diff --git a/functions/04_Regression/getTemporalCharacteristics.m b/functions/04_Regression/getTemporalCharacteristics.m
deleted file mode 100755
index 3a9c659..0000000
--- a/functions/04_Regression/getTemporalCharacteristics.m
+++ /dev/null
@@ -1,157 +0,0 @@
-%% This function computes the temporal characteristics (duration, occurences, etc.)
-% given a set of time courses
-%
-% Inputs:
-% - TC: cell array with iCAPs time courses for every subject
-% - clusteringResults: structure containing clustering results, fields:
-%       .subject_labels
-%       .time_labels
-%       [.scrub_labels]
-% - param: structure with input parameters
-%       .TR: TR
-%
-% Outputs:
-% - out: structure containing all computed characteristics:
-%       .durations_total_n_subs: total number of frames an iCAP is active 
-%                   in every subject
-%       .durations_total_s_subs: total time (in seconds) an iCAP is active 
-%                   in every subject
-%
-%       .durations_avg(_n/_s): average duration of an iCAPs activity
-
-function [tempChar] = getTemporalCharacteristics(TC,clusteringResults,param)
-    
-    nSub=length(TC);
-    for iS=1:nSub
-        nTP_sub(iS)=nnz(clusteringResults.AI_subject_labels==iS);
-    end
-    subject_labels=clusteringResults.subject_labels;
-    IDX=clusteringResults.IDX;
-    
-    % adding option of scrubbed time courses
-    if isfield(param,'excludeMotionFrames') && param.excludeMotionFrames
-        scrub_labels=iCAPsResults.scrub_labels;
-    else
-        scrub_labels=ones(nTP_sub*nSub,1);
-    end
-
-    
-        tempChar = computeTemporalCharacteristics(iCAPsResults.Time_Courses,1,param,scrub_labels,subject_labels,IDX);
-%         plotTCandInnov(iCAPsResults,param);
-
-
-end
-
-
-%%
-function plotTCandInnov(iCAPsResults,param)
-    %% constants
-    nSub=length(iCAPsResults.Time_Courses);
-    nClus=size(iCAPsResults.Time_Courses{1},1);
-    nTP_sub=size(iCAPsResults.Time_Courses{1},2);
-    
-    % adding option of scrubbed time courses
-    if isfield(param,'excludeMotionFrames') && param.excludeMotionFrames
-        scrub_labels=iCAPsResults.scrub_labels;
-    else
-        scrub_labels=ones(nTP_sub*nSub,1);
-    end
-
-    for iS=1:nSub
-        vols_iS=(iS-1)*nTP_sub+1:iS*nTP_sub;
-        nTP_sub_scrub(iS,1) = nnz(scrub_labels(vols_iS));
-        TemporalMask{iS}=scrub_labels(vols_iS);
-    end
-
-    
-    %% get data and iCAPs output directories
-    if isfield(param,'data_title') % in case of new data saving structure (clustering in subfolders)
-        % there is a main folder according to data+thresholding
-        % and a separate one for clustering
-        outDir_main=fullfile(param.PathData,'iCAPs_results',[param.data_title,'_',param.thresh_title]);
-        outDir_iCAPs=fullfile(param.PathData,'iCAPs_results',[param.data_title,'_',param.thresh_title],param.iCAPs_title);
-    else
-        % before, there was a separate folder for
-        % thresholding/data/clustering parameters
-        outDir_main=fullfile(param.PathData,'iCAPs_results',[param.thresh_title,'_',param.iCAPs_title]);
-        outDir_iCAPs=fullfile(param.PathData,'iCAPs_results',[param.thresh_title,'_',param.iCAPs_title]);
-    end
-
-    
-    %% plotting time courses and innovation indices
-    if ~exist(fullfile(outDir_iCAPs,'Time_Courses_and_Innovations'),'dir'); mkdir(fullfile(outDir_iCAPs,'Time_Courses_and_Innovations'));end;
-    if ~exist(fullfile(outDir_iCAPs,'Time_Courses'),'dir'); mkdir(fullfile(outDir_iCAPs,'Time_Courses'));end;
-    
-    iCAPsResults.time_labels(iCAPsResults.time_labels>195)=-(iCAPsResults.time_labels(iCAPsResults.time_labels>195)-195);
-
-    for iS = 1:nSub
-        % normalize time courses
-        iCAPsResults.Time_Courses_plot{iS,1}=reshape(zscore(iCAPsResults.Time_Courses{iS}(:)),size(iCAPsResults.Time_Courses{iS},1),size(iCAPsResults.Time_Courses{iS},2));
-    end
-    
-    
-    colors = cbrewer('div', 'Spectral', 10);
-    cmap=cbrewer('div', 'RdYlBu',100);
-    cmap=cmap(100:-1:1,:);
-    %     colors = [colors;colors([11:-1:1],:)];
-    set(groot,'defaultAxesColorOrder',colors);
-    set(groot,'defaultAxesFontSize',15);
-
-    clims=[-3,3];
-    
-    for iS=1:10:nSub
-        figure('position',[440   378   515   420]);
-        imagesc(iCAPsResults.Time_Courses_plot{iS},clims);
-        title(['subject ' num2str(iS)])
-        colormap(cmap)
-        c=colorbar;
-        c.Label.String='amplitude';
-        xlabel('time [frames]');
-        % ylabel('iCAP');
-        print(fullfile(outDir_iCAPs,'Time_Courses',['SUB' num2str(iS)]),'-dpng','-painters');
-
-        
-        for iC=1:nClus
-            fig=figure('Position',[440   573   560   167]);
-            hold on;
-            grid on
-            stemAmp=max(abs(iCAPsResults.Time_Courses_plot{iS,1}(iC,:)))/2;
-            stemAmp=2;
-            patch('Vertices',[0 -1; nTP_sub -1; nTP_sub 1; 0 1],'Faces',[1 2 3 4],'facecolor',0.5*[1 1 1],'edgeColor',0.5*[1 1 1],'FaceAlpha',0.3,'EdgeAlpha',0.3);
-            pl(1)=stem(abs(iCAPsResults.time_labels(iCAPsResults.subject_labels==iS&iCAPsResults.IDX==iC)),...
-                stemAmp*sign(iCAPsResults.time_labels(iCAPsResults.subject_labels==iS&iCAPsResults.IDX==iC)),'k')
-            plot([0 200],[0 0],'k-')
-            pl(2)=plot(iCAPsResults.Time_Courses_plot{iS}(iC,:),'linewidth',1.5,'color',colors(3,:));
-    %         title(['subject ' num2str(iS)])
-            xlabel('time [frames]')
-    %         ylabel('amplitude')
-    %             set(gca,'ylim',2.5*[-stemAmp stemAmp]);
-            set(gca,'ytick',[-20:2:20],'ylim',[min(-4,1.1*min(iCAPsResults.Time_Courses_plot{iS,1}(iC,:))) max(4,1.1*max(iCAPsResults.Time_Courses_plot{iS,1}(iC,:)))]);
-            if ~exist(fullfile(outDir_iCAPs,'Time_Courses_and_Innovations'),'dir'); mkdir(fullfile(outDir,'Time_Courses_and_Innovations'));end;
-            outFileName=fullfile(outDir_iCAPs,'Time_Courses_and_Innovations',['SUB' num2str(iS) ' - iCAP' num2str(iC)]);
-    %             figure(fig);
-    %         legend(pl,{'',''},'location','eastoutside');
-            set(gca,'xlim',[1 195])
-            print(outFileName,'-depsc2','-painters');
-            close gcf
-            
-            
-            
-%             stemAmp=max(abs(iCAPsResults.Time_Courses_plot{iS}(iC,:)))/2;
-%             fig=figure('position',[440   662   560   136]);
-%             imagesc([1 nTP_sub]+1,[-5 5],TemporalMask{iS}','alphadata',0.1,[0,1]);colormap('gray');
-%             hold on;
-%             stem(abs(iCAPsResults.time_labels(iCAPsResults.subject_labels==iS&iCAPsResults.IDX==iC)),...
-%                 stemAmp*sign(iCAPsResults.time_labels(iCAPsResults.subject_labels==iS&iCAPsResults.IDX==iC)))
-%             stairs(iCAPsResults.Time_Courses_plot{iS}(iC,:),'linewidth',1.5);
-%             title(['SUB' num2str(iS) ' - iCAP' num2str(iC)])
-%             xlabel('frame')
-% %             ylabel('amplitude')
-%             set(gca,'ylim',2.5*[-stemAmp stemAmp]);
-%             outFileName=fullfile(outDir_iCAPs,'Time_Courses_and_Innovations',['SUB' num2str(iS) ' - iCAP' num2str(iC)]);
-%             figure(fig);
-%             print(outFileName,'-depsc2','-painters');
-%             close gcf
-        end
-    end
-end