.v)) * fen.dx + hRe * fen.inner(self.u, self.v) * self.ds(1)) a0Im = (fen.inner(sigma(self.u, lambda_Im, mu_Im), epsilon(self.v)) * fen.dx + hIm * fen.inner(self.u, self.v) * self.ds(1)) A0Re = fen.assemble(a0Re, form_compiler_parameters = parsRe) A0Im = fen.assemble(a0Im, form_compiler_parameters = parsIm) DirichletBC0.apply(A0Re) DirichletBC0.zero(A0Im) A0ReMat = fen.as_backend_type(A0Re).mat() A0ImMat = fen.as_backend_type(A0Im).mat() A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() A0Imr, A0Imc, A0Imv = A0ImMat.getValuesCSR() self.As[0] = (csr_matrix((A0Rev, A0Rec, A0Rer), shape = A0ReMat.size) + 1.j * csr_matrix((A0Imv, A0Imc, A0Imr), shape = A0ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der <= 1 and self.As[1] is None: + if derI <= 1 and self.As[1] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A1.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(self.V.mesh().topology().dim()), self.DirichletBoundary) rho_Re, rho_Im = self.rho_ parsRe = self.iterReduceQuadratureDegree(zip([rho_Re], ["rho_Real"])) parsIm = self.iterReduceQuadratureDegree(zip([rho_Im], ["rho_Imag"])) a1Re = - rho_Re * fen.inner(self.u, self.v) * fen.dx a1Im = - rho_Im * fen.inner(self.u, self.v) * fen.dx A1Re = fen.assemble(a1Re, form_compiler_parameters = parsRe) A1Im = fen.assemble(a1Im, form_compiler_parameters = parsIm) DirichletBC0.zero(A1Re) DirichletBC0.zero(A1Im) A1ReMat = fen.as_backend_type(A1Re).mat() A1ImMat = fen.as_backend_type(A1Im).mat() A1Rer, A1Rec, A1Rev = A1ReMat.getValuesCSR() A1Imr, A1Imc, A1Imv = A1ImMat.getValuesCSR() self.As[1] = (csr_matrix((A1Rev, A1Rec, A1Rer), shape = A1ReMat.size) + 1.j * csr_matrix((A1Imv, A1Imc, A1Imr), shape = A1ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der == 0: - return self.As[0] + mu(0) ** 2. * self.As[1] - return self.As[1] + return self._assembleA(mu, der, derI) diff --git a/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_problem_engine_damped.py b/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_problem_engine_damped.py index e7d6fec..035e321 100644 --- a/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_problem_engine_damped.py +++ b/rrompy/hfengines/vector_linear_problem/linear_elasticity_helmholtz_problem_engine_damped.py @@ -1,210 +1,206 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from scipy.sparse import csr_matrix import fenics as fen from .linear_elasticity_helmholtz_problem_engine import \ LinearElasticityHelmholtzProblemEngine -from rrompy.utilities.base.types import ScOp, paramVal +from rrompy.utilities.base.types import List, ScOp, paramVal from rrompy.solver.fenics import fenZERO, fenZEROS from rrompy.utilities.base import verbosityDepth +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD) __all__ = ['LinearElasticityHelmholtzProblemEngineDamped'] class LinearElasticityHelmholtzProblemEngineDamped( LinearElasticityHelmholtzProblemEngine): """ Solver for generic linear elasticity Helmholtz problems with parametric wavenumber. - div(lambda_ * div(u) * I + 2 * mu_ * epsilon(u)) - rho_ * (mu^2 - i * eta * mu) * u = f in \Omega u = u0 on \Gamma_D \partial_nu = g1 on \Gamma_N \partial_nu + h u = g2 on \Gamma_R Attributes: verbosity: Verbosity level. BCManager: Boundary condition manager. V: Real vector FE space. u: Generic vector trial functions for variational form evaluation. v: Generic vector test functions for variational form evaluation. As: Scipy sparse array representation (in CSC format) of As. bs: Numpy array representation of bs. energyNormMatrix: Scipy sparse matrix representing inner product over V. - bsmu: Mu value of last bs evaluation. - liftDirichletDatamu: Mu value of last Dirichlet datum evaluation. liftedDirichletDatum: Dofs of Dirichlet datum lifting. mu0BC: Mu value of last Dirichlet datum lifting. degree_threshold: Threshold for ufl expression interpolation degree. omega: Value of omega. lambda_: Value of lambda_. mu_: Value of mu_. eta: Value of eta. forcingTerm: Value of f. DirichletDatum: Value of u0. NeumannDatum: Value of g1. RobinDatumG: Value of g2. RobinDatumH: Value of h. DirichletBoundary: Function handle to \Gamma_D. NeumannBoundary: Function handle to \Gamma_N. RobinBoundary: Function handle to \Gamma_R. ds: Boundary measure 2-tuple (resp. for Neumann and Robin boundaries). A0: Scipy sparse array representation (in CSC format) of A0. A1: Scipy sparse array representation (in CSC format) of A1. b0: Numpy array representation of b0. dsToBeSet: Whether ds needs to be set. """ nAs = 3 - rescalingExp = 1. - def __init__(self, degree_threshold : int = np.inf, verbosity : int = 10, - timestamp : bool = True): - super().__init__(degree_threshold = degree_threshold, + def __init__(self, mu0 : paramVal = [0.], degree_threshold : int = np.inf, + verbosity : int = 10, timestamp : bool = True): + super().__init__(mu0 = [mu0], degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) self.eta = fenZERO + self.rescalingExp = [1.] @property def eta(self): """Value of eta.""" return self._eta @eta.setter def eta(self, eta): self.resetAs() if not isinstance(eta, (list, tuple,)): eta = [eta, fenZERO] self._eta = eta - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: """Assemble (derivative of) operator of linear system.""" mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if Anull is not None: return Anull + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) self.autoSetDS() - if der <= 0 and self.As[0] is None: + if derI <= 0 and self.As[0] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A0.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(self.V.mesh().topology().dim()), self.DirichletBoundary) lambda_Re, lambda_Im = self.lambda_ mu_Re, mu_Im = self.mu_ hRe, hIm = self.RobinDatumH termNames = ["lambda_", "mu_", "RobinDatumH"] parsRe = self.iterReduceQuadratureDegree(zip( [lambda_Re, mu_Re, hRe], [x + "Real" for x in termNames])) parsIm = self.iterReduceQuadratureDegree(zip( [lambda_Im, mu_Re, hIm], [x + "Imag" for x in termNames])) epsilon = lambda u: 0.5 * (fen.grad(u) + fen.nabla_grad(u)) sigma = lambda u, l_, m_: ( l_ * fen.div(u) * fen.Identity(u.geometric_dimension()) + 2. * m_ * epsilon(u)) a0Re = (fen.inner(sigma(self.u, lambda_Re, mu_Re), epsilon(self.v)) * fen.dx + hRe * fen.inner(self.u, self.v) * self.ds(1)) a0Im = (fen.inner(sigma(self.u, lambda_Im, mu_Im), epsilon(self.v)) * fen.dx + hIm * fen.inner(self.u, self.v) * self.ds(1)) A0Re = fen.assemble(a0Re, form_compiler_parameters = parsRe) A0Im = fen.assemble(a0Im, form_compiler_parameters = parsIm) DirichletBC0.apply(A0Re) DirichletBC0.zero(A0Im) A0ReMat = fen.as_backend_type(A0Re).mat() A0ImMat = fen.as_backend_type(A0Im).mat() A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() A0Imr, A0Imc, A0Imv = A0ImMat.getValuesCSR() self.As[0] = (csr_matrix((A0Rev, A0Rec, A0Rer), shape = A0ReMat.size) + 1.j * csr_matrix((A0Imv, A0Imc, A0Imr), shape = A0ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der <= 1 and self.As[1] is None: + if derI <= 1 and self.As[1] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A1.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(self.V.mesh().topology().dim()), self.DirichletBoundary) rho_Re, rho_Im = self.rho_ eta_Re, eta_Im = self.eta termNames = ["rho_", "eta"] parsRe = self.iterReduceQuadratureDegree(zip([rho_Re, eta_Re], [x + "Real" for x in termNames])) parsIm = self.iterReduceQuadratureDegree(zip([rho_Im, eta_Im], [x + "Imag" for x in termNames])) a1Re = - ((eta_Re * rho_Im + eta_Im * rho_Re) * fen.inner(self.u, self.v)) * fen.dx a1Im = ((eta_Re * rho_Re - eta_Im * rho_Im) * fen.inner(self.u, self.v)) * fen.dx A1Re = fen.assemble(a1Re, form_compiler_parameters = parsRe) A1Im = fen.assemble(a1Im, form_compiler_parameters = parsIm) DirichletBC0.zero(A1Re) DirichletBC0.zero(A1Im) A1ReMat = fen.as_backend_type(A1Re).mat() A1ImMat = fen.as_backend_type(A1Im).mat() A1Rer, A1Rec, A1Rev = A1ReMat.getValuesCSR() A1Imr, A1Imc, A1Imv = A1ImMat.getValuesCSR() self.As[1] = (csr_matrix((A1Rev, A1Rec, A1Rer), shape = A1ReMat.size) + 1.j * csr_matrix((A1Imv, A1Imc, A1Imr), shape = A1ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der <= 2 and self.As[2] is None: + if derI <= 2 and self.As[2] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A2.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(self.V.mesh().topology().dim()), self.DirichletBoundary) rho_Re, rho_Im = self.rho_ parsRe = self.iterReduceQuadratureDegree(zip([rho_Re], ["rho_Real"])) parsIm = self.iterReduceQuadratureDegree(zip([rho_Im], ["rho_Imag"])) a2Re = - rho_Re * fen.inner(self.u, self.v) * fen.dx a2Im = - rho_Im * fen.inner(self.u, self.v) * fen.dx A2Re = fen.assemble(a2Re, form_compiler_parameters = parsRe) A2Im = fen.assemble(a2Im, form_compiler_parameters = parsIm) DirichletBC0.zero(A2Re) DirichletBC0.zero(A2Im) A2ReMat = fen.as_backend_type(A2Re).mat() A2ImMat = fen.as_backend_type(A2Im).mat() A2Rer, A2Rec, A2Rev = A2ReMat.getValuesCSR() A2Imr, A2Imc, A2Imv = A2ImMat.getValuesCSR() self.As[2] = (csr_matrix((A2Rev, A2Rec, A2Rer), shape = A2ReMat.size) + 1.j * csr_matrix((A2Imv, A2Imc, A2Imr), shape = A2ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - if der == 0: - return self.As[0] + mu(0) * self.As[1] + mu(0) ** 2. * self.As[2] - if der == 1: - return self.As[1] + 2 * mu(0) * self.As[2] - return self.As[2] + return self._assembleA(mu, der, derI) diff --git a/rrompy/hfengines/vector_linear_problem/linear_elasticity_problem_engine.py b/rrompy/hfengines/vector_linear_problem/linear_elasticity_problem_engine.py index 43759a0..d99de76 100644 --- a/rrompy/hfengines/vector_linear_problem/linear_elasticity_problem_engine.py +++ b/rrompy/hfengines/vector_linear_problem/linear_elasticity_problem_engine.py @@ -1,354 +1,357 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from scipy.sparse import csr_matrix import fenics as fen from rrompy.hfengines.base.vector_problem_engine_base import \ VectorProblemEngineBase -from rrompy.utilities.base.types import Np1D, ScOp, paramVal +from rrompy.utilities.base.types import Np1D, List, ScOp, paramVal from rrompy.solver.fenics import fenZERO, fenZEROS, fenONE, elasticNormMatrix from rrompy.utilities.base import verbosityDepth +from rrompy.utilities.poly_fitting.polynomial import ( + hashDerivativeToIdx as hashD, hashIdxToDerivative as hashI) +from rrompy.parameter import checkParameter __all__ = ['LinearElasticityProblemEngine'] class LinearElasticityProblemEngine(VectorProblemEngineBase): """ Solver for generic linear elasticity problems. - div(lambda_ * div(u) * I + 2 * mu_ * epsilon(u)) = f in \Omega u = u0 on \Gamma_D \partial_nu = g1 on \Gamma_N \partial_nu + h u = g2 on \Gamma_R Attributes: verbosity: Verbosity level. BCManager: Boundary condition manager. V: Real vector FE space. u: Generic vector trial functions for variational form evaluation. v: Generic vector test functions for variational form evaluation. As: Scipy sparse array representation (in CSC format) of As. bs: Numpy array representation of bs. energyNormMatrix: Scipy sparse matrix representing inner product over V. - bsmu: Mu value of last bs evaluation. - liftDirichletDatamu: Mu value of last Dirichlet datum evaluation. liftedDirichletDatum: Dofs of Dirichlet datum lifting. mu0BC: Mu value of last Dirichlet datum lifting. degree_threshold: Threshold for ufl expression interpolation degree. lambda_: Value of lambda_. mu_: Value of mu_. forcingTerm: Value of f. DirichletDatum: Value of u0. NeumannDatum: Value of g1. RobinDatumG: Value of g2. RobinDatumH: Value of h. DirichletBoundary: Function handle to \Gamma_D. NeumannBoundary: Function handle to \Gamma_N. RobinBoundary: Function handle to \Gamma_R. ds: Boundary measure 2-tuple (resp. for Neumann and Robin boundaries). A0: Scipy sparse array representation (in CSC format) of A0. b0: Numpy array representation of b0. dsToBeSet: Whether ds needs to be set. """ - def __init__(self, degree_threshold : int = np.inf, verbosity : int = 10, - timestamp : bool = True): + def __init__(self, mu0 : paramVal = [], degree_threshold : int = np.inf, + verbosity : int = 10, timestamp : bool = True): super().__init__(degree_threshold = degree_threshold, verbosity = verbosity, timestamp = timestamp) self.lambda_ = fenONE self.mu_ = fenONE + self.mu0 = checkParameter(mu0) + self.npar = self.mu0.shape[1] self.forcingTerm = fenZEROS(self.V.mesh().topology().dim()) self.DirichletDatum = fenZEROS(self.V.mesh().topology().dim()) self.NeumannDatum = fenZEROS(self.V.mesh().topology().dim()) self.RobinDatumG = fenZEROS(self.V.mesh().topology().dim()) self.RobinDatumH = fenZERO @property def V(self): """Value of V.""" return self._V @V.setter def V(self, V): VectorProblemEngineBase.V.fset(self, V) self.forcingTerm = fenZEROS(self.V.mesh().topology().dim()) self.DirichletDatum = fenZEROS(self.V.mesh().topology().dim()) self.NeumannDatum = fenZEROS(self.V.mesh().topology().dim()) self.RobinDatumG = fenZEROS(self.V.mesh().topology().dim()) self.dsToBeSet = True @property def lambda_(self): """Value of lambda_.""" return self._lambda_ @lambda_.setter def lambda_(self, lambda_): self.resetAs() if not isinstance(lambda_, (list, tuple,)): lambda_ = [lambda_, fenZERO] self._lambda_ = lambda_ @property def mu_(self): """Value of mu_.""" return self._mu_ @mu_.setter def mu_(self, mu_): self.resetAs() if not isinstance(mu_, (list, tuple,)): mu_ = [mu_, fenZERO] self._mu_ = mu_ @property def forcingTerm(self): """Value of f.""" return self._forcingTerm @forcingTerm.setter def forcingTerm(self, forcingTerm): self.resetbs() if not isinstance(forcingTerm, (list, tuple,)): forcingTerm = [forcingTerm, fenZEROS(self.V.mesh().topology().dim())] self._forcingTerm = forcingTerm @property def DirichletDatum(self): """Value of u0.""" return self._DirichletDatum @DirichletDatum.setter def DirichletDatum(self, DirichletDatum): self.resetbs() if not isinstance(DirichletDatum, (list, tuple,)): DirichletDatum = [DirichletDatum, fenZEROS(self.V.mesh().topology().dim())] self._DirichletDatum = DirichletDatum @property def NeumannDatum(self): """Value of g1.""" return self._NeumannDatum @NeumannDatum.setter def NeumannDatum(self, NeumannDatum): self.resetbs() if not isinstance(NeumannDatum, (list, tuple,)): NeumannDatum = [NeumannDatum, fenZEROS(self.V.mesh().topology().dim())] self._NeumannDatum = NeumannDatum @property def RobinDatumG(self): """Value of g2.""" return self._RobinDatumG @RobinDatumG.setter def RobinDatumG(self, RobinDatumG): self.resetbs() if not isinstance(RobinDatumG, (list, tuple,)): RobinDatumG = [RobinDatumG, fenZEROS(self.V.mesh().topology().dim())] self._RobinDatumG = RobinDatumG @property def RobinDatumH(self): """Value of h.""" return self._RobinDatumH @RobinDatumH.setter def RobinDatumH(self, RobinDatumH): self.resetAs() if not isinstance(RobinDatumH, (list, tuple,)): RobinDatumH = [RobinDatumH, fenZERO] self._RobinDatumH = RobinDatumH @property def DirichletBoundary(self): """Function handle to DirichletBoundary.""" return self.BCManager.DirichletBoundary @DirichletBoundary.setter def DirichletBoundary(self, DirichletBoundary): self.resetAs() self.resetbs() self.BCManager.DirichletBoundary = DirichletBoundary @property def NeumannBoundary(self): """Function handle to NeumannBoundary.""" return self.BCManager.NeumannBoundary @NeumannBoundary.setter def NeumannBoundary(self, NeumannBoundary): self.resetAs() self.resetbs() self.dsToBeSet = True self.BCManager.NeumannBoundary = NeumannBoundary @property def RobinBoundary(self): """Function handle to RobinBoundary.""" return self.BCManager.RobinBoundary @RobinBoundary.setter def RobinBoundary(self, RobinBoundary): self.resetAs() self.resetbs() self.dsToBeSet = True self.BCManager.RobinBoundary = RobinBoundary def autoSetDS(self): """Set FEniCS boundary measure based on boundary function handles.""" if self.dsToBeSet: if self.verbosity >= 20: verbosityDepth("INIT", "Initializing boundary measures.", timestamp = self.timestamp) NB = self.NeumannBoundary RB = self.RobinBoundary boundary_markers = fen.MeshFunction("size_t", self.V.mesh(), self.V.mesh().topology().dim() - 1) NB.mark(boundary_markers, 0) RB.mark(boundary_markers, 1) self.ds = fen.Measure("ds", domain = self.V.mesh(), subdomain_data = boundary_markers) self.dsToBeSet = False if self.verbosity >= 20: verbosityDepth("DEL", "Done initializing boundary measures.", timestamp = self.timestamp) def buildEnergyNormForm(self): """ Build sparse matrix (in CSR format) representative of scalar product. """ lambda_Re, _ = self.lambda_ mu_Re, _ = self.mu_ self.energyNormMatrix = elasticNormMatrix(self.V, lambda_Re, mu_Re) - def A(self, mu : paramVal = (), der : int = 0) -> ScOp: + def A(self, mu : paramVal = [], der : List[int] = 0) -> ScOp: """Assemble (derivative of) operator of linear system.""" mu = self.checkParameter(mu) - Anull = self.checkAInBounds(der) - if Anull is not None: return Anull + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) self.autoSetDS() - if self.As[0] is None: + if derI <= 0 and self.As[0] is None: if self.verbosity >= 20: verbosityDepth("INIT", "Assembling operator term A0.", timestamp = self.timestamp) DirichletBC0 = fen.DirichletBC(self.V, fenZEROS(self.V.mesh().topology().dim()), self.DirichletBoundary) lambda_Re, lambda_Im = self.lambda_ mu_Re, mu_Im = self.mu_ hRe, hIm = self.RobinDatumH termNames = ["lambda_", "mu_", "RobinDatumH"] parsRe = self.iterReduceQuadratureDegree(zip( [lambda_Re, mu_Re, hRe], [x + "Real" for x in termNames])) parsIm = self.iterReduceQuadratureDegree(zip( [lambda_Im, mu_Re, hIm], [x + "Imag" for x in termNames])) epsilon = lambda u: 0.5 * (fen.grad(u) + fen.nabla_grad(u)) sigma = lambda u, l_, m_: ( l_ * fen.div(u) * fen.Identity(u.geometric_dimension()) + 2. * m_ * epsilon(u)) a0Re = (fen.inner(sigma(self.u, lambda_Re, mu_Re), epsilon(self.v)) * fen.dx + hRe * fen.inner(self.u, self.v) * self.ds(1)) a0Im = (fen.inner(sigma(self.u, lambda_Im, mu_Im), epsilon(self.v)) * fen.dx + hIm * fen.inner(self.u, self.v) * self.ds(1)) A0Re = fen.assemble(a0Re, form_compiler_parameters = parsRe) A0Im = fen.assemble(a0Im, form_compiler_parameters = parsIm) DirichletBC0.apply(A0Re) DirichletBC0.zero(A0Im) A0ReMat = fen.as_backend_type(A0Re).mat() A0ImMat = fen.as_backend_type(A0Im).mat() A0Rer, A0Rec, A0Rev = A0ReMat.getValuesCSR() A0Imr, A0Imc, A0Imv = A0ImMat.getValuesCSR() self.As[0] = (csr_matrix((A0Rev, A0Rec, A0Rer), shape = A0ReMat.size) + 1.j * csr_matrix((A0Imv, A0Imc, A0Imr), shape = A0ImMat.size)) if self.verbosity >= 20: verbosityDepth("DEL", "Done assembling operator term.", timestamp = self.timestamp) - return self.As[0] + return self._assembleA(mu, der, derI) - def b(self, mu : paramVal = (), der : int = 0, + def b(self, mu : paramVal = [], der : List[int] = 0, homogeneized : bool = False) -> Np1D: """Assemble (derivative of) RHS of linear system.""" mu = self.checkParameter(mu) - bnull = self.checkbInBounds(der, homogeneized) - if bnull is not None: return bnull - if homogeneized and self.mu0BC != mu: - self.u0BC = self.liftDirichletData(mu) - if max(self.nbs, self.nAs * homogeneized) > 1 and self.bsmu != mu: - self.bsmu = mu - self.resetbs() - b = self.bsH[der] if homogeneized else self.bs[der] - if b is None: - self.autoSetDS() - if self.verbosity >= 20: - verbosityDepth("INIT", ("Assembling forcing term " - "b{}.").format(der), - timestamp = self.timestamp) - if der == 0: - fRe, fIm = self.forcingTerm - g1Re, g1Im = self.NeumannDatum - g2Re, g2Im = self.RobinDatumG - else: - fRe = fenZEROS(self.V.mesh().topology().dim()) - fIm = fenZEROS(self.V.mesh().topology().dim()) - g1Re = fenZEROS(self.V.mesh().topology().dim()) - g1Im = fenZEROS(self.V.mesh().topology().dim()) - g2Re = fenZEROS(self.V.mesh().topology().dim()) - g2Im = fenZEROS(self.V.mesh().topology().dim()) - termNames = ["forcingTerm", "NeumannDatum", "RobinDatumG"] - parsRe = self.iterReduceQuadratureDegree(zip( + if not hasattr(der, "__len__"): der = [der] * self.npar + derI = hashD(der) + nbsTot = self.nbsH if homogeneized else self.nbs + bs = self.bsH if homogeneized else self.bs + if homogeneized and self.mu != self.mu0BC: + self.liftDirichletData(self.mu) + for j in range(derI, nbsTot): + if bs[j] is None: + self.autoSetDS() + if self.verbosity >= 20: + verbosityDepth("INIT", ("Assembling forcing term " + "b{}.").format(j), + timestamp = self.timestamp) + if j == 0: + fRe, fIm = self.forcingTerm + g1Re, g1Im = self.NeumannDatum + g2Re, g2Im = self.RobinDatumG + else: + fRe = fenZEROS(self.V.mesh().topology().dim()) + fIm = fenZEROS(self.V.mesh().topology().dim()) + g1Re = fenZEROS(self.V.mesh().topology().dim()) + g1Im = fenZEROS(self.V.mesh().topology().dim()) + g2Re = fenZEROS(self.V.mesh().topology().dim()) + g2Im = fenZEROS(self.V.mesh().topology().dim()) + termNames = ["forcingTerm", "NeumannDatum", "RobinDatumG"] + parsRe = self.iterReduceQuadratureDegree(zip( [fRe, g1Re, g2Re], [x + "Real" for x in termNames])) - parsIm = self.iterReduceQuadratureDegree(zip( + parsIm = self.iterReduceQuadratureDegree(zip( [fIm, g1Im, g2Im], [x + "Imag" for x in termNames])) - L0Re = (fen.inner(fRe, self.v) * fen.dx - + fen.inner(g1Re, self.v) * self.ds(0) - + fen.inner(g2Re, self.v) * self.ds(1)) - L0Im = (fen.inner(fIm, self.v) * fen.dx - + fen.inner(g1Im, self.v) * self.ds(0) - + fen.inner(g2Im, self.v) * self.ds(1)) - b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) - b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) - if homogeneized: - Ader = self.A(mu, der) - b0Re[:] -= np.real(Ader.dot(self.u0BC)) - b0Im[:] -= np.imag(Ader.dot(self.u0BC)) - DBCR = fen.DirichletBC(self.V, + L0Re = (fen.inner(fRe, self.v) * fen.dx + + fen.inner(g1Re, self.v) * self.ds(0) + + fen.inner(g2Re, self.v) * self.ds(1)) + L0Im = (fen.inner(fIm, self.v) * fen.dx + + fen.inner(g1Im, self.v) * self.ds(0) + + fen.inner(g2Im, self.v) * self.ds(1)) + b0Re = fen.assemble(L0Re, form_compiler_parameters = parsRe) + b0Im = fen.assemble(L0Im, form_compiler_parameters = parsIm) + if homogeneized: + Ader = self.A(self.mu0, hashI(j)) + b0Re[:] -= np.real(Ader.dot(self.liftedDirichletDatum)) + b0Im[:] -= np.imag(Ader.dot(self.liftedDirichletDatum)) + DBCR = fen.DirichletBC(self.V, fenZEROS(self.V.mesh().topology().dim()), self.DirichletBoundary) - DBCI = fen.DirichletBC(self.V, + DBCI = fen.DirichletBC(self.V, fenZEROS(self.V.mesh().topology().dim()), self.DirichletBoundary) - else: - DBCR = fen.DirichletBC(self.V, self.DirichletDatum[0], - self.DirichletBoundary) - DBCI = fen.DirichletBC(self.V, self.DirichletDatum[1], - self.DirichletBoundary) - DBCR.apply(b0Re) - DBCI.apply(b0Im) - b = np.array(b0Re[:] + 1.j * b0Im[:], dtype = np.complex) - if homogeneized: - self.bsH[der] = b - else: - self.bs[der] = b - if self.verbosity >= 20: - verbosityDepth("DEL", "Done assembling forcing term.", - timestamp = self.timestamp) - return b + else: + DBCR = fen.DirichletBC(self.V, self.DirichletDatum[0], + self.DirichletBoundary) + DBCI = fen.DirichletBC(self.V, self.DirichletDatum[1], + self.DirichletBoundary) + DBCR.apply(b0Re) + DBCI.apply(b0Im) + if homogeneized: + self.bsH[j] = np.array(b0Re[:] + 1.j * b0Im[:], + dtype = np.complex) + else: + self.bs[j] = np.array(b0Re[:] + 1.j * b0Im[:], + dtype = np.complex) + if self.verbosity >= 20: + verbosityDepth("DEL", "Done assembling forcing term.", + timestamp = self.timestamp) + return self._assembleb(mu - self.mu0, der, derI, homogeneized) diff --git a/rrompy/parameter/__init__.py b/rrompy/parameter/__init__.py index fe6a417..55e1350 100644 --- a/rrompy/parameter/__init__.py +++ b/rrompy/parameter/__init__.py @@ -1,31 +1,29 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # -from .parameter import parameter from .parameter_list import (parameterList, emptyParameterList, checkParameter, checkParameterList) __all__ = [ - 'parameter', 'parameterList', 'emptyParameterList', 'checkParameter', 'checkParameterList' ] diff --git a/rrompy/parameter/parameter.py b/rrompy/parameter/parameter.py deleted file mode 100644 index 47364f9..0000000 --- a/rrompy/parameter/parameter.py +++ /dev/null @@ -1,227 +0,0 @@ -# Copyright (C) 2018 by the RROMPy authors -# -# This file is part of RROMPy. -# -# RROMPy is free software: you can redistribute it and/or modify -# it under the terms of the GNU Lesser General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# RROMPy is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public License -# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. -# - -import numpy as np -from copy import deepcopy as copy -from rrompy.utilities.base.types import TupleAny -from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert - -__all__ = ['parameter'] - -class parameter: - """HERE""" - - def __init__(self, data:TupleAny, lengthCheck : int = None): - if (isinstance(data, (list,)) - or (hasattr(data, "shape") and isinstance(data.shape, (tuple,)) - and len(data.shape) > 1)): - raise RROMPyException(("Parameter data cannot be a list. Tuple " - "required.")) - if not hasattr(data, "__len__"): data = [data] - if isinstance(data, (self.__class__,)): data = data.data - self.data = tuple(data) - if lengthCheck is not None: - RROMPyAssert(len(self), lengthCheck, "Number of parameters") - self._dtype = type(sum(self.data)) - - def __len__(self): - return len(self.data) - - def __str__(self): - return str(self.data) - - def __repr__(self): - return repr(self.data) - - @property - def shape(self): - return (len(self)) - - @property - def re(self): - return parameter(tuple([np.real(x) for x in self.data])) - - @property - def im(self): - return parameter(tuple([np.imag(x) for x in self.data])) - - @property - def abs(self): - return parameter(tuple([np.abs(x) for x in self.data])) - - @property - def angle(self): - return parameter(tuple([np.angle(x) for x in self.data])) - - @property - def conj(self): - return parameter(tuple([np.conj(x) for x in self.data])) - - @property - def dtype(self): - return self._dtype - @dtype.setter - def dtype(self, dtype): - self._dtype = dtype - - def __call__(self, dim): - return self.data[dim] - - def __eq__(self, other): - if not hasattr(other, "shape") or self.shape != other.shape: - return False - if isinstance(other, self.__class__): - fac = other.data - else: - fac = other - return isinstance(fac, (list, tuple,)) and np.allclose(self.data, fac) - - def __ne__(self, other): - return not self == other - - def __copy__(self): - return parameter(self.data) - - def __deepcopy__(self, memo): - return parameter(copy(self.data, memo)) - - def __add__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(len(self), len(other), "Number of parameters") - fac = other.data - elif hasattr(other, "__len__"): - fac = other - else: - fac = [other] * len(self) - data = [self(j) + fac[j] for j in range(len(self))] - return parameter(tuple(data)) - - def __iadd__(self, other): - self.data = (self + other).data - return self - - def __sub__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(len(self), len(other), "Number of parameters") - fac = other.data - elif hasattr(other, "__len__"): - fac = other - else: - fac = [other] * len(self) - data = [self(j) - fac[j] for j in range(len(self))] - return parameter(tuple(data)) - - def __isub__(self, other): - self.data = (self - other).data - return self - - def __mul__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(len(self), len(other), "Number of parameters") - fac = other.data - elif hasattr(other, "__len__"): - fac = other - else: - fac = [other] * len(self) - data = [self(j) * fac[j] for j in range(len(self))] - return parameter(tuple(data)) - - def __imul__(self, other): - self.data = (self * other).data - return self - - def __truediv__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(len(self), len(other), "Number of parameters") - fac = other.data - elif hasattr(other, "__len__"): - fac = other - else: - fac = [other] * len(self) - data = [self(j) / fac[j] for j in range(len(self))] - return parameter(tuple(data)) - - def __idiv__(self, other): - self.data = (self / other).data - return self - - def __pow__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(len(self), len(other), "Number of parameters") - fac = other.data - elif hasattr(other, "__len__"): - fac = other - else: - fac = [other] * len(self) - data = [self(j) ** fac[j] for j in range(len(self))] - return parameter(tuple(data)) - - def __ipow__(self, other): - self.data = (self ** other).data - return self - - def __neg__(self): - return parameter(tuple([-x for x in self.data])) - - def __pos__(self): - return parameter(self.data) - - def __lt__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(len(self), len(other), "Number of parameters") - fac = other.data - elif hasattr(other, "__len__"): - fac = other - else: - fac = [other] * len(self) - return self.data < fac - - def __le__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(len(self), len(other), "Number of parameters") - fac = other.data - elif hasattr(other, "__len__"): - fac = other - else: - fac = [other] * len(self) - return self.data <= fac - - def __ge__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(len(self), len(other), "Number of parameters") - fac = other.data - elif hasattr(other, "__len__"): - fac = other - else: - fac = [other] * len(self) - return self.data >= fac - - def __gt__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(len(self), len(other), "Number of parameters") - fac = other.data - elif hasattr(other, "__len__"): - fac = other - else: - fac = [other] * len(self) - return self.data > fac - - def flatten(self, idx = 0): - return self(idx) - - diff --git a/rrompy/parameter/parameter_list.py b/rrompy/parameter/parameter_list.py index b9ebc96..ffaef89 100644 --- a/rrompy/parameter/parameter_list.py +++ b/rrompy/parameter/parameter_list.py @@ -1,244 +1,221 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # +import numpy as np +from itertools import product as iterprod from copy import deepcopy as copy -from .parameter import parameter from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert -from rrompy.utilities.base.types import List, TupleAny - -__all__ = ['parameterList', 'emptyParameterList', 'checkParameter', - 'checkParameterList'] - -def checkParameter(mu, npar = None, deep = False): - if isinstance(mu, (parameterList, list,)): - raise RROMPyException(("Parameter list not allowed here. Single " - "parameter required.")) - if not isinstance(mu, (parameter,)): - mu = parameter(mu, npar) - elif npar is not None: - RROMPyAssert(len(mu), npar, "Number of parameters") - return copy(mu) - -def checkParameterList(mu, npar = None, deep = False): - wasParameter = False +from rrompy.utilities.base.types import Np2D + +__all__ = ['parameterList', 'emptyParameterList', 'checkParameterList'] + +def checkParameterList(mu, npar = None): if not isinstance(mu, (parameterList,)): mu = parameterList(mu, npar) - if len(mu) == 1: - wasParameter = True - elif npar is not None and mu.shape[1] is not None: - RROMPyAssert(mu.shape[1], npar, "Number of parameters") - return copy(mu), wasParameter + else: + if npar is not None: + RROMPyAssert(mu.shape[1], npar, "Number of parameters") + mu = copy(mu) + return mu, len(mu) <= 1 + +def checkParameter(mu, npar = None): + muL, wasPar = checkParameterList(mu, npar) + if not wasPar: + muL, wasPar = checkParameterList([mu], npar) + if not wasPar: + raise RROMPyException(("Only single parameter allowed. No " + "parameter lists here.")) + return muL + +def emptyParameterList(): + return parameterList([[]]) + +def addMemberFromNumpyArray(self, fieldName): + def objFunc(self, other): + if not isinstance(other, (self.__class__,)): + other = parameterList(other, self.shape[1]) + return parameterList(getattr(np.ndarray, fieldName)(self.data, + other.data)) + setattr(self.__class__, fieldName, objFunc) + def objIFunc(self, other): + self.data = getattr(self.__class__, fieldName)(self, other).data + setattr(self.__class__, "__i" + fieldName[2:], objIFunc) class parameterList: """HERE""" - def __init__(self, data:List[TupleAny], lengthCheck : int = None): - if (isinstance(data, (tuple, parameter,)) - or not hasattr(data, "__len__")): - data = [data] - self.data = [None] * len(data) - for j, par in enumerate(data): - self[j] = parameter(par) - if j == 0 and lengthCheck is None: - lengthCheck = self.shape[1] - RROMPyAssert(len(self[j]), lengthCheck, "Number of parameters") + __all__ += [pre + post for pre, post in iterprod(["__", "__i"], + ["__add__", "__sub__", "__mul__", "__div__", + "__truediv__", "__floordiv__", "__pow__"])] + + def __init__(self, data:Np2D, lengthCheck : int = None): + if not hasattr(data, "__len__"): data = [data] + elif isinstance(data, (self.__class__,)): data = data.data + elif isinstance(data, (tuple,)): data = list(data) + if (isinstance(data, (list,)) and len(data) > 0 + and isinstance(data[0], (tuple,))): + data = [list(x) for x in data] + self.data = np.array(data, ndmin = 1, copy = 1) + if self.data.ndim == 1: + self.data = self.data[:, None] + if np.size(self.data) > 0: + self.data = self.data.reshape((len(self), -1)) + if self.shape[0] * self.shape[1] == 0: + lenEff = 0 if lengthCheck is None else lengthCheck + self.reset((0, lenEff), self.dtype) + if lengthCheck is not None: + if lengthCheck != 1 and self.shape == (lengthCheck, 1): + self.data = self.data.T + RROMPyAssert(self.shape[1], lengthCheck, "Number of parameters") + + for fieldName in ["__add__", "__sub__", "__mul__", "__div__", + "__truediv__", "__floordiv__", "__pow__"]: + addMemberFromNumpyArray(self, fieldName) def __len__(self): - return len(self.data) + return self.shape[0] def __str__(self): if len(self) <= 3: selfstr = str(self.data) else: selfstr = "[{} ..({}).. {}]".format(self[0], len(self) - 2, self[-1]) return selfstr def __repr__(self): return repr(self.data) @property def shape(self): - if len(self) == 0: - return (0, None) - return (len(self), len(self.data[0])) + return self.data.shape @property def re(self): - return parameterList([x.re for x in self.data]) + return parameterList(np.real(self.data)) @property def im(self): - return parameterList([x.im for x in self.data]) + return parameterList(np.imag(self.data)) @property def abs(self): - return parameterList([x.abs for x in self.data]) + return parameterList(np.abs(self.data)) @property def angle(self): - return parameterList([x.angle for x in self.data]) + return parameterList(np.angle(self.data)) @property def conj(self): - return parameter([x.conj for x in self.data]) + return parameterList(np.conj(self.data)) @property def dtype(self): - return self.data[0].dtype + return self.data.dtype def __getitem__(self, key): - if isinstance(key, (tuple,)): - return tuple(self[list(key)]) - if isinstance(key, (list,)): - return [self[k] for k in key] return self.data[key] - def __call__(self, dim): - return [x(dim) for x in self.data] + def __call__(self, key, idx = None): + if idx is None: + return self.data[:, key] + return self[key, idx] def __setitem__(self, key, value): if isinstance(key, (tuple, list,)): RROMPyAssert(len(key), len(value), "Slice length") for k, val in zip(key, value): self[k] = val else: self.data[key] = value - def __contains__(self, item): - return item in self.data - - def __iter__(self): - return self.data.__iter__() - def __eq__(self, other): if not hasattr(other, "shape") or self.shape != other.shape: return False if isinstance(other, self.__class__): - fac = other.data - else: - fac = other - return (isinstance(fac, (list,)) - and all([self[j] == fac[j] for j in range(len(self))])) + other = other.data + return np.allclose(self.data, other) + + def __contains__(self, item): + return next((x for x in self if np.allclose(x[0], item)), -1) != -1 - def __ne__(self, other): - return not self == other + def __iter__(self): + return iter([parameterList([x]) for x in self.data]) def __copy__(self): return parameterList(self.data) def __deepcopy__(self, memo): return parameterList(copy(self.data, memo)) - def __add__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(self.shape, other.shape, "Number of parameters") - fac = other.data - else: - fac = [other] * len(self) - data = [self[j] + fac[j] for j in range(len(self))] - return parameterList(data) - - def __iadd__(self, other): - self.data = (self + other).data - return self - - def __sub__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(self.shape, other.shape, "Number of parameters") - fac = other.data - else: - fac = [other] * len(self) - data = [self[j] - fac[j] for j in range(len(self))] - return parameterList(data) - - def __isub__(self, other): - self.data = (self - other).data - return self - - def __mul__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(self.shape, other.shape, "Number of parameters") - fac = other.data - else: - fac = [other] * len(self) - data = [self[j] * fac[j] for j in range(len(self))] - return parameterList(data) - - def __imul__(self, other): - self.data = (self * other).data - return self - - def __truediv__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(self.shape, other.shape, "Number of parameters") - fac = other.data - else: - fac = [other] * len(self) - data = [self[j] / fac[j] for j in range(len(self))] - return parameterList(data) - - def __idiv__(self, other): - self.data = (self / other).data - return self - - def __pow__(self, other): - if isinstance(other, self.__class__): - RROMPyAssert(self.shape, other.shape, "Number of parameters") - fac = other.data - else: - fac = [other] * len(self) - data = [self[j] ** fac[j] for j in range(len(self))] - return parameterList(data) - - def __ipow__(self, other): - self.data = (self ** other).data - return self - def __neg__(self): - return parameterList([-x for x in self.data]) + return parameterList(-self.data) def __pos__(self): - return parameterList(self.data) + return copy(self) - def reset(self, length): - self.data = [None] * length + def reset(self, size, dtype = complex): + self.data = np.empty(size, dtype = dtype) + self.data[:] = np.nan def append(self, items): if isinstance(items, self.__class__): - fac = items.data - elif isinstance(items, (parameter,)): - fac = [items] - self.data += [checkParameter(x, self.shape[1], True) for x in fac] + items = items.data + else: + items = np.array(items, ndmin = 2) + if len(self) == 0: + self.data = parameterList(items).data + else: + self.data = np.append(self.data, items, axis = 0) def pop(self, idx = -1): - self.data.pop(idx) + self.data = np.delete(self.data, idx, axis = 0) def find(self, item): - return next((j for j in range(len(self)) if self[j] == item), None) + if len(self) == 0: return None + return next((j for j in range(len(self)) + if np.allclose(self[j], item)), None) def findall(self, item): - return [j for j in range(len(self)) if self[j] == item] - - def flatten(self, idx = 0): - return [y(idx) for y in self] - -class emptyParameterList(parameterList): - def __init__(self): - super().__init__([]) - + if len(self) == 0: return [] + return [j for j in range(len(self)) if np.allclose(self[j], item)] + + def sort(self, overwrite = False, *args, **kwargs): + dataT = np.array([tuple(x[0]) for x in self], + dtype = [(str(j), self.dtype) + for j in range(self.shape[1])]) + sortedP = parameterList([list(x) for x in np.sort(dataT, *args, + **kwargs)]) + if overwrite: self.data = sortedP.data + return sortedP + + def unique(self, overwrite = False, *args, **kwargs): + dataT = np.array([tuple(x[0]) for x in self], + dtype = [(str(j), self.dtype) + for j in range(self.shape[1])]) + uniqueT = np.unique(dataT, *args, **kwargs) + if isinstance(uniqueT, (tuple,)): + extraT = uniqueT[1:] + uniqueT = uniqueT[0] + else: extraT = () + uniqueP = parameterList([list(x) for x in uniqueT]) + if overwrite: self.data = uniqueP.data + uniqueP = (uniqueP,) + extraT + if len(uniqueP) == 1: return uniqueP[0] + return uniqueP diff --git a/rrompy/parameter/parameter_sampling/fft_sampler.py b/rrompy/parameter/parameter_sampling/fft_sampler.py index 47fe958..a41f44b 100644 --- a/rrompy/parameter/parameter_sampling/fft_sampler.py +++ b/rrompy/parameter/parameter_sampling/fft_sampler.py @@ -1,52 +1,51 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from .generic_sampler import GenericSampler -from rrompy.utilities.base.types import Np1D, List, Tuple, paramList +from rrompy.utilities.base.types import Np1D, List, paramList from rrompy.utilities.base import lowDiscrepancy, kroneckerer from rrompy.parameter import checkParameterList __all__ = ['FFTSampler'] class FFTSampler(GenericSampler): """Generator of FFT-type sample points on scaled roots of unity.""" - def generatePoints(self, n:List[int]) -> Tuple[paramList, Np1D]: - """Array of sample points and array of weights.""" + def generatePoints(self, n:List[int], reorder : bool = True) -> paramList: + """Array of sample points.""" if not hasattr(n, "__len__"): n = [n] super().generatePoints(n) nleft, nright = 1, np.prod(n) xmat = np.empty((nright, self.npar), dtype = np.complex) - wdMult = 1. for d in range(self.npar): nright //= n[d] - a, b = self.lims[0](d), self.lims[1](d) + a, b = self.lims(0, d), self.lims(1, d) if self.scaling is not None: a, b = self.scaling[d](a), self.scaling[d](b) c, r = (a + b) / 2., np.abs(a - b) / 2. xd = c + r * np.exp(1.j * np.linspace(0, 2 * np.pi, n[d] + 1)[:-1]) - wdMult *= r / n[d] - fejerOrdering = lowDiscrepancy(n[d]) - xd = xd[fejerOrdering] + if reorder: + fejerOrdering = lowDiscrepancy(n[d]) + xd = xd[fejerOrdering] if self.scalingInv is not None: xd = self.scalingInv[d](xd) xmat[:, d] = kroneckerer(xd, nleft, nright) nleft *= n[d] x, _ = checkParameterList(xmat, self.npar) - return x, wdMult * np.ones(len(x)) + return x diff --git a/rrompy/parameter/parameter_sampling/generic_sampler.py b/rrompy/parameter/parameter_sampling/generic_sampler.py index 76ea59f..8e8a0d7 100644 --- a/rrompy/parameter/parameter_sampling/generic_sampler.py +++ b/rrompy/parameter/parameter_sampling/generic_sampler.py @@ -1,98 +1,98 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from abc import abstractmethod -from rrompy.utilities.base.types import Np1D, Tuple, List, paramList +from rrompy.utilities.base.types import Np1D, List, paramList from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert from rrompy.parameter import checkParameterList __all__ = ['GenericSampler'] class GenericSampler: """ABSTRACT. Generic generator of sample points.""" def __init__(self, lims:paramList, scaling : List[callable] = None, scalingInv : List[callable] = None): self.lims = lims self.scaling = scaling self.scalingInv = scalingInv def name(self) -> str: return self.__class__.__name__ def __str__(self) -> str: return "{}[{}_{}]".format(self.name(), self.lims[0], self.lims[1]) def __repr__(self) -> str: return self.__str__() + " at " + hex(id(self)) def __eq__(self, other) -> bool: return self.__dict__ == other.__dict__ @property def npar(self): """Number of parameters.""" return self._lims.shape[1] @property def lims(self): """Value of lims.""" return self._lims @lims.setter def lims(self, lims): lims, _ = checkParameterList(lims) if len(lims) != 2: raise RROMPyException("2 limits must be specified.") self._lims = lims @property def scaling(self): """Value of scaling.""" return self._scaling @scaling.setter def scaling(self, scaling): if scaling is not None: if not hasattr(scaling, "__len__"): scaling = [scaling] RROMPyAssert(self.npar, len(scaling), "Number of scaling terms") if not all([callable(s) for s in scaling]): raise RROMPyException(("Each value of scaling must be a " "callable.")) self._scaling = scaling @property def scalingInv(self): """Value of scalingInv.""" return self._scalingInv @scalingInv.setter def scalingInv(self, scalingInv): if scalingInv is not None: if not hasattr(scalingInv, "__len__"): scalingInv = [scalingInv] RROMPyAssert(self.npar, len(scalingInv), "Number of scalingInv terms") if not all([callable(sInv) for sInv in scalingInv]): raise RROMPyException(("Each value of scalingInv must be a " "callable.")) self._scalingInv = scalingInv @abstractmethod - def generatePoints(self, n:List[int]) -> Tuple[paramList, Np1D]: - """Array of points and array of weights.""" + def generatePoints(self, n:List[int]) -> paramList: + """Array of points.""" if not hasattr(n, "__len__"): n = [n] RROMPyAssert(self.npar, len(n), "Point number") pass diff --git a/rrompy/parameter/parameter_sampling/manual_sampler.py b/rrompy/parameter/parameter_sampling/manual_sampler.py index 45fffae..60474b5 100644 --- a/rrompy/parameter/parameter_sampling/manual_sampler.py +++ b/rrompy/parameter/parameter_sampling/manual_sampler.py @@ -1,71 +1,66 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from copy import deepcopy as copy from .generic_sampler import GenericSampler -from rrompy.utilities.base.types import Np1D, Tuple, List, paramList +from rrompy.utilities.base.types import Np1D, List, paramList from rrompy.utilities.exception_manager import RROMPyWarning, RROMPyAssert from rrompy.parameter import checkParameterList __all__ = ['ManualSampler'] class ManualSampler(GenericSampler): """Manual generator of sample points.""" def __init__(self, lims:paramList, points:paramList, scaling : List[callable] = None, scalingInv : List[callable] = None): super().__init__(lims = lims, scaling = scaling, scalingInv = scalingInv) self.points = points @property def points(self): """Value of points.""" return self._points @points.setter def points(self, points): - points, _ = checkParameterList(points) - RROMPyAssert(points.shape[1], self.npar, "Number of parameters") + points, _ = checkParameterList(points, self.npar) self._points = points def __str__(self) -> str: return "{}[{}]".format(self.name(), "_".join(map(str, self.points))) def __repr__(self) -> str: return self.__str__() + " at " + hex(id(self)) - def generatePoints(self, n:int) -> Tuple[paramList, Np1D]: - """Array of sample points and array of weights.""" - size = 1. / n - for d in range(self.npar): - a, b = self.lims[0](d), self.lims[1](d) - if self.scaling is not None: - a, b = self.scaling[d](a), self.scaling[d](b) - size *= np.abs(a - b) + def generatePoints(self, n:int) -> paramList: + """Array of sample points.""" + if hasattr(n, "__len__"): n = n[0] if n > len(self.points): RROMPyWarning(("Requested more points than given. Looping over " "first points.")) pts = copy(self.points) for j in range(np.int(np.ceil(n / len(self.points)))): pts.append(self.points) else: pts = self.points - x, _ = checkParameterList(pts[list(range(n))]) - return x, np.ones(n) * size + x, _ = checkParameterList(pts[list(range(n))], self.npar) + return x + diff --git a/rrompy/parameter/parameter_sampling/quadrature_sampler.py b/rrompy/parameter/parameter_sampling/quadrature_sampler.py index 2b5a9a3..0900816 100644 --- a/rrompy/parameter/parameter_sampling/quadrature_sampler.py +++ b/rrompy/parameter/parameter_sampling/quadrature_sampler.py @@ -1,92 +1,86 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from .generic_sampler import GenericSampler -from rrompy.utilities.base.types import Np1D, Tuple, List, paramList +from rrompy.utilities.base.types import Np1D, List, paramList from rrompy.utilities.exception_manager import RROMPyException from rrompy.utilities.base import lowDiscrepancy, kroneckerer from rrompy.parameter import checkParameterList __all__ = ['QuadratureSampler'] class QuadratureSampler(GenericSampler): """Generator of quadrature sample points.""" allowedKinds = ["UNIFORM", "CHEBYSHEV", "GAUSSLEGENDRE"] def __init__(self, lims:paramList, kind : str = "UNIFORM", scaling : List[callable] = None, scalingInv : List[callable] = None): super().__init__(lims = lims, scaling = scaling, scalingInv = scalingInv) self.kind = kind def __str__(self) -> str: return "{}_{}".format(super().__str__(), self.kind) def __repr__(self) -> str: return self.__str__() + " at " + hex(id(self)) @property def kind(self): """Value of kind.""" return self._kind @kind.setter def kind(self, kind): if kind.upper() not in self.allowedKinds: raise RROMPyException("Generator kind not recognized.") self._kind = kind.upper() - def generatePoints(self, n:List[int]) -> Tuple[paramList, Np1D]: - """Array of sample points and array of weights.""" + def generatePoints(self, n:List[int], reorder : bool = True) -> paramList: + """Array of sample points.""" if not hasattr(n, "__len__"): n = [n] super().generatePoints(n) nleft, nright = 1, np.prod(n) xmat = np.empty((nright, self.npar), dtype = self.lims.dtype) - w = np.ones(nright) for d in range(self.npar): nright //= n[d] - a, b = self.lims[0](d), self.lims[1](d) + a, b = self.lims(0, d), self.lims(1, d) if self.scaling is not None: a, b = self.scaling[d](a), self.scaling[d](b) c, r = (a + b) / 2., (a - b) / 2. dAbs = 2. * np.abs(r) if self.kind == "UNIFORM": xd = np.linspace(a, b, n[d]) - wd = dAbs / n[d] * np.ones(n[d]) elif self.kind == "CHEBYSHEV": - nodes, weights = np.polynomial.chebyshev.chebgauss(n[d]) + nodes, _ = np.polynomial.chebyshev.chebgauss(n[d]) xd = c + r * nodes - wd = dAbs / np.pi * weights[:] elif self.kind == "GAUSSLEGENDRE": - nodes, weights = np.polynomial.legendre.leggauss(n[d]) + nodes, _ = np.polynomial.legendre.leggauss(n[d]) xd = c + r * nodes[::-1] - wd = dAbs * weights[::-1] - if len(xd) > 1: + if len(xd) > 1 and reorder: fejerOrdering = [n[d] - 1] + lowDiscrepancy(n[d] - 1) xd = xd[fejerOrdering] - wd = wd[fejerOrdering] if self.scalingInv is not None: xd = self.scalingInv[d](xd) xmat[:, d] = kroneckerer(xd, nleft, nright) - w *= kroneckerer(wd, nleft, nright) nleft *= n[d] x, _ = checkParameterList(xmat, self.npar) - return x, w + return x diff --git a/rrompy/parameter/parameter_sampling/random_sampler.py b/rrompy/parameter/parameter_sampling/random_sampler.py index efb59c3..cc68c21 100644 --- a/rrompy/parameter/parameter_sampling/random_sampler.py +++ b/rrompy/parameter/parameter_sampling/random_sampler.py @@ -1,75 +1,73 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from .generic_sampler import GenericSampler from rrompy.utilities.base.sobol import sobolGenerate -from rrompy.utilities.base.types import Np1D, Tuple, List, paramList +from rrompy.utilities.base.types import Np1D, List, paramList from rrompy.utilities.exception_manager import RROMPyException from rrompy.parameter import checkParameterList __all__ = ['RandomSampler'] class RandomSampler(GenericSampler): """Generator of quadrature sample points.""" allowedKinds = ["UNIFORM", "SOBOL"] def __init__(self, lims:paramList, kind : str = "UNIFORM", scaling : List[callable] = None, scalingInv : List[callable] = None): super().__init__(lims = lims, scaling = scaling, scalingInv = scalingInv) self.kind = kind def __str__(self) -> str: return "{}_{}".format(super().__str__(), self.kind) def __repr__(self) -> str: return self.__str__() + " at " + hex(id(self)) @property def kind(self): """Value of kind.""" return self._kind @kind.setter def kind(self, kind): if kind.upper() not in self.allowedKinds: raise RROMPyException("Generator kind not recognized.") self._kind = kind.upper() - def generatePoints(self, n:int, - seed : int = 420) -> Tuple[paramList, Np1D]: - """Array of quadrature points and array of weights.""" - wdMult = 1. / n + def generatePoints(self, n:int, seed : int = 420) -> paramList: + """Array of quadrature points.""" + if hasattr(n, "__len__"): n = n[0] if self.kind == "UNIFORM": np.random.seed(seed) xmat = np.random.uniform(size = (n, self.npar)) else: xmat = sobolGenerate(self.npar, n, seed) for d in range(self.npar): - a, b = self.lims[0](d), self.lims[1](d) + a, b = self.lims(0, d), self.lims(1, d) if self.scaling is not None: a, b = self.scaling[d](a), self.scaling[d](b) - wdMult *= np.abs(a - b) xmat[:, d] = a + (b - a) * xmat[:, d] if self.scalingInv is not None: xmat[:, d] = self.scalingInv[d](xmat[:, d]) x, _ = checkParameterList(xmat, self.npar) - return x, wdMult * np.ones(len(x)) + return x diff --git a/rrompy/reduction_methods/base/generic_approximant.py b/rrompy/reduction_methods/base/generic_approximant.py index 42d6ecd..b6bbf9b 100644 --- a/rrompy/reduction_methods/base/generic_approximant.py +++ b/rrompy/reduction_methods/base/generic_approximant.py @@ -1,710 +1,854 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from abc import abstractmethod import numpy as np from itertools import product as iterprod from copy import deepcopy as copy from os import remove as osrm from rrompy.sampling.linear_problem import (SamplingEngineLinear, SamplingEngineLinearPOD) from rrompy.utilities.base.types import (Np1D, DictAny, HFEng, List, strLst, paramVal, paramList, sampList) from rrompy.utilities.base import purgeDict, verbosityDepth, getNewFilename from rrompy.utilities.exception_manager import (RROMPyException, RROMPyAssert, RROMPy_READY, RROMPy_FRAGILE) from rrompy.utilities.base import pickleDump, pickleLoad from rrompy.parameter import (emptyParameterList, checkParameter, checkParameterList) from rrompy.sampling import sampleList, emptySampleList __all__ = ['GenericApproximant'] def addNormFieldToClass(self, fieldName): def objFunc(self, mu:paramList, homogeneized : bool = False) -> float: uV = getattr(self.__class__, "get" + fieldName)(self, mu, homogeneized) val = self.HFEngine.norm(uV) return val setattr(self.__class__, "norm" + fieldName, objFunc) def addPlotFieldToClass(self, fieldName): def objFunc(self, mu:paramList, name : str = fieldName, save : str = None, what : strLst = 'all', saveFormat : str = "eps", saveDPI : int = 100, show : bool = True, homogeneized : bool = False, **figspecs): uV = getattr(self.__class__, "get" + fieldName)(self, mu, homogeneized) - self.HFEngine.plot(uV, name = name, save = save, what = what, - saveFormat = saveFormat, saveDPI = saveDPI, - show = show, **figspecs) + for j, u in enumerate(uV): + self.HFEngine.plot(u, name = name + str(j), save = save, + what = what, saveFormat = saveFormat, + saveDPI = saveDPI, show = show, **figspecs) setattr(self.__class__, "plot" + fieldName, objFunc) def addOutParaviewFieldToClass(self, fieldName): def objFunc(self, mu:paramVal, name : str = fieldName, filename : str = "out", time : float = 0., what : strLst = 'all', forceNewFile : bool = True, folder : bool = False, filePW = None, homogeneized : bool = False): if not hasattr(self.HFEngine, "outParaview"): raise RROMPyException(("High fidelity engine cannot output to " "Paraview.")) uV = getattr(self.__class__, "get" + fieldName)(self, mu, homogeneized) - self.HFEngine.outParaview(uV, name = name, filename = filename, - time = time, what = what, - forceNewFile = forceNewFile, - folder = folder, filePW = filePW) + for j, u in enumerate(uV): + self.HFEngine.outParaview(u, name = name + str(j), + filename = filename, time = time, + what = what, forceNewFile = forceNewFile, + folder = folder, filePW = filePW) setattr(self.__class__, "outParaview" + fieldName, objFunc) def addOutParaviewTimeDomainFieldToClass(self, fieldName): def objFunc(self, mu:paramVal, omega : float = None, timeFinal : float = None, periodResolution : int = 20, name : str = fieldName, filename : str = "out", forceNewFile : bool = True, folder : bool = False, homogeneized : bool = False): if not hasattr(self.HFEngine, "outParaviewTimeDomain"): raise RROMPyException(("High fidelity engine cannot output to " "Paraview.")) uV = getattr(self.__class__, "get" + fieldName)(self, mu, homogeneized) if omega is None: omega = np.real(mu) - self.HFEngine.outParaviewTimeDomain(uV, omega = omega, + for j, u in enumerate(uV): + self.HFEngine.outParaviewTimeDomain(u, omega = omega, timeFinal = timeFinal, periodResolution = periodResolution, - name = name, filename = filename, + name = name + str(j), + filename = filename, forceNewFile = forceNewFile, folder = folder) setattr(self.__class__, "outParaviewTimeDomain" + fieldName, objFunc) class GenericApproximant: """ ABSTRACT ROM approximant computation for parametric problems. Args: HFEngine: HF problem solver. mu0(optional): Default parameter. Defaults to 0. approxParameters(optional): Dictionary containing values for main parameters of approximant. Recognized keys are: - - 'POD': whether to compute POD of snapshots; defaults to True. + - 'POD': whether to compute POD of snapshots; defaults to True; + - 'S': total number of samples current approximant relies upon. Defaults to empty dict. homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults to False. verbosity(optional): Verbosity level. Defaults to 10. Attributes: HFEngine: HF problem solver. trainedModel: Trained model evaluator. mu0: Default parameter. homogeneized: Whether to homogeneize Dirichlet BCs. approxParameters: Dictionary containing values for main parameters of approximant. Recognized keys are in parameterList. parameterList: Recognized keys of approximant parameters: - - 'POD': whether to compute POD of snapshots. + - 'POD': whether to compute POD of snapshots; + - 'S': total number of samples current approximant relies upon. verbosity: Verbosity level. POD: Whether to compute POD of snapshots. + S: Number of solution snapshots over which current approximant is + based upon. samplingEngine: Sampling engine. - uHF: High fidelity solution with wavenumber lastSolvedHF as numpy - complex vector. - lastSolvedHF: Wavenumber corresponding to last computed high fidelity - solution. - uApp: Last evaluated approximant as numpy complex vector. + uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as + sampleList. + lastSolvedHF: Parameter(s) corresponding to last computed high fidelity + solution(s) as parameterList. + uAppReduced: Reduced approximate solution(s) with parameter(s) + lastSolvedApp as sampleList. + lastSolvedAppReduced: Parameter(s) corresponding to last computed + reduced approximate solution(s) as parameterList. + uApp: Approximate solution(s) with parameter(s) lastSolvedApp as + sampleList. + lastSolvedApp: Parameter(s) corresponding to last computed approximate + solution(s) as parameterList. """ __all__ += [ftype + dtype for ftype, dtype in iterprod( ["norm", "plot", "outParaview", "outParaviewTimeDomain"], ["HF", "RHS", "Approx", "Res", "Err"])] - def __init__(self, HFEngine:HFEng, mu0 : paramVal = 0, + def __init__(self, HFEngine:HFEng, mu0 : paramVal = None, approxParameters : DictAny = {}, homogeneized : bool = False, verbosity : int = 10, timestamp : bool = True): self._preInit() self._mode = RROMPy_READY self.verbosity = verbosity self.timestamp = timestamp if self.verbosity >= 10: verbosityDepth("INIT", ("Initializing approximant engine of " "type {}.").format(self.name()), timestamp = self.timestamp) self._HFEngine = HFEngine - self._addParametersToList(["POD"]) - self.mu0 = checkParameter(mu0) + self.trainedModel = None + self.lastSolvedHF = emptyParameterList() + self.uHF = emptySampleList() + self._addParametersToList(["POD", "S"]) + if mu0 is None: + if hasattr(self.HFEngine, "mu0"): + self.mu0 = checkParameter(self.HFEngine.mu0) + else: + raise RROMPyException(("Center of approximation cannot be " + "inferred from HF engine. Parameter " + "required")) + else: + self.mu0 = checkParameter(mu0, self.HFEngine.npar) self.homogeneized = homogeneized self.approxParameters = approxParameters + self.resetSamples() self._postInit() ### add norm{HF,RHS,Approx,Res,Err} methods """ Compute norm of * at arbitrary parameter. Args: mu: Target parameter. homogeneized(optional): Whether to remove Dirichlet BC. Defaults to False. Returns: Target norm of *. """ for objName in ["HF", "RHS", "Approx", "Res", "Err"]: addNormFieldToClass(self, objName) ### add plot{HF,RHS,Approx,Res,Err} methods """ Do some nice plots of * at arbitrary parameter. Args: mu: Target parameter. name(optional): Name to be shown as title of the plots. Defaults to 'u'. what(optional): Which plots to do. If list, can contain 'ABS', 'PHASE', 'REAL', 'IMAG'. If str, same plus wildcard 'ALL'. Defaults to 'ALL'. save(optional): Where to save plot(s). Defaults to None, i.e. no saving. saveFormat(optional): Format for saved plot(s). Defaults to "eps". saveDPI(optional): DPI for saved plot(s). Defaults to 100. show(optional): Whether to show figure. Defaults to True. homogeneized(optional): Whether to remove Dirichlet BC. Defaults to False. figspecs(optional key args): Optional arguments for matplotlib figure creation. """ for objName in ["HF", "RHS", "Approx", "Res", "Err"]: addPlotFieldToClass(self, objName) ### add outParaview{HF,RHS,Approx,Res,Err} methods """ Output * to ParaView file. Args: mu: Target parameter. name(optional): Base name to be used for data output. filename(optional): Name of output file. time(optional): Timestamp. what(optional): Which plots to do. If list, can contain 'MESH', 'ABS', 'PHASE', 'REAL', 'IMAG'. If str, same plus wildcard 'ALL'. Defaults to 'ALL'. forceNewFile(optional): Whether to create new output file. filePW(optional): Fenics File entity (for time series). homogeneized(optional): Whether to remove Dirichlet BC. Defaults to False. """ for objName in ["HF", "RHS", "Approx", "Res", "Err"]: addOutParaviewFieldToClass(self, objName) ### add outParaviewTimeDomain{HF,RHS,Approx,Res,Err} methods """ Output * to ParaView file, converted to time domain. Args: mu: Target parameter. omega(optional): frequency. timeFinal(optional): final time of simulation. periodResolution(optional): number of time steps per period. name(optional): Base name to be used for data output. filename(optional): Name of output file. forceNewFile(optional): Whether to create new output file. homogeneized(optional): Whether to remove Dirichlet BC. Defaults to False. """ for objName in ["HF", "RHS", "Approx", "Res", "Err"]: addOutParaviewTimeDomainFieldToClass(self, objName) def _preInit(self): if not hasattr(self, "depth"): self.depth = 0 else: self.depth += 1 def _addParametersToList(self, what:strLst): if not hasattr(self, "parameterList"): self.parameterList = [] self.parameterList += what def _postInit(self): if self.depth == 0: if self.verbosity >= 10: verbosityDepth("DEL", "Done initializing.", timestamp = self.timestamp) del self.depth else: self.depth -= 1 def name(self) -> str: return self.__class__.__name__ def __str__(self) -> str: return self.name() def __repr__(self) -> str: return self.__str__() + " at " + hex(id(self)) def setupSampling(self): """Setup sampling engine.""" RROMPyAssert(self._mode, message = "Cannot setup sampling engine.") if not hasattr(self, "_POD") or self._POD is None: return if self.POD: SamplingEngine = SamplingEngineLinearPOD else: SamplingEngine = SamplingEngineLinear self.samplingEngine = SamplingEngine(self.HFEngine, verbosity = self.verbosity) @property def HFEngine(self): """Value of HFEngine.""" return self._HFEngine @HFEngine.setter def HFEngine(self, HFEngine): raise RROMPyException("Cannot change HFEngine.") @property def mu0(self): """Value of mu0.""" return self._mu0 @mu0.setter def mu0(self, mu0): + mu0 = checkParameter(mu0) if not hasattr(self, "_mu0") or mu0 != self.mu0: self.resetSamples() self._mu0 = mu0 + @property + def npar(self): + """Number of parameters.""" + return self.mu0.shape[1] + @property def approxParameters(self): """Value of approximant parameters.""" return self._approxParameters @approxParameters.setter def approxParameters(self, approxParams): if not hasattr(self, "approxParameters"): self._approxParameters = {} approxParameters = purgeDict(approxParams, self.parameterList, dictname = self.name() + ".approxParameters", baselevel = 1) keyList = list(approxParameters.keys()) if "POD" in keyList: self.POD = approxParameters["POD"] elif not hasattr(self, "_POD") or self._POD is None: self.POD = True + if "S" in keyList: + self.S = approxParameters["S"] + elif hasattr(self, "_S") and self._S is not None: + self.S = self.S + else: + raise RROMPyException("Must specify S.") @property def POD(self): """Value of POD.""" return self._POD @POD.setter def POD(self, POD): if hasattr(self, "_POD"): PODold = self.POD else: PODold = -1 self._POD = POD self._approxParameters["POD"] = self.POD if PODold != self.POD: self.samplingEngine = None self.resetSamples() + @property + def S(self): + """Value of S.""" + return self._S + @S.setter + def S(self, S): + if not hasattr(S, "__len__"): S = [S] + if any([s <= 0 for s in S]): + raise RROMPyException("S must be positive.") + if hasattr(self, "_S") and self._S is not None: Sold = tuple(self.S) + else: Sold = -1 + self._S = S + self._approxParameters["S"] = self.S + if Sold != tuple(self.S): + self.resetSamples() + @property def homogeneized(self): """Value of homogeneized.""" return self._homogeneized @homogeneized.setter def homogeneized(self, homogeneized): if not hasattr(self, "_homogeneized"): self._homogeneized = None if homogeneized != self.homogeneized: self._homogeneized = homogeneized self.resetSamples() - def setHF(self, muHF:paramList, uHF:sampleList, - append : bool = False) -> List[int]: - """Assign high fidelity solution.""" - newSolvedHF, _ = checkParameterList(muHF, len(self.mu0), True) - newuHF = sampleList(uHF) - if append: - self.lastSolvedHF.append(newSolvedHF) - self.uHF.append(newuHF) - return list(range(len(self.uHF) - len(newuHF), len(self.uHF))) - self.lastSolvedHF, _ = checkParameterList(newSolvedHF, len(self.mu0), - True) - self.uHF = sampleList(newuHF) - return list(range(len(self.uHF))) - - def solveHF(self, mu:paramList, append : bool = False, - prune : bool = True): - """ - Find high fidelity solution with original parameters and arbitrary - parameter. - - Args: - mu: Target parameter. - append(optional): Whether to append new HF solutions to old ones. - prune(optional): Whether to remove duplicates of already appearing - HF solutions. - """ - mu, _ = checkParameterList(mu, len(self.mu0)) - idx = np.empty(len(mu), dtype = np.int) - if prune: - jExtra = np.zeros(len(mu), dtype = bool) - muKeep, _ = checkParameterList([]) - muExtra = copy(muKeep) - for j in range(len(mu)): - jPos = self.lastSolvedHF.find(mu[j]) - if jPos is not None: - idx[j] = jPos - muKeep.append(mu[j]) - else: - jExtra[j] = True - muExtra.append(mu[j]) - if len(muKeep) > 0 and not append: - self.setHF(muKeep, self.uHF[idx[~jExtra]], append) - append = True - else: - jExtra = np.ones(len(mu), dtype = bool) - muExtra = mu - if len(muExtra) > 0: - newuHFs = self.samplingEngine.solveLS(muExtra, - homogeneized = self.homogeneized) - idx[jExtra] = self.setHF(muExtra, newuHFs, append) - return list(idx) + @property + def trainedModel(self): + """Value of trainedModel.""" + return self._trainedModel + @trainedModel.setter + def trainedModel(self, trainedModel): + self._trainedModel = trainedModel + self.lastSolvedAppReduced = emptyParameterList() + self.lastSolvedApp = emptyParameterList() + self.uAppReduced = emptySampleList() + self.uApp = emptySampleList() def resetSamples(self): - """Reset samples.""" if hasattr(self, "samplingEngine") and self.samplingEngine is not None: self.samplingEngine.resetHistory() else: self.setupSampling() - self.trainedModel = None - self.lastSolvedHF = emptyParameterList() - self.uHF = emptySampleList() self._mode = RROMPy_READY def plotSamples(self, name : str = "u", save : str = None, what : strLst = 'all', saveFormat : str = "eps", saveDPI : int = 100, **figspecs): """ Do some nice plots of the samples. Args: name(optional): Name to be shown as title of the plots. Defaults to 'u'. what(optional): Which plots to do. If list, can contain 'ABS', 'PHASE', 'REAL', 'IMAG'. If str, same plus wildcard 'ALL'. Defaults to 'ALL'. save(optional): Where to save plot(s). Defaults to None, i.e. no saving. saveFormat(optional): Format for saved plot(s). Defaults to "eps". saveDPI(optional): DPI for saved plot(s). Defaults to 100. figspecs(optional key args): Optional arguments for matplotlib figure creation. """ RROMPyAssert(self._mode, message = "Cannot plot samples.") self.samplingEngine.plotSamples(name = name, save = save, what = what, saveFormat = saveFormat, saveDPI = saveDPI, **figspecs) def outParaviewSamples(self, name : str = "u", filename : str = "out", times : Np1D = None, what : strLst = 'all', forceNewFile : bool = True, folders : bool = False, filePW = None): """ Output samples to ParaView file. Args: name(optional): Base name to be used for data output. filename(optional): Name of output file. times(optional): Timestamps. what(optional): Which plots to do. If list, can contain 'MESH', 'ABS', 'PHASE', 'REAL', 'IMAG'. If str, same plus wildcard 'ALL'. Defaults to 'ALL'. forceNewFile(optional): Whether to create new output file. folders(optional): Whether to split output in folders. filePW(optional): Fenics File entity (for time series). """ RROMPyAssert(self._mode, message = "Cannot output samples.") self.samplingEngine.outParaviewSamples(name = name, filename = filename, times = times, what = what, forceNewFile = forceNewFile, folders = folders, filePW = filePW) def outParaviewTimeDomainSamples(self, omegas : Np1D = None, timeFinal : Np1D = None, periodResolution : int = 20, name : str = "u", filename : str = "out", forceNewFile : bool = True, folders : bool = False): """ Output samples to ParaView file, converted to time domain. Args: omegas(optional): frequencies. timeFinal(optional): final time of simulation. periodResolution(optional): number of time steps per period. name(optional): Base name to be used for data output. filename(optional): Name of output file. forceNewFile(optional): Whether to create new output file. folders(optional): Whether to split output in folders. """ RROMPyAssert(self._mode, message = "Cannot output samples.") self.samplingEngine.outParaviewTimeDomainSamples(omegas = omegas, timeFinal = timeFinal, periodResolution = periodResolution, name = name, filename = filename, forceNewFile = forceNewFile, folders = folders) - - def setApprox(self, model): + + def setTrainedModel(self, model): """Deepcopy approximation from trained model.""" if hasattr(model, "storeTrainedModel"): verb = model.verbosity model.verbosity = 0 fileOut = model.storeTrainedModel() model.verbosity = verb else: try: fileOut = getNewFilename("trained_model", "pkl") pickleDump(model.data.__dict__, fileOut) except: raise RROMPyException(("Failed to store model data. Parameter " "model must have either " "storeTrainedModel or " "data.__dict__ properties.")) self.loadTrainedModel(fileOut) osrm(fileOut) @abstractmethod def setupApprox(self): """ Setup approximant. (ABSTRACT) Any specialization should include something like if self.checkComputedApprox(): return RROMPyAssert(self._mode, message = "Cannot setup approximant.") ... self.trainedModel = ... self.trainedModel.data = ... self.trainedModel.data.approxParameters = copy( self.approxParameters) """ pass def checkComputedApprox(self) -> bool: """ Check if setup of new approximant is not needed. Returns: True if new setup is not needed. False otherwise. """ return self._mode == RROMPy_FRAGILE or (self.trainedModel is not None and self.trainedModel.data.approxParameters == self.approxParameters) - def evalApproxReduced(self, mu:paramList): + def setHF(self, muHF:paramList, uHF:sampleList, + append : bool = False) -> List[int]: + """Assign high fidelity solution.""" + newSolvedHF, _ = checkParameterList(muHF, self.npar) + newuHF = sampleList(uHF) + if append: + self.lastSolvedHF.append(newSolvedHF) + self.uHF.append(newuHF) + return list(range(len(self.uHF) - len(newuHF), len(self.uHF))) + self.lastSolvedHF, _ = checkParameterList(newSolvedHF, self.npar) + self.uHF = sampleList(newuHF) + return list(range(len(self.uHF))) + + def evalHF(self, mu:paramList, append : bool = False, + prune : bool = True) -> List[int]: + """ + Find high fidelity solution with original parameters and arbitrary + parameter. + + Args: + mu: Target parameter. + append(optional): Whether to append new HF solutions to old ones. + prune(optional): Whether to remove duplicates of already appearing + HF solutions. + """ + mu, _ = checkParameterList(mu, self.npar) + idx = np.empty(len(mu), dtype = np.int) + if prune: + jExtra = np.zeros(len(mu), dtype = bool) + muKeep = emptyParameterList() + muExtra = copy(muKeep) + for j in range(len(mu)): + jPos = self.lastSolvedHF.find(mu[j]) + if jPos is not None: + idx[j] = jPos + muKeep.append(mu[j]) + else: + jExtra[j] = True + muExtra.append(mu[j]) + if len(muKeep) > 0 and not append: + idx[~jExtra] = self.setHF(muKeep, self.uHF[idx[~jExtra]], + append) + append = True + else: + jExtra = np.ones(len(mu), dtype = bool) + muExtra = mu + if len(muExtra) > 0: + newuHFs = self.samplingEngine.solveLS(muExtra, + homogeneized = self.homogeneized) + idx[jExtra] = self.setHF(muExtra, newuHFs, append) + return list(idx) + + def setApproxReduced(self, muApp:paramList, uApp:sampleList, + append : bool = False) -> List[int]: + """Assign high fidelity solution.""" + newSolvedApp, _ = checkParameterList(muApp, self.npar) + newuApp = sampleList(uApp) + if append: + self.lastSolvedAppReduced.append(newSolvedApp) + self.uAppReduced.append(newuApp) + return list(range(len(self.uAppReduced) - len(newuApp), + len(self.uAppReduced))) + self.lastSolvedAppReduced, _ = checkParameterList(newSolvedApp, + self.npar) + self.uAppReduced = sampleList(newuApp) + return list(range(len(self.uAppReduced))) + + def evalApproxReduced(self, mu:paramList, append : bool = False, + prune : bool = True) -> List[int]: """ Evaluate reduced representation of approximant at arbitrary parameter. Args: mu: Target parameter. """ self.setupApprox() - self.uAppReduced = self.trainedModel.getApproxReduced(mu) + mu, _ = checkParameterList(mu, self.npar) + idx = np.empty(len(mu), dtype = np.int) + if prune: + jExtra = np.zeros(len(mu), dtype = bool) + muKeep = emptyParameterList() + muExtra = copy(muKeep) + for j in range(len(mu)): + jPos = self.lastSolvedAppReduced.find(mu[j]) + if jPos is not None: + idx[j] = jPos + muKeep.append(mu[j]) + else: + jExtra[j] = True + muExtra.append(mu[j]) + if len(muKeep) > 0 and not append: + idx[~jExtra] = self.setApproxReduced(muKeep, + self.uAppReduced[idx[~jExtra]], + append) + append = True + else: + jExtra = np.ones(len(mu), dtype = bool) + muExtra = mu + if len(muExtra) > 0: + newuApps = self.trainedModel.getApproxReduced(muExtra) + idx[jExtra] = self.setApproxReduced(muExtra, newuApps, append) + return list(idx) + + def setApprox(self, muApp:paramList, uApp:sampleList, + append : bool = False) -> List[int]: + """Assign high fidelity solution.""" + newSolvedApp, _ = checkParameterList(muApp, self.npar) + newuApp = sampleList(uApp) + if append: + self.lastSolvedApp.append(newSolvedApp) + self.uApp.append(newuApp) + return list(range(len(self.uApp) - len(newuApp), len(self.uApp))) + self.lastSolvedApp, _ = checkParameterList(newSolvedApp, self.npar) + self.uApp = sampleList(newuApp) + return list(range(len(self.uApp))) - def evalApprox(self, mu:paramList): + def evalApprox(self, mu:paramList, append : bool = False, + prune : bool = True) -> List[int]: """ Evaluate approximant at arbitrary parameter. Args: mu: Target parameter. """ self.setupApprox() - self.uApp = self.trainedModel.getApprox(mu) + mu, _ = checkParameterList(mu, self.npar) + idx = np.empty(len(mu), dtype = np.int) + if prune: + jExtra = np.zeros(len(mu), dtype = bool) + muKeep = emptyParameterList() + muExtra = copy(muKeep) + for j in range(len(mu)): + jPos = self.lastSolvedApp.find(mu[j]) + if jPos is not None: + idx[j] = jPos + muKeep.append(mu[j]) + else: + jExtra[j] = True + muExtra.append(mu[j]) + if len(muKeep) > 0 and not append: + idx[~jExtra] = self.setApprox(muKeep, self.uApp[idx[~jExtra]], + append) + append = True + else: + jExtra = np.ones(len(mu), dtype = bool) + muExtra = mu + if len(muExtra) > 0: + newuApps = self.trainedModel.getApprox(muExtra) + idx[jExtra] = self.setApprox(muExtra, newuApps, append) + return list(idx) def getHF(self, mu:paramList, homogeneized : bool = False, append : bool = False, prune : bool = True) -> sampList: """ Get HF solution at arbitrary parameter. Args: mu: Target parameter. homogeneized(optional): Whether to remove Dirichlet BC. Defaults to False. Returns: HFsolution. """ - mu, wasPar = checkParameterList(mu, len(self.mu0)) - idx = self.solveHF(mu, append = append, prune = prune) + mu, _ = checkParameterList(mu, self.npar) + idx = self.evalHF(mu, append = append, prune = prune) uHFs = self.uHF(idx) if self.homogeneized and not homogeneized: for j, m in enumerate(mu): uHFs[j] += self.HFEngine.liftDirichletData(m) if not self.homogeneized and homogeneized: for j, m in enumerate(mu): uHFs[j] -= self.HFEngine.liftDirichletData(m) - if wasPar: uHFs = uHFs[0] return uHFs def getRHS(self, mu:paramList, homogeneized : bool = False) -> sampList: """ Get linear system RHS at arbitrary parameter. Args: mu: Target parameter. homogeneized(optional): Whether to remove Dirichlet BC. Defaults to False. Returns: Linear system RHS. """ return self.HFEngine.residual(None, mu, homogeneized = homogeneized) - def getApproxReduced(self, mu:paramList) -> sampList: + def getApproxReduced(self, mu:paramList, append : bool = False, + prune : bool = True) -> sampList: """ Get approximant at arbitrary parameter. Args: mu: Target parameter. Returns: Reduced approximant. """ - self.evalApproxReduced(mu) - return self.uAppReduced + mu, _ = checkParameterList(mu, self.npar) + idx = self.evalApproxReduced(mu, append = append, prune = prune) + uAppRs = self.uAppReduced(idx) + return uAppRs - def getApprox(self, mu:paramList, homogeneized : bool = False) -> sampList: + def getApprox(self, mu:paramList, homogeneized : bool = False, + append : bool = False, prune : bool = True) -> sampList: """ Get approximant at arbitrary parameter. Args: mu: Target parameter. homogeneized(optional): Whether to remove Dirichlet BC. Defaults to False. Returns: Approximant. """ - mu, wasPar = checkParameterList(mu, len(self.mu0)) - self.evalApprox(mu) - uApps = copy(self.uApp) + mu, _ = checkParameterList(mu, self.npar) + idx = self.evalApprox(mu, append = append, prune = prune) + uApps = self.uApp(idx) if self.homogeneized and not homogeneized: for j, m in enumerate(mu): uApps[j] += self.HFEngine.liftDirichletData(m) if not self.homogeneized and homogeneized: for j, m in enumerate(mu): uApps[j] -= self.HFEngine.liftDirichletData(m) - if wasPar: uApps = uApps[0] return uApps def getRes(self, mu:paramList, homogeneized : bool = False) -> sampList: """ Get residual at arbitrary parameter. Args: mu: Target parameter. homogeneized(optional): Whether to remove Dirichlet BC. Defaults to False. Returns: Approximant residual. """ return self.HFEngine.residual(self.getApprox(mu, homogeneized), mu, homogeneized = homogeneized) def getErr(self, mu:paramList, homogeneized : bool = False) -> sampList: """ Get error at arbitrary parameter. Args: mu: Target parameter. homogeneized(optional): Whether to remove Dirichlet BC. Defaults to False. Returns: Approximant error. """ return self.getApprox(mu, homogeneized) - self.getHF(mu, homogeneized) def getPoles(self) -> Np1D: """ Obtain approximant poles. Returns: Numpy complex vector of poles. """ self.setupApprox() if self.verbosity >= 20: verbosityDepth("INIT", "Computing poles of model.", timestamp = self.timestamp) poles = self.trainedModel.getPoles() if self.verbosity >= 20: verbosityDepth("DEL", "Done computing poles.", timestamp = self.timestamp) return poles def storeTrainedModel(self, filenameBase : str = "trained_model", forceNewFile : bool = True) -> str: """Store trained reduced model to file.""" self.setupApprox() if self.verbosity >= 20: verbosityDepth("INIT", "Storing trained model to file.", timestamp = self.timestamp) if forceNewFile: filename = getNewFilename(filenameBase, "pkl") else: filename = "{}.pkl".format(filenameBase) pickleDump(self.trainedModel.data.__dict__, filename) if self.verbosity >= 20: verbosityDepth("DEL", "Done storing trained model.", timestamp = self.timestamp) return filename def loadTrainedModel(self, filename:str): """Load trained reduced model from file.""" if self.verbosity >= 20: verbosityDepth("INIT", "Loading pre-trained model from file.", timestamp = self.timestamp) datadict = pickleLoad(filename) name = datadict.pop("name") if name == "TrainedModelPade": from rrompy.reduction_methods.trained_model import \ TrainedModelPade as tModel elif name == "TrainedModelRB": from rrompy.reduction_methods.trained_model import \ TrainedModelRB as tModel else: raise RROMPyException(("Trained model name not recognized. " "Loading failed.")) self.mu0 = datadict.pop("mu0") from rrompy.reduction_methods.trained_model import TrainedModelData trainedModel = tModel() trainedModel.verbosity = self.verbosity trainedModel.timestamp = self.timestamp data = TrainedModelData(name, self.mu0, datadict.pop("projMat"), datadict.pop("rescalingExp")) if "mus" in datadict: data.mus = datadict.pop("mus") approxParameters = datadict.pop("approxParameters") data.approxParameters = copy(approxParameters) if "sampler" in approxParameters: self._approxParameters["sampler"] = approxParameters.pop("sampler") self.approxParameters = copy(approxParameters) if "mus" in data.__dict__: self.mus = copy(data.mus) if name == "TrainedModelPade": self.scaleFactor = datadict.pop("scaleFactor") data.scaleFactor = self.scaleFactor for key in datadict: setattr(data, key, datadict[key]) trainedModel.data = data self.trainedModel = trainedModel self._mode = RROMPy_FRAGILE if self.verbosity >= 20: verbosityDepth("DEL", "Done loading pre-trained model.", timestamp = self.timestamp) diff --git a/rrompy/reduction_methods/base/pade_utils.py b/rrompy/reduction_methods/base/pade_utils.py index 5a1a801..d4bcfa6 100644 --- a/rrompy/reduction_methods/base/pade_utils.py +++ b/rrompy/reduction_methods/base/pade_utils.py @@ -1,44 +1,35 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from rrompy.utilities.base.types import Np1D from rrompy.utilities.exception_manager import RROMPyWarning __all__ = ['checkRobustTolerance'] -def checkRobustTolerance(ev:Np1D, E:int, tol:float) -> dict: +def checkRobustTolerance(ev:Np1D, N:int, tol:float) -> dict: """ Perform robustness check on eigen-/singular values and return reduced parameters with warning. """ - N = len(ev) - 1 ts = tol * np.linalg.norm(ev) - diff = N - np.sum(np.abs(ev) >= ts) - if diff <= 0: return {} - Enew = E - diff - Nnew = min(np.sum(np.abs(ev) >= ts), Enew) - if Nnew == N: - strN = "" - else: - strN = "N from {} to {} and ".format(N, Nnew) - RROMPyWarning(("Smallest {} eigenvalues below tolerance. Reducing {}E " - "from {} to {}.").format(diff + 1, strN, E, Enew)) - newParameters = {"N" : Nnew, "E" : Enew} - return newParameters + if len(ev) <= np.sum(np.abs(ev) >= ts) + 1: return {} + RROMPyWarning(("Smallest {} eigenvalues below tolerance. Reducing N by " + "1.").format(len(ev) - np.sum(np.abs(ev) >= ts))) + return {"N" : N - 1} diff --git a/rrompy/reduction_methods/centered/generic_centered_approximant.py b/rrompy/reduction_methods/centered/generic_centered_approximant.py index 9c49a79..cf3b5db 100644 --- a/rrompy/reduction_methods/centered/generic_centered_approximant.py +++ b/rrompy/reduction_methods/centered/generic_centered_approximant.py @@ -1,120 +1,111 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # +import numpy as np from rrompy.reduction_methods.base.generic_approximant import ( GenericApproximant) from rrompy.utilities.base.types import DictAny, HFEng, paramVal from rrompy.utilities.base import purgeDict, verbosityDepth from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert __all__ = ['GenericCenteredApproximant'] class GenericCenteredApproximant(GenericApproximant): """ ROM single-point approximant computation for parametric problems (ABSTRACT). Args: HFEngine: HF problem solver. mu0(optional): Default parameter. Defaults to 0. approxParameters(optional): Dictionary containing values for main parameters of approximant. Recognized keys are: - 'POD': whether to compute POD of snapshots; defaults to True; - - 'E': total number of derivatives current approximant relies upon; - defaults to 1. + - 'S': total number of samples current approximant relies upon. Defaults to empty dict. homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults to False. verbosity(optional): Verbosity level. Defaults to 10. Attributes: HFEngine: HF problem solver. mu0: Default parameter. homogeneized: Whether to homogeneize Dirichlet BCs. approxParameters: Dictionary containing values for main parameters of approximant. Recognized keys are in parameterList. parameterList: Recognized keys of approximant parameters: - 'POD': whether to compute POD of snapshots; - - 'E': total number of derivatives current approximant relies upon. + - 'S': total number of samples current approximant relies upon. POD: Whether to compute QR factorization of derivatives. - E: Number of solution derivatives over which current approximant is + S: Number of solution snapshots over which current approximant is based upon. initialHFData: HF problem initial data. samplingEngine: Sampling engine. - uHF: High fidelity solution with wavenumber lastSolvedHF as numpy - complex vector. - lastSolvedHF: Wavenumber corresponding to last computed high fidelity - solution. - uApp: Last evaluated approximant as numpy complex vector. + uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as + sampleList. + lastSolvedHF: Parameter(s) corresponding to last computed high fidelity + solution(s) as parameterList. + uAppReduced: Reduced approximate solution(s) with parameter(s) + lastSolvedApp as sampleList. + lastSolvedAppReduced: Parameter(s) corresponding to last computed + reduced approximate solution(s) as parameterList. + uApp: Approximate solution(s) with parameter(s) lastSolvedApp as + sampleList. + lastSolvedApp: Parameter(s) corresponding to last computed approximate + solution(s) as parameterList. """ - def __init__(self, HFEngine:HFEng, mu0 : paramVal = 0, - approxParameters : DictAny = {}, homogeneized : bool = False, - verbosity : int = 10, timestamp : bool = True): - self._preInit() - self._addParametersToList(["E"]) - super().__init__(HFEngine = HFEngine, mu0 = mu0, - approxParameters = approxParameters, - homogeneized = homogeneized, - verbosity = verbosity, timestamp = timestamp) - self._postInit() - - @property - def approxParameters(self): - """Value of approximant parameters. Its assignment may change E.""" - return self._approxParameters - @approxParameters.setter - def approxParameters(self, approxParams): - approxParameters = purgeDict(approxParams, self.parameterList, - dictname = self.name() + ".approxParameters", - baselevel = 1) - approxParametersCopy = purgeDict(approxParameters, ["E"], - True, True, baselevel = 1) - GenericApproximant.approxParameters.fset(self, approxParametersCopy) - keyList = list(approxParameters.keys()) - if "E" in keyList: - self.E = approxParameters["E"] - elif hasattr(self, "_E") and self._E is not None: - self.E = self.E - else: - self.E = 1 - @property - def E(self): - """Value of E.""" - return self._E - @E.setter - def E(self, E): - if E < 0: raise RROMPyException("E must be non-negative.") - self._E = E - self._approxParameters["E"] = self.E + def S(self): + """Value of S.""" + return self._S + @S.setter + def S(self, S): + GenericApproximant.S.fset(self, S) + RROMPyAssert(len(self.S), 1, "Length of S") def computeDerivatives(self): """Compute derivatives of solution map starting from order 0.""" RROMPyAssert(self._mode, message = "Cannot start derivative computation.") - if self.samplingEngine.nsamples <= self.E: + if self.samplingEngine.nsamples < np.prod(self.S): if self.verbosity >= 5: verbosityDepth("INIT", "Starting computation of derivatives.", timestamp = self.timestamp) - self.samplingEngine.iterSample([self.mu0] * (self.E + 1), + self.samplingEngine.iterSample([self.mu0[0]] * np.prod(self.S), homogeneized = self.homogeneized) if self.verbosity >= 5: verbosityDepth("DEL", "Done computing derivatives.", timestamp = self.timestamp) + def normApprox(self, mu:complex, homogeneized : bool = False) -> float: + """ + Compute norm of approximant at arbitrary parameter. + + Args: + mu: Target parameter. + homogeneized(optional): Whether to remove Dirichlet BC. Defaults to + False. + + Returns: + Target norm of approximant. + """ + if not self.POD or self.homogeneized != homogeneized: + return super().normApprox(mu, homogeneized) + return np.linalg.norm(self.getApproxReduced(mu), axis = 0) + diff --git a/rrompy/reduction_methods/centered/rational_pade.py b/rrompy/reduction_methods/centered/rational_pade.py index 63e73af..e54de27 100644 --- a/rrompy/reduction_methods/centered/rational_pade.py +++ b/rrompy/reduction_methods/centered/rational_pade.py @@ -1,434 +1,441 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from copy import deepcopy as copy import numpy as np from rrompy.reduction_methods.base import checkRobustTolerance from rrompy.reduction_methods.trained_model import (TrainedModelData, TrainedModelPade as tModel) from .generic_centered_approximant import GenericCenteredApproximant from rrompy.utilities.base.types import (Np1D, Np2D, Tuple, DictAny, HFEng, paramVal, paramList, sampList) from rrompy.utilities.base import verbosityDepth, purgeDict +from rrompy.utilities.poly_fitting.polynomial import (nextDerivativeIndices, + hashDerivativeToIdx as hashD, hashIdxToDerivative as hashI) from rrompy.utilities.exception_manager import (RROMPyException, RROMPyAssert, RROMPyWarning) __all__ = ['RationalPade'] class RationalPade(GenericCenteredApproximant): """ ROM single-point fast Pade' approximant computation for parametric problems. Args: HFEngine: HF problem solver. mu0(optional): Default parameter. Defaults to 0. approxParameters(optional): Dictionary containing values for main parameters of approximant. Recognized keys are: - 'POD': whether to compute POD of snapshots; defaults to True; - - 'rho': weight for computation of original Pade' approximant; - defaults to np.inf, i.e. fast approximant; + - 'S': total number of samples current approximant relies upon; - 'M': degree of Pade' approximant numerator; defaults to 0; - 'N': degree of Pade' approximant denominator; defaults to 0; - - 'E': total number of derivatives current approximant relies upon; - defaults to 1; - 'robustTol': tolerance for robust Pade' denominator management; defaults to 0. Defaults to empty dict. homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults to False. verbosity(optional): Verbosity level. Defaults to 10. Attributes: HFEngine: HF problem solver. mu0: Default parameter. homogeneized: Whether to homogeneize Dirichlet BCs. approxParameters: Dictionary containing values for main parameters of approximant. Recognized keys are in parameterList. parameterList: Recognized keys of approximant parameters: - 'POD': whether to compute POD of snapshots; - - 'rho': weight for computation of original Pade' approximant; + - 'S': total number of samples current approximant relies upon; - 'M': degree of Pade' approximant numerator; - 'N': degree of Pade' approximant denominator; - - 'E': total number of derivatives current approximant relies upon; - 'robustTol': tolerance for robust Pade' denominator management. POD: Whether to compute QR factorization of derivatives. - rho: Weight of approximant. + S: Number of solution snapshots over which current approximant is + based upon. M: Numerator degree of approximant. N: Denominator degree of approximant. - E: Number of solution derivatives over which current approximant is - based upon. robustTol: Tolerance for robust Pade' denominator management. - initialHFData: HF problem initial data. - uHF: High fidelity solution with wavenumber lastSolvedHF as numpy - complex vector. - lastSolvedHF: Wavenumber corresponding to last computed high fidelity - solution. + E: Complete derivative depth level of S. + uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as + sampleList. + lastSolvedHF: Parameter(s) corresponding to last computed high fidelity + solution(s) as parameterList. + uAppReduced: Reduced approximate solution(s) with parameter(s) + lastSolvedApp as sampleList. + lastSolvedAppReduced: Parameter(s) corresponding to last computed + reduced approximate solution(s) as parameterList. + uApp: Approximate solution(s) with parameter(s) lastSolvedApp as + sampleList. + lastSolvedApp: Parameter(s) corresponding to last computed approximate + solution(s) as parameterList. G: Square Numpy 2D vector of size (N+1) corresponding to Pade' denominator matrix (see paper). - uApp: Last evaluated approximant as numpy complex vector. """ - def __init__(self, HFEngine:HFEng, mu0 : paramVal = 0, + def __init__(self, HFEngine:HFEng, mu0 : paramVal = None, approxParameters : DictAny = {}, homogeneized : bool = False, verbosity : int = 10, timestamp : bool = True): self._preInit() - self._addParametersToList(["M", "N", "robustTol", "rho"]) + self._addParametersToList(["M", "N", "robustTol"]) super().__init__(HFEngine = HFEngine, mu0 = mu0, approxParameters = approxParameters, homogeneized = homogeneized, verbosity = verbosity, timestamp = timestamp) self._postInit() @property def approxParameters(self): """Value of approximant parameters.""" return self._approxParameters @approxParameters.setter def approxParameters(self, approxParams): approxParameters = purgeDict(approxParams, self.parameterList, dictname = self.name() + ".approxParameters", baselevel = 1) approxParametersCopy = purgeDict(approxParameters, - ["M", "N", "robustTol", "rho"], + ["M", "N", "robustTol"], True, True, baselevel = 1) keyList = list(approxParameters.keys()) - if "rho" in keyList: - self._rho = approxParameters["rho"] - elif not hasattr(self, "_rho") or self.rho is None: - self._rho = np.inf GenericCenteredApproximant.approxParameters.fset(self, approxParametersCopy) - self.rho = self._rho if "robustTol" in keyList: self.robustTol = approxParameters["robustTol"] elif not hasattr(self, "_robustTol") or self._robustTol is None: self.robustTol = 0 - self._ignoreParWarnings = True if "M" in keyList: self.M = approxParameters["M"] elif hasattr(self, "_M") and self._M is not None: self.M = self.M else: self.M = 0 - del self._ignoreParWarnings if "N" in keyList: self.N = approxParameters["N"] elif hasattr(self, "_N") and self._N is not None: self.N = self.N else: self.N = 0 - @property - def rho(self): - """Value of rho.""" - return self._rho - @rho.setter - def rho(self, rho): - self._rho = np.abs(rho) - self._approxParameters["rho"] = self.rho - @property def M(self): - """Value of M. Its assignment may change E.""" + """Value of M..""" return self._M @M.setter def M(self, M): if M < 0: raise RROMPyException("M must be non-negative.") self._M = M self._approxParameters["M"] = self.M - if not hasattr(self, "_ignoreParWarnings"): - self.checkMNE() + if hasattr(self, "E") and self.E < self.M: + RROMPyWarning("Prescribed S is too small. Decreasing M.") + self.M = self.E @property def N(self): - """Value of N. Its assignment may change E.""" + """Value of N.""" return self._N @N.setter def N(self, N): if N < 0: raise RROMPyException("N must be non-negative.") self._N = N self._approxParameters["N"] = self.N - if not hasattr(self, "_ignoreParWarnings"): - self.checkMNE() - - def checkMNE(self): - """Check consistency of M, N, and E.""" - if not hasattr(self, "_E") or self.E is None: return - M = self.M if (hasattr(self, "_M") and self.M is not None) else 0 - N = self.N if (hasattr(self, "_N") and self.N is not None) else 0 - msg = "max(M, N)" if self.rho == np.inf else "M + N" - bound = eval(msg) - if self.E < bound: - RROMPyWarning(("Prescribed E is too small. Updating E to " - "{}.").format(msg)) - self.E = bound - del M, N + if hasattr(self, "E") and self.E < self.N: + RROMPyWarning("Prescribed S is too small. Decreasing N.") + self.N = self.E @property def robustTol(self): """Value of tolerance for robust Pade' denominator management.""" return self._robustTol @robustTol.setter def robustTol(self, robustTol): if robustTol < 0.: RROMPyWarning(("Overriding prescribed negative robustness " "tolerance to 0.")) robustTol = 0. self._robustTol = robustTol self._approxParameters["robustTol"] = self.robustTol @property - def E(self): - """Value of E.""" - return self._E - @E.setter - def E(self, E): - GenericCenteredApproximant.E.fset(self, E) - self.checkMNE() + def S(self): + """Value of S.""" + return self._S + @S.setter + def S(self, S): + GenericCenteredApproximant.S.fset(self, S) + self.E = np.sum(hashI(np.prod(self.S), self.npar)) - 1 + if hasattr(self, "_M"): self.M = self.M + if hasattr(self, "_N"): self.N = self.N def _setupDenominator(self): """Compute Pade' denominator.""" if self.verbosity >= 7: verbosityDepth("INIT", "Starting computation of denominator.", timestamp = self.timestamp) while self.N > 0: if self.POD: ev, eV = self.findeveVGQR() else: ev, eV = self.findeveVGExplicit() - newParameters = checkRobustTolerance(ev, self.E, self.robustTol) + newParameters = checkRobustTolerance(ev, self.N, self.robustTol) if not newParameters: break self.approxParameters = newParameters if self.N <= 0: eV = np.ones((1, 1)) + q = np.zeros(tuple([self.N + 1] * self.npar), dtype = np.complex) + for j in range(eV.shape[0]): + q[tuple(hashI(j, self.npar))] = eV[j, 0] if self.verbosity >= 7: verbosityDepth("DEL", "Done computing denominator.", timestamp = self.timestamp) - return eV[::-1, 0] + return q def _setupNumerator(self): """Compute Pade' numerator.""" if self.verbosity >= 7: verbosityDepth("INIT", "Starting computation of numerator.", timestamp = self.timestamp) - P = np.zeros((self.E + 1, self.M + 1), dtype = np.complex) - for i in range(self.E + 1): - l = min(self.M + 1, i + self.N + 1) - if i < l: - P[i, i : l] = self.trainedModel.data.Q[: l - i] - if self.verbosity >= 7: - verbosityDepth("DEL", "Done computing numerator.", - timestamp = self.timestamp) - return self.rescaleParameter(P.T).T + P = np.zeros((np.prod(self.S),) + tuple([self.M + 1] * self.npar), + dtype = np.complex) + mEnd = hashD([self.M + 1] + [0] * (self.npar - 1)) + nEnd = hashD([self.N + 1] + [0] * (self.npar - 1)) + mnIdxs = nextDerivativeIndices([], self.npar, max(mEnd, nEnd)) + for j in range(mEnd): + mIdx = mnIdxs[j] + for n in range(nEnd): + diffIdx = [x - y for (x, y) in zip(mIdx, mnIdxs[n])] + if all([x >= 0 for x in diffIdx]): + P[(hashD(diffIdx),) + (mIdx,)] = ( + self.trainedModel.data.Q[tuple(mnIdxs[n])]) + return self.rescaleByParameter(P.T).T def setupApprox(self): """ Compute Pade' approximant. SVD-based robust eigenvalue management. """ if self.checkComputedApprox(): return if self.verbosity >= 5: verbosityDepth("INIT", "Setting up {}.". format(self.name()), timestamp = self.timestamp) self.computeDerivatives() if self.trainedModel is None: self.trainedModel = tModel() self.trainedModel.verbosity = self.verbosity self.trainedModel.timestamp = self.timestamp data = TrainedModelData(self.trainedModel.name(), self.mu0, None, self.HFEngine.rescalingExp) data.polytype = "MONOMIAL" self.trainedModel.data = data + else: + self.trainedModel = self.trainedModel if self.N > 0: Q = self._setupDenominator() else: + self.setScaleParameter() Q = np.ones(1, dtype = np.complex) self.trainedModel.data.Q = copy(Q) self.trainedModel.data.scaleFactor = self.scaleFactor self.trainedModel.data.projMat = copy(self.samplingEngine.samples( - list(range(self.E + 1)))) + list(range(np.prod(self.S))))) P = self._setupNumerator() if self.POD: - P = self.samplingEngine.RPOD.dot(P) + P = np.tensordot(self.samplingEngine.RPOD, P, axes = ([-1], [0])) self.trainedModel.data.P = copy(P) self.trainedModel.data.approxParameters = copy(self.approxParameters) if self.verbosity >= 5: verbosityDepth("DEL", "Done setting up approximant.", timestamp = self.timestamp) - def rescaleParameter(self, R:Np2D, A : Np2D = None, - exponent : float = 1.) -> Np2D: + def setScaleParameter(self) -> Np2D: + """Compute parameter for rescaling.""" + RROMPyAssert(self._mode, message = "Cannot compute rescaling factor.") + self.computeDerivatives() + self.scaleFactor = [1.] * self.npar + for d in range(self.npar): + hashesd = [0] + for n in range(1, self.E + 1): + hashesd += [hashD([0] * (d - 1) + [n] + + [0] * (self.npar - d - 1))] + if self.POD: + Rd = self.samplingEngine.RPOD[: hashesd[-1] + 1, hashesd] + Gd = np.diag(Rd.T.conj().dot(Rd)) + else: + DerEd = self.samplingEngine.samples(hashesd) + Gd = self.HFEngine.norm(DerEd) + scaleCoeffs = np.polyfit(np.arange(len(Gd)), np.log(Gd), 1) + self.scaleFactor[d] = np.exp(- scaleCoeffs[0] / 2.) + + def rescaleByParameter(self, R:Np2D) -> Np2D: """ - Prepare parameter rescaling. + Rescale by scale parameter. Args: R: Matrix whose columns need rescaling. - A(optional): Matrix whose diagonal defines scaling factor. If None, - previous value of scaleFactor is used. Defaults to None. - exponent(optional): Exponent of scaling factor in matrix diagonal. - Defaults to 1. Returns: Rescaled matrix. """ - RROMPyAssert(self._mode, message = "Cannot compute rescaling factor.") - if A is not None: - aDiag = np.diag(A) - scaleCoeffs = np.polyfit(np.arange(A.shape[1]), - np.log(aDiag), 1) - self.scaleFactor = np.exp(- scaleCoeffs[0] / exponent) - return R * np.power(self.scaleFactor, np.arange(R.shape[1])) + RIdxs = nextDerivativeIndices([], self.npar, R.shape[-1]) + Rscaled = copy(R) + for j, RIdx in enumerate(RIdxs): + Rscaled[..., j] *= np.prod([x ** y for (x, y) in + zip(self.scaleFactor, RIdx)]) + return Rscaled def buildG(self): """Assemble Pade' denominator matrix.""" RROMPyAssert(self._mode, message = "Cannot compute G matrix.") self.computeDerivatives() if self.verbosity >= 10: verbosityDepth("INIT", "Building gramian matrix.", timestamp = self.timestamp) - if self.rho == np.inf: - Nmin = self.E - self.N - else: - Nmin = self.M - self.N + 1 + eStart = hashD([self.E] + [0] * (self.npar - 1)) + eEnd = hashD([self.E + 1] + [0] * (self.npar - 1)) + eIdxs = [hashI(e, self.npar) for e in range(eStart, eEnd)] + nEnd = hashD([self.N + 1] + [0] * (self.npar - 1)) + nIdxs = nextDerivativeIndices([], self.npar, nEnd) + self.setScaleParameter() if self.POD: - RPODE = self.samplingEngine.RPOD[: self.E + 1, Nmin : self.E + 1] - RPODE = self.rescaleParameter(RPODE, RPODE[Nmin :, :]) - G = RPODE.T.conj().dot(RPODE) - else: - DerE = self.samplingEngine.samples(list(range(Nmin, self.E + 1))) - G = self.HFEngine.innerProduct(DerE, DerE) - DerE = self.rescaleParameter(DerE, G, 2.) - G = self.HFEngine.innerProduct(DerE, DerE) - if self.rho == np.inf: - self.G = G + RPODE = self.rescaleByParameter(self.samplingEngine.RPOD[: eEnd, + : eEnd]) else: - Gbig = G - self.G = np.zeros((self.N + 1, self.N + 1), dtype = np.complex) - for k in range(self.E - self.M): - self.G += self.rho ** (2 * k) * Gbig[k : k + self.N + 1, - k : k + self.N + 1] + DerE = self.rescaleByParameter(self.samplingEngine.samples( + list(range(eEnd))).data) + self.G = np.zeros((nEnd, nEnd), dtype = np.complex) + for eIdx in eIdxs: + nLoc = [] + samplesIdxs = [] + for n, nIdx in enumerate(nIdxs): + diffIdx = [x - y for (x, y) in zip(eIdx, nIdx)] + if all([x >= 0 for x in diffIdx]): + nLoc += [n] + samplesIdxs += [hashD(diffIdx)] + if self.POD: + RPODELoc = RPODE[: samplesIdxs[-1] + 1, samplesIdxs] + GLoc = RPODELoc.T.conj().dot(RPODELoc) + else: + DerELoc = DerE[:, samplesIdxs] + GLoc = self.HFEngine.innerProduct(DerELoc, DerELoc) + for j in range(len(nLoc)): + self.G[nLoc[j], nLoc] = self.G[nLoc[j], nLoc] + GLoc[j] if self.verbosity >= 10: verbosityDepth("DEL", "Done building gramian.", timestamp = self.timestamp) - + def findeveVGExplicit(self) -> Tuple[Np1D, Np2D]: """ Compute explicitly eigenvalues and eigenvectors of Pade' denominator matrix. """ RROMPyAssert(self._mode, message = "Cannot solve eigenvalue problem.") self.buildG() if self.verbosity >= 7: verbosityDepth("INIT", "Solving eigenvalue problem for gramian matrix.", timestamp = self.timestamp) ev, eV = np.linalg.eigh(self.G) if self.verbosity >= 5: try: condev = ev[-1] / ev[0] except: condev = np.inf verbosityDepth("MAIN", ("Solved eigenvalue problem of size {} " "with condition number {:.4e}.").format( - self.N + 1, - condev), + self.G.shape[0], + condev), timestamp = self.timestamp) if self.verbosity >= 7: verbosityDepth("DEL", "Done solving eigenvalue problem.", timestamp = self.timestamp) return ev, eV - def _buildRStack(self, R:Np2D) -> Np2D: - if self.verbosity >= 10: - verbosityDepth("INIT", ("Building matrix stack for square " - "root of gramian."), - timestamp = self.timestamp) - REff = np.zeros((R.shape[0] * (self.E - self.M), self.N + 1), - dtype = np.complex) - for k in range(self.E - self.M): - RTleft = max(0, self.N - self.M - k) - Rleft = max(0, self.M - self.N + k) - REff[k * R.shape[0] : (k + 1) * R.shape[0], RTleft :] = ( - self.rho ** k * R[:, Rleft : self.M + 1 + k]) - if self.verbosity >= 10: - verbosityDepth("DEL", "Done building matrix stack.", - timestamp = self.timestamp) - return REff - def findeveVGQR(self) -> Tuple[Np1D, Np2D]: """ Compute eigenvalues and eigenvectors of Pade' denominator matrix through SVD of R factor. Returns: Eigenvalues in ascending order and corresponding eigenvector matrix. """ RROMPyAssert(self._mode, message = "Cannot solve eigenvalue problem.") RROMPyAssert(self.POD, True, "POD value") self.computeDerivatives() - if self.rho == np.inf: - Nmin = self.E - self.N - else: - Nmin = self.M - self.N + 1 - R = self.samplingEngine.RPOD[: self.E + 1, Nmin : self.E + 1] - R = self.rescaleParameter(R, R[R.shape[0] - R.shape[1] :, :]) - REff = R if self.rho == np.inf else self._buildRStack(R) + eStart = hashD([self.E] + [0] * (self.npar - 1)) + eEnd = hashD([self.E + 1] + [0] * (self.npar - 1)) + eIdxs = [hashI(e, self.npar) for e in range(eStart, eEnd)] + nEnd = hashD([self.N + 1] + [0] * (self.npar - 1)) + nIdxs = nextDerivativeIndices([], self.npar, nEnd) + self.setScaleParameter() + RPODE = self.rescaleByParameter(self.samplingEngine.RPOD[: eEnd, + : eEnd]) + Rstack = np.zeros((RPODE.shape[0] * (eEnd - eStart), nEnd), + dtype = np.complex) + for k, eIdx in enumerate(eIdxs): + nLoc = [] + samplesIdxs = [] + for n, nIdx in enumerate(nIdxs): + diffIdx = [x - y for (x, y) in zip(eIdx, nIdx)] + if all([x >= 0 for x in diffIdx]): + nLoc += [n] + samplesIdxs += [hashD(diffIdx)] + RPODELoc = RPODE[:, samplesIdxs] + for j in range(len(nLoc)): + Rstack[k * RPODE.shape[0] : (k + 1) * RPODE.shape[0], + nLoc[j]] = RPODELoc[:, j] if self.verbosity >= 7: verbosityDepth("INIT", ("Solving svd for square root of " "gramian matrix."), timestamp = self.timestamp) - sizeI = REff.shape[0] - _, s, V = np.linalg.svd(REff, full_matrices = False) + sizeI = Rstack.shape + _, s, V = np.linalg.svd(Rstack, full_matrices = False) eV = V[::-1, :].T.conj() if self.verbosity >= 5: try: condev = s[0] / s[-1] except: condev = np.inf verbosityDepth("MAIN", ("Solved svd problem of size {} x {} with " - "condition number {:.4e}.").format(sizeI, - self.N + 1, - condev), + "condition number {:.4e}.").format(*sizeI, + condev), timestamp = self.timestamp) if self.verbosity >= 7: verbosityDepth("DEL", "Done solving eigenvalue problem.", timestamp = self.timestamp) return s[::-1], eV - def centerNormalize(self, mu:paramList, + def centerNormalize(self, mu : paramList = [], mu0 : paramVal = None) -> paramList: """ Compute normalized parameter to be plugged into approximant. Args: mu: Parameter(s) 1. mu0: Parameter(s) 2. If None, set to self.mu0. Returns: Normalized parameter. """ return self.trainedModel.centerNormalize(mu, mu0) def getResidues(self) -> sampList: """ Obtain approximant residues. Returns: Matrix with residues as columns. """ return self.trainedModel.getResidues() diff --git a/rrompy/reduction_methods/centered/rb_centered.py b/rrompy/reduction_methods/centered/rb_centered.py index 80c12b6..9751b9b 100644 --- a/rrompy/reduction_methods/centered/rb_centered.py +++ b/rrompy/reduction_methods/centered/rb_centered.py @@ -1,196 +1,203 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from copy import deepcopy as copy import numpy as np from .generic_centered_approximant import GenericCenteredApproximant from rrompy.reduction_methods.trained_model import TrainedModelRB as tModel from rrompy.reduction_methods.trained_model import TrainedModelData from rrompy.reduction_methods.base.rb_utils import projectAffineDecomposition from rrompy.utilities.base.types import (Np1D, Np2D, Tuple, List, DictAny, HFEng, paramVal, sampList) from rrompy.utilities.base import purgeDict, verbosityDepth from rrompy.utilities.exception_manager import RROMPyException, RROMPyWarning __all__ = ['RBCentered'] class RBCentered(GenericCenteredApproximant): """ ROM single-point fast RB approximant computation for parametric problems with polynomial dependence up to degree 2. Args: HFEngine: HF problem solver. mu0(optional): Default parameter. Defaults to 0. approxParameters(optional): Dictionary containing values for main parameters of approximant. Recognized keys are: - 'POD': whether to compute POD of snapshots; defaults to True; - - 'R': rank for Galerkin projection; defaults to E + 1; - - 'E': total number of derivatives current approximant relies upon; - defaults to 1. + - 'S': total number of samples current approximant relies upon; + - 'R': rank for Galerkin projection; defaults to prod(S). Defaults to empty dict. homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults to False. verbosity(optional): Verbosity level. Defaults to 10. Attributes: HFEngine: HF problem solver. mu0: Default parameter. homogeneized: Whether to homogeneize Dirichlet BCs. approxParameters: Dictionary containing values for main parameters of approximant. Recognized keys are in parameterList. parameterList: Recognized keys of approximant parameters: - 'POD': whether to compute POD of snapshots; - - 'R': rank for Galerkin projection; - - 'E': total number of derivatives current approximant relies upon. + - 'S': total number of samples current approximant relies upon; + - 'R': rank for Galerkin projection. POD: Whether to compute QR factorization of derivatives. R: Rank for Galerkin projection. - E: Number of solution derivatives over which current approximant is + S: Number of solution snapshots over which current approximant is based upon. - uHF: High fidelity solution with wavenumber lastSolvedHF as numpy - complex vector. - lastSolvedHF: Wavenumber corresponding to last computed high fidelity - solution. - uApp: Last evaluated approximant as numpy complex vector. + uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as + sampleList. + lastSolvedHF: Parameter(s) corresponding to last computed high fidelity + solution(s) as parameterList. + uAppReduced: Reduced approximate solution(s) with parameter(s) + lastSolvedApp as sampleList. + lastSolvedAppReduced: Parameter(s) corresponding to last computed + reduced approximate solution(s) as parameterList. + uApp: Approximate solution(s) with parameter(s) lastSolvedApp as + sampleList. + lastSolvedApp: Parameter(s) corresponding to last computed approximate + solution(s) as parameterList. ARBs: List of sparse matrices (in CSC format) representing RB coefficients of linear system matrix wrt mu. bRBs: List of numpy vectors representing RB coefficients of linear system RHS wrt mu. """ - def __init__(self, HFEngine:HFEng, mu0 : paramVal = 0, + def __init__(self, HFEngine:HFEng, mu0 : paramVal = None, approxParameters : DictAny = {}, homogeneized : bool = False, verbosity : int = 10, timestamp : bool = True): self._preInit() self._addParametersToList(["R"]) super().__init__(HFEngine = HFEngine, mu0 = mu0, approxParameters = approxParameters, homogeneized = homogeneized, verbosity = verbosity, timestamp = timestamp) if self.verbosity >= 10: verbosityDepth("INIT", "Computing affine blocks of system.", timestamp = self.timestamp) if self.verbosity >= 10: verbosityDepth("DEL", "Done computing affine blocks.", timestamp = self.timestamp) self._postInit() @property def approxParameters(self): """ Value of approximant parameters. Its assignment may change M, N and S. """ return self._approxParameters @approxParameters.setter def approxParameters(self, approxParams): approxParameters = purgeDict(approxParams, self.parameterList, dictname = self.name() + ".approxParameters", baselevel = 1) approxParametersCopy = purgeDict(approxParameters, ["R"], True, True, baselevel = 1) GenericCenteredApproximant.approxParameters.fset(self, approxParametersCopy) keyList = list(approxParameters.keys()) if "R" in keyList: self.R = approxParameters["R"] else: - self.R = self.E + 1 + self.R = np.prod(self.S) @property def R(self): """Value of R. Its assignment may change S.""" return self._R @R.setter def R(self, R): if R < 0: raise RROMPyException("R must be non-negative.") self._R = R self._approxParameters["R"] = self.R - if hasattr(self, "_E") and self.E + 1 < self.R: - RROMPyWarning("Prescribed E is too small. Updating E to R - 1.") - self.E = self.R - 1 + if hasattr(self, "_S") and np.prod(self.S) < self.R: + RROMPyWarning("Prescribed S is too small. Reducing R.") + self.R = np.prod(self.S) def setupApprox(self): """Setup RB system.""" if self.checkComputedApprox(): return if self.verbosity >= 5: verbosityDepth("INIT", "Setting up {}.". format(self.name()), timestamp = self.timestamp) self.computeDerivatives() if self.verbosity >= 7: verbosityDepth("INIT", "Computing projection matrix.", timestamp = self.timestamp) if self.POD: - U, _, _ = np.linalg.svd(self.samplingEngine.RPOD[: self.E + 1, - : self.E + 1]) - pMat = self.samplingEngine.samples(list(range(self.E + 1))).dot( - U[:, : self.R]) + U, _, _ = np.linalg.svd(self.samplingEngine.RPOD[: np.prod(self.S), + : np.prod(self.S)]) + pMat = self.samplingEngine.samples(list(range(np.prod(self.S))))\ + .dot(U[:, : self.R]) else: pMat = self.samplingEngine.samples(list(range(self.R))) if self.trainedModel is None: self.trainedModel = tModel() self.trainedModel.verbosity = self.verbosity self.trainedModel.timestamp = self.timestamp data = TrainedModelData(self.trainedModel.name(), self.mu0, pMat, self.HFEngine.rescalingExp) data.thetaAs = self.HFEngine.affineWeightsA(self.mu0) data.thetabs = self.HFEngine.affineWeightsb(self.mu0, self.homogeneized) data.ARBs, data.bRBs = self.assembleReducedSystem(pMat) self.trainedModel.data = data else: + self.trainedModel = self.trainedModel pMatOld = self.trainedModel.data.projMat Sold = pMatOld.shape[1] ARBs, bRBs = self.assembleReducedSystem( pMat(list(range(Sold, pMat.shape[1]))), pMatOld) self.trainedModel.data.ARBs = ARBs self.trainedModel.data.bRBs = bRBs self.trainedModel.data.projMat = copy(pMat) if self.verbosity >= 7: verbosityDepth("DEL", "Done computing projection matrix.", timestamp = self.timestamp) self.trainedModel.data.approxParameters = copy(self.approxParameters) if self.verbosity >= 5: verbosityDepth("DEL", "Done setting up approximant.", timestamp = self.timestamp) def assembleReducedSystem(self, pMat : sampList = None, pMatOld : sampList = None)\ -> Tuple[List[Np2D], List[Np1D]]: """Build affine blocks of RB linear system through projections.""" if pMat is None: self.setupApprox() ARBs = self.trainedModel.data.ARBs bRBs = self.trainedModel.data.bRBs else: if self.verbosity >= 10: verbosityDepth("INIT", "Projecting affine terms of HF model.", timestamp = self.timestamp) As = self.HFEngine.affineLinearSystemA(self.mu0) bs = self.HFEngine.affineLinearSystemb(self.mu0, self.homogeneized) ARBsOld = None if pMatOld is None else self.trainedModel.data.ARBs bRBsOld = None if pMatOld is None else self.trainedModel.data.bRBs ARBs, bRBs = projectAffineDecomposition(As, bs, pMat, ARBsOld, bRBsOld, pMatOld) if self.verbosity >= 10: verbosityDepth("DEL", "Done projecting affine terms.", timestamp = self.timestamp) return ARBs, bRBs diff --git a/rrompy/reduction_methods/distributed/generic_distributed_approximant.py b/rrompy/reduction_methods/distributed/generic_distributed_approximant.py index 2952ef9..b3859da 100644 --- a/rrompy/reduction_methods/distributed/generic_distributed_approximant.py +++ b/rrompy/reduction_methods/distributed/generic_distributed_approximant.py @@ -1,209 +1,196 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from copy import deepcopy as copy from rrompy.reduction_methods.base.generic_approximant import ( GenericApproximant) -from rrompy.utilities.base.types import DictAny, HFEng +from rrompy.utilities.base.types import DictAny, HFEng, paramVal, paramList from rrompy.utilities.base import purgeDict, verbosityDepth from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert from rrompy.parameter import checkParameterList __all__ = ['GenericDistributedApproximant'] class GenericDistributedApproximant(GenericApproximant): """ ROM interpolant computation for parametric problems (ABSTRACT). Args: HFEngine: HF problem solver. mu0(optional): Default parameter. Defaults to 0. approxParameters(optional): Dictionary containing values for main parameters of approximant. Recognized keys are: - 'POD': whether to compute POD of snapshots; defaults to True; - - 'muBounds': list of bounds for parameter values; defaults to - [0, 1]; + - 'muBounds': list of bounds for parameter values; - 'S': total number of samples current approximant relies upon; - defaults to 2; - 'sampler': sample point generator; defaults to uniform sampler on muBounds. Defaults to empty dict. homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults to False. verbosity(optional): Verbosity level. Defaults to 10. Attributes: HFEngine: HF problem solver. mu0: Default parameter. mus: Array of snapshot parameters. - ws: Array of snapshot weigths. homogeneized: Whether to homogeneize Dirichlet BCs. approxParameters: Dictionary containing values for main parameters of approximant. Recognized keys are in parameterList. parameterList: Recognized keys of approximant parameters: - 'POD': whether to compute POD of snapshots; - 'muBounds': list of bounds for parameter values; - 'S': total number of samples current approximant relies upon; - 'sampler': sample point generator. extraApproxParameters: List of approxParameters keys in addition to mother class's. POD: Whether to compute POD of snapshots. muBounds: list of bounds for parameter values. S: Number of solution snapshots over which current approximant is based upon. sampler: Sample point generator. samplingEngine: Sampling engine. - uHF: High fidelity solution with wavenumber lastSolvedHF as numpy - complex vector. - lastSolvedHF: Wavenumber corresponding to last computed high fidelity - solution. - uApp: Last evaluated approximant as numpy complex vector. + uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as + sampleList. + lastSolvedHF: Parameter(s) corresponding to last computed high fidelity + solution(s) as parameterList. + uAppReduced: Reduced approximate solution(s) with parameter(s) + lastSolvedApp as sampleList. + lastSolvedAppReduced: Parameter(s) corresponding to last computed + reduced approximate solution(s) as parameterList. + uApp: Approximate solution(s) with parameter(s) lastSolvedApp as + sampleList. + lastSolvedApp: Parameter(s) corresponding to last computed approximate + solution(s) as parameterList. """ - def __init__(self, HFEngine:HFEng, mu0 : complex = 0., + def __init__(self, HFEngine:HFEng, mu0 : paramVal = None, approxParameters : DictAny = {}, homogeneized : bool = False, verbosity : int = 10, timestamp : bool = True): self._preInit() - self._addParametersToList(["S", "muBounds", "sampler"]) + self._addParametersToList(["muBounds", "sampler"]) super().__init__(HFEngine = HFEngine, mu0 = mu0, approxParameters = approxParameters, homogeneized = homogeneized, verbosity = verbosity, timestamp = timestamp) - RROMPyAssert(self.HFEngine.npar, 1, "Number of parameters") self._postInit() @property def mus(self): """Value of mus. Its assignment may reset snapshots.""" return self._mus @mus.setter def mus(self, mus): - mus, _ = checkParameterList(mus, self.HFEngine.npar) + mus, _ = checkParameterList(mus, self.npar) musOld = copy(self.mus) if hasattr(self, '_mus') else None if (musOld is None or len(mus) != len(musOld) or not mus == musOld): self.resetSamples() self._mus = mus @property def approxParameters(self): """Value of approximant parameters. Its assignment may change S.""" return self._approxParameters @approxParameters.setter def approxParameters(self, approxParams): approxParameters = purgeDict(approxParams, self.parameterList, dictname = self.name() + ".approxParameters", baselevel = 1) approxParametersCopy = purgeDict(approxParameters, - ["S", "muBounds", "sampler"], + ["muBounds", "sampler"], True, True, baselevel = 1) GenericApproximant.approxParameters.fset(self, approxParametersCopy) keyList = list(approxParameters.keys()) - if "S" in keyList: - self.S = approxParameters["S"] - elif not hasattr(self, "_S") or self._S is None: - self.S = 2 if "muBounds" in keyList: self.muBounds = approxParameters["muBounds"] - elif not hasattr(self, "_muBounds") or self.muBounds is None: - self.muBounds = [0., 1.] if "sampler" in keyList: self.sampler = approxParameters["sampler"] - elif (not hasattr(self, "_sampler") or self.sampler is None): + if ((not hasattr(self, "_muBounds") or self.muBounds is None) + and (not hasattr(self, "_sampler") or self.sampler is None)): + raise RROMPyException("Must specify either muBounds or sampler.") + if not hasattr(self, "_sampler") or self.sampler is None: from rrompy.parameter.parameter_sampling import QuadratureSampler self.sampler = QuadratureSampler(self.muBounds, "UNIFORM") del QuadratureSampler - - @property - def S(self): - """Value of S.""" - return self._S - @S.setter - def S(self, S): - if S <= 0: raise RROMPyException("S must be positive.") - if hasattr(self, "_S") and self._S is not None: Sold = self.S - else: Sold = -1 - self._S = S - self._approxParameters["S"] = self.S - if Sold != self.S: - self.resetSamples() + if not hasattr(self, "_muBounds") or self.muBounds is None: + self.muBounds = self.sampler.lims @property def muBounds(self): """Value of muBounds.""" return self._muBounds @muBounds.setter def muBounds(self, muBounds): - muBounds, _ = checkParameterList(muBounds) + muBounds, _ = checkParameterList(muBounds, self.npar) if len(muBounds) != 2: raise RROMPyException("2 limits must be specified.") - self._muBounds = list(muBounds) + self._muBounds = muBounds @property def sampler(self): """Value of sampler.""" return self._sampler @sampler.setter def sampler(self, sampler): if 'generatePoints' not in dir(sampler): raise RROMPyException("Sampler type not recognized.") if hasattr(self, '_sampler') and self._sampler is not None: samplerOld = self.sampler self._sampler = sampler self._approxParameters["sampler"] = self.sampler.__str__() if not 'samplerOld' in locals() or samplerOld != self.sampler: self.resetSamples() def computeSnapshots(self): """Compute snapshots of solution map.""" RROMPyAssert(self._mode, message = "Cannot start snapshot computation.") if self.samplingEngine.nsamples == 0: if self.verbosity >= 5: verbosityDepth("INIT", "Starting computation of snapshots.", timestamp = self.timestamp) - self.mus, self.ws = self.sampler.generatePoints(self.S) + self.mus = self.sampler.generatePoints(self.S) self.samplingEngine.iterSample(self.mus, homogeneized = self.homogeneized) if self.verbosity >= 5: verbosityDepth("DEL", "Done computing snapshots.", timestamp = self.timestamp) - def normApprox(self, mu:complex, homogeneized : bool = False) -> float: + def normApprox(self, mu:paramList, homogeneized : bool = False) -> float: """ Compute norm of approximant at arbitrary parameter. Args: mu: Target parameter. homogeneized(optional): Whether to remove Dirichlet BC. Defaults to False. Returns: Target norm of approximant. """ if not self.POD or self.homogeneized != homogeneized: return super().normApprox(mu, homogeneized) - return np.linalg.norm(self.getApproxReduced(mu)) + return np.linalg.norm(self.getApproxReduced(mu), axis = 0) def computeScaleFactor(self): """Compute parameter rescaling factor.""" RROMPyAssert(self._mode, message = "Cannot compute rescaling factor.") self.scaleFactor = .5 * np.abs( - np.power(self.muBounds[0](0), self.HFEngine.rescalingExp) - - np.power(self.muBounds[1](0), self.HFEngine.rescalingExp)) - + self.muBounds[0] ** self.HFEngine.rescalingExp + - self.muBounds[1] ** self.HFEngine.rescalingExp) diff --git a/rrompy/reduction_methods/distributed/rational_interpolant.py b/rrompy/reduction_methods/distributed/rational_interpolant.py index 083776c..7d3d7de 100644 --- a/rrompy/reduction_methods/distributed/rational_interpolant.py +++ b/rrompy/reduction_methods/distributed/rational_interpolant.py @@ -1,526 +1,557 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from copy import deepcopy as copy import numpy as np -from scipy.special import factorial as fact from rrompy.reduction_methods.base import checkRobustTolerance from .generic_distributed_approximant import GenericDistributedApproximant -from rrompy.utilities.poly_fitting import (polybases, polyvander, polyfitname, - customFit) +from rrompy.utilities.poly_fitting import customFit +from rrompy.utilities.poly_fitting.polynomial import (polybases, polyfitname, + nextDerivativeIndices, + hashDerivativeToIdx as hashD, + hashIdxToDerivative as hashI, + homogeneizedpolyvander) from rrompy.reduction_methods.trained_model import TrainedModelPade as tModel from rrompy.reduction_methods.trained_model import TrainedModelData -from rrompy.utilities.base.types import Np1D, Np2D, HFEng, DictAny, Tuple -from rrompy.utilities.base import verbosityDepth, purgeDict +from rrompy.utilities.base.types import (Np1D, Np2D, HFEng, DictAny, Tuple, + List, paramVal, paramList, sampList) +from rrompy.utilities.base import verbosityDepth, purgeDict, multifactorial from rrompy.utilities.exception_manager import (RROMPyException, RROMPyAssert, RROMPyWarning) __all__ = ['RationalInterpolant'] class RationalInterpolant(GenericDistributedApproximant): """ ROM rational interpolant computation for parametric problems. Args: HFEngine: HF problem solver. mu0(optional): Default parameter. Defaults to 0. approxParameters(optional): Dictionary containing values for main parameters of approximant. Recognized keys are: - 'POD': whether to compute POD of snapshots; defaults to True; - - 'muBounds': list of bounds for parameter values; defaults to - [0, 1]; + - 'muBounds': list of bounds for parameter values; - 'S': total number of samples current approximant relies upon; - defaults to 2; - 'sampler': sample point generator; defaults to uniform sampler on muBounds; - 'polybasis': type of polynomial basis for interpolation; allowed values include 'MONOMIAL', 'CHEBYSHEV' and 'LEGENDRE'; defaults to 'MONOMIAL'; - - 'E': coefficient of interpolant to be minimized; defaults to - min(S, M + 1); - 'M': degree of Pade' interpolant numerator; defaults to 0; - 'N': degree of Pade' interpolant denominator; defaults to 0; - 'interpRcond': tolerance for interpolation; defaults to None; - 'robustTol': tolerance for robust Pade' denominator management; defaults to 0. Defaults to empty dict. homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults to False. verbosity(optional): Verbosity level. Defaults to 10. Attributes: HFEngine: HF problem solver. mu0: Default parameter. mus: Array of snapshot parameters. - ws: Array of snapshot weigths. homogeneized: Whether to homogeneize Dirichlet BCs. approxParameters: Dictionary containing values for main parameters of approximant. Recognized keys are in parameterList. parameterList: Recognized keys of approximant parameters: - 'POD': whether to compute POD of snapshots; - 'muBounds': list of bounds for parameter values; - 'S': total number of samples current approximant relies upon; - 'sampler': sample point generator; - 'polybasis': type of polynomial basis for interpolation; - - 'E': coefficient of interpolant to be minimized; - 'M': degree of Pade' interpolant numerator; - 'N': degree of Pade' interpolant denominator; - 'interpRcond': tolerance for interpolation via numpy.polyfit; - 'robustTol': tolerance for robust Pade' denominator management. extraApproxParameters: List of approxParameters keys in addition to mother class's. POD: Whether to compute POD of snapshots. muBounds: list of bounds for parameter values. S: Number of solution snapshots over which current approximant is based upon. sampler: Sample point generator. polybasis: type of polynomial basis for interpolation. M: Numerator degree of approximant. N: Denominator degree of approximant. interpRcond: Tolerance for interpolation via numpy.polyfit. robustTol: Tolerance for robust Pade' denominator management. + E: Complete derivative depth level of S. samplingEngine: Sampling engine. - uHF: High fidelity solution with wavenumber lastSolvedHF as numpy - complex vector. - lastSolvedHF: Wavenumber corresponding to last computed high fidelity - solution. + uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as + sampleList. + lastSolvedHF: Parameter(s) corresponding to last computed high fidelity + solution(s) as parameterList. + uAppReduced: Reduced approximate solution(s) with parameter(s) + lastSolvedApp as sampleList. + lastSolvedAppReduced: Parameter(s) corresponding to last computed + reduced approximate solution(s) as parameterList. + uApp: Approximate solution(s) with parameter(s) lastSolvedApp as + sampleList. + lastSolvedApp: Parameter(s) corresponding to last computed approximate + solution(s) as parameterList. Q: Numpy 1D vector containing complex coefficients of approximant denominator. P: Numpy 2D vector whose columns are FE dofs of coefficients of approximant numerator. - uApp: Last evaluated approximant as numpy complex vector. """ - def __init__(self, HFEngine:HFEng, mu0 : complex = 0., + def __init__(self, HFEngine:HFEng, mu0 : paramVal = None, approxParameters : DictAny = {}, homogeneized : bool = False, verbosity : int = 10, timestamp : bool = True): self._preInit() - self._addParametersToList(["polybasis", "E", "M", "N", - "interpRcond", "robustTol"]) + self._addParametersToList(["polybasis", "M", "N", "interpRcond", + "robustTol"]) super().__init__(HFEngine = HFEngine, mu0 = mu0, approxParameters = approxParameters, homogeneized = homogeneized, verbosity = verbosity, timestamp = timestamp) self._postInit() @property def approxParameters(self): """ Value of approximant parameters. """ return self._approxParameters @approxParameters.setter def approxParameters(self, approxParams): approxParameters = purgeDict(approxParams, self.parameterList, dictname = self.name() + ".approxParameters", baselevel = 1) approxParametersCopy = purgeDict(approxParameters, ["polybasis", - "E", "M", "N", + "M", "N", "interpRcond", "robustTol"], True, True, baselevel = 1) - if hasattr(self, "_M") and self.M is not None: - Mold = self.M - self._M = 0 - if hasattr(self, "_N") and self.N is not None: - Nold = self.N - self._N = 0 - if hasattr(self, "_E") and self.E is not None: - self._E = 0 GenericDistributedApproximant.approxParameters.fset(self, approxParametersCopy) keyList = list(approxParameters.keys()) if "polybasis" in keyList: self.polybasis = approxParameters["polybasis"] elif not hasattr(self, "_polybasis") or self._polybasis is None: self.polybasis = "MONOMIAL" if "interpRcond" in keyList: self.interpRcond = approxParameters["interpRcond"] elif not hasattr(self, "interpRcond") or self.interpRcond is None: self.interpRcond = None if "robustTol" in keyList: self.robustTol = approxParameters["robustTol"] elif not hasattr(self, "_robustTol") or self._robustTol is None: self.robustTol = 0 if "M" in keyList: self.M = approxParameters["M"] elif hasattr(self, "_M") and self.M is not None: - self.M = Mold + self.M = self.M else: self.M = 0 if "N" in keyList: self.N = approxParameters["N"] elif hasattr(self, "_N") and self.N is not None: - self.N = Nold + self.N = self.N else: self.N = 0 - if "E" in keyList: - self.E = approxParameters["E"] - else: - self.E = min(self.S - 1, self.M + 1) @property def polybasis(self): """Value of polybasis.""" return self._polybasis @polybasis.setter def polybasis(self, polybasis): try: polybasis = polybasis.upper().strip().replace(" ","") if polybasis not in polybases: raise RROMPyException("Prescribed polybasis not recognized.") self._polybasis = polybasis except: RROMPyWarning(("Prescribed polybasis not recognized. Overriding " "to 'MONOMIAL'.")) self._polybasis = "MONOMIAL" self._approxParameters["polybasis"] = self.polybasis @property def interpRcond(self): """Value of interpRcond.""" return self._interpRcond @interpRcond.setter def interpRcond(self, interpRcond): self._interpRcond = interpRcond self._approxParameters["interpRcond"] = self.interpRcond @property def M(self): """Value of M. Its assignment may change S.""" return self._M @M.setter def M(self, M): if M < 0: raise RROMPyException("M must be non-negative.") self._M = M self._approxParameters["M"] = self.M - if hasattr(self, "_S") and self.S < self.M + 1: - RROMPyWarning("Prescribed S is too small. Updating S to M + 1.") - self.S = self.M + 1 + if hasattr(self, "E") and self.E < self.M: + RROMPyWarning("Prescribed S is too small. Decreasing M.") + self.M = self.E @property def N(self): """Value of N. Its assignment may change S.""" return self._N @N.setter def N(self, N): if N < 0: raise RROMPyException("N must be non-negative.") self._N = N self._approxParameters["N"] = self.N - if hasattr(self, "_S") and self.S < self.N + 1: - RROMPyWarning("Prescribed S is too small. Updating S to N + 1.") - self.S = self.N + 1 - - @property - def E(self): - """Value of E. Its assignment may change S.""" - return self._E - @E.setter - def E(self, E): - if E < 0: raise RROMPyException("E must be non-negative.") - self._E = E - self._approxParameters["E"] = self.E - if hasattr(self, "_S") and self.S < self.E + 1: - RROMPyWarning("Prescribed S is too small. Updating S to E + 1.") - self.S = self.E + 1 + if hasattr(self, "E") and self.E < self.N: + RROMPyWarning("Prescribed S is too small. Decreasing N.") + self.N = self.E @property def robustTol(self): """Value of tolerance for robust Pade' denominator management.""" return self._robustTol @robustTol.setter def robustTol(self, robustTol): if robustTol < 0.: RROMPyWarning(("Overriding prescribed negative robustness " "tolerance to 0.")) robustTol = 0. self._robustTol = robustTol self._approxParameters["robustTol"] = self.robustTol @property def S(self): """Value of S.""" return self._S @S.setter def S(self, S): - if S <= 0: raise RROMPyException("S must be positive.") - if hasattr(self, "_S"): Sold = self.S - else: Sold = -1 - vals, label = [0] * 3, {0:"M", 1:"N", 2:"E"} - if hasattr(self, "_M") and self._M is not None: vals[0] = self.M - if hasattr(self, "_N") and self._N is not None: vals[1] = self.N - if hasattr(self, "_E") and self._E is not None: vals[2] = self.E - idxmax = np.argmax(vals) - if vals[idxmax] + 1 > S: - RROMPyWarning(("Prescribed S is too small. Updating S to {} + " - "1.").format(label[idxmax])) - self.S = vals[idxmax] + 1 - else: - self._S = S - self._approxParameters["S"] = self.S - if Sold != self.S: - self.resetSamples() + GenericDistributedApproximant.S.fset(self, S) + self.E = np.sum(hashI(np.prod(self.S), self.npar)) - 1 + if hasattr(self, "_M"): self.M = self.M + if hasattr(self, "_N"): self.N = self.N + + def resetSamples(self): + """Reset samples.""" + super().resetSamples() + self._musUniqueCN = None + self._derIdxs = None + self._reorder = None + + def _setupInterpolationIndices(self): + """Setup parameters for polyvander.""" + if self._musUniqueCN is None or len(self._reorder) != len(self.mus): + self._musUniqueCN, musIdxsTo, musIdxs, musCount = ( + self.centerNormalize(self.mus).unique(return_index = True, + return_inverse = True, + return_counts = True)) + self._musUnique = self.mus[musIdxsTo] + self._derIdxs = [None] * len(self._musUniqueCN) + self._reorder = np.empty(len(musIdxs), dtype = int) + filled = 0 + for j, cnt in enumerate(musCount): + self._derIdxs[j] = nextDerivativeIndices([], self.mus.shape[1], + cnt) + jIdx = np.nonzero(musIdxs == j)[0] + self._reorder[jIdx] = np.arange(filled, filled + cnt) + filled += cnt def _setupDenominator(self): """Compute Pade' denominator.""" if self.verbosity >= 7: verbosityDepth("INIT", "Starting computation of denominator.", timestamp = self.timestamp) while self.N > 0: - TE = polyvander[self.polybasis](self.centerNormalize(self.mus), - self.E, - scl = 1. / self.scaleFactor) - TE = (TE.T * self.ws).T - RHS = np.zeros(self.E + 1) - RHS[-1] = 1. - fitOut = customFit(TE.T, RHS, full = True, - rcond = self.interpRcond) - if self.verbosity >= 5: - condfit = fitOut[1][2][0] / fitOut[1][2][-1] - verbosityDepth("MAIN", ("Fitting {} samples with degree {} " - "through {}... Conditioning of LS " - "system: {:.4e}.").format( - self.S, self.E, - polyfitname[self.polybasis], - condfit), - timestamp = self.timestamp) - if fitOut[1][1] < self.E + 1: - Enew = fitOut[1][1] - 1 - Nnew = min(self.N, Enew) - Mnew = min(self.M, Enew) - if Nnew == self.N: - strN = "" - else: - strN = "N from {} to {} and ".format(self.N, Nnew) - if Mnew == self.M: - strM = "" - else: - strM = "M from {} to {} and ".format(self.M, Mnew) - RROMPyWarning(("Polyfit is poorly conditioned.\nReducing {}{}" - "E from {} to {}.").format(strN, strM, - self.E, Enew)) - newParams = {"N" : Nnew, "M" : Mnew, "E" : Enew} - self.approxParameters = newParams - continue - mus_un, idx_un, cnt_un = np.unique(self.mus, return_inverse = True, - return_counts = True) - TE = polyvander[self.polybasis](self.centerNormalize(self.mus), - self.N, - scl = 1. / self.scaleFactor) - TE = (TE.T * self.ws).T - if len(mus_un) == len(self.mus): - Ghalf = (TE.T * fitOut[0]).T - else: - pseudoInv = np.zeros((len(self.mus), len(self.mus)), - dtype = np.complex) - for j in range(len(mus_un)): - pseudoInv_loc = np.zeros((cnt_un[j], cnt_un[j]), - dtype = np.complex) - mask = np.arange(len(self.mus))[idx_un == j] - for der in range(cnt_un[j]): - fitderj = fitOut[0][mask[der]] - pseudoInv_loc = (pseudoInv_loc + fitderj - * np.diag(np.ones(1 + der), - k = der - cnt_un[j] + 1)) - I = np.ix_(mask, mask) - pseudoInv[I] = np.flipud(pseudoInv_loc) - Ghalf = pseudoInv.dot(TE) + invD = self._computeInterpolantInverseBlocks() if self.POD: - self.Ghalf = self.samplingEngine.RPOD.dot(Ghalf) - ev, eV = self.findeveVGQR() + ev, eV = self.findeveVGQR(self.samplingEngine.RPOD, invD) else: - self.Ghalf = self.samplingEngine.samples.dot(Ghalf) - ev, eV = self.findeveVGExplicit() - newParams = checkRobustTolerance(ev, self.E, self.robustTol) + ev, eV = self.findeveVGExplicit(self.samplingEngine.samples, + invD) + newParams = checkRobustTolerance(ev, self.N, self.robustTol) if not newParams: break self.approxParameters = newParams if self.N <= 0: self._N = 0 eV = np.ones((1, 1)) if self.verbosity >= 7: verbosityDepth("DEL", "Done computing denominator.", timestamp = self.timestamp) - return eV[:, 0] + q = np.zeros(tuple([self.N + 1] * self.npar), dtype = eV.dtype) + for j in range(eV.shape[0]): + q[tuple(hashI(j, self.npar))] = eV[j, 0] + return q def _setupNumerator(self): """Compute Pade' numerator.""" if self.verbosity >= 7: verbosityDepth("INIT", "Starting computation of numerator.", timestamp = self.timestamp) - Qevaldiag = np.diag(self.trainedModel.getQVal(self.mus)) + Qevaldiag = np.zeros((len(self.mus), len(self.mus)), + dtype = np.complex) verb = self.trainedModel.verbosity self.trainedModel.verbosity = 0 - mus_un, idx_un, cnt_un = np.unique(self.mus, return_inverse = True, - return_counts = True) - for j in range(len(mus_un)): - if cnt_un[j] > 1: - Q_loc = np.zeros((cnt_un[j], cnt_un[j]), dtype = np.complex) - for der in range(1, cnt_un[j]): - Qderj = (self.trainedModel.getQVal(mus_un[j], der, - scl = 1. / self.scaleFactor) - / fact(der)) - Q_loc = Q_loc + Qderj * np.diag(np.ones(cnt_un[j] - der), - k = - der) - I = np.ix_(idx_un == j, idx_un == j) - Qevaldiag[I] = Qevaldiag[I] + Q_loc + + self._setupInterpolationIndices() + idxGlob = 0 + for j, derIdxs in enumerate(self._derIdxs): + nder = len(derIdxs) + idxLoc = np.arange(len(self.mus))[(self._reorder >= idxGlob) + * (self._reorder < idxGlob + nder)] + idxGlob += nder + Qval = [0] * nder + for der in range(nder): + derIdx = hashI(der, self.npar) + Qval[der] = (self.trainedModel.getQVal( + self._musUnique[j], derIdx, + scl = np.power(self.scaleFactor, -1.)) + / multifactorial(derIdx)) + for derU, derUIdx in enumerate(derIdxs): + for derQ, derQIdx in enumerate(derIdxs): + diffIdx = [x - y for (x, y) in zip(derUIdx, derQIdx)] + if all([x >= 0 for x in diffIdx]): + diffj = hashD(diffIdx) + Qevaldiag[idxLoc[derU], idxLoc[derQ]] = Qval[diffj] self.trainedModel.verbosity = verb while self.M >= 0: - fitVander = polyvander[self.polybasis]( - self.centerNormalize(self.mus), - self.M, scl = 1. / self.scaleFactor) - fitOut = customFit(fitVander, Qevaldiag, w = self.ws, full = True, + fitVander, _, argIdxs = homogeneizedpolyvander(self._musUniqueCN, + self.M, self.polybasis, + self._derIdxs, self._reorder, + scl = np.power(self.scaleFactor, -1.)) + fitVander = fitVander[:, argIdxs] + fitOut = customFit(fitVander, Qevaldiag, full = True, rcond = self.interpRcond) if self.verbosity >= 5: condfit = fitOut[1][2][0] / fitOut[1][2][-1] verbosityDepth("MAIN", ("Fitting {} samples with degree {} " "through {}... Conditioning of LS " "system: {:.4e}.").format( - self.S, self.M, - polyfitname[self.polybasis], + fitVander.shape[0], self.M, + polyfitname(self.polybasis), condfit), timestamp = self.timestamp) - if fitOut[1][1] == self.M + 1: - P = fitOut[0].T + if fitOut[1][1] == fitVander.shape[1]: + P = fitOut[0] break - RROMPyWarning(("Polyfit is poorly conditioned. Reducing M from {} " - "to {}. Exact snapshot interpolation not " - "guaranteed.").format(self.M, fitOut[1][1] - 1)) - self.M = fitOut[1][1] - 1 - if self.M <= 0: + RROMPyWarning("Polyfit is poorly conditioned. Reducing M by 1.") + self.M -= 1 + if self.M < 0: raise RROMPyException(("Instability in computation of numerator. " "Aborting.")) if self.verbosity >= 7: verbosityDepth("DEL", "Done computing numerator.", timestamp = self.timestamp) - return np.atleast_2d(P) + p = np.zeros(tuple([self.M + 1] * self.npar) + (P.shape[1],), + dtype = P.dtype) + for j in range(P.shape[0]): + p[tuple(hashI(j, self.npar))] = P[j, :] + return p.T def setupApprox(self): """ Compute Pade' interpolant. SVD-based robust eigenvalue management. """ if self.checkComputedApprox(): return RROMPyAssert(self._mode, message = "Cannot setup approximant.") if self.verbosity >= 5: verbosityDepth("INIT", "Setting up {}.". format(self.name()), timestamp = self.timestamp) self.computeScaleFactor() self.computeSnapshots() if self.trainedModel is None: self.trainedModel = tModel() self.trainedModel.verbosity = self.verbosity self.trainedModel.timestamp = self.timestamp data = TrainedModelData(self.trainedModel.name(), self.mu0, self.samplingEngine.samples, self.HFEngine.rescalingExp) data.polytype = self.polybasis data.scaleFactor = self.scaleFactor data.mus = copy(self.mus) self.trainedModel.data = data else: + self.trainedModel = self.trainedModel self.trainedModel.data.projMat = copy(self.samplingEngine.samples) if self.N > 0: Q = self._setupDenominator() else: Q = np.ones(1, dtype = np.complex) self.trainedModel.data.Q = copy(Q) P = self._setupNumerator() if self.POD: - P = self.samplingEngine.RPOD.dot(P) + P = np.tensordot(self.samplingEngine.RPOD, P, axes = ([-1], [0])) self.trainedModel.data.P = copy(P) self.trainedModel.data.approxParameters = copy(self.approxParameters) if self.verbosity >= 5: verbosityDepth("DEL", "Done setting up approximant.", timestamp = self.timestamp) - def findeveVGExplicit(self, verbOutput : int = 5) -> Tuple[Np1D, Np2D]: + def _computeInterpolantInverseBlocks(self) -> List[Np2D]: + """ + Compute inverse factors for minimal interpolant target functional. + """ + RROMPyAssert(self._mode, message = "Cannot solve eigenvalue problem.") + self._setupInterpolationIndices() + eStart = hashD([self.E] + [0] * (self.npar - 1)) + eEnd = hashD([self.E + 1] + [0] * (self.npar - 1)) + TE, _, argIdxs = homogeneizedpolyvander(self._musUniqueCN, self.E, + self.polybasis, self._derIdxs, self._reorder, + scl = np.power(self.scaleFactor, -1.)) + TE = TE[:, argIdxs].T + RHS = np.zeros((TE.shape[0], eEnd - eStart)) + RHS[range(eStart, eEnd), range(eEnd - eStart)] = 1. + fitOut = customFit(TE, RHS, full = True, rcond = self.interpRcond) + if self.verbosity >= 5: + condfit = fitOut[1][2][0] / fitOut[1][2][-1] + verbosityDepth("MAIN", ("Fitting {} samples with degree {} " + "through {}... Conditioning of LS " + "system: {:.4e}.").format( + TE.shape[1], self.E, + polyfitname(self.polybasis), + condfit), + timestamp = self.timestamp) + self._fitinv = fitOut[0][:, -1] + TN, _, argIdxs = homogeneizedpolyvander(self._musUniqueCN, self.N, + self.polybasis, self._derIdxs, self._reorder, + scl = np.power(self.scaleFactor, -1.)) + TN = TN[:, argIdxs] + invD = [None] * (eEnd - eStart) + for k in range(eEnd - eStart): + pseudoInv = np.diag(fitOut[0][:, k]) + idxGlob = 0 + for j, derIdxs in enumerate(self._derIdxs): + nder = len(derIdxs) + idxGlob += nder + idxLoc = np.arange(len(self.mus))[ + (self._reorder >= idxGlob - nder) + * (self._reorder < idxGlob)] + if nder > 1: + invLoc = fitOut[0][idxLoc, k] + pseudoInv[np.ix_(idxLoc, idxLoc)] = 0. + for diffj, diffjIdx in enumerate(derIdxs): + for derQ, derQIdx in enumerate(derIdxs): + derUIdx = [x - y for (x, y) in + zip(diffjIdx, derQIdx)] + if all([x >= 0 for x in derUIdx]): + derU = hashD(derUIdx) + pseudoInv[idxLoc[derU], idxLoc[derQ]] = ( + invLoc[diffj]) + invD[k] = pseudoInv.dot(TN) + return invD + + def findeveVGExplicit(self, sampleE:sampList, + invD:List[Np2D]) -> Tuple[Np1D, Np2D]: """ Compute explicitly eigenvalues and eigenvectors of Pade' denominator matrix. """ RROMPyAssert(self._mode, message = "Cannot solve eigenvalue problem.") + nEnd = invD[0].shape[1] + eStart = hashD([self.E] + [0] * (self.npar - 1)) + eEnd = hashD([self.E + 1] + [0] * (self.npar - 1)) if self.verbosity >= 10: verbosityDepth("INIT", "Building gramian matrix.", timestamp = self.timestamp) - self.G = self.HFEngine.innerProduct(self.Ghalf, self.Ghalf) + gramian = self.HFEngine.innerProduct(sampleE, sampleE) + G = np.zeros((nEnd, nEnd), dtype = np.complex) + for k in range(eEnd - eStart): + G += invD[k].T.conj().dot(gramian.dot(invD[k])) if self.verbosity >= 10: verbosityDepth("DEL", "Done building gramian.", timestamp = self.timestamp) if self.verbosity >= 7: - verbosityDepth("INIT", ("Solving eigenvalue problem for gramian " - "matrix."), timestamp = self.timestamp) - ev, eV = np.linalg.eigh(self.G) - if self.verbosity >= verbOutput: + verbosityDepth("INIT", ("Solving eigenvalue problem for " + "gramian matrix."), + timestamp = self.timestamp) + ev, eV = np.linalg.eigh(G) + if self.verbosity >= 5: try: condev = ev[-1] / ev[0] except: condev = np.inf - verbosityDepth("MAIN", ("Solved eigenvalue problem of size {} " - "with condition number {:.4e}.").format( - self.N + 1, condev), + verbosityDepth("MAIN", ("Solved eigenvalue problem of " + "size {} with condition number " + "{:.4e}.").format(nEnd, condev), timestamp = self.timestamp) if self.verbosity >= 7: verbosityDepth("DEL", "Done solving eigenvalue problem.", timestamp = self.timestamp) return ev, eV - def findeveVGQR(self, verbOutput : int = 5) -> Tuple[Np1D, Np2D]: + def findeveVGQR(self, RPODE:Np2D, invD:List[Np2D]) -> Tuple[Np1D, Np2D]: """ Compute eigenvalues and eigenvectors of Pade' denominator matrix through SVD of R factor. """ + RROMPyAssert(self._mode, message = "Cannot solve eigenvalue problem.") + nEnd = invD[0].shape[1] + eStart = hashD([self.E] + [0] * (self.npar - 1)) + eEnd = hashD([self.E + 1] + [0] * (self.npar - 1)) + if self.verbosity >= 10: + verbosityDepth("INIT", "Building half-gramian matrix stack.", + timestamp = self.timestamp) + Rstack = np.zeros((RPODE.shape[0] * (eEnd - eStart), nEnd), + dtype = np.complex) + for k in range(eEnd - eStart): + Rstack[k * RPODE.shape[0] : (k + 1) * RPODE.shape[0], :] =\ + RPODE.dot(invD[k]) + if self.verbosity >= 10: + verbosityDepth("DEL", "Done building half-gramian.", + timestamp = self.timestamp) if self.verbosity >= 7: - verbosityDepth("INIT", ("Solving svd for square root of gramian " - "matrix."), timestamp = self.timestamp) - _, s, eV = np.linalg.svd(self.Ghalf, full_matrices = False) + verbosityDepth("INIT", ("Solving svd for square root of " + "gramian matrix."), + timestamp = self.timestamp) + _, s, eV = np.linalg.svd(Rstack, full_matrices = False) ev = s[::-1] eV = eV[::-1, :].T.conj() - if self.verbosity >= verbOutput: + if self.verbosity >= 5: try: condev = s[0] / s[-1] except: condev = np.inf - verbosityDepth("MAIN", ("Solved svd problem of size {} x {} with " - "condition number {:.4e}.").format( - self.S, self.N + 1, condev), + verbosityDepth("MAIN", ("Solved svd problem of size {} x " + "{} with condition number " + "{:.4e}.").format(*Rstack.shape, + condev), timestamp = self.timestamp) if self.verbosity >= 7: - verbosityDepth("DEL", "Done solving eigenvalue problem.", + verbosityDepth("DEL", "Done solving svd.", timestamp = self.timestamp) return ev, eV - def centerNormalize(self, mu:Np1D, mu0 : float = None) -> float: + def centerNormalize(self, mu : paramList = [], + mu0 : paramVal = None) -> paramList: """ Compute normalized parameter to be plugged into approximant. Args: mu: Parameter(s) 1. mu0: Parameter(s) 2. If None, set to self.mu0. Returns: Normalized parameter. """ return self.trainedModel.centerNormalize(mu, mu0) def getResidues(self) -> Np1D: """ Obtain approximant residues. Returns: Matrix with residues as columns. """ return self.trainedModel.getResidues() diff --git a/rrompy/reduction_methods/distributed/rb_distributed.py b/rrompy/reduction_methods/distributed/rb_distributed.py index 9931f0a..2c56a75 100644 --- a/rrompy/reduction_methods/distributed/rb_distributed.py +++ b/rrompy/reduction_methods/distributed/rb_distributed.py @@ -1,216 +1,223 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from copy import deepcopy as copy import numpy as np from .generic_distributed_approximant import GenericDistributedApproximant from rrompy.reduction_methods.trained_model import TrainedModelRB as tModel from rrompy.reduction_methods.trained_model import TrainedModelData from rrompy.reduction_methods.base.rb_utils import projectAffineDecomposition -from rrompy.utilities.base.types import Np1D, Np2D, List, Tuple, DictAny, HFEng +from rrompy.utilities.base.types import (Np1D, Np2D, List, Tuple, DictAny, + HFEng, paramVal) from rrompy.utilities.base import purgeDict, verbosityDepth from rrompy.utilities.exception_manager import RROMPyWarning, RROMPyException __all__ = ['RBDistributed'] class RBDistributed(GenericDistributedApproximant): """ ROM RB approximant computation for parametric problems. Args: HFEngine: HF problem solver. mu0(optional): Default parameter. Defaults to 0. approxParameters(optional): Dictionary containing values for main parameters of approximant. Recognized keys are: - 'muBounds': list of bounds for parameter values; defaults to [0, 1]; - 'S': total number of samples current approximant relies upon; - defaults to 2; - 'sampler': sample point generator; defaults to uniform sampler on muBounds; - - 'R': rank for Galerkin projection; defaults to S. + - 'R': rank for Galerkin projection; defaults to prod(S). Defaults to empty dict. homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults to False. verbosity(optional): Verbosity level. Defaults to 10. Attributes: HFEngine: HF problem solver. mu0: Default parameter. mus: Array of snapshot parameters. - ws: Array of snapshot weigths (unused). homogeneized: Whether to homogeneize Dirichlet BCs. approxRadius: Dummy radius of approximant (i.e. distance from mu0 to farthest sample point). approxParameters: Dictionary containing values for main parameters of approximant. Recognized keys are in parameterList. parameterList: Recognized keys of approximant parameters: - 'POD': whether to compute POD of snapshots; - 'muBounds': list of bounds for parameter values; - 'S': total number of samples current approximant relies upon; - 'sampler': sample point generator; - 'R': rank for Galerkin projection. extraApproxParameters: List of approxParameters keys in addition to mother class's. POD: Whether to compute POD of snapshots. muBounds: list of bounds for parameter values. S: Number of solution snapshots over which current approximant is based upon. sampler: Sample point generator. R: Rank for Galerkin projection. samplingEngine: Sampling engine. - uHF: High fidelity solution with wavenumber lastSolvedHF as numpy - complex vector. - lastSolvedHF: Wavenumber corresponding to last computed high fidelity - solution. - uApp: Last evaluated approximant as numpy complex vector. + uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as + sampleList. + lastSolvedHF: Parameter(s) corresponding to last computed high fidelity + solution(s) as parameterList. + uAppReduced: Reduced approximate solution(s) with parameter(s) + lastSolvedApp as sampleList. + lastSolvedAppReduced: Parameter(s) corresponding to last computed + reduced approximate solution(s) as parameterList. + uApp: Approximate solution(s) with parameter(s) lastSolvedApp as + sampleList. + lastSolvedApp: Parameter(s) corresponding to last computed approximate + solution(s) as parameterList. As: List of sparse matrices (in CSC format) representing coefficients of linear system matrix wrt theta(mu). bs: List of numpy vectors representing coefficients of linear system RHS wrt theta(mu). thetaAs: List of callables representing coefficients of linear system matrix wrt mu. thetabs: List of callables representing coefficients of linear system RHS wrt mu. ARBs: List of sparse matrices (in CSC format) representing coefficients of compressed linear system matrix wrt theta(mu). bRBs: List of numpy vectors representing coefficients of compressed linear system RHS wrt theta(mu). """ - def __init__(self, HFEngine:HFEng, mu0 : complex = 0., + def __init__(self, HFEngine:HFEng, mu0 : paramVal = None, approxParameters : DictAny = {}, homogeneized : bool = False, verbosity : int = 10, timestamp : bool = True): self._preInit() self._addParametersToList(["R"]) super().__init__(HFEngine = HFEngine, mu0 = mu0, approxParameters = approxParameters, homogeneized = homogeneized, verbosity = verbosity, timestamp = timestamp) if self.verbosity >= 10: verbosityDepth("INIT", "Computing affine blocks of system.", timestamp = self.timestamp) self.As = self.HFEngine.affineLinearSystemA(self.mu0) self.bs = self.HFEngine.affineLinearSystemb(self.mu0, self.homogeneized) if self.verbosity >= 10: verbosityDepth("DEL", "Done computing affine blocks.", timestamp = self.timestamp) self._postInit() @property def approxParameters(self): """ Value of approximant parameters. Its assignment may change M, N and S. """ return self._approxParameters @approxParameters.setter def approxParameters(self, approxParams): approxParameters = purgeDict(approxParams, self.parameterList, dictname = self.name() + ".approxParameters", baselevel = 1) approxParametersCopy = purgeDict(approxParameters, ["R"], True, True, baselevel = 1) GenericDistributedApproximant.approxParameters.fset(self, approxParametersCopy) keyList = list(approxParameters.keys()) if "R" in keyList: self.R = approxParameters["R"] elif hasattr(self, "_R") and self._R is not None: self.R = self.R else: - self.R = self.S + self.R = np.prod(self.S) @property def R(self): """Value of R. Its assignment may change S.""" return self._R @R.setter def R(self, R): if R < 0: raise RROMPyException("R must be non-negative.") self._R = R self._approxParameters["R"] = self.R - if hasattr(self, "_S") and self.S < self.R: - RROMPyWarning("Prescribed S is too small. Updating S to R.") - self.S = self.R + if hasattr(self, "_S") and np.prod(self.S) < self.R: + RROMPyWarning("Prescribed S is too small. Decreasing R.") + self.R = np.prod(self.S) def setupApprox(self): """Compute RB projection matrix.""" if self.checkComputedApprox(): return if self.verbosity >= 5: verbosityDepth("INIT", "Setting up {}.". format(self.name()), timestamp = self.timestamp) self.computeSnapshots() if self.verbosity >= 7: verbosityDepth("INIT", "Computing projection matrix.", timestamp = self.timestamp) if self.POD: U, _, _ = np.linalg.svd(self.samplingEngine.RPOD, full_matrices = False) pMat = self.samplingEngine.samples.dot(U[:, : self.R]) else: pMat = self.samplingEngine.samples[: self.R] if self.trainedModel is None: self.trainedModel = tModel() self.trainedModel.verbosity = self.verbosity self.trainedModel.timestamp = self.timestamp data = TrainedModelData(self.trainedModel.name(), self.mu0, pMat, self.HFEngine.rescalingExp) data.thetaAs = self.HFEngine.affineWeightsA(self.mu0) data.thetabs = self.HFEngine.affineWeightsb(self.mu0, self.homogeneized) data.ARBs, data.bRBs = self.assembleReducedSystem(pMat) data.mus = copy(self.mus) self.trainedModel.data = data else: + self.trainedModel = self.trainedModel pMatOld = self.trainedModel.data.projMat Sold = pMatOld.shape[1] ARBs, bRBs = self.assembleReducedSystem(pMat[:, Sold :], pMatOld) self.trainedModel.data.ARBs = ARBs self.trainedModel.data.bRBs = bRBs self.trainedModel.data.projMat = copy(pMat) if self.verbosity >= 7: verbosityDepth("DEL", "Done computing projection matrix.", timestamp = self.timestamp) self.trainedModel.data.approxParameters = copy(self.approxParameters) if self.verbosity >= 5: verbosityDepth("DEL", "Done setting up approximant.", timestamp = self.timestamp) def assembleReducedSystem(self, pMat : Np2D = None, pMatOld : Np2D = None)\ -> Tuple[List[Np2D], List[Np1D]]: """Build affine blocks of RB linear system through projections.""" if pMat is None: self.setupApprox() ARBs = self.trainedModel.data.ARBs bRBs = self.trainedModel.data.bRBs else: if self.verbosity >= 10: verbosityDepth("INIT", "Projecting affine terms of HF model.", timestamp = self.timestamp) ARBsOld = None if pMatOld is None else self.trainedModel.data.ARBs bRBsOld = None if pMatOld is None else self.trainedModel.data.bRBs ARBs, bRBs = projectAffineDecomposition(self.As, self.bs, pMat, ARBsOld, bRBsOld, pMatOld) if self.verbosity >= 10: verbosityDepth("DEL", "Done projecting affine terms.", timestamp = self.timestamp) return ARBs, bRBs diff --git a/rrompy/reduction_methods/distributed_greedy/generic_distributed_greedy_approximant.py b/rrompy/reduction_methods/distributed_greedy/generic_distributed_greedy_approximant.py index 9bb1511..6f0bf3a 100644 --- a/rrompy/reduction_methods/distributed_greedy/generic_distributed_greedy_approximant.py +++ b/rrompy/reduction_methods/distributed_greedy/generic_distributed_greedy_approximant.py @@ -1,649 +1,654 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from copy import deepcopy as copy import numpy as np from rrompy.reduction_methods.distributed.generic_distributed_approximant \ import GenericDistributedApproximant from rrompy.utilities.base.types import (Np1D, Np2D, DictAny, HFEng, Tuple, - List, normEng, paramList, sampList) + List, normEng, paramVal, paramList, + sampList) from rrompy.utilities.base import purgeDict, verbosityDepth from rrompy.solver import normEngine from rrompy.utilities.exception_manager import (RROMPyException, RROMPyAssert, RROMPyWarning) from rrompy.parameter import checkParameterList, emptyParameterList __all__ = ['GenericDistributedGreedyApproximant'] - def pruneSamples(mus:paramList, badmus:paramList, tol : float = 1e-8) -> paramList: """Remove from mus all the elements which are too close to badmus.""" if len(badmus) == 0: return mus musNp = np.array(mus(0)) badmus = np.array(badmus(0)) proximity = np.min(np.abs(musNp.reshape(-1, 1) - np.tile(badmus.reshape(1, -1), [len(mus), 1])), axis = 1).flatten() idxPop = np.arange(len(mus))[proximity <= tol] for i, j in enumerate(idxPop): mus.pop(j - i) return mus class GenericDistributedGreedyApproximant(GenericDistributedApproximant): """ ROM greedy interpolant computation for parametric problems (ABSTRACT). Args: HFEngine: HF problem solver. mu0(optional): Default parameter. Defaults to 0. approxParameters(optional): Dictionary containing values for main parameters of approximant. Recognized keys are: - 'POD': whether to compute POD of snapshots; defaults to True; - 'muBounds': list of bounds for parameter values; defaults to [0, 1]; - 'S': number of starting training points; defaults to 2; - 'sampler': sample point generator; defaults to uniform sampler on muBounds; - 'greedyTol': uniform error tolerance for greedy algorithm; defaults to 1e-2; - 'interactive': whether to interactively terminate greedy algorithm; defaults to False; - 'maxIter': maximum number of greedy steps; defaults to 1e2; - 'refinementRatio': ratio of test points to be exhausted before test set refinement; defaults to 0.2; - 'nTestPoints': number of test points; defaults to maxIter / refinementRatio; - 'trainSetGenerator': training sample points generator; defaults to Chebyshev sampler within muBounds. Defaults to empty dict. homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults to False. verbosity(optional): Verbosity level. Defaults to 10. Attributes: HFEngine: HF problem solver. mu0: Default parameter. mus: Array of snapshot parameters. homogeneized: Whether to homogeneize Dirichlet BCs. approxParameters: Dictionary containing values for main parameters of approximant. Recognized keys are in parameterList. parameterList: Recognized keys of approximant parameters: - 'POD': whether to compute POD of snapshots; - 'muBounds': list of bounds for parameter values; - 'S': number of starting training points; - 'sampler': sample point generator; - 'greedyTol': uniform error tolerance for greedy algorithm; - 'interactive': whether to interactively terminate greedy algorithm; - 'maxIter': maximum number of greedy steps; - 'refinementRatio': ratio of test points to be exhausted before test set refinement; - 'nTestPoints': number of test points; - 'trainSetGenerator': training sample points generator. extraApproxParameters: List of approxParameters keys in addition to mother class's. POD: whether to compute POD of snapshots. muBounds: list of bounds for parameter values. S: number of test points. sampler: Sample point generator. greedyTol: uniform error tolerance for greedy algorithm. maxIter: maximum number of greedy steps. refinementRatio: ratio of training points to be exhausted before training set refinement. nTestPoints: number of starting training points. trainSetGenerator: training sample points generator. robustTol: tolerance for robust Pade' denominator management. samplingEngine: Sampling engine. estimatorNormEngine: Engine for estimator norm computation. - uHF: High fidelity solution with wavenumber lastSolvedHF as numpy - complex vector. - lastSolvedHF: Wavenumber corresponding to last computed high fidelity - solution. - uApp: Last evaluated approximant as numpy complex vector. + uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as + sampleList. + lastSolvedHF: Parameter(s) corresponding to last computed high fidelity + solution(s) as parameterList. + uAppReduced: Reduced approximate solution(s) with parameter(s) + lastSolvedApp as sampleList. + lastSolvedAppReduced: Parameter(s) corresponding to last computed + reduced approximate solution(s) as parameterList. + uApp: Approximate solution(s) with parameter(s) lastSolvedApp as + sampleList. + lastSolvedApp: Parameter(s) corresponding to last computed approximate + solution(s) as parameterList. """ TOL_INSTABILITY = 1e-6 - def __init__(self, HFEngine:HFEng, mu0 : complex = 0., + def __init__(self, HFEngine:HFEng, mu0 : paramVal = None, approxParameters : DictAny = {}, homogeneized : bool = False, verbosity : int = 10, timestamp : bool = True): self._preInit() self._addParametersToList(["greedyTol", "interactive", "maxIter", "refinementRatio", "nTestPoints", "trainSetGenerator"]) super().__init__(HFEngine = HFEngine, mu0 = mu0, approxParameters = approxParameters, homogeneized = homogeneized, verbosity = verbosity, timestamp = timestamp) + RROMPyAssert(self.HFEngine.npar, 1, "Parameter dimension") self._postInit() @property def approxParameters(self): """Value of approximant parameters. Its assignment may change S.""" return self._approxParameters @approxParameters.setter def approxParameters(self, approxParams): approxParameters = purgeDict(approxParams, self.parameterList, dictname = self.name() + ".approxParameters", baselevel = 1) approxParametersCopy = purgeDict(approxParameters, ["greedyTol", "interactive", "maxIter", "refinementRatio", "nTestPoints", "trainSetGenerator"], True, True, baselevel = 1) GenericDistributedApproximant.approxParameters.fset(self, approxParametersCopy) keyList = list(approxParameters.keys()) if "greedyTol" in keyList: self.greedyTol = approxParameters["greedyTol"] elif not hasattr(self, "_greedyTol") or self.greedyTol is None: self.greedyTol = 1e-2 if "interactive" in keyList: self.interactive = approxParameters["interactive"] elif not hasattr(self, "interactive") or self.interactive is None: self.interactive = False if "maxIter" in keyList: self.maxIter = approxParameters["maxIter"] elif not hasattr(self, "_maxIter") or self.maxIter is None: self.maxIter = 1e2 if "refinementRatio" in keyList: self.refinementRatio = approxParameters["refinementRatio"] elif (not hasattr(self, "_refinementRatio") or self.refinementRatio is None): self.refinementRatio = 0.2 if "nTestPoints" in keyList: self.nTestPoints = approxParameters["nTestPoints"] elif (not hasattr(self, "_nTestPoints") or self.nTestPoints is None): self.nTestPoints = np.int(np.ceil(self.maxIter / self.refinementRatio)) if "trainSetGenerator" in keyList: self.trainSetGenerator = approxParameters["trainSetGenerator"] elif (not hasattr(self, "_trainSetGenerator") or self.trainSetGenerator is None): from rrompy.parameter.parameter_sampling import QuadratureSampler self.trainSetGenerator = QuadratureSampler(self.muBounds, "CHEBYSHEV") del QuadratureSampler @property def greedyTol(self): """Value of greedyTol.""" return self._greedyTol @greedyTol.setter def greedyTol(self, greedyTol): if greedyTol < 0: raise RROMPyException("greedyTol must be non-negative.") if hasattr(self, "_greedyTol") and self.greedyTol is not None: greedyTolold = self.greedyTol else: greedyTolold = -1 self._greedyTol = greedyTol self._approxParameters["greedyTol"] = self.greedyTol if greedyTolold != self.greedyTol: self.resetSamples() @property def maxIter(self): """Value of maxIter.""" return self._maxIter @maxIter.setter def maxIter(self, maxIter): if maxIter <= 0: raise RROMPyException("maxIter must be positive.") if hasattr(self, "_maxIter") and self.maxIter is not None: maxIterold = self.maxIter else: maxIterold = -1 self._maxIter = maxIter self._approxParameters["maxIter"] = self.maxIter if maxIterold != self.maxIter: self.resetSamples() @property def refinementRatio(self): """Value of refinementRatio.""" return self._refinementRatio @refinementRatio.setter def refinementRatio(self, refinementRatio): if refinementRatio <= 0. or refinementRatio > 1.: raise RROMPyException(("refinementRatio must be between 0 " "(excluded) and 1.")) if (hasattr(self, "_refinementRatio") and self.refinementRatio is not None): refinementRatioold = self.refinementRatio else: refinementRatioold = -1 self._refinementRatio = refinementRatio self._approxParameters["refinementRatio"] = self.refinementRatio if refinementRatioold != self.refinementRatio: self.resetSamples() @property def nTestPoints(self): """Value of nTestPoints.""" return self._nTestPoints @nTestPoints.setter def nTestPoints(self, nTestPoints): if nTestPoints <= 0: raise RROMPyException("nTestPoints must be positive.") if not np.isclose(nTestPoints, np.int(nTestPoints)): raise RROMPyException("nTestPoints must be an integer.") nTestPoints = np.int(nTestPoints) if hasattr(self, "_nTestPoints") and self.nTestPoints is not None: nTestPointsold = self.nTestPoints else: nTestPointsold = -1 self._nTestPoints = nTestPoints self._approxParameters["nTestPoints"] = self.nTestPoints if nTestPointsold != self.nTestPoints: self.resetSamples() @property def trainSetGenerator(self): """Value of trainSetGenerator.""" return self._trainSetGenerator @trainSetGenerator.setter def trainSetGenerator(self, trainSetGenerator): if 'generatePoints' not in dir(trainSetGenerator): raise RROMPyException("trainSetGenerator type not recognized.") if (hasattr(self, '_trainSetGenerator') and self.trainSetGenerator is not None): trainSetGeneratorOld = self.trainSetGenerator self._trainSetGenerator = trainSetGenerator self._approxParameters["trainSetGenerator"] = self.trainSetGenerator if (not 'trainSetGeneratorOld' in locals() or trainSetGeneratorOld != self.trainSetGenerator): self.resetSamples() def resetSamples(self): """Reset samples.""" super().resetSamples() self._mus = emptyParameterList() def initEstimatorNormEngine(self, normEngn : normEng = None): """Initialize estimator norm engine.""" if (normEngn is not None or not hasattr(self, "estimatorNormEngine") or self.estimatorNormEngine is None): if normEngn is None: if not hasattr(self.HFEngine, "energyNormMatrix"): self.HFEngine.buildEnergyNormForm() estimatorEnergyMatrix = self.HFEngine.energyNormMatrix else: if hasattr(normEngn, "buildEnergyNormForm"): if not hasattr(normEngn, "energyNormMatrix"): normEngn.buildEnergyNormForm() estimatorEnergyMatrix = normEngn.energyNormMatrix else: estimatorEnergyMatrix = normEngn self.estimatorNormEngine = normEngine(estimatorEnergyMatrix) - def errorEstimator(self, mus:List[np.complex]) -> List[np.complex]: + def errorEstimator(self, mus:paramList) -> List[complex]: """ Standard residual-based error estimator with explicit residual computation. """ self.setupApprox() - nmus = len(mus) - err = np.empty(nmus) if self.HFEngine.nbs == 1: RHS = self.getRHS(mus[0], homogeneized = self.homogeneized) RHSNorm = self.estimatorNormEngine.norm(RHS) - for j in range(nmus): - res = self.getRes(mus[j], homogeneized = self.homogeneized) - err[j] = self.estimatorNormEngine.norm(res) / RHSNorm + res = self.getRes(mus, homogeneized = self.homogeneized) + err = self.estimatorNormEngine.norm(res) / RHSNorm else: - for j in range(nmus): - res = self.getRes(mus[j], homogeneized = self.homogeneized) - RHS = self.getRHS(mus[j], homogeneized = self.homogeneized) - err[j] = (self.estimatorNormEngine.norm(res) - / self.estimatorNormEngine.norm(RHS)) + res = self.getRes(mus, homogeneized = self.homogeneized) + RHS = self.getRHS(mus, homogeneized = self.homogeneized) + err = (self.estimatorNormEngine.norm(res) + / self.estimatorNormEngine.norm(RHS)) return np.abs(err) def getMaxErrorEstimator(self, mus:paramList, plot : bool = False) -> Tuple[Np1D, int, float]: """ Compute maximum of (and index of maximum of) error estimator over given parameters. """ - errorEstTest = self.errorEstimator(mus(0)) + errorEstTest = self.errorEstimator(mus) idxMaxEst = np.argmax(errorEstTest) maxEst = errorEstTest[idxMaxEst] if plot and not np.all(np.isinf(errorEstTest)): musre = mus.re(0) from matplotlib import pyplot as plt plt.figure() plt.semilogy(musre, errorEstTest, 'k') plt.semilogy([musre[0], musre[-1]], [self.greedyTol] * 2, 'r--') - plt.semilogy(self.mus(0), + plt.semilogy(self.mus.re(0), 2. * self.greedyTol * np.ones(len(self.mus)), '*m') plt.semilogy(musre[idxMaxEst], maxEst, 'xr') plt.grid() plt.show() plt.close() return errorEstTest, idxMaxEst, maxEst def greedyNextSample(self, muidx:int, plotEst : bool = False)\ - -> Tuple[Np1D, int, float, complex]: + -> Tuple[Np1D, int, float, paramVal]: """Compute next greedy snapshot of solution map.""" RROMPyAssert(self._mode, message = "Cannot add greedy sample.") mu = copy(self.muTest[muidx]) self.muTest.pop(muidx) if self.verbosity >= 2: verbosityDepth("MAIN", ("Adding {}-th sample point at {} to " "training set.").format( self.samplingEngine.nsamples + 1, mu), timestamp = self.timestamp) self.mus.append(mu) self.samplingEngine.nextSample(mu, homogeneized = self.homogeneized) errorEstTest, muidx, maxErrorEst = self.getMaxErrorEstimator( self.muTest, plotEst) return errorEstTest, muidx, maxErrorEst, self.muTest[muidx] def _preliminaryTraining(self): """Initialize starting snapshots of solution map.""" RROMPyAssert(self._mode, message = "Cannot start greedy algorithm.") self.computeScaleFactor() if self.samplingEngine.nsamples > 0: return if self.verbosity >= 2: verbosityDepth("INIT", "Starting computation of snapshots.", timestamp = self.timestamp) self.resetSamples() - self.mus, _ = self.trainSetGenerator.generatePoints(self.S) + self.mus = self.trainSetGenerator.generatePoints(self.S) muLast = copy(self.mus[-1]) self.mus.pop() - muTestBase, _ = self.sampler.generatePoints(self.nTestPoints) - if len(self.mus) > 1: + muTestBase = self.sampler.generatePoints(self.nTestPoints) + if len(self.mus) > 0: if self.verbosity >= 2: verbosityDepth("MAIN", ("Adding first {} samples point at {} to " - "training set.").format(self.S - 1, self.mus), + "training set.").format(np.prod(self.S) - 1, + self.mus), timestamp = self.timestamp) self.samplingEngine.iterSample(self.mus, homogeneized = self.homogeneized) - muTestBase = np.sort(pruneSamples(muTestBase, self.mus, - 1e-10 * self.scaleFactor)) + muTestBase = pruneSamples(muTestBase, self.mus, + 1e-10 * self.scaleFactor[0]).sort() self.muTest = emptyParameterList() - self.muTest.reset(len(muTestBase) + 1) + self.muTest.reset((len(muTestBase) + 1, self.mus.shape[1])) self.muTest[: -1] = muTestBase self.muTest[-1] = muLast def _enrichTestSet(self, nTest:int): """Add extra elements to test set.""" - muTestExtra, _ = self.sampler.generatePoints(2 * nTest) + muTestExtra = self.sampler.generatePoints(2 * nTest) muTotal = copy(self.mus) muTotal.append(self.muTest) muTestExtra = pruneSamples(muTestExtra, muTotal, - 1e-10 * self.scaleFactor) + 1e-10 * self.scaleFactor[0]) muTestNew = np.empty(len(self.muTest) + len(muTestExtra), dtype = np.complex) muTestNew[: len(self.muTest)] = self.muTest(0) muTestNew[len(self.muTest) :] = muTestExtra(0) - self.muTest = checkParameterList(np.sort(muTestNew)) + self.muTest = checkParameterList(muTestNew.sort(), self.npar) if self.verbosity >= 5: verbosityDepth("MAIN", "Enriching test set by {} elements.".format( len(muTestExtra)), timestamp = self.timestamp) def greedy(self, plotEst : bool = False): """Compute greedy snapshots of solution map.""" RROMPyAssert(self._mode, message = "Cannot start greedy algorithm.") if self.samplingEngine.nsamples > 0: return self._preliminaryTraining() nTest = self.nTestPoints errorEstTest, muidx, maxErrorEst, mu = self.greedyNextSample(-1, plotEst) if self.verbosity >= 2: verbosityDepth("MAIN", ("Uniform testing error estimate " "{:.4e}.").format(maxErrorEst), timestamp = self.timestamp) trainedModelOld = copy(self.trainedModel) while (self.samplingEngine.nsamples < self.maxIter and maxErrorEst > self.greedyTol): if (1. - self.refinementRatio) * nTest > len(self.muTest): self._enrichTestSet(nTest) nTest = len(self.muTest) muTestOld, maxErrorEstOld = self.muTest, maxErrorEst errorEstTest, muidx, maxErrorEst, mu = self.greedyNextSample( muidx, plotEst) if self.verbosity >= 2: verbosityDepth("MAIN", ("Uniform testing error estimate " "{:.4e}.").format(maxErrorEst), timestamp = self.timestamp) if (np.isnan(maxErrorEst) or np.isinf(maxErrorEst) or maxErrorEstOld < maxErrorEst * self.TOL_INSTABILITY): RROMPyWarning(("Instability in a posteriori estimator. " "Starting preemptive greedy loop termination.")) maxErrorEst = maxErrorEstOld self.muTest = muTestOld self.mus = self.mus[:-1] self.samplingEngine.popSample() self.trainedModel.data = copy(trainedModelOld.data) break trainedModelOld.data = copy(self.trainedModel.data) if (self.interactive and maxErrorEst <= self.greedyTol): verbosityDepth("MAIN", ("Required tolerance {} achieved. Want " "to decrease greedyTol and continue? " "Y/N").format(self.greedyTol), timestamp = self.timestamp, end = "") increasemaxIter = input() if increasemaxIter.upper() == "Y": verbosityDepth("MAIN", "Reducing value of greedyTol...", timestamp = self.timestamp) while maxErrorEst <= self._greedyTol: self._greedyTol *= .5 if (self.interactive and self.samplingEngine.nsamples >= self.maxIter): verbosityDepth("MAIN", ("Maximum number of iterations {} " "reached. Want to increase maxIter " "and continue? Y/N").format( self.maxIter), timestamp = self.timestamp, end = "") increasemaxIter = input() if increasemaxIter.upper() == "Y": verbosityDepth("MAIN", "Doubling value of maxIter...", timestamp = self.timestamp) self._maxIter *= 2 if self.verbosity >= 2: verbosityDepth("DEL", ("Done computing snapshots (final snapshot " "count: {}).").format( self.samplingEngine.nsamples), timestamp = self.timestamp) def checkComputedApprox(self) -> bool: """ Check if setup of new approximant is not needed. Returns: True if new setup is not needed. False otherwise. """ return (super().checkComputedApprox() and len(self.mus) == self.trainedModel.data.projMat.shape[1]) def assembleReducedResidualGramian(self, pMat:sampList): """ Build residual gramian of reduced linear system through projections. """ self.initEstimatorNormEngine() if (not hasattr(self.trainedModel.data, "gramian") or self.trainedModel.data.gramian is None): gramian = self.estimatorNormEngine.innerProduct(pMat, pMat) else: Sold = self.trainedModel.data.gramian.shape[0] S = len(self.mus) if Sold > S: gramian = self.trainedModel.data.gramian[: S, : S] else: idxOld = list(range(Sold)) idxNew = list(range(Sold, S)) gramian = np.empty((S, S), dtype = np.complex) gramian[: Sold, : Sold] = self.trainedModel.data.gramian gramian[: Sold, Sold :] = ( self.estimatorNormEngine.innerProduct(pMat(idxNew), pMat(idxOld))) gramian[Sold :, : Sold] = gramian[: Sold, Sold :].T.conj() gramian[Sold :, Sold :] = ( self.estimatorNormEngine.innerProduct(pMat(idxNew), pMat(idxNew))) self.trainedModel.data.gramian = gramian def assembleReducedResidualBlocksbb(self, bs:List[Np1D], scaling : float = 1.): """ Build blocks (of type bb) of reduced linear system through projections. """ self.initEstimatorNormEngine() nbs = len(bs) if (not hasattr(self.trainedModel.data, "resbb") or self.trainedModel.data.resbb is None): resbb = np.empty((nbs, nbs), dtype = np.complex) for i in range(nbs): Mbi = scaling ** i * bs[i] resbb[i, i] = self.estimatorNormEngine.innerProduct(Mbi, Mbi) for j in range(i): Mbj = scaling ** j * bs[j] resbb[i, j] = self.estimatorNormEngine.innerProduct(Mbj, Mbi) for i in range(nbs): for j in range(i + 1, nbs): resbb[i, j] = resbb[j, i].conj() self.trainedModel.data.resbb = resbb def assembleReducedResidualBlocksAb(self, As:List[Np2D], bs:List[Np1D], pMat:sampList, scaling : float = 1.): """ Build blocks (of type Ab) of reduced linear system through projections. """ self.initEstimatorNormEngine() nAs = len(As) nbs = len(bs) S = len(self.mus) if (not hasattr(self.trainedModel.data, "resAb") or self.trainedModel.data.resAb is None): if not isinstance(pMat, (np.ndarray,)): pMat = pMat.data resAb = np.empty((nbs, S, nAs), dtype = np.complex) for j in range(nAs): MAj = scaling ** (j + 1) * As[j].dot(pMat) for i in range(nbs): Mbi = scaling ** (i + 1) * bs[i] resAb[i, :, j] = self.estimatorNormEngine.innerProduct(MAj, Mbi) else: Sold = self.trainedModel.data.resAb.shape[1] if Sold == S: return if Sold > S: resAb = self.trainedModel.data.resAb[:, : S, :] else: if not isinstance(pMat, (np.ndarray,)): pMat = pMat.data resAb = np.empty((nbs, S, nAs), dtype = np.complex) resAb[:, : Sold, :] = self.trainedModel.data.resAb for j in range(nAs): MAj = scaling ** (j + 1) * As[j].dot(pMat[:, Sold :]) for i in range(nbs): Mbi = scaling ** (i + 1) * bs[i] resAb[i, Sold :, j] = ( self.estimatorNormEngine.innerProduct(MAj, Mbi)) self.trainedModel.data.resAb = resAb def assembleReducedResidualBlocksAA(self, As:List[Np2D], pMat:sampList, scaling : float = 1., basic : bool = False): """ Build blocks (of type AA) of reduced linear system through projections. """ self.initEstimatorNormEngine() nAs = len(As) S = len(self.mus) if (not hasattr(self.trainedModel.data, "resAA") or self.trainedModel.data.resAA is None): if not isinstance(pMat, (np.ndarray,)): pMat = pMat.data if basic: MAEnd = scaling ** nAs * As[-1].dot(pMat) resAA = self.estimatorNormEngine.innerProduct(MAEnd, MAEnd) else: resAA = np.empty((S, nAs, S, nAs), dtype = np.complex) for i in range(nAs): MAi = scaling ** (i + 1) * As[i].dot(pMat) resAA[:, i, :, i] = ( self.estimatorNormEngine.innerProduct(MAi, MAi)) for j in range(i): MAj = scaling ** (j + 1) * As[j].dot(pMat) resAA[:, i, :, j] = ( self.estimatorNormEngine.innerProduct(MAj, MAi)) for i in range(nAs): for j in range(i + 1, nAs): resAA[:, i, :, j] = resAA[:, j, :, i].T.conj() else: Sold = self.trainedModel.data.resAA.shape[0] if Sold == S: return if Sold > S: if basic: resAA = self.trainedModel.data.resAA[: S, : S] else: resAA = self.trainedModel.data.resAA[: S, :, : S, :] else: if not isinstance(pMat, (np.ndarray,)): pMat = pMat.data if basic: resAA = np.empty((S, S), dtype = np.complex) resAA[: Sold, : Sold] = self.trainedModel.data.resAA MAi = scaling ** nAs * As[-1].dot(pMat) resAA[: Sold, Sold :] = ( self.estimatorNormEngine.innerProduct(MAi[:, Sold :], MAi[:, : Sold])) resAA[Sold :, : Sold] = resAA[: Sold, Sold :].T.conj() resAA[Sold :, Sold :] = ( self.estimatorNormEngine.innerProduct(MAi[:, Sold :], MAi[:, Sold :])) else: resAA = np.empty((S, nAs, S, nAs), dtype = np.complex) resAA[: Sold, :, : Sold, :] = self.trainedModel.data.resAA for i in range(nAs): MAi = scaling ** (i + 1) * As[i].dot(pMat) resAA[: Sold, i, Sold :, i] = ( self.estimatorNormEngine.innerProduct(MAi[:, Sold :], MAi[:, : Sold])) resAA[Sold :, i, : Sold, i] = resAA[: Sold, i, Sold :, i].T.conj() resAA[Sold :, i, Sold :, i] = ( self.estimatorNormEngine.innerProduct(MAi[:, Sold :], MAi[:, Sold :])) for j in range(i): MAj = scaling ** (j + 1) * As[j].dot(pMat) resAA[: Sold, i, Sold :, j] = ( self.estimatorNormEngine.innerProduct(MAj[:, Sold :], MAi[:, : Sold])) resAA[Sold :, i, : Sold, j] = ( self.estimatorNormEngine.innerProduct(MAj[:, : Sold], MAi[:, Sold :])) resAA[Sold :, i, Sold :, j] = ( self.estimatorNormEngine.innerProduct(MAj[:, Sold :], MAi[:, Sold :])) for i in range(nAs): for j in range(i + 1, nAs): resAA[: Sold, i, Sold :, j] = ( resAA[Sold :, j, : Sold, i].T.conj()) resAA[Sold :, i, : Sold, j] = ( resAA[: Sold, j, Sold :, i].T.conj()) resAA[Sold :, i, Sold :, j] = ( resAA[Sold :, j, Sold :, i].T.conj()) self.trainedModel.data.resAA = resAA diff --git a/rrompy/reduction_methods/distributed_greedy/rational_interpolant_greedy.py b/rrompy/reduction_methods/distributed_greedy/rational_interpolant_greedy.py index 35eeef3..bbf14d2 100644 --- a/rrompy/reduction_methods/distributed_greedy/rational_interpolant_greedy.py +++ b/rrompy/reduction_methods/distributed_greedy/rational_interpolant_greedy.py @@ -1,572 +1,456 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from copy import deepcopy as copy import numpy as np -from scipy.special import factorial as fact from .generic_distributed_greedy_approximant import \ GenericDistributedGreedyApproximant -from rrompy.utilities.poly_fitting import (polybases, polyvander, polydomcoeff, - polyfitname, customFit) +from rrompy.utilities.poly_fitting.polynomial import polybases, polydomcoeff from rrompy.reduction_methods.distributed import RationalInterpolant from rrompy.reduction_methods.trained_model import TrainedModelPade as tModel from rrompy.reduction_methods.trained_model import TrainedModelData -from rrompy.utilities.base.types import Np1D, Np2D, DictAny, List, HFEng +from rrompy.utilities.base.types import Np1D, Np2D, DictAny, HFEng, paramVal from rrompy.utilities.base import purgeDict, verbosityDepth from rrompy.utilities.exception_manager import RROMPyWarning -from rrompy.utilities.exception_manager import RROMPyException +from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert __all__ = ['RationalInterpolantGreedy'] class RationalInterpolantGreedy(GenericDistributedGreedyApproximant, RationalInterpolant): """ ROM greedy rational interpolant computation for parametric problems. Args: HFEngine: HF problem solver. mu0(optional): Default parameter. Defaults to 0. approxParameters(optional): Dictionary containing values for main parameters of approximant. Recognized keys are: - 'POD': whether to compute POD of snapshots; defaults to True; - 'muBounds': list of bounds for parameter values; defaults to [0, 1]; - - 'S': number of starting training points; defaults to 2; + - 'S': number of starting training points; - 'sampler': sample point generator; defaults to uniform sampler on muBounds; - 'basis': type of basis for interpolation; allowed values include 'MONOMIAL', 'CHEBYSHEV' and 'LEGENDRE'; defaults to 'MONOMIAL'; - 'Delta': difference between M and N in rational approximant; defaults to 0; - 'greedyTol': uniform error tolerance for greedy algorithm; defaults to 1e-2; - 'errorEstimatorKind': kind of error estimator; available values include 'EXACT', 'BASIC', and 'BARE'; defaults to 'EXACT'; - 'maxIter': maximum number of greedy steps; defaults to 1e2; - 'refinementRatio': ratio of training points to be exhausted before training set refinement; defaults to 0.2; - 'nTestPoints': number of test points; defaults to maxIter / refinementRatio; - 'trainSetGenerator': training sample points generator; defaults to Chebyshev sampler within muBounds; - 'interpRcond': tolerance for interpolation via numpy.polyfit; defaults to None; - 'robustTol': tolerance for robust Pade' denominator management; defaults to 0. Defaults to empty dict. homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults to False. verbosity(optional): Verbosity level. Defaults to 10. Attributes: HFEngine: HF problem solver. mu0: Default parameter. mus: Array of snapshot parameters. homogeneized: Whether to homogeneize Dirichlet BCs. approxParameters: Dictionary containing values for main parameters of approximant. Recognized keys are in parameterList. parameterList: Recognized keys of approximant parameters: - 'POD': whether to compute POD of snapshots; - 'muBounds': list of bounds for parameter values; - 'S': number of starting training points; - 'sampler': sample point generator; - 'basis': type of basis for interpolation; - 'Delta': difference between M and N in rational approximant; - 'greedyTol': uniform error tolerance for greedy algorithm; - 'errorEstimatorKind': kind of error estimator; - 'maxIter': maximum number of greedy steps; - 'refinementRatio': ratio of training points to be exhausted before training set refinement; - 'nTestPoints': number of test points; - 'trainSetGenerator': training sample points generator; - 'interpRcond': tolerance for interpolation via numpy.polyfit; - 'robustTol': tolerance for robust Pade' denominator management. extraApproxParameters: List of approxParameters keys in addition to mother class's. POD: whether to compute POD of snapshots. muBounds: list of bounds for parameter values. S: number of starting training points. sampler: Sample point generator. greedyTol: uniform error tolerance for greedy algorithm. errorEstimatorKind: kind of error estimator. maxIter: maximum number of greedy steps. refinementRatio: ratio of training points to be exhausted before training set refinement. nTestPoints: number of starting training points. trainSetGenerator: training sample points generator. interpRcond: Tolerance for interpolation via numpy.polyfit. robustTol: Tolerance for robust Pade' denominator management. samplingEngine: Sampling engine. estimatorNormEngine: Engine for estimator norm computation. - uHF: High fidelity solution with wavenumber lastSolvedHF as numpy - complex vector. - lastSolvedHF: Wavenumber corresponding to last computed high fidelity - solution. - uApp: Last evaluated approximant as numpy complex vector. + uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as + sampleList. + lastSolvedHF: Parameter(s) corresponding to last computed high fidelity + solution(s) as parameterList. + uAppReduced: Reduced approximate solution(s) with parameter(s) + lastSolvedApp as sampleList. + lastSolvedAppReduced: Parameter(s) corresponding to last computed + reduced approximate solution(s) as parameterList. + uApp: Approximate solution(s) with parameter(s) lastSolvedApp as + sampleList. + lastSolvedApp: Parameter(s) corresponding to last computed approximate + solution(s) as parameterList. """ _allowedEstimatorKinds = ["EXACT", "BASIC", "BARE"] - def __init__(self, HFEngine:HFEng, mu0 : complex = 0., + def __init__(self, HFEngine:HFEng, mu0 : paramVal = None, approxParameters : DictAny = {}, homogeneized : bool = False, verbosity : int = 10, timestamp : bool = True): self._preInit() self._addParametersToList(["polybasis", "Delta", "errorEstimatorKind", "interpRcond", "robustTol"]) super().__init__(HFEngine = HFEngine, mu0 = mu0, approxParameters = approxParameters, homogeneized = homogeneized, verbosity = verbosity, timestamp = timestamp) if self.verbosity >= 7: verbosityDepth("INIT", "Computing Taylor blocks of system.", timestamp = self.timestamp) nAs = self.HFEngine.nAs - 1 nbs = max(self.HFEngine.nbs, (nAs + 1) * self.homogeneized) self.As = [self.HFEngine.A(self.mu0, j + 1) for j in range(nAs)] self.bs = [self.HFEngine.b(self.mu0, j, self.homogeneized) for j in range(nbs)] if self.verbosity >= 7: verbosityDepth("DEL", "Done computing Taylor blocks.", timestamp = self.timestamp) self._postInit() @property def approxParameters(self): """ Value of approximant parameters. Its assignment may change robustTol. """ return self._approxParameters @approxParameters.setter def approxParameters(self, approxParams): approxParameters = purgeDict(approxParams, self.parameterList, dictname = self.name() + ".approxParameters", baselevel = 1) approxParametersCopy = purgeDict(approxParameters, ["polybasis", "Delta", "errorEstimatorKind", "interpRcond", "robustTol"], True, True, baselevel = 1) if "Delta" in list(approxParameters.keys()): self._Delta = approxParameters["Delta"] elif not hasattr(self, "_Delta") or self._Delta is None: self._Delta = 0 GenericDistributedGreedyApproximant.approxParameters.fset(self, approxParametersCopy) keyList = list(approxParameters.keys()) self.Delta = self.Delta if "polybasis" in keyList: self.polybasis = approxParameters["polybasis"] elif not hasattr(self, "_polybasis") or self._polybasis is None: self.polybasis = "MONOMIAL" if "errorEstimatorKind" in keyList: self.errorEstimatorKind = approxParameters["errorEstimatorKind"] elif (not hasattr(self, "_errorEstimatorKind") or self.errorEstimatorKind is None): self.errorEstimatorKind = "EXACT" if "interpRcond" in keyList: self.interpRcond = approxParameters["interpRcond"] elif not hasattr(self, "interpRcond") or self.interpRcond is None: self.interpRcond = None if "robustTol" in keyList: self.robustTol = approxParameters["robustTol"] elif not hasattr(self, "_robustTol") or self._robustTol is None: self.robustTol = 0 @property def polybasis(self): """Value of polybasis.""" return self._polybasis @polybasis.setter def polybasis(self, polybasis): try: polybasis = polybasis.upper().strip().replace(" ","") if polybasis not in polybases: raise RROMPyException("Sample type not recognized.") self._polybasis = polybasis except: RROMPyWarning(("Prescribed polybasis not recognized. Overriding " "to 'MONOMIAL'.")) self._polybasis = "MONOMIAL" self._approxParameters["polybasis"] = self.polybasis @property def Delta(self): """Value of Delta.""" return self._Delta @Delta.setter def Delta(self, Delta): if not np.isclose(Delta, np.floor(Delta)): raise RROMPyException("Delta must be an integer.") if Delta < 0: RROMPyWarning(("Error estimator unreliable for Delta < 0. " "Overloading of errorEstimator is suggested.")) else: Deltamin = (max(self.HFEngine.nbs, self.HFEngine.nAs * self.homogeneized) - 1 - 1 * (self.HFEngine.nAs > 1)) if Delta < Deltamin: RROMPyWarning(("Method may be unreliable for selected Delta. " "Suggested minimal value of Delta: {}.").format( Deltamin)) self._Delta = Delta self._approxParameters["Delta"] = self.Delta @property def errorEstimatorKind(self): """Value of errorEstimatorKind.""" return self._errorEstimatorKind @errorEstimatorKind.setter def errorEstimatorKind(self, errorEstimatorKind): errorEstimatorKind = errorEstimatorKind.upper() if errorEstimatorKind not in self._allowedEstimatorKinds: RROMPyWarning(("Error estimator kind not recognized. Overriding " "to 'EXACT'.")) errorEstimatorKind = "EXACT" self._errorEstimatorKind = errorEstimatorKind self._approxParameters["errorEstimatorKind"] = self.errorEstimatorKind @property def nTestPoints(self): """Value of nTestPoints.""" return self._nTestPoints @nTestPoints.setter def nTestPoints(self, nTestPoints): if nTestPoints <= np.abs(self.Delta): RROMPyWarning(("nTestPoints must be at least abs(Delta) + 1. " "Increasing value to abs(Delta) + 1.")) nTestPoints = np.abs(self.Delta) + 1 if not np.isclose(nTestPoints, np.int(nTestPoints)): raise RROMPyException("nTestPoints must be an integer.") nTestPoints = np.int(nTestPoints) if hasattr(self, "_nTestPoints") and self.nTestPoints is not None: nTestPointsold = self.nTestPoints else: nTestPointsold = -1 self._nTestPoints = nTestPoints self._approxParameters["nTestPoints"] = self.nTestPoints if nTestPointsold != self.nTestPoints: self.resetSamples() def _errorSamplingRatio(self, mus:Np1D, muRTest:Np1D, muRTrain:Np1D) -> Np1D: """Scalar ratio in explicit error estimator.""" testTile = np.tile(np.reshape(muRTest, (-1, 1)), [1, len(muRTrain)]) nodalVals = np.prod(testTile - np.reshape(muRTrain, (1, -1)), axis = 1) denVals = self.trainedModel.getQVal(mus) return np.abs(nodalVals / denVals) def _RHSNorms(self, radiusb0:Np2D) -> Np1D: """High fidelity system RHS norms.""" # 'ij,jk,ik->k', resbb, radiusb0, radiusb0.conj() b0resb0 = np.sum(self.trainedModel.data.resbb.dot(radiusb0) * radiusb0.conj(), axis = 0) RHSnorms = np.power(np.abs(b0resb0), .5) return RHSnorms def _errorEstimatorBare(self) -> Np1D: """Bare residual-based error estimator.""" self.assembleReducedResidualGramian(self.trainedModel.data.projMat) pDom = self.trainedModel.data.P[:, -1] LL = pDom.conj().dot(self.trainedModel.data.gramian.dot(pDom)) Adiag = self.As[0].diagonal() - LL = ((self.scaleFactor * np.linalg.norm(Adiag)) ** 2. * LL + LL = ((self.scaleFactor[0] * np.linalg.norm(Adiag)) ** 2. * LL / np.size(Adiag)) - scalingDom = polydomcoeff[self.polybasis](len(self.mus) - 1) + scalingDom = polydomcoeff(len(self.mus) - 1, self.polybasis) return scalingDom * np.power(np.abs(LL), .5) def _errorEstimatorBasic(self, muTest:complex, ratioTest:complex) -> Np1D: """Basic residual-based error estimator.""" resmu = self.HFEngine.residual(self.trainedModel.getApprox(muTest), - muTest, self.homogeneized) + muTest, self.homogeneized)[0] return np.abs(self.estimatorNormEngine.norm(resmu) / ratioTest) def _errorEstimatorExact(self, muRTrain:Np1D, vanderBase:Np2D) -> Np1D: """Exact residual-based error estimator.""" nAs = self.HFEngine.nAs - 1 nbs = max(self.HFEngine.nbs - 1, nAs * self.homogeneized) delta = len(self.mus) - len(self.trainedModel.data.Q) nbsEff = max(0, nbs - delta) momentQ = np.zeros(nbsEff, dtype = np.complex) momentQu = np.zeros((len(self.mus), nAs), dtype = np.complex) radiusbTen = np.zeros((nbsEff, nbsEff, vanderBase.shape[1]), dtype = np.complex) radiusATen = np.zeros((nAs, nAs, vanderBase.shape[1]), dtype = np.complex) if nbsEff > 0: momentQ[0] = self.trainedModel.data.Q[-1] radiusbTen[0, :, :] = vanderBase[: nbsEff, :] momentQu[:, 0] = self.trainedModel.data.P[:, -1] radiusATen[0, :, :] = vanderBase[: nAs, :] Qvals = self.trainedModel.getQVal(self.mus) for k in range(1, max(nAs, nbs * (nbsEff > 0))): Qvals = Qvals * muRTrain if k > delta and k < nbs: momentQ[k - delta] = self._fitinv.dot(Qvals) radiusbTen[k - delta, k :, :] = ( radiusbTen[0, : delta - k, :]) if k < nAs: momentQu[:, k] = Qvals * self._fitinv radiusATen[k, k :, :] = radiusATen[0, : - k, :] if self.POD and nAs > 1: momentQu[:, 1 :] = self.samplingEngine.RPOD.dot( momentQu[:, 1 :]) radiusA = np.tensordot(momentQu, radiusATen, 1) if nbsEff > 0: radiusb = np.tensordot(momentQ, radiusbTen, 1) # 'ij,jk,ik->k', resbb, radiusb, radiusb.conj() ff = np.sum(self.trainedModel.data.resbb[delta + 1 :, delta + 1 :]\ .dot(radiusb) * radiusb.conj(), axis = 0) # 'ijk,jkl,il->l', resAb, radiusA, radiusb.conj() Lf = np.sum(np.tensordot( self.trainedModel.data.resAb[delta :, :, :], radiusA, 2) * radiusb.conj(), axis = 0) else: ff, Lf = 0., 0. # 'ijkl,klt,ijt->t', resAA, radiusA, radiusA.conj() LL = np.sum(np.tensordot(self.trainedModel.data.resAA, radiusA, 2) * radiusA.conj(), axis = (0, 1)) - scalingDom = polydomcoeff[self.polybasis](len(self.mus) - 1) + scalingDom = polydomcoeff(len(self.mus) - 1, self.polybasis) return scalingDom * np.power(np.abs(ff - 2. * np.real(Lf) + LL), .5) def errorEstimator(self, mus:Np1D) -> Np1D: """Standard residual-based error estimator.""" self.setupApprox() if (np.any(np.isnan(self.trainedModel.data.P[:, -1])) or np.any(np.isinf(self.trainedModel.data.P[:, -1]))): err = np.empty(len(mus)) err[:] = np.inf return err nAs = self.HFEngine.nAs - 1 nbs = max(self.HFEngine.nbs - 1, nAs * self.homogeneized) - muRTest = [x(0) for x in self.centerNormalize(mus)] - muRTrain = [x(0) for x in self.centerNormalize(self.mus)] + muRTest = self.centerNormalize(mus)(0) + muRTrain = self.centerNormalize(self.mus)(0) self.assembleReducedResidualBlocks(kind = self.errorEstimatorKind) samplingRatio = self._errorSamplingRatio(mus, muRTest, muRTrain) vanderBase = np.polynomial.polynomial.polyvander(muRTest, max(nAs, nbs)).T RHSnorms = self._RHSNorms(vanderBase[: nbs + 1, :]) if self.errorEstimatorKind == "BARE": jOpt = self._errorEstimatorBare() elif self.errorEstimatorKind == "BASIC": idx_muTestSample = np.argmax(samplingRatio) muTestSample = mus[idx_muTestSample] samplingRatioTestSample = samplingRatio[idx_muTestSample] jOpt = self._errorEstimatorBasic(muTestSample, samplingRatioTestSample) else: #if self.errorEstimatorKind == "EXACT": jOpt = self._errorEstimatorExact(muRTrain, vanderBase[: -1, :]) return jOpt * samplingRatio / RHSnorms - def _setupDenominator(self): - """Compute Pade' denominator.""" - if self.verbosity >= 7: - verbosityDepth("INIT", "Starting computation of denominator.", - timestamp = self.timestamp) - S = len(self.mus) - TS = polyvander[self.polybasis](self.centerNormalize(self.mus), - S - 1).T - RHS = np.zeros(S) - RHS[-1] = 1. - fitOut = customFit(TS, RHS, full = True, rcond = self.interpRcond) - if self.verbosity >= 2: - condfit = fitOut[1][2][0] / fitOut[1][2][-1] - verbosityDepth("MAIN", ("Fitting {} samples with degree {} " - "through {}... Conditioning of system: " - "{:.4e}.").format(S, S - 1, - polyfitname[self.polybasis], - condfit), - timestamp = self.timestamp) - if fitOut[1][1] < S: - RROMPyWarning(("Polyfit is poorly conditioned. Starting " - "preemptive termination of computation of " - "approximant.")) - Q = np.empty(max(self.N, 0) + 1, dtype = np.complex) - P = np.empty((len(self.mus), max(self.M, 0) + 1), - dtype = np.complex) - Q[:] = np.nan - P[:] = np.nan - self.trainedModel.data.Q = copy(Q) - self.trainedModel.data.P = copy(P) - self.trainedModel.data.approxParameters = copy( - self.approxParameters) - if self.verbosity >= 7: - verbosityDepth("DEL", "Aborting computation of denominator.", - timestamp = self.timestamp) - return - self._fitinv = fitOut[0] - while self.N > 0: - Ghalf = (TS[: self.N + 1, :] * self._fitinv).T - if self.POD: - self.Ghalf = self.samplingEngine.RPOD.dot(Ghalf) - ev, eV = self.findeveVGQR(2) - else: - self.Ghalf = self.samplingEngine.samples.dot(Ghalf) - ev, eV = self.findeveVGQR(2) - Nstable = np.sum(np.abs(ev) >= self.robustTol * np.linalg.norm(ev)) - if self.N <= Nstable: break - if self.verbosity >= 2: - verbosityDepth("MAIN", ("Smallest {} eigenvalues below " - "tolerance. Reducing N to {}.")\ - .format(self.N - Nstable + 1, Nstable), - timestamp = self.timestamp) - self._N = Nstable - if self.N <= 0: - self._N = 0 - eV = np.ones((1, 1)) - if self.verbosity >= 7: - verbosityDepth("DEL", "Done computing denominator.", - timestamp = self.timestamp) - return eV[:, 0] - - def _setupNumerator(self): - """Compute Pade' numerator.""" - if self.verbosity >= 7: - verbosityDepth("INIT", "Starting computation of numerator.", - timestamp = self.timestamp) - Qevaldiag = np.diag(self.trainedModel.getQVal(self.mus)) - verb = self.trainedModel.verbosity - self.trainedModel.verbosity = 0 - mus_un, idx_un, cnt_un = np.unique(self.mus, return_inverse = True, - return_counts = True) - for j in range(len(mus_un)): - if cnt_un[j] > 1: - Q_loc = np.zeros((cnt_un[j], cnt_un[j]), dtype = np.complex) - for der in range(1, cnt_un[j]): - Qderj = (self.trainedModel.getQVal(mus_un[j], der) - / fact(der)) - Q_loc = Q_loc + Qderj * np.diag(np.ones(cnt_un[j] - der), - k = - der) - I = idx_un == j - I = np.arange(len(self.mus))[I] - I = np.ix_(I, I) - Qevaldiag[I] = Qevaldiag[I] + Q_loc - self.trainedModel.verbosity = verb - while self.M >= 0: - fitVander = polyvander[self.polybasis]( - self.centerNormalize(self.mus), self.M) - w = None - S = len(self.mus) - if self.M == S - 1: w = "AUTO" - fitOut = customFit(fitVander, Qevaldiag, full = True, w = w, - rcond = self.interpRcond) - if self.verbosity >= 2: - condfit = fitOut[1][2][0] / fitOut[1][2][-1] - verbosityDepth("MAIN", ("Fitting {} samples with degree {} " - "through {}... Conditioning of " - "system: {:.4e}.").format( - S, self.M, - polyfitname[self.polybasis], - condfit), - timestamp = self.timestamp) - if fitOut[1][1] == self.M + 1: - P = fitOut[0].T - break - RROMPyWarning(("Polyfit is poorly conditioned. Reducing M from {} " - "to {}. Exact snapshot interpolation not " - "guaranteed.").format(self.M, fitOut[1][1] - 1)) - self._M = fitOut[1][1] - 1 - if self.M < 0: - raise RROMPyException(("Instability in computation of numerator. " - "Aborting.")) - return np.atleast_2d(P) - def setupApprox(self, plotEst : bool = False): """ Compute Pade' interpolant. SVD-based robust eigenvalue management. """ if self.checkComputedApprox(): return + RROMPyAssert(self._mode, message = "Cannot setup approximant.") if self.verbosity >= 5: verbosityDepth("INIT", "Setting up {}.". format(self.name()), timestamp = self.timestamp) self.computeScaleFactor() self.greedy(plotEst) - S = len(self.mus) - self._M = S - 1 - self._N = S - 1 + self._N = len(self.mus) - 1 + self._M = copy(self._N) + self.E = copy(self._N) if self.Delta < 0: self._M += self.Delta else: self._N -= self.Delta - if self.trainedModel is None: self.trainedModel = tModel() self.trainedModel.verbosity = self.verbosity self.trainedModel.timestamp = self.timestamp data = TrainedModelData(self.trainedModel.name(), self.mu0, self.samplingEngine.samples, self.HFEngine.rescalingExp) data.polytype = self.polybasis data.scaleFactor = self.scaleFactor data.mus = copy(self.mus) self.trainedModel.data = data else: + self.trainedModel = self.trainedModel self.trainedModel.data.projMat = copy(self.samplingEngine.samples) self.trainedModel.data.mus = copy(self.mus) if min(self.M, self.N) < 0: if self.verbosity >= 5: verbosityDepth("MAIN", "Minimal sample size not achieved.", timestamp = self.timestamp) Q = np.empty(max(self.N, 0) + 1, dtype = np.complex) P = np.empty((len(self.mus), max(self.M, 0) + 1), dtype = np.complex) Q[:] = np.nan P[:] = np.nan self.trainedModel.data.Q = copy(Q) self.trainedModel.data.P = copy(P) self.trainedModel.data.approxParameters = copy( self.approxParameters) if self.verbosity >= 5: verbosityDepth("DEL", "Aborting computation of approximant.", timestamp = self.timestamp) return if self.N > 0: Q = self._setupDenominator() - if Q is None: - if self.verbosity >= 5: - verbosityDepth("DEL", - "Aborting computation of approximant.", - timestamp = self.timestamp) - return else: - Q = np.ones((1,), dtype = np.complex) + Q = np.ones(1, dtype = np.complex) self.trainedModel.data.Q = copy(Q) P = self._setupNumerator() if self.POD: - P = self.samplingEngine.RPOD.dot(P) + P = np.tensordot(self.samplingEngine.RPOD, P, axes = ([-1], [0])) self.trainedModel.data.P = copy(P) - if self.verbosity >= 7: - verbosityDepth("DEL", "Done computing numerator.", - timestamp = self.timestamp) self.trainedModel.data.approxParameters = copy(self.approxParameters) if self.verbosity >= 5: verbosityDepth("DEL", "Done setting up approximant.", timestamp = self.timestamp) def assembleReducedResidualBlocks(self, kind : str = "EXACT"): """Build affine blocks of reduced linear system through projections.""" - scaling = self.trainedModel.data.scaleFactor + scaling = self.trainedModel.data.scaleFactor[0] self.assembleReducedResidualBlocksbb(self.bs, scaling) if kind == "EXACT": pMat = self.trainedModel.data.projMat self.assembleReducedResidualBlocksAb(self.As, self.bs[1 :], pMat, scaling) self.assembleReducedResidualBlocksAA(self.As, pMat, scaling, basic = (kind == "BASIC")) diff --git a/rrompy/reduction_methods/distributed_greedy/rb_distributed_greedy.py b/rrompy/reduction_methods/distributed_greedy/rb_distributed_greedy.py index 7a0f52a..ab9d918 100644 --- a/rrompy/reduction_methods/distributed_greedy/rb_distributed_greedy.py +++ b/rrompy/reduction_methods/distributed_greedy/rb_distributed_greedy.py @@ -1,252 +1,262 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from copy import deepcopy as copy from .generic_distributed_greedy_approximant import \ GenericDistributedGreedyApproximant from rrompy.reduction_methods.distributed import RBDistributed from rrompy.reduction_methods.trained_model import TrainedModelRB as tModel from rrompy.reduction_methods.trained_model import TrainedModelData -from rrompy.utilities.base.types import Np1D, DictAny, HFEng +from rrompy.utilities.base.types import Np1D, DictAny, HFEng, paramVal from rrompy.utilities.base import verbosityDepth -from rrompy.utilities.exception_manager import RROMPyException -from rrompy.parameter import parameter, checkParameterList +from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert +from rrompy.parameter import checkParameterList __all__ = ['RBDistributedGreedy'] class RBDistributedGreedy(GenericDistributedGreedyApproximant, RBDistributed): """ ROM greedy RB approximant computation for parametric problems. Args: HFEngine: HF problem solver. mu0(optional): Default parameter. Defaults to 0. approxParameters(optional): Dictionary containing values for main parameters of approximant. Recognized keys are: - 'POD': whether to compute POD of snapshots; defaults to True; - 'muBounds': list of bounds for parameter values; defaults to [0, 1]; - - 'S': number of starting training points; defaults to 2; + - 'S': number of starting training points; - 'sampler': sample point generator; defaults to uniform sampler on muBounds; - 'greedyTol': uniform error tolerance for greedy algorithm; defaults to 1e-2; - 'maxIter': maximum number of greedy steps; defaults to 1e2; - 'refinementRatio': ratio of training points to be exhausted before training set refinement; defaults to 0.2; - 'nTestPoints': number of test points; defaults to maxIter / refinementRatio; - 'trainSetGenerator': training sample points generator; defaults to Chebyshev sampler within muBounds. Defaults to empty dict. homogeneized(optional): Whether to homogeneize Dirichlet BCs. Defaults to False. verbosity(optional): Verbosity level. Defaults to 10. Attributes: HFEngine: HF problem solver. mu0: Default parameter. mus: Array of snapshot parameters. homogeneized: Whether to homogeneize Dirichlet BCs. approxParameters: Dictionary containing values for main parameters of approximant. Recognized keys are in parameterList. parameterList: Recognized keys of approximant parameters: - 'POD': whether to compute POD of snapshots; - 'muBounds': list of bounds for parameter values; - 'S': number of starting training points; - 'sampler': sample point generator; - 'greedyTol': uniform error tolerance for greedy algorithm; - 'maxIter': maximum number of greedy steps; - 'refinementRatio': ratio of training points to be exhausted before training set refinement; - 'nTestPoints': number of test points; - 'trainSetGenerator': training sample points generator. extraApproxParameters: List of approxParameters keys in addition to mother class's. POD: whether to compute POD of snapshots. muBounds: list of bounds for parameter values. S: number of test points. sampler: Sample point generator. greedyTol: uniform error tolerance for greedy algorithm. maxIter: maximum number of greedy steps. refinementRatio: ratio of training points to be exhausted before training set refinement. nTestPoints: number of starting training points. trainSetGenerator: training sample points generator. samplingEngine: Sampling engine. estimatorNormEngine: Engine for estimator norm computation. - uHF: High fidelity solution with wavenumber lastSolvedHF as numpy - complex vector. - lastSolvedHF: Wavenumber corresponding to last computed high fidelity - solution. - uApp: Last evaluated approximant as numpy complex vector. + uHF: High fidelity solution(s) with parameter(s) lastSolvedHF as + sampleList. + lastSolvedHF: Parameter(s) corresponding to last computed high fidelity + solution(s) as parameterList. + uAppReduced: Reduced approximate solution(s) with parameter(s) + lastSolvedApp as sampleList. + lastSolvedAppReduced: Parameter(s) corresponding to last computed + reduced approximate solution(s) as parameterList. + uApp: Approximate solution(s) with parameter(s) lastSolvedApp as + sampleList. + lastSolvedApp: Parameter(s) corresponding to last computed approximate + solution(s) as parameterList. As: List of sparse matrices (in CSC format) representing coefficients of linear system matrix wrt theta(mu). bs: List of numpy vectors representing coefficients of linear system RHS wrt theta(mu). thetaAs: List of callables representing coefficients of linear system matrix wrt mu. thetabs: List of callables representing coefficients of linear system RHS wrt mu. ARBs: List of sparse matrices (in CSC format) representing coefficients of compressed linear system matrix wrt theta(mu). bRBs: List of numpy vectors representing coefficients of compressed linear system RHS wrt theta(mu). """ - def __init__(self, HFEngine:HFEng, mu0 : complex = 0., + def __init__(self, HFEngine:HFEng, mu0 : paramVal = None, approxParameters : DictAny = {}, homogeneized : bool = False, verbosity : int = 10, timestamp : bool = True): self._preInit() super().__init__(HFEngine = HFEngine, mu0 = mu0, approxParameters = approxParameters, homogeneized = homogeneized, verbosity = verbosity, timestamp = timestamp) if self.verbosity >= 10: verbosityDepth("INIT", "Computing affine blocks of system.", timestamp = self.timestamp) self.As = self.HFEngine.affineLinearSystemA(self.mu0) self.bs = self.HFEngine.affineLinearSystemb(self.mu0, self.homogeneized) if self.verbosity >= 10: verbosityDepth("DEL", "Done computing affine blocks.", timestamp = self.timestamp) self._postInit() @property def R(self): """Value of R.""" return self._S @R.setter def R(self, R): raise RROMPyException(("R is used just to simplify inheritance, and " "its value cannot be changed from that of S.")) def errorEstimator(self, mus:Np1D) -> Np1D: """ Standard residual-based error estimator. Unreliable for unstable problems (inf-sup constant is missing). """ self.setupApprox() self.assembleReducedResidualBlocks() nmus = len(mus) nAs = self.trainedModel.data.resAA.shape[1] nbs = self.trainedModel.data.resbb.shape[0] thetaAs = self.trainedModel.data.thetaAs thetabs = self.trainedModel.data.thetabs radiusA = np.empty((len(self.mus), nAs, nmus), dtype = np.complex) radiusb = np.empty((nbs, nmus), dtype = np.complex) verb = self.trainedModel.verbosity self.trainedModel.verbosity = 0 if verb >= 5: mustr = mus if nmus > 2: mustr = "[{} ..({}).. {}]".format(mus[0], nmus - 2, mus[-1]) verbosityDepth("INIT", ("Computing RB solution at mu = " "{}.").format(mustr), timestamp = self.timestamp) - parmus, _ = checkParameterList(mus) + parmus, _ = checkParameterList(mus, self.npar) uApps = self.getApproxReduced(parmus) - for j, mu in enumerate(parmus): + for j, muPL in enumerate(parmus): + mu = muPL[0] uApp = uApps[j] for i in range(nAs): radiusA[:, i, j] = eval(thetaAs[i]) * uApp for i in range(nbs): radiusb[i, j] = eval(thetabs[i]) if verb >= 5: verbosityDepth("DEL", "Done computing RB solution.", timestamp = self.timestamp) self.trainedModel.verbosity = verb # 'ij,jk,ik->k', resbb, radiusb, radiusb.conj() ff = np.sum(self.trainedModel.data.resbb.dot(radiusb) * radiusb.conj(), axis = 0) # 'ijk,jkl,il->l', resAb, radiusA, radiusb.conj() Lf = np.sum(np.tensordot(self.trainedModel.data.resAb, radiusA, 2) * radiusb.conj(), axis = 0) # 'ijkl,klt,ijt->t', resAA, radiusA, radiusA.conj() LL = np.sum(np.tensordot(self.trainedModel.data.resAA, radiusA, 2) * radiusA.conj(), axis = (0, 1)) return np.abs((LL - 2. * np.real(Lf) + ff) / ff) ** .5 def setupApprox(self, plotEst : bool = False): """Compute RB projection matrix.""" if self.checkComputedApprox(): return + RROMPyAssert(self._mode, message = "Cannot setup approximant.") if self.verbosity >= 5: verbosityDepth("INIT", "Setting up {}.". format(self.name()), timestamp = self.timestamp) self.greedy(plotEst) if self.verbosity >= 7: verbosityDepth("INIT", "Computing projection matrix.", timestamp = self.timestamp) pMat = self.samplingEngine.samples if self.trainedModel is None: self.trainedModel = tModel() self.trainedModel.verbosity = self.verbosity self.trainedModel.timestamp = self.timestamp data = TrainedModelData(self.trainedModel.name(), self.mu0, pMat, self.HFEngine.rescalingExp) data.thetaAs = self.HFEngine.affineWeightsA(self.mu0) data.thetabs = self.HFEngine.affineWeightsb(self.mu0, self.homogeneized) data.ARBs, data.bRBs = self.assembleReducedSystem(pMat) data.mus = copy(self.mus) self.trainedModel.data = data else: + self.trainedModel = self.trainedModel pMatOld = self.trainedModel.data.projMat Sold = pMatOld.shape[1] idxNew = list(range(Sold, pMat.shape[1])) ARBs, bRBs = self.assembleReducedSystem(pMat(idxNew), pMatOld) self.trainedModel.data.ARBs = ARBs self.trainedModel.data.bRBs = bRBs self.trainedModel.data.projMat = copy(pMat) self.trainedModel.data.mus = copy(self.mus) if self.verbosity >= 7: verbosityDepth("DEL", "Done computing projection matrix.", timestamp = self.timestamp) self.trainedModel.data.approxParameters = copy(self.approxParameters) if self.verbosity >= 5: verbosityDepth("DEL", "Done setting up approximant.", timestamp = self.timestamp) def assembleReducedResidualBlocks(self): """Build affine blocks of RB linear system through projections.""" computeResbb = not hasattr(self.trainedModel.data, "resbb") computeResAb = (not hasattr(self.trainedModel.data, "resAb") or self.trainedModel.data.resAb.shape[1] != len(self.mus)) computeResAA = (not hasattr(self.trainedModel.data, "resAA") or self.trainedModel.data.resAA.shape[0] != len(self.mus)) if computeResbb or computeResAb or computeResAA: if self.verbosity >= 7: verbosityDepth("INIT", "Projecting affine terms of residual.", timestamp = self.timestamp) if computeResAb or computeResAA: pMat = self.trainedModel.data.projMat if computeResbb: self.assembleReducedResidualBlocksbb(self.bs) if computeResAb: self.assembleReducedResidualBlocksAb(self.As, self.bs, pMat) if computeResAA: self.assembleReducedResidualBlocksAA(self.As, pMat) if self.verbosity >= 7: verbosityDepth("DEL", ("Done setting up affine decomposition " "of residual."), timestamp = self.timestamp) diff --git a/rrompy/reduction_methods/trained_model/trained_model.py b/rrompy/reduction_methods/trained_model/trained_model.py index 6d38a39..eb310e9 100644 --- a/rrompy/reduction_methods/trained_model/trained_model.py +++ b/rrompy/reduction_methods/trained_model/trained_model.py @@ -1,88 +1,87 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from abc import abstractmethod from rrompy.utilities.base.types import Np1D, paramList, sampList from rrompy.parameter import checkParameterList from rrompy.sampling import sampleList, emptySampleList __all__ = ['TrainedModel'] class TrainedModel: """ ABSTRACT ROM approximant evaluation. Attributes: Data: dictionary with all that can be pickled. """ def name(self) -> str: return self.__class__.__name__ def __str__(self) -> str: return self.name() def __repr__(self) -> str: return self.__str__() + " at " + hex(id(self)) @abstractmethod - def getApproxReduced(self, mu:paramList) -> sampList: + def getApproxReduced(self, mu : paramList = []) -> sampList: """ Evaluate reduced representation of approximant at arbitrary parameter. (ABSTRACT) Args: mu: Target parameter. """ pass - def getApprox(self, mu:paramList) -> sampList: + def getApprox(self, mu : paramList = []) -> sampList: """ Evaluate approximant at arbitrary parameter. Args: mu: Target parameter. """ - mu, wasPar = checkParameterList(mu, self.data.npar) + mu, _ = checkParameterList(mu, self.data.npar) if not hasattr(self, "lastSolvedApp") or self.lastSolvedApp != mu: uAppRed = self.getApproxReduced(mu) self.uApp = emptySampleList() self.uApp.reset((self.data.projMat.shape[0], len(mu)), self.data.projMat.dtype) for i in range(len(mu)): if isinstance(self.data.projMat, (list, sampleList,)): self.uApp[i] = uAppRed[i][0] * self.data.projMat[0] for j in range(1, uAppRed.shape[0]): self.uApp[i] += uAppRed[i][j] * self.data.projMat[j] else: self.uApp[i] = self.data.projMat.dot(uAppRed[i]) self.lastSolvedApp = mu - if wasPar: return self.uApp[0] return self.uApp @abstractmethod def getPoles(self) -> Np1D: """ Obtain approximant poles. Returns: Numpy complex vector of poles. """ pass diff --git a/rrompy/reduction_methods/trained_model/trained_model_data.py b/rrompy/reduction_methods/trained_model/trained_model_data.py index 1806897..63620a7 100644 --- a/rrompy/reduction_methods/trained_model/trained_model_data.py +++ b/rrompy/reduction_methods/trained_model/trained_model_data.py @@ -1,32 +1,35 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from copy import deepcopy as copy -from rrompy.utilities.base.types import Np2D, paramVal +from rrompy.utilities.base.types import Np2D, List, paramVal +from rrompy.utilities.exception_manager import RROMPyAssert __all__ = ['TrainedModelData'] class TrainedModelData: """ROM approximant evaluation data (must be pickle-able).""" def __init__(self, name:str, mu0:paramVal, projMat:Np2D, - rescalingExp : float = 1., npar : int = 1): + rescalingExp : List[float] = [1.]): + self.npar = len(rescalingExp) + RROMPyAssert(mu0.shape[1], self.npar, "Number of parameters") self.name = name self.mu0 = mu0 self.projMat = copy(projMat) self.rescalingExp = rescalingExp - self.npar = npar + diff --git a/rrompy/reduction_methods/trained_model/trained_model_pade.py b/rrompy/reduction_methods/trained_model/trained_model_pade.py index 71a8738..cff94fd 100644 --- a/rrompy/reduction_methods/trained_model/trained_model_pade.py +++ b/rrompy/reduction_methods/trained_model/trained_model_pade.py @@ -1,150 +1,145 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from . import TrainedModel -from rrompy.utilities.base.types import Np1D, paramList, sampList +from rrompy.utilities.base.types import (Np1D, List, paramVal, paramList, + sampList) from rrompy.utilities.base import verbosityDepth -from rrompy.utilities.poly_fitting import polyvalder, polyroots +from rrompy.utilities.poly_fitting.polynomial import polyval, polyroots from rrompy.utilities.exception_manager import RROMPyAssert from rrompy.parameter import checkParameterList from rrompy.sampling import sampleList __all__ = ['TrainedModelPade'] class TrainedModelPade(TrainedModel): """ ROM approximant evaluation for Pade' approximant. Attributes: Data: dictionary with all that can be pickled. """ - def centerNormalize(self, mu:paramList, mu0 : float = None) -> float: + def centerNormalize(self, mu : paramList = [], + mu0 : paramVal = None) -> paramList: """ Compute normalized parameter to be plugged into approximant. Args: mu: Parameter(s) 1. mu0: Parameter(s) 2. If None, set to self.data.mu0. Returns: Normalized parameter. """ - mu, wasPar = checkParameterList(mu, self.data.npar) + mu, _ = checkParameterList(mu, self.data.npar) if mu0 is None: mu0 = self.data.mu0 rad = ((mu ** self.data.rescalingExp - mu0 ** self.data.rescalingExp) / self.data.scaleFactor) - if wasPar: rad = rad[0] return rad - def getPVal(self, mu:paramList, der : int = 0) -> sampList: + def getPVal(self, mu : paramList = [], der : List[int] = None) -> sampList: """ Evaluate Pade' numerator at arbitrary parameter. Args: mu: Target parameter. der(optional): Derivatives to take before evaluation. """ - mu, wasPar = checkParameterList(mu, self.data.npar) + mu, _ = checkParameterList(mu, self.data.npar) if self.verbosity >= 10: verbosityDepth("INIT", ("Evaluating numerator at mu = " "{}.").format(mu), timestamp = self.timestamp) muCenter = self.centerNormalize(mu) - p = sampleList([polyvalder[self.data.polytype](mC, self.data.P.T, der) - for mC in muCenter]) + p = sampleList(polyval(muCenter, self.data.P.T, + self.data.polytype, der)) if self.verbosity >= 10: verbosityDepth("DEL", "Done evaluating numerator.", timestamp = self.timestamp) - if wasPar: p = p[0] return p - def getQVal(self, mu:Np1D, der : int = 0, scl : float = 1.) -> Np1D: + def getQVal(self, mu:Np1D, der : List[int] = None, + scl : Np1D = None) -> Np1D: """ Evaluate Pade' denominator at arbitrary parameter. Args: mu: Target parameter. der(optional): Derivatives to take before evaluation. """ - mu, wasPar = checkParameterList(mu, self.data.npar) + mu, _ = checkParameterList(mu, self.data.npar) if self.verbosity >= 10: verbosityDepth("INIT", ("Evaluating denominator at mu = " "{}.").format(mu), timestamp = self.timestamp) muCenter = self.centerNormalize(mu) - q = np.array([polyvalder[self.data.polytype](mC, self.data.Q, der, scl) - for mC in muCenter]) + q = polyval(muCenter, self.data.Q, self.data.polytype, der, scl) if self.verbosity >= 10: verbosityDepth("DEL", "Done evaluating denominator.", timestamp = self.timestamp) - if wasPar: q = q[0] return q - def getApproxReduced(self, mu:paramList) -> sampList: + def getApproxReduced(self, mu : paramList = []) -> sampList: """ Evaluate reduced representation of approximant at arbitrary parameter. Args: mu: Target parameter. """ - mu, wasPar = checkParameterList(mu, self.data.npar) + mu, _ = checkParameterList(mu, self.data.npar) if (not hasattr(self, "lastSolvedAppReduced") or self.lastSolvedAppReduced != mu): if self.verbosity >= 5: verbosityDepth("INIT", ("Evaluating approximant at mu = " "{}.").format(mu), timestamp = self.timestamp) self.uAppReduced = self.getPVal(mu) / self.getQVal(mu) if self.verbosity >= 5: verbosityDepth("DEL", "Done evaluating approximant.", timestamp = self.timestamp) self.lastSolvedAppReduced = mu - if wasPar: return self.uAppReduced[0] return self.uAppReduced def getPoles(self) -> Np1D: """ Obtain approximant poles. Returns: Numpy complex vector of poles. """ RROMPyAssert(self.data.npar, 1, "Number of parameters") - return np.power(self.data.mu0(0) ** self.data.rescalingExp + return np.power(self.data.mu0(0) ** self.data.rescalingExp[0] + self.data.scaleFactor - * polyroots[self.data.polytype](self.data.Q), - 1. / self.data.rescalingExp) + * polyroots(self.data.Q, self.data.polytype), + 1. / self.data.rescalingExp[0]) def getResidues(self) -> Np1D: """ Obtain approximant residues. Returns: Numpy matrix with residues as columns. """ - RROMPyAssert(self.data.npar, 1, "Number of parameters") pls = self.getPoles() - poles, _ = checkParameterList(pls) - print(self.data.projMat.dot(self.getPVal(poles).data).shape) - print(self.getQVal(poles, 1).shape) + poles, _ = checkParameterList(pls, 1) res = (self.data.projMat.dot(self.getPVal(poles).data) / self.getQVal(poles, 1)) return pls, res diff --git a/rrompy/reduction_methods/trained_model/trained_model_rb.py b/rrompy/reduction_methods/trained_model/trained_model_rb.py index a9761d4..ce630fe 100644 --- a/rrompy/reduction_methods/trained_model/trained_model_rb.py +++ b/rrompy/reduction_methods/trained_model/trained_model_rb.py @@ -1,113 +1,113 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from scipy.linalg import eigvals from .trained_model import TrainedModel from rrompy.utilities.base.types import Np1D, paramList, sampList from rrompy.utilities.base import verbosityDepth from rrompy.utilities.exception_manager import RROMPyWarning, RROMPyAssert from rrompy.parameter import checkParameterList from rrompy.sampling import emptySampleList __all__ = ['TrainedModelRB'] class TrainedModelRB(TrainedModel): """ ROM approximant evaluation for RB approximant. Attributes: Data: dictionary with all that can be pickled. """ - def getApproxReduced(self, mu:paramList) -> sampList: + def getApproxReduced(self, mu : paramList = []) -> sampList: """ Evaluate reduced representation of approximant at arbitrary parameter. Args: mu: Target parameter. """ - mus, wasPar = checkParameterList(mu, self.data.npar) + mus, _ = checkParameterList(mu, self.data.npar) if (not hasattr(self, "lastSolvedAppReduced") or self.lastSolvedAppReduced != mus): if self.verbosity >= 5: verbosityDepth("INIT", ("Computing RB solution at mu = " "{}.").format(mus), timestamp = self.timestamp) thetaAs, thetabs = self.data.thetaAs, self.data.thetabs ARBs, bRBs = self.data.ARBs, self.data.bRBs self.uAppReduced = emptySampleList() self.uAppReduced.reset((ARBs[0].shape[0], len(mu)), self.data.projMat.dtype) - for i, mu in enumerate(mus): + for i, muPL in enumerate(mus): + mu = muPL[0] if self.verbosity >= 10: verbosityDepth("INIT", ("Assembling reduced model for mu " "= {}.").format(mu), timestamp = self.timestamp) ARBmu = eval(thetaAs[0]) * ARBs[0] bRBmu = eval(thetabs[0]) * bRBs[0] for j in range(1, len(ARBs)): ARBmu += eval(thetaAs[j]) * ARBs[j] for j in range(1, len(bRBs)): bRBmu += eval(thetabs[j]) * bRBs[j] if self.verbosity >= 10: verbosityDepth("DEL", "Done assembling reduced model.", timestamp = self.timestamp) if self.verbosity >= 5: verbosityDepth("INIT", ("Solving reduced model for mu = " "{}.").format(mu), timestamp = self.timestamp) self.uAppReduced[i] = np.linalg.solve(ARBmu, bRBmu) if self.verbosity >= 5: verbosityDepth("DEL", "Done solving reduced model.", timestamp = self.timestamp) if self.verbosity >= 5: verbosityDepth("DEL", "Done computing RB solution.", timestamp = self.timestamp) self.lastSolvedAppReduced = mus - if wasPar: return self.uAppReduced[0] return self.uAppReduced def getPoles(self) -> Np1D: """ Obtain approximant poles. Returns: Numpy complex vector of poles. """ RROMPyAssert(self.data.npar, 1, "Number of parameters") RROMPyWarning(("Impossible to compute poles in general affine " "parameter dependence. Results subject to " "interpretation/rescaling, or possibly completely " "wrong.")) ARBs = self.data.ARBs R = ARBs[0].shape[0] if len(ARBs) < 2: return A = np.eye(R * (len(ARBs) - 1), dtype = np.complex) B = np.zeros_like(A) A[: R, : R] = - ARBs[0] for j in range(len(ARBs) - 1): Aj = ARBs[j + 1] B[: R, j * R : (j + 1) * R] = Aj II = np.arange(R, R * (len(ARBs) - 1)) B[II, II - R] = 1. return np.power(eigvals(A, B) - + self.data.mu0(0) ** self.data.rescalingExp, - 1. / self.data.rescalingExp) + + self.data.mu0(0, 0) ** self.data.rescalingExp[0], + 1. / self.data.rescalingExp[0]) diff --git a/rrompy/sampling/base/pod_engine.py b/rrompy/sampling/base/pod_engine.py index 6e07812..a81aed1 100644 --- a/rrompy/sampling/base/pod_engine.py +++ b/rrompy/sampling/base/pod_engine.py @@ -1,149 +1,149 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from copy import deepcopy as copy from rrompy.utilities.base.types import Np1D, Tuple, HFEng, sampList from rrompy.sampling import sampleList from rrompy.utilities.exception_manager import RROMPyException __all__ = ['PODEngine'] class PODEngine: """ POD engine for general matrix orthogonalization. """ def __init__(self, HFEngine:HFEng): self.HFEngine = HFEngine def name(self) -> str: return self.__class__.__name__ def __str__(self) -> str: return self.name() def __repr__(self) -> str: return self.__str__() + " at " + hex(id(self)) def GS(self, a:Np1D, Q:sampList, n : int = None, aA:Np1D = None, QA:sampList = None) -> Tuple[Np1D, Np1D, Np1D]: """ Compute 1 Gram-Schmidt step with given projector. Args: a: vector to be projected; Q: orthogonal projection matrix; n: number of columns of Q to be considered; aA: augmented components of vector to be projected; QA: augmented components of projection matrix. Returns: Resulting normalized vector, coefficients of a wrt the updated basis. """ if n is None: n = Q.shape[1] if aA is None != QA is None: raise RROMPyException(("Either both or none of augmented " "components must be provided.")) r = np.zeros((n + 1,), dtype = a.dtype) if n > 0: Q = Q[: n] for j in range(2): # twice is enough! nu = self.HFEngine.innerProduct(a, Q) a = a - Q.dot(nu) if aA is not None: aA = aA - QA.dot(nu) - r[:-1] = r[:-1] + nu + r[:-1] = r[:-1] + nu.flatten() r[-1] = self.HFEngine.norm(a) if np.isclose(np.abs(r[-1]), 0.): r[-1] = 1. a = a / r[-1] if aA is not None: aA = aA / r[-1] return a, r, aA def QRGramSchmidt(self, A:sampList, only_R : bool = False) -> Tuple[sampList, Np1D]: """ Compute QR decomposition of a matrix through Gram-Schmidt method. Args: A: matrix to be decomposed; only_R(optional): whether to skip reconstruction of Q; defaults to False. Returns: Resulting orthogonal and upper-triangular factors. """ N = A.shape[1] Q = copy(A) R = np.zeros((N, N), dtype = A.dtype) for k in range(N): Q[k], R[: k + 1, k], _ = self.GS(A[k], Q, k) if only_R: return R return Q, R def QRHouseholder(self, A:sampList, Q0 : sampList = None, only_R : bool = False) -> Tuple[sampList, Np1D]: """ Compute QR decomposition of a matrix through Householder method. Args: A: matrix to be decomposed; Q0(optional): initial orthogonal guess for Q; defaults to random; only_R(optional): whether to skip reconstruction of Q; defaults to False. Returns: Resulting (orthogonal and )upper-triangular factor(s). """ N = A.shape[1] B = copy(A) V = copy(A) R = np.zeros((N, N), dtype = A.dtype) if Q0 is None: Q = sampleList(np.zeros(A.shape, dtype = A.dtype) + np.random.randn(*(A.shape))) else: Q = copy(Q0) for k in range(N): if Q0 is None: Q[k], _, _ = self.GS(Q[k], Q, k) a = B[k] R[k, k] = self.HFEngine.norm(a) alpha = self.HFEngine.innerProduct(a, Q[k]) if np.isclose(np.abs(alpha), 0.): s = 1. else: s = - alpha / np.abs(alpha) Q[k] = s * Q[k] V[k], _, _ = self.GS(R[k, k] * Q[k] - a, Q, k) J = np.arange(k + 1, N) vtB = self.HFEngine.innerProduct(B[J], V[k]) B[J] = B[J] - 2 * np.outer(V[k], vtB) R[k, J] = self.HFEngine.innerProduct(B[J], Q[k]) B[J] = B[J] - np.outer(Q[k], R[k, J]) if only_R: return R for k in range(N - 1, -1, -1): J = np.arange(k, N) vtQ = self.HFEngine.innerProduct(Q[J], V[k]) Q[J] = Q[J] - 2 * np.outer(V[k], vtQ) return Q, R diff --git a/rrompy/sampling/base/sampling_engine_base.py b/rrompy/sampling/base/sampling_engine_base.py index a3e9a68..a18fcac 100644 --- a/rrompy/sampling/base/sampling_engine_base.py +++ b/rrompy/sampling/base/sampling_engine_base.py @@ -1,192 +1,194 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from rrompy.utilities.base.types import (Np1D, HFEng, strLst, paramVal, paramList, sampList) from rrompy.utilities.base import verbosityDepth from rrompy.utilities.exception_manager import RROMPyWarning -from rrompy.parameter import emptyParameterList, checkParameterList +from rrompy.parameter import (emptyParameterList, checkParameter, + checkParameterList) from rrompy.sampling import emptySampleList __all__ = ['SamplingEngineBase'] class SamplingEngineBase: """HERE""" def __init__(self, HFEngine:HFEng, verbosity : int = 10, timestamp : bool = True): self.verbosity = verbosity self.timestamp = timestamp if self.verbosity >= 10: verbosityDepth("INIT", "Initializing sampling engine of type {}.".format( self.name()), timestamp = self.timestamp) self.HFEngine = HFEngine if self.verbosity >= 10: verbosityDepth("DEL", "Done initializing sampling engine.", timestamp = self.timestamp) def name(self) -> str: return self.__class__.__name__ def __str__(self) -> str: return self.name() def __repr__(self) -> str: return self.__str__() + " at " + hex(id(self)) def resetHistory(self): self.samples = emptySampleList() self.nsamples = 0 self.mus = emptyParameterList() + self._derIdxs = [] def popSample(self): if hasattr(self, "nsamples") and self.nsamples > 1: if self.samples.shape[1] > self.nsamples: RROMPyWarning(("More than 'nsamples' memory allocated for " "samples. Popping empty sample column.")) self.nsamples += 1 self.nsamples -= 1 self.samples.pop() self.mus.pop() else: self.resetHistory() - def preallocateSamples(self, u:Np1D, mu:paramVal, n:int): - self.samples.reset((u.size, n), u.dtype) + def preallocateSamples(self, u:sampList, mu:paramVal, n:int): + self.samples.reset((u.shape[0], n), u.dtype) self.samples[0] = u - self.mus.reset(n) - self.mus[0] = mu - + mu = checkParameter(mu, self.HFEngine.npar) + self.mus.reset((n, self.HFEngine.npar)) + self.mus[0] = mu[0] + @property def HFEngine(self): """Value of HFEngine. Its assignment resets history.""" return self._HFEngine @HFEngine.setter def HFEngine(self, HFEngine): self._HFEngine = HFEngine self.resetHistory() - def solveLS(self, mu:paramList, RHS : sampList = None, + def solveLS(self, mu : paramList = [], RHS : sampList = None, homogeneized : bool = False) -> sampList: """ Solve linear system. Args: mu: Parameter value. Returns: Solution of system. """ - mu, wasPar = checkParameterList(mu) + mu, _ = checkParameterList(mu, self.HFEngine.npar) if self.verbosity >= 5: verbosityDepth("INIT", "Solving HF model for mu = {}.".format(mu), timestamp = self.timestamp) u = self.HFEngine.solve(mu, RHS, homogeneized) if self.verbosity >= 5: verbosityDepth("DEL", "Done solving HF model.", timestamp = self.timestamp) - if wasPar: u = u[0] return u def plotSamples(self, name : str = "u", save : str = None, what : strLst = 'all', saveFormat : str = "eps", saveDPI : int = 100, show : bool = True, **figspecs): """ Do some nice plots of the samples. Args: name(optional): Name to be shown as title of the plots. Defaults to 'u'. save(optional): Where to save plot(s). Defaults to None, i.e. no saving. what(optional): Which plots to do. If list, can contain 'ABS', 'PHASE', 'REAL', 'IMAG'. If str, same plus wildcard 'ALL'. Defaults to 'ALL'. saveFormat(optional): Format for saved plot(s). Defaults to "eps". saveDPI(optional): DPI for saved plot(s). Defaults to 100. show(optional): Whether to show figure. Defaults to True. figspecs(optional key args): Optional arguments for matplotlib figure creation. """ for j in range(self.nsamples): self.HFEngine.plot(self.samples[j], name = "{}_{}".format(name, j), save = save, what = what, saveFormat = saveFormat, saveDPI = saveDPI, show = show, **figspecs) def outParaviewSamples(self, name : str = "u", folders : bool = True, filename : str = "out", times : Np1D = None, what : strLst = 'all', forceNewFile : bool = True, filePW = None): """ Output samples to ParaView file. Args: name(optional): Base name to be used for data output. folders(optional): Whether to split output in folders. filename(optional): Name of output file. times(optional): Timestamps. what(optional): Which plots to do. If list, can contain 'MESH', 'ABS', 'PHASE', 'REAL', 'IMAG'. If str, same plus wildcard 'ALL'. Defaults to 'ALL'. forceNewFile(optional): Whether to create new output file. filePW(optional): Fenics File entity (for time series). """ if times is None: times = [0.] * self.nsamples for j in range(self.nsamples): self.HFEngine.outParaview(self.samples[j], name = "{}_{}".format(name, j), filename = "{}_{}".format(filename, j), time = times[j], what = what, forceNewFile = forceNewFile, folder = folders, filePW = filePW) def outParaviewTimeDomainSamples(self, omegas : Np1D = None, timeFinal : Np1D = None, periodResolution : int = 20, name : str = "u", folders : bool = True, filename : str = "out", forceNewFile : bool = True): """ Output samples to ParaView file, converted to time domain. Args: omegas(optional): frequencies. timeFinal(optional): final time of simulation. periodResolution(optional): number of time steps per period. name(optional): Base name to be used for data output. folders(optional): Whether to split output in folders. filename(optional): Name of output file. forceNewFile(optional): Whether to create new output file. """ if omegas is None: omegas = np.real(self.mus) if not isinstance(timeFinal, (list, tuple,)): timeFinal = [timeFinal] * self.nsamples for j in range(self.nsamples): self.HFEngine.outParaviewTimeDomain(self.samples[j], omega = omegas[j], timeFinal = timeFinal[j], periodResolution = periodResolution, name = "{}_{}".format(name, j), filename = "{}_{}".format(filename, j), forceNewFile = forceNewFile, folder = folders) diff --git a/rrompy/sampling/linear_problem/sampling_engine_linear.py b/rrompy/sampling/linear_problem/sampling_engine_linear.py index d6bb3c5..f0ac79c 100644 --- a/rrompy/sampling/linear_problem/sampling_engine_linear.py +++ b/rrompy/sampling/linear_problem/sampling_engine_linear.py @@ -1,97 +1,105 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from rrompy.sampling.base.sampling_engine_base import SamplingEngineBase from rrompy.utilities.base.types import Np1D, paramVal, paramList, sampList from rrompy.utilities.base import verbosityDepth from rrompy.utilities.exception_manager import RROMPyException +from rrompy.utilities.poly_fitting.polynomial import nextDerivativeIndices from rrompy.parameter import checkParameter, checkParameterList from rrompy.sampling import sampleList __all__ = ['SamplingEngineLinear'] class SamplingEngineLinear(SamplingEngineBase): """HERE""" def preprocesssamples(self, idxs:Np1D) -> sampList: if self.samples is None or len(self.samples) == 0: return return self.samples(idxs) def postprocessu(self, u:sampList, overwrite : bool = False) -> Np1D: return u def _getSampleConcurrence(self, mu:paramVal, previous:Np1D, homogeneized : bool = False) -> sampList: - mu = checkParameter(mu, 1) + if len(previous) >= len(self._derIdxs): + self._derIdxs += nextDerivativeIndices(self._derIdxs, + self.HFEngine.npar, + len(previous) + 1 - len(self._derIdxs)) + derIdx = self._derIdxs[len(previous)] + mu = checkParameter(mu, self.HFEngine.npar) samplesOld = self.preprocesssamples(previous) - RHS = self.HFEngine.b(mu, len(previous), homogeneized = homogeneized) - for i in range(1, len(previous) + 1): - RHS -= self.HFEngine.A(mu, i).dot(samplesOld[- i]) + RHS = self.HFEngine.b(mu, derIdx, homogeneized = homogeneized) + for j, derP in enumerate(self._derIdxs[: len(previous)]): + diffP = [x - y for (x, y) in zip(derIdx, derP)] + if np.all([x >= 0 for x in diffP]): + RHS -= self.HFEngine.A(mu, diffP).dot(samplesOld[j]) return self.solveLS(mu, RHS = RHS, homogeneized = homogeneized) - def nextSample(self, mu:paramVal, overwrite : bool = False, + def nextSample(self, mu : paramVal = [], overwrite : bool = False, homogeneized : bool = False) -> Np1D: mu = checkParameter(mu, self.HFEngine.npar) ns = self.nsamples - muidxs = self.mus.findall(mu) + muidxs = self.mus.findall(mu[0]) if len(muidxs) > 0: u = self._getSampleConcurrence(mu, np.sort(muidxs), homogeneized) else: u = self.solveLS(mu, homogeneized = homogeneized) u = self.postprocessu(u, overwrite = overwrite) if overwrite: self.samples[ns] = u - self.mus[ns] = mu + self.mus[ns] = mu[0] else: if ns == 0: - self.samples = sampleList([u]) + self.samples = sampleList(u) else: self.samples.append(u) self.mus.append(mu) self.nsamples += 1 return u def iterSample(self, mus:paramList, homogeneized : bool = False) -> sampList: mus, _ = checkParameterList(mus, self.HFEngine.npar) if self.verbosity >= 5: verbosityDepth("INIT", "Starting sampling iterations.", timestamp = self.timestamp) n = len(mus) if n <= 0: raise RROMPyException(("Number of samples must be positive.")) self.resetHistory() if self.verbosity >= 7: verbosityDepth("MAIN", "Computing sample {}/{}.".format(1, n), timestamp = self.timestamp) u = self.nextSample(mus[0], homogeneized = homogeneized) if n > 1: self.preallocateSamples(u, mus[0], n) for j in range(1, n): if self.verbosity >= 7: verbosityDepth("MAIN", "Computing sample {}/{}.".format(j + 1, n), timestamp = self.timestamp) self.nextSample(mus[j], overwrite = True, homogeneized = homogeneized) if self.verbosity >= 5: verbosityDepth("DEL", "Finished sampling iterations.", timestamp = self.timestamp) return self.samples diff --git a/rrompy/sampling/sample_list.py b/rrompy/sampling/sample_list.py index 33fa243..79dc269 100644 --- a/rrompy/sampling/sample_list.py +++ b/rrompy/sampling/sample_list.py @@ -1,223 +1,222 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from copy import deepcopy as copy import numpy as np from rrompy.utilities.exception_manager import RROMPyAssert from rrompy.utilities.base.types import Np1D, List __all__ = ['emptySampleList', 'sampleList'] +def emptySampleList(): + return sampleList(np.empty((0, 0))) + class sampleList: """HERE""" def __init__(self, data:List[Np1D], lengthCheck : int = None, deep : bool = True): if isinstance(data, (self.__class__,)): data = data.data if isinstance(data, (np.ndarray,)): self.data = copy(data) if deep else data if self.data.ndim <= 1: self.data.shape = (self.data.shape[0], 1) else: if not isinstance(data, (list,)): data = [data] self.data = np.empty((len(data[0]), len(data)), dtype = data[0].dtype) for j, par in enumerate(data): self[j] = copy(data[j]) if deep else data[j] if j == 0 and lengthCheck is None: lengthCheck = self.shape[0] RROMPyAssert(len(data[j]), lengthCheck, "Number of parameters") def __len__(self): return self.shape[1] def __str__(self): return str(self.data) def __repr__(self): return repr(self.data) @property def shape(self): return self.data.shape @property def re(self): return sampleList(np.real(self.data)) @property def im(self): return sampleList(np.imag(self.data)) @property def abs(self): return sampleList(np.abs(self.data)) @property def angle(self): return sampleList(np.angle(self.data)) def conj(self): return sampleList(np.conj(self.data)) @property def T(self): return sampleList(self.data.T) @property def H(self): return sampleList(self.data.T.conj()) @property def dtype(self): return self.data.dtype @dtype.setter def dtype(self, dtype): self.data.dtype = dtype def __getitem__(self, key): return self.data[:, key] def __call__(self, key): return sampleList(self.data[:, key]) def __setitem__(self, key, value): + if isinstance(value, self.__class__): + value = value.data if isinstance(key, (tuple, list,)): RROMPyAssert(len(key), len(value), "Slice length") for k, val in zip(key, value): self[k] = val else: - self.data[:, key] = value + self.data[:, key] = value.flatten() def __iter__(self): - return self.data.T + return self.data.T.__iter__() def __eq__(self, other): if not hasattr(other, "shape") or self.shape != other.shape: return False if isinstance(other, self.__class__): fac = other.data else: fac = other return np.allclose(self.data, fac) def __ne__(self, other): return not self == other def __copy__(self): return sampleList(self.data) def __deepcopy__(self, memo): return sampleList(copy(self.data, memo)) def __add__(self, other): if isinstance(other, self.__class__): RROMPyAssert(self.shape, other.shape, "Sample shape") fac = other.data else: fac = other return sampleList(self.data + fac) def __iadd__(self, other): self.data = (self + other).data return self def __sub__(self, other): if isinstance(other, self.__class__): RROMPyAssert(self.shape, other.shape, "Sample shape") fac = other.data else: fac = other return sampleList(self.data - fac) def __isub__(self, other): self.data = (self - other).data return self def __mul__(self, other): if isinstance(other, self.__class__): RROMPyAssert(self.shape, other.shape, "Sample shape") fac = other.data else: fac = other return sampleList(self.data * fac) def __imul__(self, other): self.data = (self * other).data return self def __truediv__(self, other): if isinstance(other, self.__class__): RROMPyAssert(self.shape, other.shape, "Sample shape") fac = other.data else: fac = other return sampleList(self.data / fac) def __idiv__(self, other): self.data = (self / other).data return self def __pow__(self, other): if isinstance(other, self.__class__): RROMPyAssert(self.shape, other.shape, "Sample shape") fac = other.data else: fac = other return sampleList(np.power(self.data, fac)) def __ipow__(self, other): self.data = (self ** other).data return self def __neg__(self): return sampleList(- self.data) def __pos__(self): return sampleList(self.data) def reset(self, size, dtype = np.float): self.data = np.empty(size, dtype = dtype) self.data[:] = np.nan def append(self, items): if isinstance(items, self.__class__): fac = items.data else: - fac = items - if fac.ndim == 1: - fac = fac[:, np.newaxis] + fac = np.array(items, ndmin = 2) self.data = np.append(self.data, fac, axis = 1) def pop(self, idx = -1): self.data = np.delete(self.data, idx, axis = 1) def dot(self, other, sampleListOut : bool = True): if isinstance(other, self.__class__): other = other.data prod = self.data.dot(other) if sampleListOut: prod = sampleList(prod) return prod -class emptySampleList(sampleList): - def __init__(self): - super().__init__(np.empty((0, 0))) - diff --git a/rrompy/solver/__init__.py b/rrompy/solver/__init__.py index 391cfa5..8883a39 100644 --- a/rrompy/solver/__init__.py +++ b/rrompy/solver/__init__.py @@ -1,34 +1,35 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from .linear_solver import RROMPyLinearSolvers, setupSolver -from .norm_utilities import (Np2DLike, Np2DLikeInv, Np2DLikeInvLowRank, - normEngine) +from .norm_utilities import (Np2DLike, Np2DLikeEye, Np2DLikeInv, + Np2DLikeInvLowRank, normEngine) __all__ = [ 'RROMPyLinearSolvers', 'setupSolver', 'Np2DLike', + 'Np2DLikeEye', 'Np2DLikeInv', 'Np2DLikeInvLowRank', 'normEngine' ] diff --git a/rrompy/solver/norm_utilities.py b/rrompy/solver/norm_utilities.py index d9e7c28..d8b0293 100644 --- a/rrompy/solver/norm_utilities.py +++ b/rrompy/solver/norm_utilities.py @@ -1,73 +1,78 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from abc import abstractmethod import numpy as np from copy import deepcopy as copy from rrompy.utilities.base.types import Np1D, Np2D, DictAny from rrompy.solver.linear_solver import setupSolver from rrompy.utilities.exception_manager import RROMPyException -__all__ = ['Np2DLike', 'Np2DLikeInv', 'Np2DLikeInvLowRank', 'normEngine'] +__all__ = ['Np2DLike', 'Np2DLikeEye', 'Np2DLikeInv', 'Np2DLikeInvLowRank', + 'normEngine'] @abstractmethod class Np2DLike: def dot(self, u:Np2D) -> Np2D: pass +class Np2DLikeEye(Np2DLike): + def dot(self, u:Np2D) -> Np2D: + return u + class Np2DLikeInv(Np2DLike): def __init__(self, K:Np2D, M:Np2D, solverType:str, solverArgs:DictAny): self.K, self.M, self.MH = K, M, M.T.conj() self.solver, self.solverArgs = setupSolver(solverType, solverArgs) def dot(self, u:Np2D) -> Np2D: return self.MH.dot(self.solver(self.K, self.M.dot(u), self.solverArgs)) class Np2DLikeInvLowRank(Np2DLike): def __init__(self, K:Np2D, M:Np2D, solverType:str, solverArgs:DictAny, rank:int, oversampling : int = 10, seed : int = 420): if rank > M.shape[1]: raise RROMPyException(("Cannot select compressed rank larger than " "original size.")) if oversampling < 0: raise RROMPyException("Oversampling parameter must be positive.") HF = Np2DLikeInv(K, M, solverType, solverArgs) np.random.seed(seed) xs = np.random.randn(M.shape[1], rank + oversampling) samples = HF.dot(xs) Q, _ = np.linalg.qr(samples, mode = "reduced") R = HF.dot(Q).T.conj() # assuming HF (i.e. K) hermitian... U, s, Vh = np.linalg.svd(R) self.L = Q.dot(U[:, : rank]) * s[: rank] self.R = Vh[: rank, :] def dot(self, u:Np2D) -> Np2D: return self.L.dot(self.R.dot(u)) class normEngine: def __init__(self, energyNormMatrix:Np2D): self.energyNormMatrix = copy(energyNormMatrix) def innerProduct(self, u:Np2D, v:Np2D, onlyDiag : bool = False) -> Np2D: if not isinstance(u, (np.ndarray,)): u = u.data if not isinstance(v, (np.ndarray,)): v = v.data if onlyDiag: return np.sum(self.energyNormMatrix.dot(u) * v.conj(), axis = 0) return v.T.conj().dot(self.energyNormMatrix.dot(u)) def norm(self, u:Np2D) -> Np1D: - return np.abs(self.innerProduct(u, u, onlyDiag = True)) ** .5 + return np.power(np.abs(self.innerProduct(u, u, onlyDiag = True)), .5) diff --git a/rrompy/utilities/base/__init__.py b/rrompy/utilities/base/__init__.py index f953be7..c6c8528 100644 --- a/rrompy/utilities/base/__init__.py +++ b/rrompy/utilities/base/__init__.py @@ -1,50 +1,53 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from .find_dict_str_key import findDictStrKey from .get_new_filename import getNewFilename from .kroneckerer import kroneckerer +from .factorials import multibinom, multifactorial from .pickle_utilities import pickleDump, pickleLoad from .purge_dict import purgeDict from .purge_list import purgeList from .number_theory import (squareResonances, primeFactorize, getLowestPrimeFactor) from .sobol import sobolGenerate from .low_discrepancy import vanderCorput, lowDiscrepancy from . import types as Types from .verbosity_depth import verbosityDepth __all__ = [ 'findDictStrKey', 'getNewFilename', 'kroneckerer', + 'multibinom', + 'multifactorial', 'pickleDump', 'pickleLoad', 'purgeDict', 'purgeList', 'squareResonances', 'primeFactorize', 'getLowestPrimeFactor', 'sobolGenerate', 'vanderCorput', 'lowDiscrepancy', 'Types', 'verbosityDepth' ] diff --git a/rrompy/solver/__init__.py b/rrompy/utilities/base/factorials.py similarity index 60% copy from rrompy/solver/__init__.py copy to rrompy/utilities/base/factorials.py index 391cfa5..19b4b07 100644 --- a/rrompy/solver/__init__.py +++ b/rrompy/utilities/base/factorials.py @@ -1,34 +1,33 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # -from .linear_solver import RROMPyLinearSolvers, setupSolver -from .norm_utilities import (Np2DLike, Np2DLikeInv, Np2DLikeInvLowRank, - normEngine) - -__all__ = [ - 'RROMPyLinearSolvers', - 'setupSolver', - 'Np2DLike', - 'Np2DLikeInv', - 'Np2DLikeInvLowRank', - 'normEngine' - ] +from numpy import prod +from scipy.special import binom, factorial +from rrompy.utilities.base.types import List +__all__ = ['multibinom', 'multifactorial'] +def multibinom(x:List[int], y:List[int]) -> int: + if not hasattr(x, "__len__"): x = [x] + if not hasattr(y, "__len__"): y = [y] + return int(prod([binom(a, b) for (a, b) in zip(x, y)])) +def multifactorial(x:List[int]) -> int: + if not hasattr(x, "__len__"): x = [x] + return int(prod([factorial(a) for a in x])) diff --git a/rrompy/utilities/poly_fitting/__init__.py b/rrompy/utilities/poly_fitting/__init__.py index 31700b4..dc4d3ac 100644 --- a/rrompy/utilities/poly_fitting/__init__.py +++ b/rrompy/utilities/poly_fitting/__init__.py @@ -1,35 +1,25 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # from .custom_fit import customFit -from .fit_utils import (polybases, polyval, polyder, polyvalder, polyvander, - polyfitname, polyroots, polydomcoeff) __all__ = [ - 'customFit', - 'polybases', - 'polyval', - 'polyder', - 'polyvalder', - 'polyvander', - 'polyfitname', - 'polyroots', - 'polydomcoeff' + 'customFit' ] diff --git a/rrompy/utilities/poly_fitting/fit_utils.py b/rrompy/utilities/poly_fitting/fit_utils.py deleted file mode 100644 index 0703b17..0000000 --- a/rrompy/utilities/poly_fitting/fit_utils.py +++ /dev/null @@ -1,90 +0,0 @@ -# Copyright (C) 2018 by the RROMPy authors -# -# This file is part of RROMPy. -# -# RROMPy is free software: you can redistribute it and/or modify -# it under the terms of the GNU Lesser General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# RROMPy is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public License -# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. -# - -import numpy as np -from numpy import pi, polynomial as po -from scipy.special import binom -from rrompy.utilities.base.types import Np1D, Np2D -from rrompy.parameter import parameter, parameterList - -__all__ = ['polybases', 'polyval', 'polyder', 'polyvalder', 'polyvander', - 'polyfitname', 'polyroots', 'polydomcoeff'] - -polybases = ["CHEBYSHEV", "LEGENDRE", "MONOMIAL"] - -polyval = {"CHEBYSHEV" : lambda x, c: po.chebyshev.chebval(flatten(x), c), - "LEGENDRE" : lambda x, c: po.legendre.legval(flatten(x), c), - "MONOMIAL" : lambda x, c: po.polynomial.polyval(flatten(x), c)} -polyder = {"CHEBYSHEV" : po.chebyshev.chebder, "LEGENDRE" : po.legendre.legder, - "MONOMIAL" : po.polynomial.polyder} -polyvalder = { - "CHEBYSHEV" : lambda x, c, m = 1, scl = 1.: - po.chebyshev.chebval(flatten(x), polyder["CHEBYSHEV"](c, m, scl)), - "LEGENDRE" : lambda x, c, m = 1, scl = 1.: - po.legendre.legval(flatten(x), polyder["LEGENDRE"](c, m, scl)), - "MONOMIAL" : lambda x, c, m = 1, scl = 1.: - po.polynomial.polyval(flatten(x), polyder["MONOMIAL"](c, m, scl))} -polyvander = { - "CHEBYSHEV" : lambda x, deg, scl = 1.: - polyvanderConfluence(po.chebyshev.chebvander, polyder["CHEBYSHEV"], - flatten(x), deg, scl), - "LEGENDRE" : lambda x, deg, scl = 1: - polyvanderConfluence(po.legendre.legvander, polyder["LEGENDRE"], - flatten(x), deg, scl), - "MONOMIAL" : lambda x, deg, scl = 1: - polyvanderConfluence(po.polynomial.polyvander, polyder["MONOMIAL"], - flatten(x), deg, scl)} - -polyfitname = {"CHEBYSHEV" : "chebfit", "LEGENDRE" : "legfit", - "MONOMIAL" : "polyfit"} -polyroots = {"CHEBYSHEV" : po.chebyshev.chebroots, - "LEGENDRE" : po.legendre.legroots, - "MONOMIAL" : po.polynomial.polyroots} -polydomcoeff = {"CHEBYSHEV" : lambda n: 2. ** (n - 1) if n > 0 else 1., - "LEGENDRE" : lambda n: (2. ** n * (pi * n) ** -.5 if n > 10 - else .5 ** n * binom(2 * n, n)), - "MONOMIAL" : lambda n: 1.} - -def flatten(x): - if hasattr(x, "flatten"): - return x.flatten() - return x - -def polyvanderConfluence(vander:callable, derivative:callable, x:Np1D, deg:int, - scl : float = 1.) -> Np2D: - """Compute Vandermonde matrix even in case of confluence.""" - x_un, idx_un, cnt_un = np.unique(x, return_inverse = True, - return_counts = True) - Van = vander(x, deg) - der_max = np.max(cnt_un) - 1 - if der_max > 0: - C_der = np.zeros((deg + 1, deg + 1), dtype = float) - for j in range(deg + 1): - ej = np.zeros(deg + 1) - ej[j] = 1. - j_der = derivative(ej, 1, scl) - C_der[: len(j_der), j] = j_der - - for der in range(1, der_max + 1): - # remove first occurrence of each node - for i_un in np.nonzero(cnt_un > der - 1)[0]: - idx_un[np.nonzero(idx_un == i_un)[0][0]] = -1 - idx_loc = np.nonzero(idx_un > -1)[0] - Van[idx_loc, :] = Van[idx_loc, :].dot(C_der[:, :]) / der - return Van - diff --git a/rrompy/utilities/poly_fitting/__init__.py b/rrompy/utilities/poly_fitting/polynomial/__init__.py similarity index 61% copy from rrompy/utilities/poly_fitting/__init__.py copy to rrompy/utilities/poly_fitting/polynomial/__init__.py index 31700b4..0b50bad 100644 --- a/rrompy/utilities/poly_fitting/__init__.py +++ b/rrompy/utilities/poly_fitting/polynomial/__init__.py @@ -1,35 +1,43 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # -from .custom_fit import customFit -from .fit_utils import (polybases, polyval, polyder, polyvalder, polyvander, - polyfitname, polyroots, polydomcoeff) +from .base import (polybases, polyfitname, polydomcoeff) +from .der import polyder +from .val import polyval +from .vander import polyvander +from .roots import polyroots +from .derivative import nextDerivativeIndices +from .hash_derivative import hashDerivativeToIdx, hashIdxToDerivative +from .homogeneization import homogeneizationMask, homogeneizedpolyvander __all__ = [ - 'customFit', 'polybases', - 'polyval', + 'polyfitname', + 'polydomcoeff', 'polyder', - 'polyvalder', + 'polyval', 'polyvander', - 'polyfitname', 'polyroots', - 'polydomcoeff' + 'nextDerivativeIndices', + 'hashDerivativeToIdx', + 'hashIdxToDerivative', + 'homogeneizationMask', + 'homogeneizedpolyvander' ] diff --git a/rrompy/utilities/poly_fitting/polynomial/base.py b/rrompy/utilities/poly_fitting/polynomial/base.py new file mode 100644 index 0000000..02562a6 --- /dev/null +++ b/rrompy/utilities/poly_fitting/polynomial/base.py @@ -0,0 +1,61 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +import numpy as np +from scipy.special import binom +from rrompy.utilities.exception_manager import RROMPyException + +__all__ = ['polybases', 'polyfitname', 'polydomcoeff'] + +polybases = ["CHEBYSHEV", "LEGENDRE", "MONOMIAL"] + +def polyfitname(basis:str) -> str: + fitnames = {"CHEBYSHEV" : "chebfit", "LEGENDRE" : "legfit", + "MONOMIAL" : "polyfit"} + try: + return fitnames[basis.upper()] + except: + raise RROMPyException("Polynomial basis not recognized.") + +def polydomcoeff(n:int, basis:str) -> float: + basis = basis.upper() + if isinstance(n, (list, tuple, np.ndarray,)): + nv = np.array(n) + else: + nv = np.array([n]) + if basis == "CHEBYSHEV": + x = np.ones_like(nv, dtype = float) + x[nv > 0] = np.power(2., nv[nv > 0] - 1) + elif basis == "LEGENDRE": + x = np.ones_like(nv, dtype = float) + x[nv > 10] = (np.power(2., nv[nv > 10]) + * np.power(np.pi * nv[nv > 10], -.5)) + x[nv <= 10] = (np.power(.5, nv[nv <= 10]) + * binom(2 * nv[nv <= 10], nv[nv <= 10])) + elif basis == "MONOMIAL": + x = np.ones_like(nv, dtype = float) + else: + raise RROMPyException("Polynomial basis not recognized.") + if isinstance(n, (list,)): + return list(x) + if isinstance(n, (tuple,)): + return tuple(x) + if isinstance(n, (np.ndarray,)): + return x + return x[0] + diff --git a/rrompy/utilities/poly_fitting/polynomial/der.py b/rrompy/utilities/poly_fitting/polynomial/der.py new file mode 100644 index 0000000..092d0ff --- /dev/null +++ b/rrompy/utilities/poly_fitting/polynomial/der.py @@ -0,0 +1,43 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +import numpy as np +from rrompy.utilities.base.types import Np1D, Np2D, List +from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert + +__all__ = ['polyder'] + +def polyder(c:Np2D, basis:str, m : List[int] = None, + scl : Np1D = None) -> Np2D: + c = np.array(c, ndmin = 1, copy = 1) + if m is not None: + if scl is None: scl = [1.] * c.ndim + if not isinstance(m, (list,tuple,np.ndarray,)): m = [m] + if not isinstance(scl, (list,tuple,np.ndarray,)): scl = [scl] + RROMPyAssert(c.ndim, len(m), "Number of parameters") + RROMPyAssert(c.ndim, len(scl), "Number of parameters") + try: + derbase = {"CHEBYSHEV" : np.polynomial.chebyshev.chebder, + "LEGENDRE" : np.polynomial.legendre.legder, + "MONOMIAL" : np.polynomial.polynomial.polyder + }[basis.upper()] + except: + raise RROMPyException("Polynomial basis not recognized.") + for j, (mj, sj) in enumerate(zip(m, scl)): + c = derbase(c, m = mj, scl = sj, axis = j) + return c diff --git a/rrompy/utilities/poly_fitting/polynomial/derivative.py b/rrompy/utilities/poly_fitting/polynomial/derivative.py new file mode 100644 index 0000000..ba9fab4 --- /dev/null +++ b/rrompy/utilities/poly_fitting/polynomial/derivative.py @@ -0,0 +1,72 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +from copy import deepcopy as copy +import numpy as np +from scipy.special import binom +from rrompy.utilities.base.types import List +from rrompy.utilities.exception_manager import RROMPyException + +__all__ = ['nextDerivativeIndices'] + +def nextDerivativeIndices(derIdxs:List[List[int]], dim:int, + count : int = 1) -> List[List[int]]: + out = [] + if count <= 0: return out + derIdxs = copy(derIdxs) + sumDer, sumInverse, sumCount = np.unique( + [np.sum(derIdx) for derIdx in derIdxs], + return_inverse = True, return_counts = True) + if len(derIdxs) == 0 or 0 not in sumDer: + out += [[0] * dim] + count -= 1 + if count <= 0: return out + derIdxs += [[0] * dim] + shellIncomplete = 1 + _, sumInverse = np.unique([np.sum(derIdx) for derIdx in derIdxs], + return_inverse = True) + else: + sumCount = np.cumsum(sumCount) + shellIncomplete = 1 + for shellIncomplete in range(1, len(sumDer) + 1): + theoreticalCount = binom(shellIncomplete + dim, dim) + if (shellIncomplete not in sumDer + or theoreticalCount > sumCount[shellIncomplete]): + break + if theoreticalCount < sumCount[shellIncomplete]: + raise RROMPyException("Starting index list is redundant.") + shell_previous = [derIdxs[x] for x in + np.nonzero(sumInverse == shellIncomplete - 1)[0]] + while count > 0: + shell_current = [derIdxs[x] for x in + np.nonzero(sumInverse == shellIncomplete)[0]] + for prev in shell_previous: + prevC = copy(prev) + for d in range(dim): + prevC[d] += 1 + if prevC not in shell_current: + out += [copy(prevC)] + shell_current += [copy(prevC)] + derIdxs += [copy(prevC)] + count -= 1 + if count <= 0: return out + prevC[d] -= 1 + shell_previous = copy(shell_current) + _, sumInverse = np.unique([np.sum(derIdx) for derIdx in derIdxs], + return_inverse = True) + shellIncomplete += 1 diff --git a/rrompy/utilities/poly_fitting/polynomial/hash_derivative.py b/rrompy/utilities/poly_fitting/polynomial/hash_derivative.py new file mode 100644 index 0000000..17c1c8e --- /dev/null +++ b/rrompy/utilities/poly_fitting/polynomial/hash_derivative.py @@ -0,0 +1,45 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +from scipy.special import binom +from rrompy.utilities.base.types import List + +__all__ = ['hashDerivativeToIdx', 'hashIdxToDerivative'] + +def shellCount(shell:int, dim:int) -> int: + return int(binom(shell + dim, dim)) + +def hashDerivativeToIdx(derIdx:List[int]) -> int: + dim = len(derIdx) + if dim == 0: return 0 + derMag = sum(derIdx) + base = shellCount(derMag - 1, dim) + if derMag == derIdx[0]: return base + return base + hashDerivativeToIdx(derIdx[1:]) + +def hashIdxToDerivative(n:int, dim:int) -> List[int]: + if n == 0: return [0] * dim + shell = 0 + shellOld = -1 + shellNew = 1 + while shellNew <= n: + shell += 1 + shellOld = shellNew + shellNew = shellCount(shell, dim) + rest = hashIdxToDerivative(n - shellOld, dim - 1) + return [shell - sum(rest)] + rest diff --git a/rrompy/utilities/poly_fitting/polynomial/homogeneization.py b/rrompy/utilities/poly_fitting/polynomial/homogeneization.py new file mode 100644 index 0000000..e261241 --- /dev/null +++ b/rrompy/utilities/poly_fitting/polynomial/homogeneization.py @@ -0,0 +1,46 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +import numpy as np +from rrompy.utilities.base.types import Np1D, Np2D, Tuple, List, paramList +from rrompy.utilities.poly_fitting.polynomial import polyvander +from rrompy.parameter import checkParameterList + +__all__ = ['homogeneizationMask', 'homogeneizedpolyvander'] + +def homogeneizationMask(degs:List[int]) -> Tuple[List[int], List[bool]]: + dim = len(degs) + N = np.prod([d + 1 for d in degs]) + maskN = np.arange(N, dtype = int) + remN = np.zeros((N, dim), dtype = int) + for j in range(dim - 1, -1, -1): + remN[:, j] = maskN % (degs[j] + 1) + maskN //= degs[j] + 1 + mask = np.sum(remN, axis = 1) <= min(degs) + return remN[mask], mask + +def homogeneizedpolyvander(x:paramList, deg:int, basis:str, + derIdxs : List[List[List[int]]] = None, + reorder : List[int] = None, scl : Np1D = None)\ + -> Tuple[Np2D, List[List[int]], List[int]]: + x, _ = checkParameterList(x) + degs = [deg] * x.shape[1] + VanBase = polyvander(x, degs, basis, derIdxs, reorder, scl) + derIdxs, mask = homogeneizationMask(degs) + derDepth = [- np.sum(x) for x in derIdxs] + return VanBase[:, mask], derIdxs, np.argsort(derDepth)[::-1] diff --git a/rrompy/parameter/__init__.py b/rrompy/utilities/poly_fitting/polynomial/roots.py similarity index 58% copy from rrompy/parameter/__init__.py copy to rrompy/utilities/poly_fitting/polynomial/roots.py index fe6a417..ef48d32 100644 --- a/rrompy/parameter/__init__.py +++ b/rrompy/utilities/poly_fitting/polynomial/roots.py @@ -1,31 +1,32 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # -from .parameter import parameter -from .parameter_list import (parameterList, emptyParameterList, checkParameter, - checkParameterList) - -__all__ = [ - 'parameter', - 'parameterList', - 'emptyParameterList', - 'checkParameter', - 'checkParameterList' - ] +from numpy import polynomial as po +from rrompy.utilities.base.types import Np1D +from rrompy.utilities.exception_manager import RROMPyException +__all__ = ['polyroots'] +def polyroots(c:Np1D, basis:str) -> Np1D: + try: + rootsbase = {"CHEBYSHEV" : po.chebyshev.chebroots, + "LEGENDRE" : po.legendre.legroots, + "MONOMIAL" : po.polynomial.polyroots}[basis.upper()] + except: + raise RROMPyException("Polynomial basis not recognized.") + return rootsbase(c) diff --git a/rrompy/utilities/poly_fitting/polynomial/val.py b/rrompy/utilities/poly_fitting/polynomial/val.py new file mode 100644 index 0000000..7b29cf8 --- /dev/null +++ b/rrompy/utilities/poly_fitting/polynomial/val.py @@ -0,0 +1,43 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +import numpy as np +from rrompy.utilities.poly_fitting.polynomial import polyder +from rrompy.utilities.base.types import Np1D, Np2D, List, paramList +from rrompy.parameter import checkParameterList +from rrompy.utilities.exception_manager import RROMPyException + +__all__ = ['polyval'] + +def polyval(x:paramList, c:Np2D, basis:str, m : List[int] = None, + scl : Np1D = None) -> Np2D: + c = polyder(c, basis, m = m, scl = scl) + x, _ = checkParameterList(x) + if x.shape[1] > c.ndim: + raise RROMPyException("Incompatible parameter number.") + try: + polyvalbase = {"CHEBYSHEV" : np.polynomial.chebyshev.chebval, + "LEGENDRE" : np.polynomial.legendre.legval, + "MONOMIAL" : np.polynomial.polynomial.polyval + }[basis.upper()] + except: + raise RROMPyException("Polynomial basis not recognized.") + c = polyvalbase(x(0), c, tensor = True) + for d in range(1, x.shape[1]): + c = polyvalbase(x(d), c, tensor = False) + return c diff --git a/rrompy/utilities/poly_fitting/polynomial/vander.py b/rrompy/utilities/poly_fitting/polynomial/vander.py new file mode 100644 index 0000000..5a44487 --- /dev/null +++ b/rrompy/utilities/poly_fitting/polynomial/vander.py @@ -0,0 +1,112 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +import numpy as np +from rrompy.utilities.poly_fitting.polynomial import polyder +from rrompy.utilities.base.types import Np1D, Np2D, List, paramList +from rrompy.parameter import checkParameterList +from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert + +__all__ = ['polyvander'] + +def firstDerTransition(dim:int, TDirac:List[Np2D], basis:str, + scl : Np1D = None) -> Np2D: + C_m = np.zeros((dim, len(TDirac), len(TDirac)), dtype = float) + for j, Tj in enumerate(TDirac): + m, om = [0] * dim, [(0, 0)] * dim + for idx in range(dim): + m[idx], om[idx] = 1, (0, 1) + J_der = polyder(Tj, basis, m, scl) + C_m[idx, :, j] = np.ravel(np.pad(J_der, mode = "constant", + pad_width = om)) + m[idx], om[idx] = 0, (0, 0) + return C_m + +def countDerDirections(n:int, base:int, digits:int, idx:int): + if digits == 0: return [] + dig = n % base + return [(idx, dig)] * (dig > 0) + countDerDirections( + (n - dig) // base, base, digits - 1, idx + 1) + +def polyvander(x:paramList, degs:List[int], basis:str, + derIdxs : List[List[List[int]]] = None, + reorder : List[int] = None, scl : Np1D = None) -> Np2D: + """ + Compute Hermite-Vandermonde matrix with specified derivative directions. + + E.g. assume that we want to obtain the Vandermonde matrix for + (value, derx, derx2) at x = [0, 0], + (value, dery) at x = [1, 0], + (dery, derxy) at x = [0, 0], + of degree 3 in x and 1 in y, using Chebyshev polynomials. + + This can be done by + polyvander([[0, 0], [1, 0]], # unique sample points + [3, 1], # polynomial degree + "chebyshev", # polynomial family + [ + [[0, 0], [1, 0], [2, 0], [0, 1], [1, 1]], + # derivative directions at first point + [[0, 0], [0, 1]] # derivative directions at second point + ], + [0, 1, 2, 5, 6, 3, 4] # reorder indices + ) + """ + if not isinstance(degs, (list,tuple,np.ndarray,)): degs = [degs] + dim = len(degs) + x, _ = checkParameterList(x, dim) + x_un, idx_un = x.unique(return_inverse = True) + if len(x_un) < len(x): + raise RROMPyException("Sample points must be distinct.") + del x_un + try: + vanderbase = {"CHEBYSHEV" : np.polynomial.chebyshev.chebvander, + "LEGENDRE" : np.polynomial.legendre.legvander, + "MONOMIAL" : np.polynomial.polynomial.polyvander + }[basis.upper()] + except: + raise RROMPyException("Polynomial basis not recognized.") + VanBase = vanderbase(x(0), degs[0]) + for j in range(1, dim): + VanBase = VanBase[..., None] * vanderbase(x(j), degs[j])[..., None, :] + VanBase = VanBase.reshape((len(x), -1)) + + if derIdxs is None or VanBase.shape[-1] <= 1: + Van = VanBase + else: + derFlat, idxRep = [], [] + for j, derIdx in enumerate(derIdxs): + derFlat += derIdx[:] + idxRep += [j] * len(derIdx[:]) + for j in range(len(derFlat)): + if not hasattr(derFlat[j], "__len__"): + derFlat[j] = [derFlat[j]] + RROMPyAssert(len(derFlat[j]), dim, "Number of dimensions") + TDirac = [y.reshape([d + 1 for d in degs]) + for y in np.eye(VanBase.shape[-1], dtype = int)] + Cs_loc = firstDerTransition(dim, TDirac, basis, scl) + Van = np.empty((len(derFlat), VanBase.shape[-1]), + dtype = VanBase.dtype) + for j in range(len(derFlat)): + Van[j, :] = VanBase[idxRep[j], :] + for k in range(dim): + for der in range(derFlat[j][k]): + Van[j, :] = Van[j, :].dot(Cs_loc[k]) / (der + 1) + + if reorder is not None: Van = Van[reorder, :] + return Van diff --git a/rrompy/parameter/__init__.py b/rrompy/utilities/poly_fitting/radial_basis/__init__.py similarity index 70% copy from rrompy/parameter/__init__.py copy to rrompy/utilities/poly_fitting/radial_basis/__init__.py index fe6a417..387db9e 100644 --- a/rrompy/parameter/__init__.py +++ b/rrompy/utilities/poly_fitting/radial_basis/__init__.py @@ -1,31 +1,29 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # -from .parameter import parameter -from .parameter_list import (parameterList, emptyParameterList, checkParameter, - checkParameterList) +from .radial_basis_fitter import (radialBasisFitter, radialGaussian, + thinPlateSpline, multiQuadric) __all__ = [ - 'parameter', - 'parameterList', - 'emptyParameterList', - 'checkParameter', - 'checkParameterList' - ] + 'radialBasisFitter', + 'radialGaussian', + 'thinPlateSpline', + 'multiQuadric' + ] diff --git a/rrompy/utilities/poly_fitting/radial_basis/radial_basis_fitter.py b/rrompy/utilities/poly_fitting/radial_basis/radial_basis_fitter.py new file mode 100644 index 0000000..dec76f5 --- /dev/null +++ b/rrompy/utilities/poly_fitting/radial_basis/radial_basis_fitter.py @@ -0,0 +1,229 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +import numpy as np +from rrompy.utilities.base.types import Np1D, Np2D, List, ListAny, paramList +from rrompy.solver import Np2DLikeEye, normEngine +from rrompy.parameter import checkParameterList +from rrompy.utilities.exception_manager import RROMPyException, RROMPyAssert + +__all__ = ['radialBasisFitter', 'radialGaussian', 'thinPlateSpline', + 'multiQuadric'] + +def radialGaussian(r2): + return np.exp(- r2) + +def thinPlateSpline(r2): + return .5 * r2 * np.log(np.finfo(float).eps + r2) + +def multiQuadric(r2): + return np.power(r2 + 1, .5) + +class radialBasisFitter: + """HERE""" + + allowedModes = ["PARAMETERS", "VALUES"] + + def __init__(self, mus:paramList, basisFun : callable = radialGaussian, + massMatrix : Np2D = None, mode : str = "PARAMETERS", + scl : float = 1.): + self.mus = mus + self.basisFun = basisFun + if massMatrix is None: massMatrix = normEngine(Np2DLikeEye()) + self.massMatrix = massMatrix + self.mode = mode + self.scl = scl + + @property + def d(self): + """Number of parameters.""" + return self.mus.shape[1] + + @property + def n(self): + """Number of parameter points.""" + return len(self.mus) + + @property + def basisFun(self): + """Value of basisFun. Its assignment resets all.""" + return self._basisFun + @basisFun.setter + def basisFun(self, basisFun): + self.reset() + self._basisFun = basisFun + + @property + def mus(self): + """Value of mus. Its assignment resets all.""" + return self._mus + @mus.setter + def mus(self, mus): + mus, _ = checkParameterList(mus) + self.reset() + self._mus = mus + + @property + def massMatrix(self): + """Value of massMatrix. Its assignment resets all.""" + return self._massMatrix + @massMatrix.setter + def massMatrix(self, massMatrix): + self.reset() + self._massMatrix = massMatrix + + @property + def mode(self): + """Value of mode. Its assignment resets all.""" + return self._mode + @mode.setter + def mode(self, mode): + self.reset() + self._mode = mode.upper() + + @property + def scl(self): + """Value of scl. Its assignment resets all.""" + return self._scl + @scl.setter + def scl(self, scl): + self.reset() + self._scl = scl + + def reset(self): + self.vander = None + self.offDiag = None + self.offDiagT = None + self.matrixInv = None + self.probeParameters = None + self.probeValues = None + + def buildMatrixBlocks(self): + if self.offDiag is None: + self.reset() + self.offDiagT = np.array([[1] + list(x[0]) for x in self.mus]) + self.offDiag = self.offDiagT.T + muDiff = np.empty((self.d, self.n * (self.n - 1) // 2 + 1), + dtype = self.mus.dtype) + muDiff[:, 0] = 0. + idxInv = np.zeros(self.n ** 2, dtype = int) + for j in range(self.n): + idx = j * (self.n - 1) - j * (j + 1) // 2 + for i in range(j + 1, self.n): + muDiff[:, idx + i] = (self.offDiag[1:, j] + - self.offDiag[1:, i]) + idxInv[j * self.n + i] = idx + i + idxInv[i * self.n + j] = idx + i + self.vander = self.basisFun(np.power(self.scl * + self.massMatrix.norm(muDiff), 2.))[idxInv] + self.vander = self.vander.reshape((self.n, -1)) + self.vanderProj = self.offDiag.dot(self.vander.dot(self.offDiag.T)) + + def buildMatrixInvBlocks(self): + if self.matrixInv is None: + self.buildMatrixBlocks() + vanderInv = np.linalg.inv(self.vander) + vanderProjInv = np.linalg.solve(self.vanderProj, + self.offDiag.dot(vanderInv)) + self.matrixInv = np.empty((self.n + self.d + 1, self.n), + dtype = vanderProjInv.dtype) + self.matrixInv[self.n :, :] = vanderProjInv + self.matrixInv[: self.n, :] = vanderInv - vanderInv.dot( + self.offDiagT.dot(vanderProjInv)) + + def setupProbeParameters(self, mu : paramList = []) -> List[Np1D]: + mu, _ = checkParameterList(mu, self.d) + self.buildMatrixInvBlocks() + self.probeParameters = [None] * len(mu) + for j, m in enumerate(mu): + probe = np.ones(self.n + self.d + 1, dtype = m.dtype) + probe[self.n + 1 :] = m.data # flatten? + mDiff = (probe[self.n + 1:] - self.offDiagT[:, 1:]).T + probe[: self.n] = self.basisFun(np.power(self.scl * + self.massMatrix.norm(mDiff), 2.)) + self.probeParameters[j] = probe.dot(self.matrixInv) + + def setupProbeValues(self, vals:ListAny) -> ListAny: + RROMPyAssert(len(vals), self.n, "Number of samples") + self.buildMatrixInvBlocks() + if isinstance(vals, (np.ndarray,)): + self.probeValues = np.tensordot(self.matrixInv, vals, + axes = ([-1], [0])) + else: + self.probeValues = [None] * (self.n + self.d + 1) + for j in range(self.n + self.d + 1): + self.probeValues[j] = self.matrixInv[j, 0] * vals[0] + for i in range(1, self.n): + self.probeValues[j] += self.matrixInv[j, i] * vals[i] + + def interpolateParameters(self, vals:ListAny) -> ListAny: + if self.probeParameters is None: + raise RROMPyException(("Parameter probe must be set up before " + "interpolation.")) + RROMPyAssert(len(vals), self.n, "Number of samples") + interpolated = [None] * len(self.probeParameters) + if isinstance(vals, (np.ndarray,)): + if vals.ndim == 1: + for j, pUp in enumerate(self.probeParameters): + interpolated[j] = pUp.dot(vals) + else: + for j, pUp in enumerate(self.probeParameters): + interpolated[j] = np.tensordot(pUp, vals, + axes = ([0], [0])) + else: + for j, pUp in enumerate(self.probeParameters): + interpolated[j] = self.probeParameters[j][0] * vals[0] + for i in range(1, self.n): + interpolated[j] += self.probeParameters[j][i] * vals[i] + return interpolated + + def interpolateValues(self, mu : paramList = []) -> ListAny: + if self.probeValues is None: + raise RROMPyException(("Value probe must be set up before " + "interpolation.")) + mu, _ = checkParameterList(mu, self.d) + probeLs = [None] * len(mu) + for j, m in enumerate(mu): + probeLs[j] = np.ones(self.n + self.d + 1, dtype = m.dtype) + probeLs[j][self.n + 1 :] = m.data # flatten? + mDiff = (probeLs[j][self.n + 1:] - self.offDiagT[:, 1:]).T + probeLs[j][: self.n] = self.basisFun(np.power(self.scl * + self.massMatrix.norm(mDiff), 2.)) + interpolated = [None] * len(mu) + if isinstance(self.probeValues, (np.ndarray,)): + if self.probeValues.ndim == 1: + for j, pL in enumerate(probeLs): + interpolated[j] = pL.dot(self.probeValues) + else: + for j, pL in enumerate(probeLs): + interpolated[j] = np.tensordot(pL, self.probeValues, + axes = ([-1], [0])) + else: + for j, pL in enumerate(probeLs): + interpolated[j] = pL[0] * self.probeValues[0] + for i in range(1, self.n + self.d + 1): + interpolated[j] += pL[i] * self.probeValues[i] + return interpolated + + def interpolate(self, x) -> ListAny: + if self.mode == "PARAMETERS": + return self.interpolateParameters(x) + if self.mode == "VALUES": + return self.interpolateValues(x) + raise RROMPyException("Not implemented") + diff --git a/setup.py b/setup.py index 481a696..fa46095 100644 --- a/setup.py +++ b/setup.py @@ -1,52 +1,52 @@ # Copyright (C) 2015-2018 by the RBniCS authors # # This file is part of RBniCS. # # RBniCS is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RBniCS is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RBniCS. If not, see <http://www.gnu.org/licenses/>. # import os from setuptools import find_packages, setup rrompy_directory = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) #rrompy_directory = os.path.join(rrompy_directory, 'rrompy') setup(name="RROMPy", description="Rational reduced order modelling in Python", long_description="Rational reduced order modelling in Python", author="Davide Pradovera", author_email="davide.pradovera@epfl.ch", - version="1.3", + version="1.4", license="GNU Library or Lesser General Public License (LGPL)", classifiers=[ "Development Status :: 1 - Planning" "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "License :: OSI Approved :: GNU Library or Lesser General Public License (LGPL)", "Topic :: Scientific/Engineering :: Mathematics", "Topic :: Software Development :: Libraries :: Python Modules", ], packages=find_packages(rrompy_directory), setup_requires=[ "pytest-runner" ], tests_require=[ "pytest" ], zip_safe=False ) diff --git a/tests/test_1_utilities/fitting.py b/tests/test_1_utilities/fitting.py index cb9a1b7..936b051 100644 --- a/tests/test_1_utilities/fitting.py +++ b/tests/test_1_utilities/fitting.py @@ -1,98 +1,116 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np -from rrompy.utilities.poly_fitting import (customFit, polybases, polyval, - polyvalder, polyvander, polyfitname, polyroots, polydomcoeff) +from rrompy.utilities.poly_fitting import customFit +from rrompy.utilities.poly_fitting.polynomial import (polybases, polyfitname, + polydomcoeff, polyval, + polyroots, polyvander, + nextDerivativeIndices) +from rrompy.parameter import checkParameterList def test_chebyshev(): assert "CHEBYSHEV" in polybases - val = polyval["CHEBYSHEV"] - valder = polyvalder["CHEBYSHEV"] - vander = polyvander["CHEBYSHEV"] - fitname = polyfitname["CHEBYSHEV"] - roots = polyroots["CHEBYSHEV"] - domcoeff = polydomcoeff["CHEBYSHEV"] + fitname = polyfitname("CHEBYSHEV") + domcoeff = polydomcoeff(5, "CHEBYSHEV") assert fitname == "chebfit" - assert np.isclose(domcoeff(5), 16, rtol = 1e-5) - assert np.allclose(roots((-1, 1, -1, 1)), np.array([-.5, 0., 1.]), - rtol = 1e-5) - Phi = vander(np.arange(5), 4) + assert np.isclose(domcoeff, 16, rtol = 1e-5) + assert np.allclose(polyroots((-1, 1, -1, 1), "CHEBYSHEV"), + np.array([-.5, 0., 1.]), rtol = 1e-5) + Phi = polyvander(np.arange(5), 4, "CHEBYSHEV") y = 2. * np.arange(5) cFit = customFit(Phi, y) assert np.allclose(cFit, [0, 2, 0, 0, 0], rtol = 1e-5) - assert np.allclose(val(np.arange(5), cFit), y, rtol = 1e-5) - assert np.allclose(valder(np.arange(5), cFit), 2. * np.ones(5), + assert np.allclose(polyval(np.arange(5), cFit, "CHEBYSHEV"), y, rtol = 1e-5) + assert np.allclose(polyval(np.arange(5), cFit, "CHEBYSHEV", m = 1), + 2. * np.ones(5), rtol = 1e-5) def test_legendre(): assert "LEGENDRE" in polybases - val = polyval["LEGENDRE"] - valder = polyvalder["LEGENDRE"] - vander = polyvander["LEGENDRE"] - fitname = polyfitname["LEGENDRE"] - roots = polyroots["LEGENDRE"] - domcoeff = polydomcoeff["LEGENDRE"] + fitname = polyfitname("LEGENDRE") + domcoeff = polydomcoeff([0, 5], "LEGENDRE") assert fitname == "legfit" - assert np.isclose(domcoeff(5), 63. / 8, rtol = 1e-5) - assert np.allclose(roots((1, 2, 3, 4)), + assert np.allclose(domcoeff, [1., 63. / 8], rtol = 1e-5) + assert np.allclose(polyroots((1, 2, 3, 4), "LEGENDRE"), np.array([-0.85099543, -0.11407192, 0.51506735]), rtol = 1e-5) - Phi = vander(np.arange(5), 4) + Phi = polyvander(np.arange(5), 4, "LEGENDRE") y = 2. * np.arange(5) cFit = customFit(Phi, y) assert np.allclose(cFit, [0, 2, 0, 0, 0], rtol = 1e-5) - assert np.allclose(val(np.arange(5), cFit), y, rtol = 1e-5) - assert np.allclose(valder(np.arange(5), cFit), 2. * np.ones(5), - rtol = 1e-5) + assert np.allclose(polyval(np.arange(5), cFit, "LEGENDRE"), y, rtol = 1e-5) + assert np.allclose(polyval(np.arange(5), cFit, "LEGENDRE", m = 1), + 2. * np.ones(5), rtol = 1e-5) + def test_monomial(): assert "MONOMIAL" in polybases - val = polyval["MONOMIAL"] - valder = polyvalder["MONOMIAL"] - vander = polyvander["MONOMIAL"] - fitname = polyfitname["MONOMIAL"] - roots = polyroots["MONOMIAL"] - domcoeff = polydomcoeff["MONOMIAL"] + fitname = polyfitname("MONOMIAL") + domcoeff = polydomcoeff(5, "MONOMIAL") assert fitname == "polyfit" - assert np.isclose(domcoeff(5), 1., rtol = 1e-5) - assert np.allclose(roots([0.+0.j, 1.+0.j, 0.+0.j, 1.+0.j]), + assert np.isclose(domcoeff, 1., rtol = 1e-5) + assert np.allclose(polyroots([0.+0.j, 1.+0.j, 0.+0.j, 1.+0.j], "MONOMIAL"), np.array([0., 1.j, -1.j]), rtol = 1e-5) - Phi = vander(np.arange(5), 4) + Phi = polyvander(np.arange(5), 4, "MONOMIAL") y = 2. * np.arange(5) cFit = customFit(Phi, y) assert np.allclose(cFit, [0, 2, 0, 0, 0], rtol = 1e-5) - assert np.allclose(val(np.arange(5), cFit), y, rtol = 1e-5) - assert np.allclose(valder(np.arange(5), cFit), 2. * np.ones(5), - rtol = 1e-5) + assert np.allclose(polyval(np.arange(5), cFit, "MONOMIAL"), y, rtol = 1e-5) + assert np.allclose(polyval(np.arange(5), cFit, "MONOMIAL", m = 1), + 2. * np.ones(5), rtol = 1e-5) def test_cheb_confluence(): - val = polyval["CHEBYSHEV"] - vander = polyvander["CHEBYSHEV"] - valder = polyvalder["CHEBYSHEV"] x = np.arange(5) - x[3] = 0 - Phi = vander(x, 4) - y = 2. * x + x = np.delete(x, 3) + Phi = polyvander(x, 4, "CHEBYSHEV", [[0, 1]] + [[0]] * 3, + reorder = [0, 2, 3, 1, 4]) + y = 2. * np.arange(5) y[3] = 2. cFit = customFit(Phi, y) - mask = np.arange(len(x)) != 3 + mask = np.arange(len(y)) != 3 assert np.allclose(cFit, [0, 2, 0, 0, 0], rtol = 1e-5) - assert np.allclose(val(x[mask], cFit), y[mask], rtol = 1e-5) - assert np.isclose(valder(x[~mask], cFit), y[~mask], rtol = 1e-5) + assert np.allclose(polyval(x, cFit, "CHEBYSHEV"), y[mask], + rtol = 1e-5) + assert np.allclose(polyval(x[0], cFit, "CHEBYSHEV", m = 1), y[~mask], + rtol = 1e-5) + +def test_mon_confluence_2d(): + x, _ = checkParameterList([[0, 0], [1, 1], [-1, -1]]) + y = np.array([3., 5., 1., 2., 12., -2.]).reshape((-1, 1)) # 3+y+5x+2xy+x2y + Phi = polyvander(x, [2, 1], "MONOMIAL", + [[[0, 0], [1, 0], [0, 1], [1, 1]]] + [[[0, 0]]] * 2) + cFit = customFit(Phi, y).reshape((3, 2)) + mask = np.array([0, 4, 5]) + assert np.allclose(cFit.flatten(), [3, 1, 5, 2, 0, 1], atol = 1e-5) + assert np.allclose(polyval(x, cFit, "MONOMIAL").flatten(), + y[mask].flatten(), rtol = 1e-5) + assert np.allclose(polyval([x[0]], cFit, "MONOMIAL", m = [1, 0]), y[1], + rtol = 1e-5) + assert np.allclose(polyval([x[0]], cFit, "MONOMIAL", m = [0, 1]), y[2], + rtol = 1e-5) + assert np.allclose(polyval([x[0]], cFit, "MONOMIAL", m = [1, 1]), y[3], + rtol = 1e-5) +def test_derivative_indices_4d(): + idxs = nextDerivativeIndices([], 4, 70) + idxMag = [np.sum(idx) for idx in idxs] + idxMagUnique, idxMagCount = np.unique(idxMag, return_counts = True) + idxMagCount = np.cumsum(idxMagCount) + assert np.allclose(idxMagUnique, np.arange(5), atol = 1e-10) + assert np.allclose(idxMagCount, [1, 5, 15, 35, 70], atol = 1e-10) diff --git a/tests/test_1_utilities/parameter_sampling.py b/tests/test_1_utilities/parameter_sampling.py index 111c708..6e08e73 100644 --- a/tests/test_1_utilities/parameter_sampling.py +++ b/tests/test_1_utilities/parameter_sampling.py @@ -1,48 +1,60 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from rrompy.parameter.parameter_sampling import (ManualSampler, QuadratureSampler, RandomSampler, FFTSampler) +from rrompy.parameter import checkParameter def test_manual(): sampler = ManualSampler(lims = [0., 3.], points = np.linspace(0, 3, 101), scaling = lambda x: np.power(x, 2.), scalingInv = lambda x: np.power(x, .5)) assert sampler.name() == "ManualSampler" - x, w = sampler.generatePoints(10) + x = sampler.generatePoints(10) assert np.allclose(x(0), np.linspace(0, 3, 101)[:10], rtol = 1e-5) - assert np.allclose(w, np.ones(10) * .9, rtol = 1e-5) def test_quadrature(): sampler = QuadratureSampler(lims = [0., 3.], kind = "CHEBYSHEV") - x, w = sampler.generatePoints(9) + x = sampler.generatePoints(9) assert np.isclose(x(0)[2], 1.5, rtol = 1e-5) - assert np.allclose(w, np.ones(9) / 3., rtol = 1e-5) def test_random(): sampler = RandomSampler(lims = [0., 3.], kind = "SOBOL") - x, w = sampler.generatePoints(100, seed = 13432) + x = sampler.generatePoints(100, seed = 13432) assert np.isclose(x(0)[47], 0.55609130859375, rtol = 1e-5) - assert np.allclose(w, np.ones(100) * .03, rtol = 1e-5) def test_fft(): sampler = FFTSampler(lims = [-1., 1.]) - x, w = sampler.generatePoints(100) + x = sampler.generatePoints(100) assert np.allclose(np.power(x(0), 100), 1., rtol = 1e-5) - assert np.allclose(w, np.ones(100) * .01, rtol = 1e-5) + +def test_2D(): + sampler = QuadratureSampler(lims = [(0., 0.), (3., 1.)], + kind = "GAUSSLEGENDRE") + x = sampler.generatePoints((9, 5)) + assert sum(np.isclose(x(0), 1.5)) == 5 + assert sum(np.isclose(x(1), .5)) == 9 + +def test_4D(): + sampler = RandomSampler(lims = [tuple([0.] * 4), tuple([1.] * 4)], + kind = "UNIFORM") + x = sampler.generatePoints(10, seed = 1234) + assert x.shape[1] == 4 + assert checkParameter([x[0]]) == checkParameter([(0.191519450378892, + 0.622108771039832, 0.437727739007115, 0.785358583713769)]) diff --git a/tests/test_1_utilities/sampling.py b/tests/test_1_utilities/sampling.py index d1cb2e6..f1b2975 100644 --- a/tests/test_1_utilities/sampling.py +++ b/tests/test_1_utilities/sampling.py @@ -1,75 +1,78 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import scipy.sparse as sp from rrompy.hfengines.base import MatrixEngineBase as MEB from rrompy.sampling.linear_problem import (SamplingEngineLinear, SamplingEngineLinearPOD) from rrompy.parameter import parameterList def test_krylov(): N = 100 - mu = tuple([10. + .5j]) + mu = 10. + .5j solver = MEB(verbosity = 0) + solver.npar = 1 solver.nAs = 2 solver.As = [sp.spdiags([np.arange(1, 1 + N)], [0], N, N), - sp.eye(N)] solver.nbs = 1 solver.bs = [np.exp(1.j * np.linspace(0, -np.pi, N))] samplingEngine = SamplingEngineLinear(solver, verbosity = 0) samples = samplingEngine.iterSample([mu] * 5).data assert samples.shape == (100, 5) assert np.isclose(np.linalg.norm(samples), 37.02294804524299, rtol = 1e-5) def test_distributed(): N = 100 mus = parameterList(np.linspace(5, 15, 11) + .5j) solver = MEB(verbosity = 0) + solver.npar = 1 solver.nAs = 2 solver.As = [sp.spdiags([np.arange(1, 1 + N)], [0], N, N), - sp.eye(N)] solver.nbs = 1 solver.bs = [np.exp(1.j * np.linspace(0, -np.pi, N))] samplingEngine = SamplingEngineLinear(solver, verbosity = 0) samples = samplingEngine.iterSample(mus).data assert samples.shape == (100, 11) assert np.isclose(np.linalg.norm(samples), 8.59778606421386, rtol = 1e-5) def test_distributed_pod(): N = 100 mus = np.linspace(5, 15, 11) + .5j solver = MEB(verbosity = 0) + solver.npar = 1 solver.nAs = 2 solver.As = [sp.spdiags([np.arange(1, 1 + N)], [0], N, N), - sp.eye(N)] solver.nbs = 1 solver.bs = [np.exp(1.j * np.linspace(0, -np.pi, N))] samplingEngine = SamplingEngineLinearPOD(solver, verbosity = 0) samples = samplingEngine.iterSample(mus).data assert samples.shape == (100, 11) assert np.isclose(np.linalg.norm(samples), 3.3166247903553994, rtol = 1e-5) assert np.isclose(np.linalg.cond(samples.conj().T.dot(samples)), 1., rtol = 1e-5) diff --git a/tests/test_2_hfengines/helmholtz_elasticity.py b/tests/test_2_hfengines/helmholtz_elasticity.py index 7ef1a98..85a2b14 100644 --- a/tests/test_2_hfengines/helmholtz_elasticity.py +++ b/tests/test_2_hfengines/helmholtz_elasticity.py @@ -1,66 +1,66 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from rrompy.hfengines.vector_linear_problem import ( LinearElasticityHelmholtzProblemEngine, LinearElasticityHelmholtzProblemEngineDamped, LinearElasticityHelmholtzArchwayFrequency) from rod_3d import rod3Dsolver def test_helmholtz_elastic_arch(): solver = LinearElasticityHelmholtzArchwayFrequency(kappa = 10, n = 30, rho_ = 1e4, T = 1e5, lambda_ = 4e6, mu_ = 7e5, R = 2e1, r = 1.5e1, verbosity = 0) mu = 10 - uh = solver.solve(mu) + uh = solver.solve(mu)[0] assert np.isclose(solver.norm(uh), 3188.9960782143194, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh, mu)), 3.025504915e-05, + assert np.isclose(solver.norm(solver.residual(uh, mu)[0]), 3.025504915e-05, rtol = 1e-1) def test_helmholtz_elastic_rod(): solverBase = rod3Dsolver() solver = LinearElasticityHelmholtzProblemEngine() solver.V = solverBase.V solver.lambda_ = solverBase.lambda_ solver.mu_ = solverBase.mu_ solver.forcingTerm = solverBase.forcingTerm solver.DirichletBoundary = solverBase.DirichletBoundary solver.NeumannBoundary = solverBase.NeumannBoundary mu = 10 - uh = solver.solve(mu) - assert np.isclose(solver.norm(uh), 0.17847395043115702, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh, 10)), 7.030048088e-08, + uh = solver.solve(mu)[0] + assert np.isclose(solver.norm(uh), 0.17836028624665373, rtol = 1e-5) + assert np.isclose(solver.norm(solver.residual(uh, 10)[0]), 7.030048088e-08, rtol = 1e-1) def test_helmholtz_elastic_rod_damped(): solverBase = rod3Dsolver() solver = LinearElasticityHelmholtzProblemEngineDamped() solver.V = solverBase.V solver.lambda_ = solverBase.lambda_ solver.mu_ = solverBase.mu_ solver.forcingTerm = solverBase.forcingTerm solver.DirichletBoundary = solverBase.DirichletBoundary solver.NeumannBoundary = solverBase.NeumannBoundary solver.eta = 10 mu = 10 - uh = solver.solve(mu) - assert np.isclose(solver.norm(uh), 0.17657773579415595, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh, 10)), 6.802444e-08, + uh = solver.solve(mu)[0] + assert np.isclose(solver.norm(uh), 0.17646530119044376, rtol = 1e-2) + assert np.isclose(solver.norm(solver.residual(uh, 10)[0]), 6.802444e-08, rtol = 1e-1) diff --git a/tests/test_2_hfengines/helmholtz_external.py b/tests/test_2_hfengines/helmholtz_external.py index 4ff624a..4dc418d 100644 --- a/tests/test_2_hfengines/helmholtz_external.py +++ b/tests/test_2_hfengines/helmholtz_external.py @@ -1,64 +1,64 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from rrompy.hfengines.linear_problem import ( HelmholtzCavityScatteringProblemEngine, HelmholtzBoxScatteringProblemEngine) def test_helmholtz_square_scattering(): solver = HelmholtzCavityScatteringProblemEngine(kappa = 4, gamma = 2., n = 20, verbosity = 0) mu = 5 - uh = solver.solve(mu) - assert np.isclose(solver.norm(uh), 20.719752682674923, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh, mu)), 4.25056407e-13, + uh = solver.solve(mu)[0] + assert np.isclose(solver.norm(uh), 20.719752682674923, rtol = 1e-2) + assert np.isclose(solver.norm(solver.residual(uh, mu)[0]), 4.25056407e-13, rtol = 1e-1) def test_helmholtz_scattering_copy(capsys): solver1 = HelmholtzCavityScatteringProblemEngine(kappa = 4, gamma = 2., n = 20, verbosity = 0) mu = 5 - uh1 = solver1.solve(mu) + uh1 = solver1.solve(mu)[0] solver2 = HelmholtzCavityScatteringProblemEngine(kappa = 4, gamma = 2., n = 20, verbosity = 100) assert solver1.As[0] is not None and solver1.bs[0] is not None assert solver2.As[0] is None and solver2.bs[0] is None solver2.setAs(solver1.As) solver2.setbs(solver1.bs) - uh2 = solver2.solve(mu) + uh2 = solver2.solve(mu)[0] assert np.allclose(uh1, uh2, rtol = 1e-8) out, err = capsys.readouterr() assert ("Assembling operator term" not in out and "Assembling forcing term" not in out) assert len(err) == 0 def test_helmholtz_box_scattering(): solver = HelmholtzBoxScatteringProblemEngine(R = 2, kappa = 10., theta = np.pi * 30 / 180, n = 20, verbosity = 0) mu = 15 - uh = solver.solve(mu) + uh = solver.solve(mu)[0] solver.plotmesh(show = False, figsize = (7, 7)) - assert np.isclose(solver.norm(uh), 63.98946657389119, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh, mu)), 9.62989935e-13, + assert np.isclose(solver.norm(uh), 63.98946657389119, rtol = 1e-2) + assert np.isclose(solver.norm(solver.residual(uh, mu)[0]), 9.62989935e-13, rtol = 1e-1) from matplotlib import pyplot as plt plt.close('all') diff --git a/tests/test_2_hfengines/helmholtz_internal.py b/tests/test_2_hfengines/helmholtz_internal.py index 305b39e..998fa6f 100644 --- a/tests/test_2_hfengines/helmholtz_internal.py +++ b/tests/test_2_hfengines/helmholtz_internal.py @@ -1,95 +1,95 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import os, shutil import numpy as np from rrompy.hfengines.linear_problem import ( HelmholtzSquareBubbleDomainProblemEngine, HelmholtzSquareBubbleProblemEngine, HelmholtzSquareTransmissionProblemEngine) def test_helmholtz_square_io(): solver = HelmholtzSquareBubbleProblemEngine(kappa = 4, theta = 1., n = 50, verbosity = 0) mu = 5 - uh = solver.solve(mu) + uh = solver.solve(mu)[0] assert np.isclose(solver.norm(uh), 70762597.99694124, rtol = 1e-3) - assert np.isclose(solver.norm(solver.residual(uh, mu)), 2.1855986e-06, + assert np.isclose(solver.norm(solver.residual(uh, mu)[0]), 2.1855986e-06, rtol = 1e-1) if not os.path.isdir("./.pytest_cache"): os.mkdir("./.pytest_cache") filesOut = [x for x in os.listdir("./.pytest_cache") if (x[-4:] == ".pvd" and x[:9] == "outSquare")] filesOutData = [x for x in os.listdir("./.pytest_cache") if (x[-4:] == ".vtu" and x[:9] == "outSquare")] for fileOut in filesOut: os.remove("./.pytest_cache/" + fileOut) for fileOut in filesOutData: os.remove("./.pytest_cache/" + fileOut) solver.outParaview(uh, what = ["MESH", "ABS"], filename = ".pytest_cache/outSquare", forceNewFile = False) filesOut = [x for x in os.listdir("./.pytest_cache") if (x[-4:] == ".pvd" and x[:9] == "outSquare")] filesOutData = [x for x in os.listdir("./.pytest_cache") if (x[-4:] == ".vtu" and x[:9] == "outSquare")] assert len(filesOut) == 1 assert len(filesOutData) == 1 os.remove("./.pytest_cache/" + filesOut[0]) os.remove("./.pytest_cache/" + filesOutData[0]) def test_helmholtz_transmission_io(): solver = HelmholtzSquareTransmissionProblemEngine(nT = 1, nB = 2, theta = np.pi * 40 / 180, kappa = 4., n = 50, verbosity = 0) mu = 5. - uh = solver.solve(mu) + uh = solver.solve(mu)[0] assert np.isclose(solver.norm(uh), 46.4528217234862, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh, mu)), 3.7288565e-12, + assert np.isclose(solver.norm(solver.residual(uh, mu)[0]), 3.7288565e-12, rtol = 1e-1) if not os.path.isdir("./.pytest_cache"): os.mkdir("./.pytest_cache") solver.outParaviewTimeDomain(uh, omega = mu, filename = ".pytest_cache/outTrans", forceNewFile = False, folder = True) filesOut = [x for x in os.listdir("./.pytest_cache/outTrans") if (x[-4:] == ".pvd" and x[:8] == "outTrans")] filesOutData = [x for x in os.listdir("./.pytest_cache/outTrans") if (x[-4:] == ".vtu" and x[:8] == "outTrans")] assert len(filesOut) == 1 assert len(filesOutData) == 20 shutil.rmtree("./.pytest_cache/outTrans") def test_helmholtz_domain_io(): solver = HelmholtzSquareBubbleDomainProblemEngine(kappa = 4, theta = 1., - n = 50, mu0 = 1.5, verbosity = 0) + n = 20, mu0 = 1.5, verbosity = 0) mu = 1.5 - uh = solver.solve(mu) + uh = solver.solve(mu)[0] if not os.path.isdir("./.pytest_cache"): os.mkdir("./.pytest_cache") solver.plot(uh, save = "./.pytest_cache/outDomain", show = False) filesOut = [x for x in os.listdir("./.pytest_cache") if (x[-4:] == ".eps" and x[:9] == "outDomain")] assert len(filesOut) == 1 os.remove("./.pytest_cache/" + filesOut[0]) - assert np.isclose(solver.norm(uh), 263.91673976964546, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh, mu)), 1.734638595e-11, + assert np.isclose(solver.norm(uh), 9.408738562323533, rtol = 1e-2) + assert np.isclose(solver.norm(solver.residual(uh, mu)[0]), 6.14454989e-13, rtol = 1e-1) diff --git a/tests/test_2_hfengines/laplace.py b/tests/test_2_hfengines/laplace.py index 5ba45a2..8bd21f7 100644 --- a/tests/test_2_hfengines/laplace.py +++ b/tests/test_2_hfengines/laplace.py @@ -1,40 +1,39 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np -from rrompy.hfengines.linear_problem import (LaplaceDiskGaussian, - LaplaceDiskGaussian2) +from rrompy.hfengines.linear_problem import LaplaceDiskGaussian +from rrompy.hfengines.linear_problem.bidimensional import LaplaceDiskGaussian2 def test_laplace_disk(): solver = LaplaceDiskGaussian(n = 20, verbosity = 0) mu = 1.5 solver.setSolver("BICG", {"tol" : 1e-15}) - uh = solver.solve(mu) - assert np.isclose(solver.norm(uh), 1.0534030774205372, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh, mu)), 5.27345e-13, + uh = solver.solve(mu)[0] + assert np.isclose(solver.norm(uh), 1.053403077447029, rtol = 1e-2) + assert np.isclose(solver.norm(solver.residual(uh, mu)[0]), 5.27345e-13, rtol = 1e-1) def test_laplace_disk_2(): solver = LaplaceDiskGaussian2(n = 20, verbosity = 0) - mu = tuple([0., 1.5]) - uh = solver.solve(mu) - assert np.isclose(solver.norm(uh), 1.0534030774205372, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh, mu)), 5.27345e-13, + mu = [[0., 1.5]] + mu = [0., 1.5] + uh = solver.solve(mu)[0] + assert np.isclose(solver.norm(uh), 1.0534030774205372, rtol = 1e-2) + assert np.isclose(solver.norm(solver.residual(uh, mu)[0]), 5.27345e-13, rtol = 1e-1) - - diff --git a/tests/test_2_hfengines/linear_elasticity.py b/tests/test_2_hfengines/linear_elasticity.py index 96abb49..0ef3355 100644 --- a/tests/test_2_hfengines/linear_elasticity.py +++ b/tests/test_2_hfengines/linear_elasticity.py @@ -1,39 +1,38 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from rrompy.hfengines.vector_linear_problem import ( LinearElasticityBeamPoissonRatio) from rod_3d import rod3Dsolver def test_elastic_beam(): solver = LinearElasticityBeamPoissonRatio(n = 10, rho_ = 1e3, g = 3, E = 1e6, nu0 = .45, length = 5, verbosity = 0) mu = .45 - uh = solver.solve(mu) - assert np.isclose(solver.norm(uh), 58.54349189072907, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh, mu)), 8.4545952e-13, + uh = solver.solve(mu)[0] + assert np.isclose(solver.norm(uh), 7.637337113310191e-08, rtol = 1e-1) + assert np.isclose(solver.norm(solver.residual(uh, mu)[0]), 8.4545952e-13, rtol = 1e-1) def test_elastic_rod(): solver = rod3Dsolver() - uh = solver.solve() + uh = solver.solve()[0] assert np.isclose(solver.norm(uh), 0.15563476339534466, rtol = 1e-5) - assert np.isclose(solver.norm(solver.residual(uh)), 5.708389944e-08, + assert np.isclose(solver.norm(solver.residual(uh)[0]), 5.708389944e-08, rtol = 1e-1) - diff --git a/tests/test_2_hfengines/matrix.py b/tests/test_2_hfengines/matrix.py index 2baf9c8..db2f54a 100644 --- a/tests/test_2_hfengines/matrix.py +++ b/tests/test_2_hfengines/matrix.py @@ -1,60 +1,62 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import scipy.sparse as sp from rrompy.hfengines.base import MatrixEngineBase as MEB def test_deterministic(): N = 100 verb = 0 solver = MEB(verbosity = verb) + solver.npar = 1 solver.nAs = 2 mu = 10. + .5j solver.As = [sp.spdiags([np.arange(1, 1 + N)], [0], N, N), - sp.eye(N)] solver.nbs = 1 solver.bs = [np.exp(1.j * np.linspace(0, -np.pi, N))] - uh = solver.solve(mu) - assert np.isclose(np.linalg.norm(solver.residual(uh, mu)), 1.088e-15, + uh = solver.solve(mu)[0] + assert np.isclose(np.linalg.norm(solver.residual(uh, mu)[0]), 1.088e-15, rtol = 1e-1) def test_random(): N = 100 verb = 0 solver = MEB(verbosity = verb) + solver.npar = 1 solver.nAs = 2 mu = 1. + .5j np.random.seed(420) solver.setSolver("SOLVE") fftB = np.fft.fft(np.eye(N)) * N**-.5 solver.As = [fftB.dot(np.multiply(np.arange(1, 1 + N), fftB.conj()).T), - np.eye(N)] solver.nbs = 1 solver.bs = [np.random.randn(N) + 1.j * np.random.randn(N)] - uh = solver.solve(mu) + uh = solver.solve(mu)[0] - assert np.isclose(np.linalg.norm(solver.residual(uh, mu)), 7.18658e-14, + assert np.isclose(np.linalg.norm(solver.residual(uh, mu)[0]), 7.18658e-14, rtol = 1e-1) diff --git a/tests/test_3_reduction_methods/matrix_fft.py b/tests/test_3_reduction_methods_1D/matrix_fft.py similarity index 96% copy from tests/test_3_reduction_methods/matrix_fft.py copy to tests/test_3_reduction_methods_1D/matrix_fft.py index cb54bd9..d5ea4c0 100644 --- a/tests/test_3_reduction_methods/matrix_fft.py +++ b/tests/test_3_reduction_methods_1D/matrix_fft.py @@ -1,33 +1,35 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from rrompy.hfengines.base import MatrixEngineBase as MEB def matrixFFT(): N = 100 solver = MEB(verbosity = 0) np.random.seed(420) solver.setSolver("SOLVE") fftB = np.fft.fft(np.eye(N)) * N**-.5 + solver.npar = 1 + solver.mu0 = 0. solver.nAs = 2 solver.As = [fftB.dot(np.multiply(np.arange(1, 1 + N), fftB.conj()).T), - np.eye(N)] solver.nbs = 1 solver.bs = [np.random.randn(N) + 1.j * np.random.randn(N)] return solver diff --git a/tests/test_3_reduction_methods/rational_interpolant.py b/tests/test_3_reduction_methods_1D/rational_interpolant_1d.py similarity index 81% rename from tests/test_3_reduction_methods/rational_interpolant.py rename to tests/test_3_reduction_methods_1D/rational_interpolant_1d.py index 6deef18..908c8f7 100644 --- a/tests/test_3_reduction_methods/rational_interpolant.py +++ b/tests/test_3_reduction_methods_1D/rational_interpolant_1d.py @@ -1,69 +1,69 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from matrix_fft import matrixFFT from rrompy.reduction_methods.distributed import RationalInterpolant as RI from rrompy.parameter.parameter_sampling import (QuadratureSampler as QS, ManualSampler as MS) +from rrompy.parameter import checkParameterList def test_monomials(capsys): mu = 1.5 solver = matrixFFT() params = {"POD": False, "M": 9, "N": 9, "S": 10, "robustTol": 1e-6, "interpRcond": 1e-3, "polybasis": "MONOMIAL", - "sampler": QS([1.5, 6.5], "UNIFORM")} + "sampler": QS([1.5, 6.5], "UNIFORM"), "muBounds":[1.5, 6.5]} approx = RI(solver, 4., params, verbosity = 0) approx.setupApprox() out, err = capsys.readouterr() - assert (("poorly conditioned.\nReducing N from 9 to" in out) - and ("eigenvalues below tolerance. Reducing N from" in out)) + assert (("poorly conditioned. Reducing M " in out) + and ("eigenvalues below tolerance. Reducing N " in out)) assert len(err) == 0 - assert np.isclose(approx.normErr(mu), .00773727, rtol = 1e-3) + assert np.isclose(approx.normErr(mu)[0], 8e-5, atol = 1e-4) def test_well_cond(): mu = 1.5 solver = matrixFFT() params = {"POD": True, "M": 9, "N": 9, "S": 10, "robustTol": 1e-14, "interpRcond": 1e-10, "polybasis": "CHEBYSHEV", "sampler": QS([1., 7.], "CHEBYSHEV")} approx = RI(solver, 4., params, verbosity = 0) approx.setupApprox() - for mu in approx.mus: - assert np.isclose(approx.normErr(mu), 0., atol = 1e-8) poles = approx.getPoles() for lambda_ in np.arange(1, 8): assert np.isclose(np.min(np.abs(poles - lambda_)), 0., atol = 1e-4) + for mu in approx.mus: + assert np.isclose(approx.normErr(mu)[0], 0., atol = 1e-8) def test_hermite(): mu = 1.5 solver = matrixFFT() sampler0 = QS([1., 7.], "CHEBYSHEV") - points = np.tile(sampler0.generatePoints(4)[0], 3) + points, _ = checkParameterList(np.tile(sampler0.generatePoints(4)(0), 3)) params = {"POD": True, "M": 11, "N": 11, "S": 12, "polybasis": "CHEBYSHEV", "sampler": MS([1., 7.], points = points)} approx = RI(solver, 4., params, verbosity = 0) approx.setupApprox() - for mu in approx.mus: - assert np.isclose(approx.normErr(mu), 0., atol = 1e-8) poles = approx.getPoles() for lambda_ in np.arange(1, 8): assert np.isclose(np.min(np.abs(poles - lambda_)), 0., atol = 1e-4) + for mu in approx.mus: + assert np.isclose(approx.normErr(mu)[0], 0., atol = 1e-8) -#_multistorage diff --git a/tests/test_3_reduction_methods/rational_interpolant_greedy.py b/tests/test_3_reduction_methods_1D/rational_interpolant_greedy_1d.py similarity index 88% rename from tests/test_3_reduction_methods/rational_interpolant_greedy.py rename to tests/test_3_reduction_methods_1D/rational_interpolant_greedy_1d.py index 4f42c73..78bbf2c 100644 --- a/tests/test_3_reduction_methods/rational_interpolant_greedy.py +++ b/tests/test_3_reduction_methods_1D/rational_interpolant_greedy_1d.py @@ -1,87 +1,89 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from matrix_fft import matrixFFT from rrompy.reduction_methods.distributed_greedy import \ RationalInterpolantGreedy as RIG def test_lax_tolerance(capsys): + mu = 2.25 solver = matrixFFT() - params = {"POD": True, "muBounds": [1.5, 6.5], "S": 4, + params = {"POD": True, "muBounds": [1.5, 6.5], "S": 5, "polybasis": "CHEBYSHEV", "greedyTol": 1e-2, "errorEstimatorKind": "bare"} approx = RIG(solver, 4., params, verbosity = 10) approx.greedy() out, err = capsys.readouterr() - assert "Done computing snapshots (final snapshot count: 10)." in out + assert "Done computing snapshots (final snapshot count: 16)." in out assert len(err) == 0 - assert np.isclose(approx.normErr(0), .0077041389, rtol = 1e-3) + assert np.isclose(approx.normErr(mu)[0], 3.534746e-3, rtol = 1e-1) def test_samples_at_poles(): solver = matrixFFT() params = {"POD": True, "muBounds": [1.5, 6.5], "S": 4, "nTestPoints": 100, "polybasis": "CHEBYSHEV", "greedyTol": 1e-5, "errorEstimatorKind": "exact"} approx = RIG(solver, 4., params, verbosity = 0) approx.greedy() for mu in approx.mus: - assert np.isclose(approx.normErr(mu) / (1e-15 + approx.normHF(mu)), + assert np.isclose(approx.normErr(mu)[0] / (1e-15+approx.normHF(mu)[0]), 0., atol = 1e-4) poles = approx.getPoles() for lambda_ in range(2, 7): assert np.isclose(np.min(np.abs(poles - lambda_)), 0., atol = 1e-3) assert np.isclose(np.min(np.abs(np.array(approx.mus(0)) - lambda_)), 0., atol = 1e-1) def test_maxIter(): solver = matrixFFT() params = {"POD": True, "muBounds": [1.5, 6.5], "S": 5, "nTestPoints": 500, "polybasis": "CHEBYSHEV", "greedyTol": 1e-6, "maxIter": 10, "errorEstimatorKind": "basic"} approx = RIG(solver, 4., params, verbosity = 0) approx.input = lambda: "N" approx.greedy() assert len(approx.mus) == 10 _, _, maxEst = approx.getMaxErrorEstimator(approx.muTest) assert maxEst > 1e-6 def test_load_copy(capsys): mu = 3. solver = matrixFFT() params = {"POD": True, "muBounds": [1.5, 6.5], "S": 4, "nTestPoints": 100, "polybasis": "CHEBYSHEV", "greedyTol": 1e-5, "errorEstimatorKind": "exact"} approx1 = RIG(solver, 4., params, verbosity = 100) approx1.greedy() - err1 = approx1.normErr(mu) + err1 = approx1.normErr(mu)[0] out, err = capsys.readouterr() assert "Solving HF model for mu =" in out assert len(err) == 0 approx2 = RIG(solver, 4., params, verbosity = 100) - approx2.setApprox(approx1) + approx2.setTrainedModel(approx1) approx2.setHF(mu, approx1.uHF) - err2 = approx2.normErr(mu) + err2 = approx2.normErr(mu)[0] out, err = capsys.readouterr() assert "Solving HF model for mu =" not in out assert len(err) == 0 assert np.isclose(err1, err2, rtol = 1e-10) + diff --git a/tests/test_3_reduction_methods/rational_pade.py b/tests/test_3_reduction_methods_1D/rational_pade_1d.py similarity index 72% rename from tests/test_3_reduction_methods/rational_pade.py rename to tests/test_3_reduction_methods_1D/rational_pade_1d.py index 9e7bdf2..79e189f 100644 --- a/tests/test_3_reduction_methods/rational_pade.py +++ b/tests/test_3_reduction_methods_1D/rational_pade_1d.py @@ -1,92 +1,86 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import os import numpy as np from matrix_fft import matrixFFT from rrompy.reduction_methods.centered import RationalPade as RP -def test_rho(capsys): +def test_rho(): mu = 1.5 mu0 = 2. + 1.j solver = matrixFFT() - uh = solver.solve(mu) - params = {"POD": False, "rho": 3., "M": 4, "N": 5, "E": 10, - "robustTol": 1e-6} + uh = solver.solve(mu)[0] + params = {"POD": False, "M": 9, "N": 10, "S": 11, "robustTol": 1e-6} approx = RP(solver, mu0, params, verbosity = 0) approx.setupApprox() - out, err = capsys.readouterr() - assert ("Smallest 2 eigenvalues below tolerance. Reducing N from 5 to 4 " - "and E from 10 to 9.") in out - assert len(err) == 0 - if not os.path.isdir("./.pytest_cache"): os.mkdir("./.pytest_cache") filesOut = [x for x in os.listdir("./.pytest_cache") if - (x[-4:] == ".pkl" and x[:6] == "outRho")] + (x[-4:] == ".pkl" and x[:6] == "outPad")] for fileOut in filesOut: os.remove("./.pytest_cache/" + fileOut) - fileStored = approx.storeTrainedModel(".pytest_cache/outRho") + fileStored = approx.storeTrainedModel(".pytest_cache/outPad") filesOut = [x for x in os.listdir("./.pytest_cache") if - (x[-4:] == ".pkl" and x[:6] == "outRho")] + (x[-4:] == ".pkl" and x[:6] == "outPad")] assert len(filesOut) == 1 assert filesOut[0] == fileStored[- len(filesOut[0]) :] - uhP1 = approx.getApprox(mu) - errP = approx.getErr(mu) - errNP = approx.normErr(mu) + uhP1 = approx.getApprox(mu)[0] + errP = approx.getErr(mu)[0] + errNP = approx.normErr(mu)[0] myerrP = uhP1 - uh assert np.allclose(np.abs(errP - myerrP), 0., rtol = 1e-3) assert np.isclose(solver.norm(errP), errNP, rtol = 1e-3) - resP = approx.getRes(mu) + resP = approx.getRes(mu)[0] resNP = approx.normRes(mu) assert np.isclose(solver.norm(resP), resNP, rtol = 1e-3) assert np.allclose(np.abs(resP - (solver.b(mu) - solver.A(mu).dot(uhP1))), 0., rtol = 1e-3) del approx - approx = RP(solver, mu0, {"E": 3}, verbosity = 0) + approx = RP(solver, mu0, {"S": 3}, verbosity = 0) approx.loadTrainedModel(fileStored) for fileOut in filesOut: os.remove("./.pytest_cache/" + fileOut) - uhP2 = approx.getApprox(mu) + uhP2 = approx.getApprox(mu)[0] assert np.allclose(np.abs(uhP1 - uhP2), 0., rtol = 1e-3) def test_E_warn(capsys): mu = 1.5 mu0 = 2. + 1.j solver = matrixFFT() - uh = solver.solve(mu) - params = {"POD": True, "rho": 3., "M": 4, "N": 5, "E": 2} + uh = solver.solve(mu)[0] + params = {"POD": True, "M": 14, "N": 15, "S": 10} approx = RP(solver, mu0, params, verbosity = 0) approx.setupApprox() out, err = capsys.readouterr() - assert "Prescribed E is too small. Updating E to M + N." in out + assert "Prescribed S is too small. Decreasing M." in out + assert "Prescribed S is too small. Decreasing N." in out assert len(err) == 0 - uhP = approx.getApprox(mu) - errP = approx.getErr(mu) - errNP = approx.normErr(mu) + uhP = approx.getApprox(mu)[0] + errP = approx.getErr(mu)[0] + errNP = approx.normErr(mu)[0] assert np.allclose(np.abs(errP - (uhP - uh)), 0., rtol = 1e-3) - assert np.isclose(errNP, 0.1372966, rtol = 1e-1) + assert np.isclose(errNP, 3.5197568e-07, rtol = 1e-1) poles, ress = approx.getResidues() condres = np.linalg.cond(solver.innerProduct(ress, ress)) - assert np.isclose(condres, 36.63625, rtol = 1e-3) + assert np.isclose(condres, 192.1791778, rtol = 1e-3) - assert np.isclose(np.min(np.abs(poles - 2.)), 0., atol = 1e-5) - assert np.isclose(np.min(np.abs(poles - 1.)), 0., atol = 1e-3) - assert np.isclose(np.min(np.abs(poles - 3.)), 0., atol = 1e-3) - + assert np.isclose(np.min(np.abs(poles - 2.)), 0., atol = 1e-3) + assert np.isclose(np.min(np.abs(poles - 1.)), 0., atol = 1e-2) + assert np.isclose(np.min(np.abs(poles - 3.)), 0., atol = 1e-2) diff --git a/tests/test_3_reduction_methods/rb_centered.py b/tests/test_3_reduction_methods_1D/rb_centered_1d.py similarity index 81% copy from tests/test_3_reduction_methods/rb_centered.py copy to tests/test_3_reduction_methods_1D/rb_centered_1d.py index 070c58f..717b5b2 100644 --- a/tests/test_3_reduction_methods/rb_centered.py +++ b/tests/test_3_reduction_methods_1D/rb_centered_1d.py @@ -1,70 +1,69 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from matrix_fft import matrixFFT from rrompy.reduction_methods.centered import RBCentered as RBC def test_R(): mu = 1.5 mu0 = 2. + 1.j solver = matrixFFT() - uh = solver.solve(mu) - params = {"POD": True, "R": 5, "E": 10} + uh = solver.solve(mu)[0] + params = {"POD": True, "R": 5, "S": 10} approx = RBC(solver, mu0, params, verbosity = 0) approx.setupApprox() - uhP = approx.getApprox(mu) - errP = approx.getErr(mu) - errNP = approx.normErr(mu) + uhP = approx.getApprox(mu)[0] + errP = approx.getErr(mu)[0] + _ = approx.normErr(mu)[0] assert np.allclose(np.abs(errP - (uhP - uh)), 0., rtol = 1e-3) -# assert np.isclose(errNP, 0.023691832, rtol = 1e-1) poles = approx.getPoles() assert np.isclose(np.min(np.abs(poles - 2.)), 0., atol = 1e-4) assert np.isclose(np.min(np.abs(poles - 1.)), 0., atol = 1e-2) assert np.isclose(np.min(np.abs(poles - 3.)), 0., atol = 1e-2) def test_moments(): mu0 = 2. + 1.j solver = matrixFFT() - params = {"POD": True, "E": 10} + params = {"POD": True, "S": 10} approx = RBC(solver, mu0, params, verbosity = 0) approx.setupApprox() - assert np.isclose(approx.normErr(mu0), 0., atol = 1e-10) + assert np.isclose(approx.normErr(mu0)[0], 0., atol = 1e-10) def test_load_copy(capsys): mu = 1.5 mu0 = 2. + 1.j solver = matrixFFT() - params = {"POD": True, "E": 10} + params = {"POD": True, "S": 10} approx1 = RBC(solver, mu0, params, verbosity = 100) approx1.setupApprox() - err1 = approx1.normErr(mu) + err1 = approx1.normErr(mu)[0] out, err = capsys.readouterr() assert "Solving HF model for mu =" in out assert len(err) == 0 approx2 = RBC(solver, mu0, params, verbosity = 100) - approx2.setApprox(approx1.trainedModel) + approx2.setTrainedModel(approx1.trainedModel) approx2.setHF(mu, approx1.uHF) - err2 = approx2.normErr(mu) + err2 = approx2.normErr(mu)[0] out, err = capsys.readouterr() assert "Solving HF model for mu =" not in out assert len(err) == 0 assert np.isclose(err1, err2, rtol = 1e-10) diff --git a/tests/test_3_reduction_methods/rb_distributed.py b/tests/test_3_reduction_methods_1D/rb_distributed_1d.py similarity index 81% copy from tests/test_3_reduction_methods/rb_distributed.py copy to tests/test_3_reduction_methods_1D/rb_distributed_1d.py index c2ba16f..3b1f288 100644 --- a/tests/test_3_reduction_methods/rb_distributed.py +++ b/tests/test_3_reduction_methods_1D/rb_distributed_1d.py @@ -1,56 +1,57 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from matrix_fft import matrixFFT from rrompy.reduction_methods.distributed import RBDistributed as RBD from rrompy.parameter.parameter_sampling import (QuadratureSampler as QS, ManualSampler as MS) +from rrompy.parameter import checkParameterList -def test_LS(capsys): +def test_LS(): solver = matrixFFT() params = {"POD": True, "R": 5, "S": 10, "sampler": QS([1., 7.], "CHEBYSHEV")} approx = RBD(solver, 4., params, verbosity = 0) approx.setupApprox() for mu in approx.mus: - assert not np.isclose(approx.normErr(mu), 0., atol = 1e-7) + assert not np.isclose(approx.normErr(mu)[0], 0., atol = 1e-7) approx.POD = False approx.setupApprox() for mu in approx.mus[approx.R :]: - assert not np.isclose(approx.normErr(mu), 0., atol = 1e-3) + assert not np.isclose(approx.normErr(mu)[0], 0., atol = 1e-3) def test_interp(): solver = matrixFFT() params = {"POD": False, "S": 10, "sampler": QS([1., 7.], "CHEBYSHEV")} approx = RBD(solver, 4., params, verbosity = 0) approx.setupApprox() for mu in approx.mus: - assert np.isclose(approx.normErr(mu), 0., atol = 1e-7) + assert np.isclose(approx.normErr(mu)[0], 0., atol = 1e-7) def test_hermite(): mu = 1.5 solver = matrixFFT() sampler0 = QS([1., 7.], "CHEBYSHEV") - points = np.tile(sampler0.generatePoints(4)[0], 3) + points, _ = checkParameterList(np.tile(sampler0.generatePoints(4)(0), 3)) params = {"POD": True, "S": 12, "sampler": MS([1., 7.], points = points)} approx = RBD(solver, 4., params, verbosity = 0) approx.setupApprox() for mu in approx.mus: - assert np.isclose(approx.normErr(mu), 0., atol = 1e-8) + assert np.isclose(approx.normErr(mu)[0], 0., atol = 1e-8) diff --git a/tests/test_3_reduction_methods/rb_distributed_greedy.py b/tests/test_3_reduction_methods_1D/rb_distributed_greedy_1d.py similarity index 92% rename from tests/test_3_reduction_methods/rb_distributed_greedy.py rename to tests/test_3_reduction_methods_1D/rb_distributed_greedy_1d.py index 8ded677..52fb7a3 100644 --- a/tests/test_3_reduction_methods/rb_distributed_greedy.py +++ b/tests/test_3_reduction_methods_1D/rb_distributed_greedy_1d.py @@ -1,55 +1,56 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from matrix_fft import matrixFFT from rrompy.reduction_methods.distributed_greedy import RBDistributedGreedy \ as RBDG def test_lax_tolerance(capsys): + mu = 2.25 solver = matrixFFT() params = {"POD": True, "muBounds": [1.5, 6.5], "S": 4, "greedyTol": 1e-2} approx = RBDG(solver, 4., params, verbosity = 10) approx.greedy() out, err = capsys.readouterr() assert "Done computing snapshots (final snapshot count: 10)." in out assert len(err) == 0 assert len(approx.mus) == 10 _, _, maxEst = approx.getMaxErrorEstimator(approx.muTest) assert maxEst < 1e-2 - assert np.isclose(approx.normErr(0), .001776801, rtol = 1e-3) + assert np.isclose(approx.normErr(mu)[0], 1.5056e-05, rtol = 1e-1) def test_samples_at_poles(): solver = matrixFFT() params = {"POD": True, "muBounds": [1.5, 6.5], "S": 4, "nTestPoints": 100, "greedyTol": 1e-5} approx = RBDG(solver, 4., params, verbosity = 0) approx.greedy() for mu in approx.mus: - assert np.isclose(approx.normErr(mu) / (1e-15 + approx.normHF(mu)), + assert np.isclose(approx.normErr(mu)[0] / (1e-15+approx.normHF(mu)[0]), 0., atol = 1e-4) poles = approx.getPoles() for lambda_ in range(2, 7): assert np.isclose(np.min(np.abs(poles - lambda_)), 0., atol = 1e-3) assert np.isclose(np.min(np.abs(np.array(approx.mus(0)) - lambda_)), 0., atol = 1e-1) diff --git a/tests/test_3_reduction_methods/matrix_fft.py b/tests/test_4_reduction_methods_multiD/matrix_random.py similarity index 73% rename from tests/test_3_reduction_methods/matrix_fft.py rename to tests/test_4_reduction_methods_multiD/matrix_random.py index cb54bd9..c82fad7 100644 --- a/tests/test_3_reduction_methods/matrix_fft.py +++ b/tests/test_4_reduction_methods_multiD/matrix_random.py @@ -1,33 +1,38 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np from rrompy.hfengines.base import MatrixEngineBase as MEB -def matrixFFT(): +def matrixRandom(): N = 100 solver = MEB(verbosity = 0) np.random.seed(420) solver.setSolver("SOLVE") - fftB = np.fft.fft(np.eye(N)) * N**-.5 - solver.nAs = 2 - solver.As = [fftB.dot(np.multiply(np.arange(1, 1 + N), fftB.conj()).T), - - np.eye(N)] + solver.npar = 2 + solver.mu0 = [0., 0.] + solver.nAs = 3 + d1 = np.random.randn(N) + Q1, _ = np.linalg.qr(np.random.randn(N, N)) + d2 = np.random.randn(N) + Q2, _ = np.linalg.qr(np.random.randn(N, N)) + solver.As = [np.eye(N), Q1.dot(np.multiply(d1, Q1.conj()).T), + Q2.dot(np.multiply(d2, Q2.conj()).T)] solver.nbs = 1 solver.bs = [np.random.randn(N) + 1.j * np.random.randn(N)] return solver diff --git a/tests/test_4_reduction_methods_multiD/rational_interpolant_2d.py b/tests/test_4_reduction_methods_multiD/rational_interpolant_2d.py new file mode 100644 index 0000000..ed14275 --- /dev/null +++ b/tests/test_4_reduction_methods_multiD/rational_interpolant_2d.py @@ -0,0 +1,77 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +import numpy as np +from matrix_random import matrixRandom +from rrompy.reduction_methods.distributed import RationalInterpolant as RI +from rrompy.parameter.parameter_sampling import (QuadratureSampler as QS, + ManualSampler as MS) + +def test_monomials(capsys): + mu = [5.05, 7.1] + mu0 = [5., 7.] + solver = matrixRandom() + uh = solver.solve(mu)[0] + params = {"POD": False, "M": 4, "N": 4, "S": [4, 4], "robustTol": 1e-6, + "interpRcond": 1e-3, "polybasis": "MONOMIAL", + "sampler": QS([[4.9, 6.85], [5.1, 7.15]], "UNIFORM")} + approx = RI(solver, mu0, params, verbosity = 0) + approx.setupApprox() + + uhP1 = approx.getApprox(mu)[0] + errP = approx.getErr(mu)[0] + errNP = approx.normErr(mu)[0] + myerrP = uhP1 - uh + assert np.allclose(np.abs(errP - myerrP), 0., rtol = 1e-3) + assert np.isclose(solver.norm(errP), errNP, rtol = 1e-3) + resP = approx.getRes(mu)[0] + resNP = approx.normRes(mu) + assert np.isclose(solver.norm(resP), resNP, rtol = 1e-3) + assert np.allclose(np.abs(resP - (solver.b(mu) - solver.A(mu).dot(uhP1))), + 0., rtol = 1e-3) + assert np.isclose(errNP / solver.norm(uh), 7.537e-4, rtol = 1e-1) + + out, err = capsys.readouterr() + assert ("poorly conditioned. Reducing M" in out) + assert len(err) == 0 + +def test_well_cond(): + mu = [5.05, 7.1] + mu0 = [5., 7.] + solver = matrixRandom() + params = {"POD": True, "M": 3, "N": 3, "S": [4, 4], + "interpRcond": 1e-10, "polybasis": "CHEBYSHEV", + "sampler": QS([[4.9, 6.85], [5.1, 7.15]], "UNIFORM")} + approx = RI(solver, mu0, params, verbosity = 0) + approx.setupApprox() + print(approx.normErr(mu)[0] / approx.normHF(mu)[0]) + assert np.isclose(approx.normErr(mu)[0] / approx.normHF(mu)[0], + 8.46624e-3, rtol = 1e-1) + +def test_hermite(): + mu = [5.05, 7.1] + mu0 = [5., 7.] + solver = matrixRandom() + sampler0 = QS([[4.9, 6.85], [5.1, 7.15]], "UNIFORM") + params = {"POD": True, "M": 3, "N": 3, "S": [25], "polybasis": "CHEBYSHEV", + "sampler": MS([[4.9, 6.85], [5.1, 7.15]], + points = sampler0.generatePoints([3, 3]))} + approx = RI(solver, mu0, params, verbosity = 0) + approx.setupApprox() + assert np.isclose(approx.normErr(mu)[0] / approx.normHF(mu)[0], + 1.449341e-4, rtol = 1e-1) diff --git a/tests/test_4_reduction_methods_multiD/rational_pade_2d.py b/tests/test_4_reduction_methods_multiD/rational_pade_2d.py new file mode 100644 index 0000000..5dc7977 --- /dev/null +++ b/tests/test_4_reduction_methods_multiD/rational_pade_2d.py @@ -0,0 +1,64 @@ +# Copyright (C) 2018 by the RROMPy authors +# +# This file is part of RROMPy. +# +# RROMPy is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# RROMPy is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with RROMPy. If not, see <http://www.gnu.org/licenses/>. +# + +import numpy as np +from matrix_random import matrixRandom +from rrompy.reduction_methods.centered import RationalPade as RP + +def test_rho(): + mu = [5.5, 7.5] + mu0 = [5., 7.] + solver = matrixRandom() + uh = solver.solve(mu)[0] + params = {"POD": False, "M": 3, "N": 3, "S": 10, "robustTol": 1e-6} + approx = RP(solver, mu0, params, verbosity = 0) + approx.setupApprox() + + uhP1 = approx.getApprox(mu)[0] + errP = approx.getErr(mu)[0] + errNP = approx.normErr(mu)[0] + myerrP = uhP1 - uh + assert np.allclose(np.abs(errP - myerrP), 0., rtol = 1e-3) + assert np.isclose(solver.norm(errP), errNP, rtol = 1e-3) + resP = approx.getRes(mu)[0] + resNP = approx.normRes(mu) + assert np.isclose(solver.norm(resP), resNP, rtol = 1e-3) + assert np.allclose(np.abs(resP - (solver.b(mu) - solver.A(mu).dot(uhP1))), + 0., rtol = 1e-3) + +def test_E_warn(capsys): + mu = [5.5, 7.5] + mu0 = [5., 7.] + solver = matrixRandom() + uh = solver.solve(mu)[0] + params = {"POD": True, "M": 3, "N": 4, "S": 10} + approx = RP(solver, mu0, params, verbosity = 0) + approx.setupApprox() + + out, err = capsys.readouterr() + assert "Prescribed S is too small. Decreasing M" not in out + assert "Prescribed S is too small. Decreasing N" in out + assert len(err) == 0 + + uhP = approx.getApprox(mu)[0] + uhNP = approx.normApprox(mu)[0] + errP = approx.getErr(mu)[0] + errNP = approx.normErr(mu)[0] + assert np.allclose(np.abs(errP - (uhP - uh)), 0., rtol = 1e-3) + assert np.isclose(errNP / uhNP, .9302, rtol = 1e-1) + diff --git a/tests/test_3_reduction_methods/rb_centered.py b/tests/test_4_reduction_methods_multiD/rb_centered_2d.py similarity index 63% rename from tests/test_3_reduction_methods/rb_centered.py rename to tests/test_4_reduction_methods_multiD/rb_centered_2d.py index 070c58f..ef558a5 100644 --- a/tests/test_3_reduction_methods/rb_centered.py +++ b/tests/test_4_reduction_methods_multiD/rb_centered_2d.py @@ -1,70 +1,69 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np -from matrix_fft import matrixFFT +from matrix_random import matrixRandom from rrompy.reduction_methods.centered import RBCentered as RBC def test_R(): - mu = 1.5 - mu0 = 2. + 1.j - solver = matrixFFT() - uh = solver.solve(mu) - params = {"POD": True, "R": 5, "E": 10} + mu = [5.5, 7.5] + mu0 = [5., 7.] + solver = matrixRandom() + uh = solver.solve(mu)[0] + uhN = solver.norm(uh) + params = {"POD": True, "S": 10} approx = RBC(solver, mu0, params, verbosity = 0) approx.setupApprox() + + uhP = approx.getApprox(mu)[0] + uhNP = approx.normApprox(mu)[0] + errP = approx.getErr(mu)[0] + errNP = approx.normErr(mu)[0] - uhP = approx.getApprox(mu) - errP = approx.getErr(mu) - errNP = approx.normErr(mu) assert np.allclose(np.abs(errP - (uhP - uh)), 0., rtol = 1e-3) -# assert np.isclose(errNP, 0.023691832, rtol = 1e-1) - - poles = approx.getPoles() - assert np.isclose(np.min(np.abs(poles - 2.)), 0., atol = 1e-4) - assert np.isclose(np.min(np.abs(poles - 1.)), 0., atol = 1e-2) - assert np.isclose(np.min(np.abs(poles - 3.)), 0., atol = 1e-2) + assert np.isclose(uhN, uhNP, rtol = 1e-1) + assert np.isclose(errNP / uhNP, 0., atol = 1e-1) def test_moments(): - mu0 = 2. + 1.j - solver = matrixFFT() - params = {"POD": True, "E": 10} + mu0 = [2 + .5j, 3] + solver = matrixRandom() + params = {"POD": True, "S": 10} approx = RBC(solver, mu0, params, verbosity = 0) approx.setupApprox() - assert np.isclose(approx.normErr(mu0), 0., atol = 1e-10) + assert np.isclose(approx.normErr(mu0)[0], 0., atol = 1e-10) def test_load_copy(capsys): - mu = 1.5 - mu0 = 2. + 1.j - solver = matrixFFT() - params = {"POD": True, "E": 10} + mu = [1.5, 3. + 1j] + mu0 = [2 + .5j, 3] + solver = matrixRandom() + params = {"POD": True, "S": 10} approx1 = RBC(solver, mu0, params, verbosity = 100) approx1.setupApprox() - err1 = approx1.normErr(mu) + err1 = approx1.normErr(mu)[0] out, err = capsys.readouterr() assert "Solving HF model for mu =" in out assert len(err) == 0 approx2 = RBC(solver, mu0, params, verbosity = 100) - approx2.setApprox(approx1.trainedModel) + approx2.setTrainedModel(approx1.trainedModel) approx2.setHF(mu, approx1.uHF) - err2 = approx2.normErr(mu) + err2 = approx2.normErr(mu)[0] out, err = capsys.readouterr() assert "Solving HF model for mu =" not in out assert len(err) == 0 assert np.isclose(err1, err2, rtol = 1e-10) diff --git a/tests/test_3_reduction_methods/rb_distributed.py b/tests/test_4_reduction_methods_multiD/rb_distributed_2d.py similarity index 51% rename from tests/test_3_reduction_methods/rb_distributed.py rename to tests/test_4_reduction_methods_multiD/rb_distributed_2d.py index c2ba16f..8182e2d 100644 --- a/tests/test_3_reduction_methods/rb_distributed.py +++ b/tests/test_4_reduction_methods_multiD/rb_distributed_2d.py @@ -1,56 +1,62 @@ # Copyright (C) 2018 by the RROMPy authors # # This file is part of RROMPy. # # RROMPy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RROMPy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with RROMPy. If not, see <http://www.gnu.org/licenses/>. # import numpy as np -from matrix_fft import matrixFFT +from matrix_random import matrixRandom from rrompy.reduction_methods.distributed import RBDistributed as RBD from rrompy.parameter.parameter_sampling import (QuadratureSampler as QS, ManualSampler as MS) +from rrompy.parameter import checkParameterList -def test_LS(capsys): - solver = matrixFFT() - params = {"POD": True, "R": 5, "S": 10, - "sampler": QS([1., 7.], "CHEBYSHEV")} - approx = RBD(solver, 4., params, verbosity = 0) +def test_LS(): + mu0 = [2, 3] + solver = matrixRandom() + params = {"POD": True, "R": 5, "S": [3, 3], + "sampler": QS([[0., 4.], [1., 5.]], "CHEBYSHEV")} + approx = RBD(solver, mu0, params, verbosity = 0) approx.setupApprox() for mu in approx.mus: - assert not np.isclose(approx.normErr(mu), 0., atol = 1e-7) + assert not np.isclose(approx.normErr(mu)[0], 0., atol = 1e-7) approx.POD = False approx.setupApprox() for mu in approx.mus[approx.R :]: - assert not np.isclose(approx.normErr(mu), 0., atol = 1e-3) - + assert not np.isclose(approx.normErr(mu)[0], 0., atol = 1e-3) + def test_interp(): - solver = matrixFFT() - params = {"POD": False, "S": 10, "sampler": QS([1., 7.], "CHEBYSHEV")} - approx = RBD(solver, 4., params, verbosity = 0) + mu0 = [2, 3] + solver = matrixRandom() + params = {"POD": False, "S": [3, 3], + "sampler": QS([[0., 4.], [1., 5.]], "CHEBYSHEV")} + approx = RBD(solver, mu0, params, verbosity = 0) approx.setupApprox() for mu in approx.mus: - assert np.isclose(approx.normErr(mu), 0., atol = 1e-7) + assert np.isclose(approx.normErr(mu)[0], 0., atol = 1e-7) def test_hermite(): - mu = 1.5 - solver = matrixFFT() - sampler0 = QS([1., 7.], "CHEBYSHEV") - points = np.tile(sampler0.generatePoints(4)[0], 3) - params = {"POD": True, "S": 12, "sampler": MS([1., 7.], points = points)} - approx = RBD(solver, 4., params, verbosity = 0) + mu0 = [2, 3] + solver = matrixRandom() + sampler0 = QS([[0., 4.], [1., 5.]], "CHEBYSHEV") + points, _ = checkParameterList(np.tile( + sampler0.generatePoints([2, 2]).data, [3, 1])) + params = {"POD": True, "S": [12], + "sampler": MS([[0., 4.], [1., 5.]], points = points)} + approx = RBD(solver, mu0, params, verbosity = 0) approx.setupApprox() for mu in approx.mus: - assert np.isclose(approx.normErr(mu), 0., atol = 1e-8) + assert np.isclose(approx.normErr(mu)[0], 0., atol = 1e-8)