Page MenuHomec4science

No OneTemporary

File Metadata

Created
Mon, May 19, 04:10
This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/PV_prediction/ML_V2.ipynb b/PV_prediction/ML_V2.ipynb
index a8c28e3..cadeaba 100644
--- a/PV_prediction/ML_V2.ipynb
+++ b/PV_prediction/ML_V2.ipynb
@@ -1,10668 +1,15147 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
+ "/home/walch/miniconda3/envs/py3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" from ._conv import register_converters as _register_converters\n"
]
}
],
"source": [
"import pandas as pd\n",
"import xarray as xr\n",
"import numpy as np\n",
"import itertools\n",
"\n",
"from rooftop_handling import link_rooftops_with_pixels\n",
"import util\n",
"\n",
"from sklearn import tree\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.neighbors import KNeighborsRegressor\n",
"from sklearn.neural_network import MLPRegressor\n",
"from sklearn.svm import SVR\n",
"from sklearn.metrics import mean_squared_error as mse\n",
"from sklearn.metrics import mean_absolute_error as mae\n",
"from sklearn.metrics import r2_score as r2\n",
"from sklearn.model_selection import cross_val_predict\n",
"from sklearn.preprocessing import Normalizer\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.base import clone\n",
"from ELM_ensemble import ELM_Ensemble\n",
"from scipy.stats import describe\n",
"from uncertainty import Uncertainty\n",
"\n",
"import os\n",
"import time\n",
"\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.colors import LinearSegmentedColormap"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"colorsRGB = [(47,111,191),\n",
" (51,148,190),\n",
" (65,195,153),\n",
" (105,219,77),\n",
" (183,233,81),\n",
" (249,239,88),\n",
" (250,201,53),\n",
" (246,135,26),\n",
" (220,82,7),\n",
" (193,31,4)]\n",
"colors = []\n",
"for row in colorsRGB:\n",
" colors.append(tuple([i/255.0 for i in row]))\n",
" \n",
"cm_PV = LinearSegmentedColormap.from_list('radiation', colors, N=500)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def rescale(vector, training):\n",
" return (vector * training.std()) + training.mean()\n",
"\n",
"def normalize(vector, training):\n",
" return (vector - training.mean()) / training.std()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def notnan( x ):\n",
" return x[~np.isnan(x)]\n",
"\n",
"# ERROR MEASUREMENTS\n",
"error = {\n",
" 'MSE' : lambda y, t: mse(t,y),\n",
" 'RMSE': lambda y, t: np.sqrt(mse(t,y)),\n",
" 'MAE' : lambda y, t: mae(t,y),\n",
" 'MAEP': lambda y, t: mae(np.ones(len(y)), notnan(y/t)),\n",
" 'MBE' : lambda y, t: np.mean(t - y),\n",
" 'MBEP': lambda y, t: np.mean(1 - notnan(y/t)),\n",
" 'R2' : lambda y, t: r2(t,y)\n",
"}\n",
"\n",
"def get_errors(true, pred, label = ''):\n",
" # create a pandas series with errors and print them\n",
" true = true.reshape((-1,1))\n",
" pred = pred.reshape((-1,1))\n",
" \n",
" err_series = pd.Series(data = np.zeros(len(error)), index = error.keys())\n",
" for key, val in error.items():\n",
" print('%s %s: %f' %(label, key, val(pred, true)))\n",
" err_series[ key ] = val(pred, true)\n",
" \n",
" return err_series"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def shp( vector ):\n",
"# check shape of vector and reshape it to one dimension if it is a one-dimensional vector\n",
" if len( label_name ) == 1:\n",
" return vector.reshape((-1,1))\n",
" else:\n",
" return vector "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def compute_residuals( prediction, target, model_std):\n",
" residuals = ( prediction - target )**2 - model_std**2\n",
" return np.sqrt( np.maximum(residuals, 0) ) "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
- "path = '/Volumes/Seagate Backup Plus Drive/DOKUMENTE/EPFL/data/Results/PV_w_uncertainty/pv_prediction/'"
+ "# path = '/Volumes/Seagate Backup Plus Drive/DOKUMENTE/EPFL/data/Results/PV_w_uncertainty/pv_prediction/'\n",
+ "path = '/work/hyenergy/output/solar_potential/technical_potential/predict_pv'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load data"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/numpy/lib/arraysetops.py:472: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
+ "/home/walch/miniconda3/envs/py3/lib/python3.6/site-packages/numpy/lib/arraysetops.py:569: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
" mask |= (ar1 == a)\n"
]
}
],
"source": [
"features = pd.read_csv(os.path.join(path, 'features_v2.csv'), index_col = 0)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/numpy/lib/arraysetops.py:472: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
- " mask |= (ar1 == a)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"targets = pd.read_csv(os.path.join(path, 'targets_v2.csv'), index_col = 0)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/numpy/lib/arraysetops.py:472: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
- " mask |= (ar1 == a)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"communes = pd.read_csv(os.path.join(path, 'data_all.csv'), index_col = 0,\n",
" usecols = ['DF_UID', 'Kanton', 'Commune_ID', 'XCOORD', 'YCOORD', 'FLAECHE', 'GWR_EGID'])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"data = pd.concat([features, targets, communes], axis = 1).dropna()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>SIS</th>\n",
" <th>SISDIR</th>\n",
" <th>DHI</th>\n",
" <th>SVF</th>\n",
" <th>illumination</th>\n",
" <th>horizon_S</th>\n",
" <th>horizon_E</th>\n",
" <th>horizon_NEE</th>\n",
" <th>...</th>\n",
" <th>horizon_SSE</th>\n",
" <th>horizon_SEE</th>\n",
" <th>MSTRAHLUNG</th>\n",
" <th>PV_kWh_m2</th>\n",
" <th>FLAECHE</th>\n",
" <th>XCOORD</th>\n",
" <th>YCOORD</th>\n",
" <th>GWR_EGID</th>\n",
" <th>Kanton</th>\n",
" <th>Commune_ID</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>5343176</th>\n",
" <td>16</td>\n",
" <td>-17.0</td>\n",
" <td>1350.071526</td>\n",
" <td>846.491412</td>\n",
" <td>503.587476</td>\n",
" <td>0.718741</td>\n",
" <td>0.811781</td>\n",
" <td>6.092388</td>\n",
" <td>14.689941</td>\n",
" <td>17.452604</td>\n",
" <td>...</td>\n",
" <td>8.197643</td>\n",
" <td>9.963911</td>\n",
" <td>1548</td>\n",
" <td>210.528</td>\n",
" <td>108.129956</td>\n",
" <td>722110.3750</td>\n",
" <td>75509.609375</td>\n",
" <td>11157515.0</td>\n",
" <td>TI</td>\n",
" <td>5250.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5343175</th>\n",
" <td>17</td>\n",
" <td>163.0</td>\n",
" <td>1350.071526</td>\n",
" <td>846.491412</td>\n",
" <td>503.587476</td>\n",
" <td>0.759114</td>\n",
" <td>0.804061</td>\n",
" <td>11.788798</td>\n",
" <td>16.118021</td>\n",
" <td>15.847362</td>\n",
" <td>...</td>\n",
" <td>13.261172</td>\n",
" <td>13.841580</td>\n",
" <td>1114</td>\n",
" <td>151.504</td>\n",
" <td>110.595071</td>\n",
" <td>722108.1875</td>\n",
" <td>75516.570312</td>\n",
" <td>11157515.0</td>\n",
" <td>TI</td>\n",
" <td>5250.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5343177</th>\n",
" <td>25</td>\n",
" <td>-59.0</td>\n",
" <td>1350.071526</td>\n",
" <td>846.491412</td>\n",
" <td>503.587476</td>\n",
" <td>0.706426</td>\n",
" <td>0.738014</td>\n",
" <td>12.730241</td>\n",
" <td>21.675634</td>\n",
" <td>21.338327</td>\n",
" <td>...</td>\n",
" <td>13.979061</td>\n",
" <td>15.757084</td>\n",
" <td>545</td>\n",
" <td>74.120</td>\n",
" <td>20.512037</td>\n",
" <td>722494.3125</td>\n",
" <td>75592.125000</td>\n",
" <td>11103162.0</td>\n",
" <td>TI</td>\n",
" <td>5250.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5343178</th>\n",
" <td>24</td>\n",
" <td>121.0</td>\n",
" <td>1350.071526</td>\n",
" <td>846.491412</td>\n",
" <td>503.587476</td>\n",
" <td>0.643597</td>\n",
" <td>0.654795</td>\n",
" <td>16.819239</td>\n",
" <td>18.360150</td>\n",
" <td>19.976019</td>\n",
" <td>...</td>\n",
" <td>12.246127</td>\n",
" <td>15.541741</td>\n",
" <td>598</td>\n",
" <td>81.328</td>\n",
" <td>20.850745</td>\n",
" <td>722491.9375</td>\n",
" <td>75593.523438</td>\n",
" <td>11103162.0</td>\n",
" <td>TI</td>\n",
" <td>5250.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5343214</th>\n",
" <td>11</td>\n",
" <td>168.0</td>\n",
" <td>1350.071526</td>\n",
" <td>846.491412</td>\n",
" <td>503.587476</td>\n",
" <td>0.598916</td>\n",
" <td>0.448989</td>\n",
" <td>43.407631</td>\n",
" <td>15.740415</td>\n",
" <td>5.747942</td>\n",
" <td>...</td>\n",
" <td>44.075201</td>\n",
" <td>35.429473</td>\n",
" <td>1032</td>\n",
" <td>140.352</td>\n",
" <td>168.164462</td>\n",
" <td>722125.8125</td>\n",
" <td>75788.093750</td>\n",
" <td>11157513.0</td>\n",
" <td>TI</td>\n",
" <td>5250.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 24 columns</p>\n",
"</div>"
],
"text/plain": [
" NEIGUNG AUSRICHTUNG SIS SISDIR DHI SVF \\\n",
"DF_UID \n",
"5343176 16 -17.0 1350.071526 846.491412 503.587476 0.718741 \n",
"5343175 17 163.0 1350.071526 846.491412 503.587476 0.759114 \n",
"5343177 25 -59.0 1350.071526 846.491412 503.587476 0.706426 \n",
"5343178 24 121.0 1350.071526 846.491412 503.587476 0.643597 \n",
"5343214 11 168.0 1350.071526 846.491412 503.587476 0.598916 \n",
"\n",
- " illumination horizon_S horizon_E horizon_NEE ... horizon_SSE \\\n",
- "DF_UID ... \n",
- "5343176 0.811781 6.092388 14.689941 17.452604 ... 8.197643 \n",
- "5343175 0.804061 11.788798 16.118021 15.847362 ... 13.261172 \n",
- "5343177 0.738014 12.730241 21.675634 21.338327 ... 13.979061 \n",
- "5343178 0.654795 16.819239 18.360150 19.976019 ... 12.246127 \n",
- "5343214 0.448989 43.407631 15.740415 5.747942 ... 44.075201 \n",
+ " illumination horizon_S horizon_E horizon_NEE ... \\\n",
+ "DF_UID ... \n",
+ "5343176 0.811781 6.092388 14.689941 17.452604 ... \n",
+ "5343175 0.804061 11.788798 16.118021 15.847362 ... \n",
+ "5343177 0.738014 12.730241 21.675634 21.338327 ... \n",
+ "5343178 0.654795 16.819239 18.360150 19.976019 ... \n",
+ "5343214 0.448989 43.407631 15.740415 5.747942 ... \n",
"\n",
- " horizon_SEE MSTRAHLUNG PV_kWh_m2 FLAECHE XCOORD \\\n",
+ " horizon_SSE horizon_SEE MSTRAHLUNG PV_kWh_m2 FLAECHE \\\n",
"DF_UID \n",
- "5343176 9.963911 1548 210.528 108.129956 722110.3750 \n",
- "5343175 13.841580 1114 151.504 110.595071 722108.1875 \n",
- "5343177 15.757084 545 74.120 20.512037 722494.3125 \n",
- "5343178 15.541741 598 81.328 20.850745 722491.9375 \n",
- "5343214 35.429473 1032 140.352 168.164462 722125.8125 \n",
- "\n",
- " YCOORD GWR_EGID Kanton Commune_ID \n",
- "DF_UID \n",
- "5343176 75509.609375 11157515.0 TI 5250.0 \n",
- "5343175 75516.570312 11157515.0 TI 5250.0 \n",
- "5343177 75592.125000 11103162.0 TI 5250.0 \n",
- "5343178 75593.523438 11103162.0 TI 5250.0 \n",
- "5343214 75788.093750 11157513.0 TI 5250.0 \n",
+ "5343176 8.197643 9.963911 1548 210.528 108.129956 \n",
+ "5343175 13.261172 13.841580 1114 151.504 110.595071 \n",
+ "5343177 13.979061 15.757084 545 74.120 20.512037 \n",
+ "5343178 12.246127 15.541741 598 81.328 20.850745 \n",
+ "5343214 44.075201 35.429473 1032 140.352 168.164462 \n",
+ "\n",
+ " XCOORD YCOORD GWR_EGID Kanton Commune_ID \n",
+ "DF_UID \n",
+ "5343176 722110.3750 75509.609375 11157515.0 TI 5250.0 \n",
+ "5343175 722108.1875 75516.570312 11157515.0 TI 5250.0 \n",
+ "5343177 722494.3125 75592.125000 11103162.0 TI 5250.0 \n",
+ "5343178 722491.9375 75593.523438 11103162.0 TI 5250.0 \n",
+ "5343214 722125.8125 75788.093750 11157513.0 TI 5250.0 \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
- "workdir = '/Users/alinawalch/Documents/EPFL/data/interactive_visualisation'\n",
+ "# workdir = '/Users/alinawalch/Documents/EPFL/data/interactive_visualisation'\n",
+ "workdir = '/work/hyenergy/raw/Surface_data/swissBOUNDARIES3D/BOUNDARIES_2019/DATEN/swissBOUNDARIES3D/SHAPEFILE_LV03_LN02'\n",
"commune_data = pd.read_csv(os.path.join(workdir, 'swissBOUNDARIES3D_1_3_TLM_HOHEITSGEBIET_data.csv'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Part 1: Define features & normalize"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"label_name = ['MSTRAHLUNG']\n",
"identifier = 'DF_UID'\n",
"\n",
"all_features = features.columns\n",
"# feature_labels = ['Roof tilt', 'Roof aspect', 'Annual GHI', 'Horizon (S)', 'Horizon (E)', 'Horizon (W)']\n",
"\n",
"feature_names = ['SIS', 'horizon_SEE', 'horizon_SWW', 'horizon_S', 'NEIGUNG', 'AUSRICHTUNG']\n",
"\n",
"feature_labels = ['Annual GHI', 'Horizon SEE (120°)', 'Horizon SWW (240°)', 'Horizon S (180°)', \n",
" 'Roof tilt', 'Roof aspect', ]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def get_data( data, feature_names, label_name ):\n",
" X = data.loc[ : , feature_names ].values\n",
" T = data.loc[ : , label_name ].values.reshape((-1,))\n",
"\n",
" norm = Normalizer()\n",
" x = norm.fit_transform(X)\n",
" t = normalize(T, T)\n",
" \n",
" return x, t, X, T"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"def get_mse( x, t, model, cv = 5, print_time = True ):\n",
" \n",
" est = set_estimators()[ model ]\n",
"\n",
" # normalized cross-validation\n",
" tt = time.time()\n",
" y = cross_val_predict(est, x, t, n_jobs = -1) # cannot use n_jobs = -1 as not all are scikit-learn estimators\n",
" cv_time = time.time()-tt\n",
" if print_time : \n",
" print('Crossvalidation time: %.3fs' %cv_time)\n",
"\n",
" # Y = rescale(y, T)\n",
" return mse(t, y), 0, cv_time # mse(t, y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Part 2: Get train and test areas"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Part 2.1: Choose training areas and testing areas (based on Cantons)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#'/work/hyenergy/output/solar_potential/technical_potential/interactive_visualisation'\n",
"workdir = '/Users/alinawalch/Documents/EPFL/data/interactive_visualisation'\n",
"communes = gpd.read_file(os.path.join(workdir, 'swissBOUNDARIES3D_1_3_TLM_HOHEITSGEBIET.shp'))"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
- "COMMUNE_FP = '/Users/alinawalch/Documents/EPFL/data/GWR/GDEListe_20150101.txt'\n",
+ "# COMMUNE_FP = '/Users/alinawalch/Documents/EPFL/data/GWR/GDEListe_20150101.txt'\n",
+ "COMMUNE_FP = '/work/hyenergy/raw/GWR_Reg-BL/GDEListe_20150101.txt'\n",
"commune_info = pd.read_csv( COMMUNE_FP, sep = '\\t', encoding = 'cp1250' )"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>GDEKT</th>\n",
" <th>GDEBZNR</th>\n",
" <th>GDENR</th>\n",
" <th>GDENAME</th>\n",
" <th>GDENAMK</th>\n",
" <th>GDEBZNA</th>\n",
" <th>GDEKTNA</th>\n",
" <th>GDEMUTDAT</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2058</th>\n",
" <td>VS</td>\n",
" <td>2302.0</td>\n",
" <td>6021.0</td>\n",
" <td>Ardon</td>\n",
" <td>Ardon</td>\n",
" <td>District de Conthey</td>\n",
" <td>Valais / Wallis</td>\n",
" <td>01.01.1960</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2059</th>\n",
" <td>VS</td>\n",
" <td>2302.0</td>\n",
" <td>6022.0</td>\n",
" <td>Chamoson</td>\n",
" <td>Chamoson</td>\n",
" <td>District de Conthey</td>\n",
" <td>Valais / Wallis</td>\n",
" <td>01.01.1960</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2060</th>\n",
" <td>VS</td>\n",
" <td>2302.0</td>\n",
" <td>6023.0</td>\n",
" <td>Conthey</td>\n",
" <td>Conthey</td>\n",
" <td>District de Conthey</td>\n",
" <td>Valais / Wallis</td>\n",
" <td>01.01.1960</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2061</th>\n",
" <td>VS</td>\n",
" <td>2302.0</td>\n",
" <td>6024.0</td>\n",
" <td>Nendaz</td>\n",
" <td>Nendaz</td>\n",
" <td>District de Conthey</td>\n",
" <td>Valais / Wallis</td>\n",
" <td>01.01.1960</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2062</th>\n",
" <td>VS</td>\n",
" <td>2302.0</td>\n",
" <td>6025.0</td>\n",
" <td>Vétroz</td>\n",
" <td>Vétroz</td>\n",
" <td>District de Conthey</td>\n",
" <td>Valais / Wallis</td>\n",
" <td>01.01.1960</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" GDEKT GDEBZNR GDENR GDENAME GDENAMK GDEBZNA \\\n",
"2058 VS 2302.0 6021.0 Ardon Ardon District de Conthey \n",
"2059 VS 2302.0 6022.0 Chamoson Chamoson District de Conthey \n",
"2060 VS 2302.0 6023.0 Conthey Conthey District de Conthey \n",
"2061 VS 2302.0 6024.0 Nendaz Nendaz District de Conthey \n",
"2062 VS 2302.0 6025.0 Vétroz Vétroz District de Conthey \n",
"\n",
" GDEKTNA GDEMUTDAT \n",
"2058 Valais / Wallis 01.01.1960 \n",
"2059 Valais / Wallis 01.01.1960 \n",
"2060 Valais / Wallis 01.01.1960 \n",
"2061 Valais / Wallis 01.01.1960 \n",
"2062 Valais / Wallis 01.01.1960 "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# find french-speaking communes in Valais based on the start of their district name ('District' and not 'Bezirk')\n",
"districts_valais = commune_info[ commune_info.GDEKT == 'VS' ]\n",
"french_communes = [bzg[0:8] == 'District' for bzg in districts_valais.GDEBZNA.values]\n",
"districts_valais[french_communes].head()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"french_cantons = ['NE', 'JU', 'VD', 'GE', 'FR'] # plus french communes in Valais; considering FR even though bilangue"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"training_data = data[(data.Kanton.isin( french_cantons )) \\\n",
" | (data.Commune_ID.isin( districts_valais[french_communes].GDENR.values )) ]\n",
"training_data = training_data.dropna()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>SIS</th>\n",
" <th>SISDIR</th>\n",
" <th>DHI</th>\n",
" <th>SVF</th>\n",
" <th>illumination</th>\n",
" <th>horizon_S</th>\n",
" <th>horizon_E</th>\n",
" <th>horizon_NEE</th>\n",
" <th>...</th>\n",
" <th>horizon_SSE</th>\n",
" <th>horizon_SEE</th>\n",
" <th>MSTRAHLUNG</th>\n",
" <th>PV_kWh_m2</th>\n",
" <th>FLAECHE</th>\n",
" <th>XCOORD</th>\n",
" <th>YCOORD</th>\n",
" <th>GWR_EGID</th>\n",
" <th>Kanton</th>\n",
" <th>Commune_ID</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>9449166</th>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" <td>1552.478067</td>\n",
" <td>900.636293</td>\n",
" <td>651.867345</td>\n",
" <td>0.794826</td>\n",
" <td>0.816486</td>\n",
" <td>19.170645</td>\n",
" <td>8.315230</td>\n",
" <td>8.125061</td>\n",
" <td>...</td>\n",
" <td>27.173886</td>\n",
" <td>19.419470</td>\n",
" <td>1418</td>\n",
" <td>192.848</td>\n",
" <td>113.600622</td>\n",
" <td>579172.9375</td>\n",
" <td>79689.500000</td>\n",
" <td>902671.0</td>\n",
" <td>VS</td>\n",
" <td>6032.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9449168</th>\n",
" <td>27</td>\n",
" <td>7.0</td>\n",
" <td>1552.478067</td>\n",
" <td>900.636293</td>\n",
" <td>651.867345</td>\n",
" <td>0.755589</td>\n",
" <td>0.728311</td>\n",
" <td>30.907117</td>\n",
" <td>4.143541</td>\n",
" <td>1.431431</td>\n",
" <td>...</td>\n",
" <td>29.991368</td>\n",
" <td>17.834692</td>\n",
" <td>1577</td>\n",
" <td>214.472</td>\n",
" <td>32.135801</td>\n",
" <td>579235.2500</td>\n",
" <td>79689.906250</td>\n",
" <td>902671.0</td>\n",
" <td>VS</td>\n",
" <td>6032.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9449167</th>\n",
" <td>25</td>\n",
" <td>-173.0</td>\n",
" <td>1552.478067</td>\n",
" <td>900.636293</td>\n",
" <td>651.867345</td>\n",
" <td>0.764098</td>\n",
" <td>0.753425</td>\n",
" <td>30.548385</td>\n",
" <td>3.495298</td>\n",
" <td>0.715425</td>\n",
" <td>...</td>\n",
" <td>28.331859</td>\n",
" <td>15.277346</td>\n",
" <td>1086</td>\n",
" <td>147.696</td>\n",
" <td>33.816775</td>\n",
" <td>579235.6875</td>\n",
" <td>79693.085938</td>\n",
" <td>902671.0</td>\n",
" <td>VS</td>\n",
" <td>6032.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9449170</th>\n",
" <td>34</td>\n",
" <td>22.0</td>\n",
" <td>1552.478067</td>\n",
" <td>900.636293</td>\n",
" <td>651.867345</td>\n",
" <td>0.803094</td>\n",
" <td>0.886675</td>\n",
" <td>21.041524</td>\n",
" <td>2.523374</td>\n",
" <td>2.499965</td>\n",
" <td>...</td>\n",
" <td>21.660933</td>\n",
" <td>6.787898</td>\n",
" <td>1572</td>\n",
" <td>213.792</td>\n",
" <td>162.651604</td>\n",
" <td>579209.9375</td>\n",
" <td>79712.953125</td>\n",
" <td>902671.0</td>\n",
" <td>VS</td>\n",
" <td>6032.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9449157</th>\n",
" <td>33</td>\n",
" <td>22.0</td>\n",
" <td>1552.478067</td>\n",
" <td>900.636293</td>\n",
" <td>651.867345</td>\n",
" <td>0.785625</td>\n",
" <td>0.873858</td>\n",
" <td>17.481223</td>\n",
" <td>8.517506</td>\n",
" <td>8.390612</td>\n",
" <td>...</td>\n",
" <td>20.984736</td>\n",
" <td>10.082763</td>\n",
" <td>1630</td>\n",
" <td>221.680</td>\n",
" <td>175.680874</td>\n",
" <td>579190.1875</td>\n",
" <td>79714.609375</td>\n",
" <td>902671.0</td>\n",
" <td>VS</td>\n",
" <td>6032.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 24 columns</p>\n",
"</div>"
],
"text/plain": [
" NEIGUNG AUSRICHTUNG SIS SISDIR DHI SVF \\\n",
"DF_UID \n",
"9449166 0 0.0 1552.478067 900.636293 651.867345 0.794826 \n",
"9449168 27 7.0 1552.478067 900.636293 651.867345 0.755589 \n",
"9449167 25 -173.0 1552.478067 900.636293 651.867345 0.764098 \n",
"9449170 34 22.0 1552.478067 900.636293 651.867345 0.803094 \n",
"9449157 33 22.0 1552.478067 900.636293 651.867345 0.785625 \n",
"\n",
- " illumination horizon_S horizon_E horizon_NEE ... horizon_SSE \\\n",
- "DF_UID ... \n",
- "9449166 0.816486 19.170645 8.315230 8.125061 ... 27.173886 \n",
- "9449168 0.728311 30.907117 4.143541 1.431431 ... 29.991368 \n",
- "9449167 0.753425 30.548385 3.495298 0.715425 ... 28.331859 \n",
- "9449170 0.886675 21.041524 2.523374 2.499965 ... 21.660933 \n",
- "9449157 0.873858 17.481223 8.517506 8.390612 ... 20.984736 \n",
+ " illumination horizon_S horizon_E horizon_NEE ... \\\n",
+ "DF_UID ... \n",
+ "9449166 0.816486 19.170645 8.315230 8.125061 ... \n",
+ "9449168 0.728311 30.907117 4.143541 1.431431 ... \n",
+ "9449167 0.753425 30.548385 3.495298 0.715425 ... \n",
+ "9449170 0.886675 21.041524 2.523374 2.499965 ... \n",
+ "9449157 0.873858 17.481223 8.517506 8.390612 ... \n",
"\n",
- " horizon_SEE MSTRAHLUNG PV_kWh_m2 FLAECHE XCOORD \\\n",
+ " horizon_SSE horizon_SEE MSTRAHLUNG PV_kWh_m2 FLAECHE \\\n",
"DF_UID \n",
- "9449166 19.419470 1418 192.848 113.600622 579172.9375 \n",
- "9449168 17.834692 1577 214.472 32.135801 579235.2500 \n",
- "9449167 15.277346 1086 147.696 33.816775 579235.6875 \n",
- "9449170 6.787898 1572 213.792 162.651604 579209.9375 \n",
- "9449157 10.082763 1630 221.680 175.680874 579190.1875 \n",
- "\n",
- " YCOORD GWR_EGID Kanton Commune_ID \n",
- "DF_UID \n",
- "9449166 79689.500000 902671.0 VS 6032.0 \n",
- "9449168 79689.906250 902671.0 VS 6032.0 \n",
- "9449167 79693.085938 902671.0 VS 6032.0 \n",
- "9449170 79712.953125 902671.0 VS 6032.0 \n",
- "9449157 79714.609375 902671.0 VS 6032.0 \n",
+ "9449166 27.173886 19.419470 1418 192.848 113.600622 \n",
+ "9449168 29.991368 17.834692 1577 214.472 32.135801 \n",
+ "9449167 28.331859 15.277346 1086 147.696 33.816775 \n",
+ "9449170 21.660933 6.787898 1572 213.792 162.651604 \n",
+ "9449157 20.984736 10.082763 1630 221.680 175.680874 \n",
+ "\n",
+ " XCOORD YCOORD GWR_EGID Kanton Commune_ID \n",
+ "DF_UID \n",
+ "9449166 579172.9375 79689.500000 902671.0 VS 6032.0 \n",
+ "9449168 579235.2500 79689.906250 902671.0 VS 6032.0 \n",
+ "9449167 579235.6875 79693.085938 902671.0 VS 6032.0 \n",
+ "9449170 579209.9375 79712.953125 902671.0 VS 6032.0 \n",
+ "9449157 579190.1875 79714.609375 902671.0 VS 6032.0 \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_data.head()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1909876"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(training_data)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"testing_data = data[ np.logical_not(data.index.isin( training_data.index.values )) ]\n",
"testing_data = testing_data.dropna()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"6672012"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(testing_data)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>SIS</th>\n",
" <th>SISDIR</th>\n",
" <th>DHI</th>\n",
" <th>SVF</th>\n",
" <th>illumination</th>\n",
" <th>horizon_S</th>\n",
" <th>horizon_E</th>\n",
" <th>horizon_NEE</th>\n",
" <th>...</th>\n",
" <th>horizon_SSE</th>\n",
" <th>horizon_SEE</th>\n",
" <th>MSTRAHLUNG</th>\n",
" <th>PV_kWh_m2</th>\n",
" <th>FLAECHE</th>\n",
" <th>XCOORD</th>\n",
" <th>YCOORD</th>\n",
" <th>GWR_EGID</th>\n",
" <th>Kanton</th>\n",
" <th>Commune_ID</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>5343176</th>\n",
" <td>16</td>\n",
" <td>-17.0</td>\n",
" <td>1350.071526</td>\n",
" <td>846.491412</td>\n",
" <td>503.587476</td>\n",
" <td>0.718741</td>\n",
" <td>0.811781</td>\n",
" <td>6.092388</td>\n",
" <td>14.689941</td>\n",
" <td>17.452604</td>\n",
" <td>...</td>\n",
" <td>8.197643</td>\n",
" <td>9.963911</td>\n",
" <td>1548</td>\n",
" <td>210.528</td>\n",
" <td>108.129956</td>\n",
" <td>722110.3750</td>\n",
" <td>75509.609375</td>\n",
" <td>11157515.0</td>\n",
" <td>TI</td>\n",
" <td>5250.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5343175</th>\n",
" <td>17</td>\n",
" <td>163.0</td>\n",
" <td>1350.071526</td>\n",
" <td>846.491412</td>\n",
" <td>503.587476</td>\n",
" <td>0.759114</td>\n",
" <td>0.804061</td>\n",
" <td>11.788798</td>\n",
" <td>16.118021</td>\n",
" <td>15.847362</td>\n",
" <td>...</td>\n",
" <td>13.261172</td>\n",
" <td>13.841580</td>\n",
" <td>1114</td>\n",
" <td>151.504</td>\n",
" <td>110.595071</td>\n",
" <td>722108.1875</td>\n",
" <td>75516.570312</td>\n",
" <td>11157515.0</td>\n",
" <td>TI</td>\n",
" <td>5250.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5343177</th>\n",
" <td>25</td>\n",
" <td>-59.0</td>\n",
" <td>1350.071526</td>\n",
" <td>846.491412</td>\n",
" <td>503.587476</td>\n",
" <td>0.706426</td>\n",
" <td>0.738014</td>\n",
" <td>12.730241</td>\n",
" <td>21.675634</td>\n",
" <td>21.338327</td>\n",
" <td>...</td>\n",
" <td>13.979061</td>\n",
" <td>15.757084</td>\n",
" <td>545</td>\n",
" <td>74.120</td>\n",
" <td>20.512037</td>\n",
" <td>722494.3125</td>\n",
" <td>75592.125000</td>\n",
" <td>11103162.0</td>\n",
" <td>TI</td>\n",
" <td>5250.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5343178</th>\n",
" <td>24</td>\n",
" <td>121.0</td>\n",
" <td>1350.071526</td>\n",
" <td>846.491412</td>\n",
" <td>503.587476</td>\n",
" <td>0.643597</td>\n",
" <td>0.654795</td>\n",
" <td>16.819239</td>\n",
" <td>18.360150</td>\n",
" <td>19.976019</td>\n",
" <td>...</td>\n",
" <td>12.246127</td>\n",
" <td>15.541741</td>\n",
" <td>598</td>\n",
" <td>81.328</td>\n",
" <td>20.850745</td>\n",
" <td>722491.9375</td>\n",
" <td>75593.523438</td>\n",
" <td>11103162.0</td>\n",
" <td>TI</td>\n",
" <td>5250.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5343214</th>\n",
" <td>11</td>\n",
" <td>168.0</td>\n",
" <td>1350.071526</td>\n",
" <td>846.491412</td>\n",
" <td>503.587476</td>\n",
" <td>0.598916</td>\n",
" <td>0.448989</td>\n",
" <td>43.407631</td>\n",
" <td>15.740415</td>\n",
" <td>5.747942</td>\n",
" <td>...</td>\n",
" <td>44.075201</td>\n",
" <td>35.429473</td>\n",
" <td>1032</td>\n",
" <td>140.352</td>\n",
" <td>168.164462</td>\n",
" <td>722125.8125</td>\n",
" <td>75788.093750</td>\n",
" <td>11157513.0</td>\n",
" <td>TI</td>\n",
" <td>5250.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 24 columns</p>\n",
"</div>"
],
"text/plain": [
" NEIGUNG AUSRICHTUNG SIS SISDIR DHI SVF \\\n",
"DF_UID \n",
"5343176 16 -17.0 1350.071526 846.491412 503.587476 0.718741 \n",
"5343175 17 163.0 1350.071526 846.491412 503.587476 0.759114 \n",
"5343177 25 -59.0 1350.071526 846.491412 503.587476 0.706426 \n",
"5343178 24 121.0 1350.071526 846.491412 503.587476 0.643597 \n",
"5343214 11 168.0 1350.071526 846.491412 503.587476 0.598916 \n",
"\n",
- " illumination horizon_S horizon_E horizon_NEE ... horizon_SSE \\\n",
- "DF_UID ... \n",
- "5343176 0.811781 6.092388 14.689941 17.452604 ... 8.197643 \n",
- "5343175 0.804061 11.788798 16.118021 15.847362 ... 13.261172 \n",
- "5343177 0.738014 12.730241 21.675634 21.338327 ... 13.979061 \n",
- "5343178 0.654795 16.819239 18.360150 19.976019 ... 12.246127 \n",
- "5343214 0.448989 43.407631 15.740415 5.747942 ... 44.075201 \n",
+ " illumination horizon_S horizon_E horizon_NEE ... \\\n",
+ "DF_UID ... \n",
+ "5343176 0.811781 6.092388 14.689941 17.452604 ... \n",
+ "5343175 0.804061 11.788798 16.118021 15.847362 ... \n",
+ "5343177 0.738014 12.730241 21.675634 21.338327 ... \n",
+ "5343178 0.654795 16.819239 18.360150 19.976019 ... \n",
+ "5343214 0.448989 43.407631 15.740415 5.747942 ... \n",
"\n",
- " horizon_SEE MSTRAHLUNG PV_kWh_m2 FLAECHE XCOORD \\\n",
+ " horizon_SSE horizon_SEE MSTRAHLUNG PV_kWh_m2 FLAECHE \\\n",
"DF_UID \n",
- "5343176 9.963911 1548 210.528 108.129956 722110.3750 \n",
- "5343175 13.841580 1114 151.504 110.595071 722108.1875 \n",
- "5343177 15.757084 545 74.120 20.512037 722494.3125 \n",
- "5343178 15.541741 598 81.328 20.850745 722491.9375 \n",
- "5343214 35.429473 1032 140.352 168.164462 722125.8125 \n",
- "\n",
- " YCOORD GWR_EGID Kanton Commune_ID \n",
- "DF_UID \n",
- "5343176 75509.609375 11157515.0 TI 5250.0 \n",
- "5343175 75516.570312 11157515.0 TI 5250.0 \n",
- "5343177 75592.125000 11103162.0 TI 5250.0 \n",
- "5343178 75593.523438 11103162.0 TI 5250.0 \n",
- "5343214 75788.093750 11157513.0 TI 5250.0 \n",
+ "5343176 8.197643 9.963911 1548 210.528 108.129956 \n",
+ "5343175 13.261172 13.841580 1114 151.504 110.595071 \n",
+ "5343177 13.979061 15.757084 545 74.120 20.512037 \n",
+ "5343178 12.246127 15.541741 598 81.328 20.850745 \n",
+ "5343214 44.075201 35.429473 1032 140.352 168.164462 \n",
+ "\n",
+ " XCOORD YCOORD GWR_EGID Kanton Commune_ID \n",
+ "DF_UID \n",
+ "5343176 722110.3750 75509.609375 11157515.0 TI 5250.0 \n",
+ "5343175 722108.1875 75516.570312 11157515.0 TI 5250.0 \n",
+ "5343177 722494.3125 75592.125000 11103162.0 TI 5250.0 \n",
+ "5343178 722491.9375 75593.523438 11103162.0 TI 5250.0 \n",
+ "5343214 722125.8125 75788.093750 11157513.0 TI 5250.0 \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"testing_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get cities"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"cities = ['Luzern', 'Zürich', 'Basel', 'Lugano', 'Interlaken', 'Davos']"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"city_data = {}\n",
"for name in cities:\n",
" city_data[name] = testing_data[ testing_data.Commune_ID.isin( \n",
" commune_info[ commune_info.GDENAME == name].GDENR.values) ].dropna()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"city_coords = pd.DataFrame(data = [], columns = ['XCOORD', 'YCOORD'])\n",
"\n",
"for name, data in city_data.items():\n",
" city_coords = city_coords.append( pd.DataFrame(data = data[['XCOORD', 'YCOORD']].mean(), \n",
" index = ['XCOORD', 'YCOORD'], columns = [ name ]).T)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>XCOORD</th>\n",
" <th>YCOORD</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Luzern</th>\n",
" <td>665624.955697</td>\n",
" <td>211666.076867</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zürich</th>\n",
" <td>682773.044850</td>\n",
" <td>248311.436652</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Basel</th>\n",
" <td>611299.379711</td>\n",
" <td>267349.846960</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lugano</th>\n",
" <td>718420.536632</td>\n",
" <td>97348.639209</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Interlaken</th>\n",
" <td>632237.358008</td>\n",
" <td>170485.718042</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Davos</th>\n",
" <td>781587.456246</td>\n",
" <td>183569.663515</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" XCOORD YCOORD\n",
"Luzern 665624.955697 211666.076867\n",
"Zürich 682773.044850 248311.436652\n",
"Basel 611299.379711 267349.846960\n",
"Lugano 718420.536632 97348.639209\n",
"Interlaken 632237.358008 170485.718042\n",
"Davos 781587.456246 183569.663515"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"city_coords"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plot locations of train and test data with cities"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Luzern', 'Zürich', 'Basel', 'Lugano', 'Interlaken', 'Davos'], dtype='object')"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"city_coords.index"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"trn = training_data.sample(100000)\n",
"tst = testing_data.sample(1000000)\n",
"\n",
"DIST = 5000\n",
"XMAX = tst.XCOORD.max()\n",
"XMIN = trn.XCOORD.min()\n",
"\n",
"YMAX = tst.YCOORD.max()\n",
"YMIN = tst.YCOORD.min()\n",
"\n",
"plt.figure()\n",
"plt.scatter(trn.XCOORD, trn.YCOORD, s = 0.5, c = 'C0', label = 'training data')\n",
"plt.scatter(tst.XCOORD, tst.YCOORD, s = 0.5, c = 'C1', label = 'test data')\n",
"plt.scatter(city_coords.XCOORD, city_coords.YCOORD, s = 50, c = 'g', label = '')\n",
"\n",
"for city in city_coords.index:\n",
" plt.text(city_coords.loc[city].XCOORD + DIST, city_coords.loc[city].YCOORD, city, \n",
" fontsize = 12)\n",
"\n",
"plt.axis('equal')\n",
"plt.axis('off')\n",
"\n",
"plt.xlim((XMIN, XMAX))\n",
"plt.ylim((YMIN, YMAX))\n",
"\n",
"plt.legend(markerscale=5)\n",
"plt.tight_layout()\n",
"# plt.savefig('train_test_w_cities.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Part 3: Define ML models"
]
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 159,
"metadata": {},
"outputs": [],
"source": [
"# ML MODEL PARAMETERS\n",
"n_est = 500\n",
"n_samples_leaf = 3\n",
"RF_features = 3\n",
"ELM_nodes = 45\n",
"ELM_est = 25\n",
"MLP_layers = (100, 20,) # WORKS RESONABLY WELL\n",
- "SVM_paramC = 1\n",
- "SVM_gamma = 500\n",
+ "SVM_paramC = 5\n",
+ "SVM_gamma = 200\n",
"knn_neighbors = 17\n",
"\n",
"k_CV = 5\n",
"\n",
"# DEFINITION OF ESTIMATORS\n",
"def set_estimators():\n",
" estimator = {\n",
" 'LIN': LinearRegression( n_jobs = -1 ),\n",
" 'KNN': KNeighborsRegressor( n_neighbors = knn_neighbors, n_jobs = -1 ),\n",
" 'ELM' : ELM_Ensemble( n_estimators = ELM_est, n_nodes = ELM_nodes),\n",
" 'RF' : RandomForestRegressor( n_estimators = n_est, min_samples_leaf = n_samples_leaf, max_features = RF_features, n_jobs = -1 ),\n",
"# 'MLP': MLPRegressor( hidden_layer_sizes = MLP_layers ),\n",
" 'SVM': SVR( C = SVM_paramC, kernel = 'rbf', gamma = SVM_gamma ),\n",
"# 'RF_unc' : Uncertainty( RandomForestRegressor( n_estimators = n_est, min_samples_leaf = n_samples_leaf, n_jobs = -1 ) ),\n",
"# 'ELM_unc': Uncertainty( ELM_Ensemble( n_estimators = ELM_est, n_nodes = ELM_nodes) )\n",
" }\n",
" return estimator\n",
"\n",
"# 'XGB': XGBRegressor( n_estimators = n_est, max_depth = tree_depth, n_jobs = -1 ),"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check RMSE score"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# choose model with which to perform the feature selection\n",
"model = 'RF'\n",
"training = training_data.sample(100000)\n",
"\n",
"MSE = pd.DataFrame(data = [], columns = ['mse', 'mse_norm', 'cv_time'])\n",
"N = len(feature_names)\n",
"\n",
"# get all all features\n",
"x, t, X, T = get_data( training, feature_names, label_name)\n",
"mse_df = pd.DataFrame(data = np.zeros((len(feature_names), 3)), \n",
" index = feature_names, columns = ['mse', 'mse_norm', 'cv_time'])\n",
"mse_df.loc['all', :] = get_mse( x, t, X, T, model )\n",
"MSE = MSE.append(mse_df.loc['all',:])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.sqrt(MSE)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PERFORM MODEL TRAINING"
]
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 169,
"metadata": {},
"outputs": [],
"source": [
- "training = training_data.sample(10000)\n",
+ "training = training_data.sample(1000)\n",
"x, t, X, T = get_data( training, feature_names, label_name)"
]
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 170,
"metadata": {},
"outputs": [],
"source": [
- "testing = testing_data.sample(10000)\n",
+ "testing = testing_data.sample(100000)\n",
"x_tst, t_tst, X_tst, T_tst = get_data( testing, feature_names, label_name)"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Train with 1k samples"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 174,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Testing LIN\n",
- "Training time: 0.055s\n",
- "LIN MSE: 25098.747022\n",
- "LIN RMSE: 158.425841\n",
- "LIN MAE: 116.309859\n",
- "LIN MAEP: 0.144816\n",
- "LIN MBE: -57.931698\n",
- "LIN MBEP: -0.090166\n",
- "LIN R2: 0.542737\n",
- "Prediction time: 0.013s\n",
+ "Training time: 0.002s\n",
+ "LIN MSE: 23783.918182\n",
+ "LIN RMSE: 154.220356\n",
+ "LIN MAE: 112.957959\n",
+ "LIN MAEP: 0.139287\n",
+ "LIN MBE: -53.545046\n",
+ "LIN MBEP: -0.085440\n",
+ "LIN R2: 0.566333\n",
+ "Prediction time: 0.149s\n",
"Testing KNN\n",
- "Training time: 0.012s\n",
- "KNN MSE: 14575.417645\n",
- "KNN RMSE: 120.728694\n",
- "KNN MAE: 83.222771\n",
- "KNN MAEP: 0.103548\n",
- "KNN MBE: -59.695535\n",
- "KNN MBEP: -0.082560\n",
- "KNN R2: 0.734457\n",
- "Prediction time: 0.134s\n",
+ "Training time: 0.001s\n",
+ "KNN MSE: 18036.501312\n",
+ "KNN RMSE: 134.300042\n",
+ "KNN MAE: 96.160955\n",
+ "KNN MAEP: 0.119556\n",
+ "KNN MBE: -74.634360\n",
+ "KNN MBEP: -0.101056\n",
+ "KNN R2: 0.671129\n",
+ "Prediction time: 4.237s\n",
"Testing ELM\n",
- "Training time: 0.323s\n",
- "ELM MSE: 14870.709539\n",
- "ELM RMSE: 121.945519\n",
- "ELM MAE: 83.957663\n",
- "ELM MAEP: 0.105279\n",
- "ELM MBE: -35.760251\n",
- "ELM MBEP: -0.050804\n",
- "ELM R2: 0.729077\n",
- "Prediction time: 0.151s\n",
+ "Training time: 2.165s\n",
+ "ELM MSE: 14398.281828\n",
+ "ELM RMSE: 119.992841\n",
+ "ELM MAE: 83.765236\n",
+ "ELM MAEP: 0.102963\n",
+ "ELM MBE: -37.410857\n",
+ "ELM MBEP: -0.049222\n",
+ "ELM R2: 0.737467\n",
+ "Prediction time: 4.461s\n",
"Testing RF\n",
- "Training time: 4.878s\n",
- "RF MSE: 13086.314055\n",
- "RF RMSE: 114.395428\n",
- "RF MAE: 77.190260\n",
- "RF MAEP: 0.095846\n",
- "RF MBE: -40.101319\n",
- "RF MBEP: -0.060314\n",
- "RF R2: 0.761586\n",
- "Prediction time: 0.314s\n",
+ "Training time: 1.537s\n",
+ "RF MSE: 13653.840310\n",
+ "RF RMSE: 116.849648\n",
+ "RF MAE: 80.052971\n",
+ "RF MAEP: 0.104255\n",
+ "RF MBE: -37.128476\n",
+ "RF MBEP: -0.069705\n",
+ "RF R2: 0.751041\n",
+ "Prediction time: 3.712s\n",
"Testing SVM\n",
- "Training time: 2.401s\n",
- "SVM MSE: 13477.339763\n",
- "SVM RMSE: 116.091945\n",
- "SVM MAE: 79.157336\n",
- "SVM MAEP: 0.096642\n",
- "SVM MBE: -46.957775\n",
- "SVM MBEP: -0.064411\n",
- "SVM R2: 0.754462\n",
- "Prediction time: 1.128s\n"
+ "Training time: 0.052s\n",
+ "SVM MSE: 12933.380941\n",
+ "SVM RMSE: 113.725023\n",
+ "SVM MAE: 78.979292\n",
+ "SVM MAEP: 0.094706\n",
+ "SVM MBE: -45.913064\n",
+ "SVM MBEP: -0.061326\n",
+ "SVM R2: 0.764178\n",
+ "Prediction time: 2.110s\n"
]
}
],
"source": [
+ "training = training_data.sample(1000)\n",
+ "x, t, X, T = get_data( training, feature_names, label_name)\n",
+ "\n",
"# names = ['RF']\n",
"# for name in names:\n",
"# est = set_estimators()[name]\n",
"for name, est in (set_estimators()).items():\n",
" print('Testing %s' %name)\n",
" tt = time.time()\n",
"\n",
- " est.fit(x, t)\n",
- " \n",
- " print('Training time: %.3fs' %(time.time()-tt))\n",
+ " if name == 'RF':\n",
+ " est.fit(X, T)\n",
+ " print('Training time: %.3fs' %(time.time()-tt))\n",
+ " tt = time.time()\n",
+ " Y_tst = est.predict(X_tst)\n",
+ " \n",
+ " else:\n",
+ " est.fit(x, t)\n",
+ " print('Training time: %.3fs' %(time.time()-tt))\n",
+ " tt = time.time() \n",
+ " y_tst = est.predict(x_tst)\n",
+ " Y_tst = rescale(y_tst, T)\n",
+ "\n",
+ " pred_err = get_errors( shp(T_tst), shp(Y_tst), name )\n",
+ "\n",
+ " print('Prediction time: %.3fs' %(time.time()-tt))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Train with 10k samples"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 175,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Testing LIN\n",
+ "Training time: 0.054s\n",
+ "LIN MSE: 24480.316694\n",
+ "LIN RMSE: 156.461870\n",
+ "LIN MAE: 115.865296\n",
+ "LIN MAEP: 0.141440\n",
+ "LIN MBE: -58.208685\n",
+ "LIN MBEP: -0.087344\n",
+ "LIN R2: 0.553635\n",
+ "Prediction time: 0.097s\n",
+ "Testing KNN\n",
+ "Training time: 0.005s\n",
+ "KNN MSE: 14464.805151\n",
+ "KNN RMSE: 120.269718\n",
+ "KNN MAE: 83.825904\n",
+ "KNN MAEP: 0.101716\n",
+ "KNN MBE: -60.812275\n",
+ "KNN MBEP: -0.081115\n",
+ "KNN R2: 0.736254\n",
+ "Prediction time: 13.143s\n",
+ "Testing ELM\n",
+ "Training time: 11.351s\n",
+ "ELM MSE: 13715.809926\n",
+ "ELM RMSE: 117.114516\n",
+ "ELM MAE: 82.055596\n",
+ "ELM MAEP: 0.099404\n",
+ "ELM MBE: -41.600571\n",
+ "ELM MBEP: -0.053772\n",
+ "ELM R2: 0.749911\n",
+ "Prediction time: 4.345s\n",
+ "Testing RF\n",
+ "Training time: 11.359s\n",
+ "RF MSE: 10023.226545\n",
+ "RF RMSE: 100.116065\n",
+ "RF MAE: 64.214906\n",
+ "RF MAEP: 0.084092\n",
+ "RF MBE: -25.099019\n",
+ "RF MBEP: -0.051259\n",
+ "RF R2: 0.817240\n",
+ "Prediction time: 5.813s\n",
+ "Testing SVM\n",
+ "Training time: 3.860s\n",
+ "SVM MSE: 13406.938688\n",
+ "SVM RMSE: 115.788336\n",
+ "SVM MAE: 80.636103\n",
+ "SVM MAEP: 0.094644\n",
+ "SVM MBE: -48.514743\n",
+ "SVM MBEP: -0.061425\n",
+ "SVM R2: 0.755543\n",
+ "Prediction time: 20.292s\n"
+ ]
+ }
+ ],
+ "source": [
+ "training = training_data.sample(10000)\n",
+ "x, t, X, T = get_data( training, feature_names, label_name)\n",
+ "\n",
+ "# names = ['RF']\n",
+ "# for name in names:\n",
+ "# est = set_estimators()[name]\n",
+ "for name, est in (set_estimators()).items():\n",
+ " print('Testing %s' %name)\n",
" tt = time.time()\n",
- " \n",
- " y_tst = est.predict(x_tst)\n",
- " Y_tst = rescale(y_tst, T)\n",
- " \n",
+ "\n",
+ " if name == 'RF':\n",
+ " est.fit(X, T)\n",
+ " print('Training time: %.3fs' %(time.time()-tt))\n",
+ " tt = time.time()\n",
+ " Y_tst = est.predict(X_tst)\n",
+ " \n",
+ " else:\n",
+ " est.fit(x, t)\n",
+ " print('Training time: %.3fs' %(time.time()-tt))\n",
+ " tt = time.time() \n",
+ " y_tst = est.predict(x_tst)\n",
+ " Y_tst = rescale(y_tst, T)\n",
+ "\n",
" pred_err = get_errors( shp(T_tst), shp(Y_tst), name )\n",
"\n",
" print('Prediction time: %.3fs' %(time.time()-tt))"
]
},
{
"cell_type": "markdown",
"metadata": {},
+ "source": [
+ "### Train with 100k samples"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Testing LIN\n",
+ "Training time: 0.383s\n",
+ "LIN MSE: 24472.805872\n",
+ "LIN RMSE: 156.437866\n",
+ "LIN MAE: 115.616655\n",
+ "LIN MAEP: 0.141513\n",
+ "LIN MBE: -58.201560\n",
+ "LIN MBEP: -0.087648\n",
+ "LIN R2: 0.553772\n",
+ "Prediction time: 0.107s\n",
+ "Testing KNN\n",
+ "Training time: 0.176s\n",
+ "KNN MSE: 12979.745631\n",
+ "KNN RMSE: 113.928687\n",
+ "KNN MAE: 77.681210\n",
+ "KNN MAEP: 0.093053\n",
+ "KNN MBE: -48.567064\n",
+ "KNN MBEP: -0.065647\n",
+ "KNN R2: 0.763332\n",
+ "Prediction time: 27.063s\n",
+ "Testing ELM\n",
+ "Training time: 132.058s\n",
+ "ELM MSE: 13726.753560\n",
+ "ELM RMSE: 117.161229\n",
+ "ELM MAE: 82.091841\n",
+ "ELM MAEP: 0.099962\n",
+ "ELM MBE: -39.033537\n",
+ "ELM MBEP: -0.050839\n",
+ "ELM R2: 0.749712\n",
+ "Prediction time: 4.695s\n",
+ "Testing RF\n",
+ "Training time: 150.906s\n",
+ "RF MSE: 8865.486913\n",
+ "RF RMSE: 94.156715\n",
+ "RF MAE: 58.102606\n",
+ "RF MAEP: 0.076116\n",
+ "RF MBE: -15.740714\n",
+ "RF MBEP: -0.039334\n",
+ "RF R2: 0.838350\n",
+ "Prediction time: 10.920s\n",
+ "Testing SVM\n"
+ ]
+ }
+ ],
+ "source": [
+ " training = training_data.sample(100000)\n",
+ "x, t, X, T = get_data( training, feature_names, label_name)\n",
+ "\n",
+ "# names = ['RF']\n",
+ "# for name in names:\n",
+ "# est = set_estimators()[name]\n",
+ "for name, est in (set_estimators()).items():\n",
+ " print('Testing %s' %name)\n",
+ " tt = time.time()\n",
+ "\n",
+ " if name == 'RF':\n",
+ " est.fit(X, T)\n",
+ " print('Training time: %.3fs' %(time.time()-tt))\n",
+ " tt = time.time()\n",
+ " Y_tst = est.predict(X_tst)\n",
+ " \n",
+ " else:\n",
+ " est.fit(x, t)\n",
+ " print('Training time: %.3fs' %(time.time()-tt))\n",
+ " tt = time.time() \n",
+ " y_tst = est.predict(x_tst)\n",
+ " Y_tst = rescale(y_tst, T)\n",
+ "\n",
+ " pred_err = get_errors( shp(T_tst), shp(Y_tst), name )\n",
+ "\n",
+ " print('Prediction time: %.3fs' %(time.time()-tt))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"### RF and LIN are OK!\n",
"RF gives very good performance if X, T are used (no normalization)\n",
"LIN is in all cases not great, but functions as a reference model\n",
"\n",
"--> **for the other models, we should check different types of normalization, and with and without normalization**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### TUNING FOR KNN"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
"training = training_data.sample(100000)\n",
"x, t, X, T = get_data( training, feature_names, label_name)"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"n_neighbors = 1\n",
"KNN (unscaled) MSE: 17936.489860\n",
"KNN (unscaled) RMSE: 133.927181\n",
"KNN (unscaled) MAE: 79.814240\n",
"KNN (unscaled) MAEP: 0.101270\n",
"KNN (unscaled) MBE: -7.217900\n",
"KNN (unscaled) MBEP: -0.038601\n",
"KNN (unscaled) R2: 0.712287\n",
"Crossvalidation time: 1.064s\n",
"KNN (scaled) MSE: 19677.763360\n",
"KNN (scaled) RMSE: 140.277451\n",
"KNN (scaled) MAE: 89.346540\n",
"KNN (scaled) MAEP: 0.106728\n",
"KNN (scaled) MBE: -3.728060\n",
"KNN (scaled) MBEP: -0.034882\n",
"KNN (scaled) R2: 0.684356\n",
"Crossvalidation time: 0.886s\n",
"\n",
"n_neighbors = 3\n",
"KNN (unscaled) MSE: 12194.562456\n",
"KNN (unscaled) RMSE: 110.428993\n",
"KNN (unscaled) MAE: 66.508287\n",
"KNN (unscaled) MAEP: 0.088468\n",
"KNN (unscaled) MBE: -9.034973\n",
"KNN (unscaled) MBEP: -0.040306\n",
"KNN (unscaled) R2: 0.804391\n",
"Crossvalidation time: 1.561s\n",
"KNN (scaled) MSE: 13216.161858\n",
"KNN (scaled) RMSE: 114.961567\n",
"KNN (scaled) MAE: 73.633820\n",
"KNN (scaled) MAEP: 0.092077\n",
"KNN (scaled) MBE: -4.446187\n",
"KNN (scaled) MBEP: -0.035396\n",
"KNN (scaled) R2: 0.788004\n",
"Crossvalidation time: 1.248s\n",
"\n",
"n_neighbors = 5\n",
"KNN (unscaled) MSE: 11099.403854\n",
"KNN (unscaled) RMSE: 105.353708\n",
"KNN (unscaled) MAE: 63.260656\n",
"KNN (unscaled) MAEP: 0.085720\n",
"KNN (unscaled) MBE: -10.136920\n",
"KNN (unscaled) MBEP: -0.041689\n",
"KNN (unscaled) R2: 0.821958\n",
"Crossvalidation time: 1.475s\n",
"KNN (scaled) MSE: 11955.351578\n",
"KNN (scaled) RMSE: 109.340530\n",
"KNN (scaled) MAE: 69.773316\n",
"KNN (scaled) MAEP: 0.088403\n",
"KNN (scaled) MBE: -5.201756\n",
"KNN (scaled) MBEP: -0.035990\n",
"KNN (scaled) R2: 0.808228\n",
"Crossvalidation time: 1.315s\n",
"\n",
"n_neighbors = 7\n",
"KNN (unscaled) MSE: 10706.984887\n",
"KNN (unscaled) RMSE: 103.474562\n",
"KNN (unscaled) MAE: 61.927021\n",
"KNN (unscaled) MAEP: 0.084790\n",
"KNN (unscaled) MBE: -10.867441\n",
"KNN (unscaled) MBEP: -0.042730\n",
"KNN (unscaled) R2: 0.828253\n",
"Crossvalidation time: 1.455s\n",
"KNN (scaled) MSE: 11392.805628\n",
"KNN (scaled) RMSE: 106.737086\n",
"KNN (scaled) MAE: 67.816767\n",
"KNN (scaled) MAEP: 0.086936\n",
"KNN (scaled) MBE: -5.736339\n",
"KNN (scaled) MBEP: -0.036814\n",
"KNN (scaled) R2: 0.817252\n",
"Crossvalidation time: 1.308s\n",
"\n",
"n_neighbors = 9\n",
"KNN (unscaled) MSE: 10543.600396\n",
"KNN (unscaled) RMSE: 102.682035\n",
"KNN (unscaled) MAE: 61.310733\n",
"KNN (unscaled) MAEP: 0.084391\n",
"KNN (unscaled) MBE: -11.532802\n",
"KNN (unscaled) MBEP: -0.043543\n",
"KNN (unscaled) R2: 0.830874\n",
"Crossvalidation time: 1.907s\n",
"KNN (scaled) MSE: 11132.352721\n",
"KNN (scaled) RMSE: 105.509965\n",
"KNN (scaled) MAE: 66.778321\n",
"KNN (scaled) MAEP: 0.086262\n",
"KNN (scaled) MBE: -6.243303\n",
"KNN (scaled) MBEP: -0.037596\n",
"KNN (scaled) R2: 0.821430\n",
"Crossvalidation time: 1.521s\n",
"\n",
"n_neighbors = 11\n",
"KNN (unscaled) MSE: 10452.999561\n",
"KNN (unscaled) RMSE: 102.239912\n",
"KNN (unscaled) MAE: 60.969124\n",
"KNN (unscaled) MAEP: 0.084270\n",
"KNN (unscaled) MBE: -12.089491\n",
"KNN (unscaled) MBEP: -0.044278\n",
"KNN (unscaled) R2: 0.832327\n",
"Crossvalidation time: 1.902s\n",
"KNN (scaled) MSE: 10975.228516\n",
"KNN (scaled) RMSE: 104.762725\n",
"KNN (scaled) MAE: 66.118878\n",
"KNN (scaled) MAEP: 0.085953\n",
"KNN (scaled) MBE: -6.554885\n",
"KNN (scaled) MBEP: -0.038208\n",
"KNN (scaled) R2: 0.823950\n",
"Crossvalidation time: 1.777s\n",
"\n",
"n_neighbors = 13\n",
"KNN (unscaled) MSE: 10416.797665\n",
"KNN (unscaled) RMSE: 102.062714\n",
"KNN (unscaled) MAE: 60.869478\n",
"KNN (unscaled) MAEP: 0.084387\n",
"KNN (unscaled) MBE: -12.464251\n",
"KNN (unscaled) MBEP: -0.044863\n",
"KNN (unscaled) R2: 0.832908\n",
"Crossvalidation time: 1.873s\n",
"KNN (scaled) MSE: 10864.128870\n",
"KNN (scaled) RMSE: 104.231132\n",
"KNN (scaled) MAE: 65.653434\n",
"KNN (scaled) MAEP: 0.085656\n",
"KNN (scaled) MBE: -6.987180\n",
"KNN (scaled) MBEP: -0.038707\n",
"KNN (scaled) R2: 0.825732\n",
"Crossvalidation time: 1.541s\n",
"\n",
"n_neighbors = 15\n",
"KNN (unscaled) MSE: 10407.979269\n",
"KNN (unscaled) RMSE: 102.019504\n",
"KNN (unscaled) MAE: 60.828119\n",
"KNN (unscaled) MAEP: 0.084519\n",
"KNN (unscaled) MBE: -12.905059\n",
"KNN (unscaled) MBEP: -0.045440\n",
"KNN (unscaled) R2: 0.833049\n",
"Crossvalidation time: 2.093s\n",
"KNN (scaled) MSE: 10790.107915\n",
"KNN (scaled) RMSE: 103.875444\n",
"KNN (scaled) MAE: 65.374872\n",
"KNN (scaled) MAEP: 0.085386\n",
"KNN (scaled) MBE: -7.334755\n",
"KNN (scaled) MBEP: -0.039021\n",
"KNN (scaled) R2: 0.826920\n",
"Crossvalidation time: 2.058s\n",
"\n",
"n_neighbors = 17\n",
"KNN (unscaled) MSE: 10404.359819\n",
"KNN (unscaled) RMSE: 102.001764\n",
"KNN (unscaled) MAE: 60.840614\n",
"KNN (unscaled) MAEP: 0.084702\n",
"KNN (unscaled) MBE: -13.303973\n",
"KNN (unscaled) MBEP: -0.045989\n",
"KNN (unscaled) R2: 0.833107\n",
"Crossvalidation time: 2.429s\n",
"KNN (scaled) MSE: 10750.128628\n",
"KNN (scaled) RMSE: 103.682827\n",
"KNN (scaled) MAE: 65.155901\n",
"KNN (scaled) MAEP: 0.085283\n",
"KNN (scaled) MBE: -7.616437\n",
"KNN (scaled) MBEP: -0.039390\n",
"KNN (scaled) R2: 0.827561\n",
"Crossvalidation time: 2.059s\n",
"\n",
"n_neighbors = 19\n",
"KNN (unscaled) MSE: 10411.482554\n",
"KNN (unscaled) RMSE: 102.036673\n",
"KNN (unscaled) MAE: 60.892743\n",
"KNN (unscaled) MAEP: 0.084887\n",
"KNN (unscaled) MBE: -13.650136\n",
"KNN (unscaled) MBEP: -0.046457\n",
"KNN (unscaled) R2: 0.832993\n",
"Crossvalidation time: 2.417s\n",
"KNN (scaled) MSE: 10714.865824\n",
"KNN (scaled) RMSE: 103.512636\n",
"KNN (scaled) MAE: 65.020369\n",
"KNN (scaled) MAEP: 0.085191\n",
"KNN (scaled) MBE: -7.860828\n",
"KNN (scaled) MBEP: -0.039656\n",
"KNN (scaled) R2: 0.828127\n",
"Crossvalidation time: 1.982s\n",
"\n",
"n_neighbors = 21\n",
"KNN (unscaled) MSE: 10433.962500\n",
"KNN (unscaled) RMSE: 102.146769\n",
"KNN (unscaled) MAE: 61.001188\n",
"KNN (unscaled) MAEP: 0.085100\n",
"KNN (unscaled) MBE: -13.958888\n",
"KNN (unscaled) MBEP: -0.046864\n",
"KNN (unscaled) R2: 0.832632\n",
"Crossvalidation time: 2.334s\n",
"KNN (scaled) MSE: 10702.347523\n",
"KNN (scaled) RMSE: 103.452151\n",
"KNN (scaled) MAE: 64.922793\n",
"KNN (scaled) MAEP: 0.085117\n",
"KNN (scaled) MBE: -8.073680\n",
"KNN (scaled) MBEP: -0.039885\n",
"KNN (scaled) R2: 0.828327\n",
"Crossvalidation time: 2.069s\n",
"\n",
"n_neighbors = 23\n",
"KNN (unscaled) MSE: 10456.314662\n",
"KNN (unscaled) RMSE: 102.256123\n",
"KNN (unscaled) MAE: 61.089005\n",
"KNN (unscaled) MAEP: 0.085257\n",
"KNN (unscaled) MBE: -14.256716\n",
"KNN (unscaled) MBEP: -0.047223\n",
"KNN (unscaled) R2: 0.832274\n",
"Crossvalidation time: 2.111s\n",
"KNN (scaled) MSE: 10689.113724\n",
"KNN (scaled) RMSE: 103.388170\n",
"KNN (scaled) MAE: 64.859814\n",
"KNN (scaled) MAEP: 0.085216\n",
"KNN (scaled) MBE: -8.331738\n",
"KNN (scaled) MBEP: -0.040285\n",
"KNN (scaled) R2: 0.828540\n",
"Crossvalidation time: 1.861s\n",
"\n",
"n_neighbors = 25\n",
"KNN (unscaled) MSE: 10490.688473\n",
"KNN (unscaled) RMSE: 102.424062\n",
"KNN (unscaled) MAE: 61.211516\n",
"KNN (unscaled) MAEP: 0.085473\n",
"KNN (unscaled) MBE: -14.551115\n",
"KNN (unscaled) MBEP: -0.047607\n",
"KNN (unscaled) R2: 0.831723\n",
"Crossvalidation time: 2.406s\n",
"KNN (scaled) MSE: 10680.215304\n",
"KNN (scaled) RMSE: 103.345127\n",
"KNN (scaled) MAE: 64.826315\n",
"KNN (scaled) MAEP: 0.085263\n",
"KNN (scaled) MBE: -8.536103\n",
"KNN (scaled) MBEP: -0.040559\n",
"KNN (scaled) R2: 0.828682\n",
"Crossvalidation time: 1.847s\n",
"\n",
"n_neighbors = 27\n",
"KNN (unscaled) MSE: 10519.643905\n",
"KNN (unscaled) RMSE: 102.565315\n",
"KNN (unscaled) MAE: 61.336524\n",
"KNN (unscaled) MAEP: 0.085675\n",
"KNN (unscaled) MBE: -14.801919\n",
"KNN (unscaled) MBEP: -0.047934\n",
"KNN (unscaled) R2: 0.831258\n",
"Crossvalidation time: 2.415s\n",
"KNN (scaled) MSE: 10680.828484\n",
"KNN (scaled) RMSE: 103.348094\n",
"KNN (scaled) MAE: 64.814751\n",
"KNN (scaled) MAEP: 0.085333\n",
"KNN (scaled) MBE: -8.750767\n",
"KNN (scaled) MBEP: -0.040840\n",
"KNN (scaled) R2: 0.828673\n",
"Crossvalidation time: 2.183s\n",
"\n",
"n_neighbors = 29\n",
"KNN (unscaled) MSE: 10551.474020\n",
"KNN (unscaled) RMSE: 102.720368\n",
"KNN (unscaled) MAE: 61.473164\n",
"KNN (unscaled) MAEP: 0.085902\n",
"KNN (unscaled) MBE: -15.027471\n",
"KNN (unscaled) MBEP: -0.048254\n",
"KNN (unscaled) R2: 0.830748\n",
"Crossvalidation time: 2.451s\n",
"KNN (scaled) MSE: 10674.096961\n",
"KNN (scaled) RMSE: 103.315521\n",
"KNN (scaled) MAE: 64.801763\n",
"KNN (scaled) MAEP: 0.085344\n",
"KNN (scaled) MBE: -8.936027\n",
"KNN (scaled) MBEP: -0.041038\n",
"KNN (scaled) R2: 0.828781\n",
"Crossvalidation time: 2.173s\n",
"\n",
"n_neighbors = 31\n",
"KNN (unscaled) MSE: 10586.091853\n",
"KNN (unscaled) RMSE: 102.888735\n",
"KNN (unscaled) MAE: 61.617209\n",
"KNN (unscaled) MAEP: 0.086129\n",
"KNN (unscaled) MBE: -15.234382\n",
"KNN (unscaled) MBEP: -0.048546\n",
"KNN (unscaled) R2: 0.830192\n",
"Crossvalidation time: 2.425s\n",
"KNN (scaled) MSE: 10676.314566\n",
"KNN (scaled) RMSE: 103.326253\n",
"KNN (scaled) MAE: 64.810894\n",
"KNN (scaled) MAEP: 0.085346\n",
"KNN (scaled) MBE: -9.148932\n",
"KNN (scaled) MBEP: -0.041235\n",
"KNN (scaled) R2: 0.828745\n",
"Crossvalidation time: 2.157s\n",
"\n",
"n_neighbors = 33\n",
"KNN (unscaled) MSE: 10617.628360\n",
"KNN (unscaled) RMSE: 103.041877\n",
"KNN (unscaled) MAE: 61.770765\n",
"KNN (unscaled) MAEP: 0.086325\n",
"KNN (unscaled) MBE: -15.443332\n",
"KNN (unscaled) MBEP: -0.048802\n",
"KNN (unscaled) R2: 0.829686\n",
"Crossvalidation time: 2.740s\n",
"KNN (scaled) MSE: 10673.333494\n",
"KNN (scaled) RMSE: 103.311826\n",
"KNN (scaled) MAE: 64.812968\n",
"KNN (scaled) MAEP: 0.085358\n",
"KNN (scaled) MBE: -9.315893\n",
"KNN (scaled) MBEP: -0.041402\n",
"KNN (scaled) R2: 0.828793\n",
"Crossvalidation time: 2.177s\n",
"\n",
"n_neighbors = 35\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"KNN (unscaled) MSE: 10640.251149\n",
"KNN (unscaled) RMSE: 103.151593\n",
"KNN (unscaled) MAE: 61.863727\n",
"KNN (unscaled) MAEP: 0.086469\n",
"KNN (unscaled) MBE: -15.634464\n",
"KNN (unscaled) MBEP: -0.049046\n",
"KNN (unscaled) R2: 0.829323\n",
"Crossvalidation time: 2.791s\n",
"KNN (scaled) MSE: 10682.688526\n",
"KNN (scaled) RMSE: 103.357092\n",
"KNN (scaled) MAE: 64.838960\n",
"KNN (scaled) MAEP: 0.085460\n",
"KNN (scaled) MBE: -9.495607\n",
"KNN (scaled) MBEP: -0.041644\n",
"KNN (scaled) R2: 0.828643\n",
"Crossvalidation time: 3.275s\n",
"\n",
"n_neighbors = 37\n",
"KNN (unscaled) MSE: 10670.352017\n",
"KNN (unscaled) RMSE: 103.297396\n",
"KNN (unscaled) MAE: 61.992450\n",
"KNN (unscaled) MAEP: 0.086629\n",
"KNN (unscaled) MBE: -15.831509\n",
"KNN (unscaled) MBEP: -0.049273\n",
"KNN (unscaled) R2: 0.828841\n",
"Crossvalidation time: 3.495s\n",
"KNN (scaled) MSE: 10684.478958\n",
"KNN (scaled) RMSE: 103.365753\n",
"KNN (scaled) MAE: 64.850631\n",
"KNN (scaled) MAEP: 0.085538\n",
"KNN (scaled) MBE: -9.651181\n",
"KNN (scaled) MBEP: -0.041856\n",
"KNN (scaled) R2: 0.828614\n",
"Crossvalidation time: 3.192s\n",
"\n",
"n_neighbors = 39\n",
"KNN (unscaled) MSE: 10707.069588\n",
"KNN (unscaled) RMSE: 103.474971\n",
"KNN (unscaled) MAE: 62.144333\n",
"KNN (unscaled) MAEP: 0.086804\n",
"KNN (unscaled) MBE: -16.008472\n",
"KNN (unscaled) MBEP: -0.049477\n",
"KNN (unscaled) R2: 0.828252\n",
"Crossvalidation time: 3.382s\n",
"KNN (scaled) MSE: 10698.132130\n",
"KNN (scaled) RMSE: 103.431775\n",
"KNN (scaled) MAE: 64.876131\n",
"KNN (scaled) MAEP: 0.085602\n",
"KNN (scaled) MBE: -9.795402\n",
"KNN (scaled) MBEP: -0.042030\n",
"KNN (scaled) R2: 0.828395\n",
"Crossvalidation time: 2.953s\n",
"\n",
"n_neighbors = 41\n",
"KNN (unscaled) MSE: 10738.284487\n",
"KNN (unscaled) RMSE: 103.625694\n",
"KNN (unscaled) MAE: 62.267558\n",
"KNN (unscaled) MAEP: 0.086970\n",
"KNN (unscaled) MBE: -16.181061\n",
"KNN (unscaled) MBEP: -0.049694\n",
"KNN (unscaled) R2: 0.827751\n",
"Crossvalidation time: 3.657s\n",
"KNN (scaled) MSE: 10701.172923\n",
"KNN (scaled) RMSE: 103.446474\n",
"KNN (scaled) MAE: 64.889298\n",
"KNN (scaled) MAEP: 0.085593\n",
"KNN (scaled) MBE: -9.947980\n",
"KNN (scaled) MBEP: -0.042149\n",
"KNN (scaled) R2: 0.828346\n",
"Crossvalidation time: 2.614s\n",
"\n",
"n_neighbors = 43\n",
"KNN (unscaled) MSE: 10769.089157\n",
"KNN (unscaled) RMSE: 103.774222\n",
"KNN (unscaled) MAE: 62.383713\n",
"KNN (unscaled) MAEP: 0.087140\n",
"KNN (unscaled) MBE: -16.344613\n",
"KNN (unscaled) MBEP: -0.049912\n",
"KNN (unscaled) R2: 0.827257\n",
"Crossvalidation time: 3.098s\n",
"KNN (scaled) MSE: 10710.505596\n",
"KNN (scaled) RMSE: 103.491573\n",
"KNN (scaled) MAE: 64.906860\n",
"KNN (scaled) MAEP: 0.085667\n",
"KNN (scaled) MBE: -10.090464\n",
"KNN (scaled) MBEP: -0.042341\n",
"KNN (scaled) R2: 0.828197\n",
"Crossvalidation time: 3.004s\n",
"\n",
"n_neighbors = 45\n",
"KNN (unscaled) MSE: 10797.895615\n",
"KNN (unscaled) RMSE: 103.912923\n",
"KNN (unscaled) MAE: 62.504908\n",
"KNN (unscaled) MAEP: 0.087299\n",
"KNN (unscaled) MBE: -16.491526\n",
"KNN (unscaled) MBEP: -0.050103\n",
"KNN (unscaled) R2: 0.826795\n",
"Crossvalidation time: 3.261s\n",
"KNN (scaled) MSE: 10719.709235\n",
"KNN (scaled) RMSE: 103.536029\n",
"KNN (scaled) MAE: 64.941426\n",
"KNN (scaled) MAEP: 0.085751\n",
"KNN (scaled) MBE: -10.221365\n",
"KNN (scaled) MBEP: -0.042518\n",
"KNN (scaled) R2: 0.828049\n",
"Crossvalidation time: 3.044s\n",
"\n",
"n_neighbors = 47\n",
"KNN (unscaled) MSE: 10825.161872\n",
"KNN (unscaled) RMSE: 104.044038\n",
"KNN (unscaled) MAE: 62.623741\n",
"KNN (unscaled) MAEP: 0.087450\n",
"KNN (unscaled) MBE: -16.631150\n",
"KNN (unscaled) MBEP: -0.050279\n",
"KNN (unscaled) R2: 0.826357\n",
"Crossvalidation time: 4.019s\n",
"KNN (scaled) MSE: 10732.175078\n",
"KNN (scaled) RMSE: 103.596212\n",
"KNN (scaled) MAE: 64.975693\n",
"KNN (scaled) MAEP: 0.085834\n",
"KNN (scaled) MBE: -10.364926\n",
"KNN (scaled) MBEP: -0.042703\n",
"KNN (scaled) R2: 0.827849\n",
"Crossvalidation time: 3.649s\n",
"\n",
"n_neighbors = 49\n",
"KNN (unscaled) MSE: 10857.319148\n",
"KNN (unscaled) RMSE: 104.198460\n",
"KNN (unscaled) MAE: 62.749351\n",
"KNN (unscaled) MAEP: 0.087658\n",
"KNN (unscaled) MBE: -16.774707\n",
"KNN (unscaled) MBEP: -0.050514\n",
"KNN (unscaled) R2: 0.825842\n",
"Crossvalidation time: 4.230s\n",
"KNN (scaled) MSE: 10742.371567\n",
"KNN (scaled) RMSE: 103.645413\n",
"KNN (scaled) MAE: 65.008273\n",
"KNN (scaled) MAEP: 0.085902\n",
"KNN (scaled) MBE: -10.489409\n",
"KNN (scaled) MBEP: -0.042856\n",
"KNN (scaled) R2: 0.827685\n",
"Crossvalidation time: 3.441s\n"
]
}
],
"source": [
"name = 'KNN'\n",
"knn_tuning = pd.DataFrame(data = [], columns = ['unscaled', 'scaled'])\n",
"\n",
"for n_neighbors in range(1,51, 2):\n",
" print('\\nn_neighbors = %d' %n_neighbors)\n",
" tt = time.time()\n",
"\n",
" est = KNeighborsRegressor( n_neighbors = n_neighbors, n_jobs = -1 )\n",
" Y = cross_val_predict(est, X, T)\n",
" unscaled_err = get_errors( shp(T), shp(Y), 'KNN (unscaled)' )\n",
" \n",
" print('Crossvalidation time: %.3fs' %(time.time()-tt))\n",
" tt = time.time()\n",
" \n",
" est = KNeighborsRegressor( n_neighbors = n_neighbors, n_jobs = -1 )\n",
" Y = cross_val_predict(est, x, T)\n",
" scaled_err = get_errors( shp(T), shp(Y), 'KNN (scaled)' )\n",
" \n",
" print('Crossvalidation time: %.3fs' %(time.time()-tt))\n",
" \n",
" knn_tuning = knn_tuning.append( pd.DataFrame(data = [[unscaled_err.RMSE, scaled_err.RMSE]], \n",
" columns = ['unscaled', 'scaled'], index = [n_neighbors]) )"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>unscaled</th>\n",
" <th>scaled</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>133.927181</td>\n",
" <td>140.277451</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>116.318220</td>\n",
" <td>121.763431</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>110.428993</td>\n",
" <td>114.961567</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>107.106472</td>\n",
" <td>111.392788</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>105.353708</td>\n",
" <td>109.340530</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>104.148116</td>\n",
" <td>107.898006</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>103.474562</td>\n",
" <td>106.737086</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>103.000060</td>\n",
" <td>106.043608</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>102.682035</td>\n",
" <td>105.509965</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>102.407954</td>\n",
" <td>105.045268</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>102.239912</td>\n",
" <td>104.762725</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>102.148309</td>\n",
" <td>104.457737</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>102.062714</td>\n",
" <td>104.231132</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>101.991796</td>\n",
" <td>104.074468</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>102.019504</td>\n",
" <td>103.875444</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>102.003360</td>\n",
" <td>103.749668</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>102.001764</td>\n",
" <td>103.682827</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>102.015503</td>\n",
" <td>103.582393</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>102.036673</td>\n",
" <td>103.512636</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>102.082279</td>\n",
" <td>103.468825</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>102.146769</td>\n",
" <td>103.452151</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>102.204693</td>\n",
" <td>103.388752</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>102.256123</td>\n",
" <td>103.388170</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>102.342830</td>\n",
" <td>103.339980</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>102.424062</td>\n",
" <td>103.345127</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>102.477265</td>\n",
" <td>103.340534</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>102.565315</td>\n",
" <td>103.348094</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>102.628012</td>\n",
" <td>103.343503</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>102.720368</td>\n",
" <td>103.315521</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>102.808029</td>\n",
" <td>103.318041</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" unscaled scaled\n",
"1 133.927181 140.277451\n",
"2 116.318220 121.763431\n",
"3 110.428993 114.961567\n",
"4 107.106472 111.392788\n",
"5 105.353708 109.340530\n",
"6 104.148116 107.898006\n",
"7 103.474562 106.737086\n",
"8 103.000060 106.043608\n",
"9 102.682035 105.509965\n",
"10 102.407954 105.045268\n",
"11 102.239912 104.762725\n",
"12 102.148309 104.457737\n",
"13 102.062714 104.231132\n",
"14 101.991796 104.074468\n",
"15 102.019504 103.875444\n",
"16 102.003360 103.749668\n",
"17 102.001764 103.682827\n",
"18 102.015503 103.582393\n",
"19 102.036673 103.512636\n",
"20 102.082279 103.468825\n",
"21 102.146769 103.452151\n",
"22 102.204693 103.388752\n",
"23 102.256123 103.388170\n",
"24 102.342830 103.339980\n",
"25 102.424062 103.345127\n",
"26 102.477265 103.340534\n",
"27 102.565315 103.348094\n",
"28 102.628012 103.343503\n",
"29 102.720368 103.315521\n",
"30 102.808029 103.318041"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"knn_tuning"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [],
"source": [
"knn_tuning.to_csv('KNN_tuning.csv')"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"unscaled 17\n",
"scaled 33\n",
"dtype: int64"
]
},
"execution_count": 95,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"knn_tuning.idxmin()"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"knn_tuning.unscaled.plot(lw = 2, label = 'RMSE for KNN')\n",
"plt.xlabel('Number of neighbors')\n",
"plt.ylabel('RMSE (in $kWh/m^2$)')\n",
"plt.legend()\n",
"plt.grid()\n",
"plt.tight_layout()\n",
"plt.savefig('KNN_tuning.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tuning ELM"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
"training = training_data.sample(100000)\n",
"x, t, X, T = get_data( training, feature_names, label_name)"
]
},
{
"cell_type": "code",
"execution_count": 120,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"ELM nodes = 50\n",
"ELM (unscaled) MSE: 10900.260481\n",
"ELM (unscaled) RMSE: 104.404313\n",
"ELM (unscaled) MAE: 66.563815\n",
"ELM (unscaled) MAEP: 0.083317\n",
"ELM (unscaled) MBE: -0.009370\n",
"ELM (unscaled) MBEP: -0.028423\n",
"ELM (unscaled) R2: 0.826046\n",
"Crossvalidation time: 8.801s\n",
"ELM (scaled) MSE: 10893.756707\n",
"ELM (scaled) RMSE: 104.373161\n",
"ELM (scaled) MAE: 66.552260\n",
"ELM (scaled) MAEP: 0.083305\n",
"ELM (scaled) MBE: -0.028816\n",
"ELM (scaled) MBEP: -0.028458\n",
"ELM (scaled) R2: 0.826149\n",
"Crossvalidation time: 8.094s\n"
]
}
],
"source": [
"name = 'ELM'\n",
"ELM_est = 25\n",
"#elm_tuning = pd.DataFrame(data = [], columns = ['unscaled_target', 'scaled_target'])\n",
"\n",
"for ELM_nodes in [50]:\n",
" print('\\nELM nodes = %d' %ELM_nodes)\n",
" tt = time.time()\n",
"\n",
" est = ELM_Ensemble( n_estimators = ELM_est, n_nodes = ELM_nodes )\n",
" Y = cross_val_predict(est, x, T)\n",
" unscaled_err = get_errors( shp(T), shp(Y), 'ELM (unscaled)' )\n",
" \n",
" print('Crossvalidation time: %.3fs' %(time.time()-tt))\n",
" tt = time.time()\n",
" \n",
" est = ELM_Ensemble( n_estimators = ELM_est, n_nodes = ELM_nodes )\n",
" y = cross_val_predict(est, x, t)\n",
" Y = rescale(y, T)\n",
" scaled_err = get_errors( shp(T), shp(Y), 'ELM (scaled)' )\n",
" \n",
" print('Crossvalidation time: %.3fs' %(time.time()-tt))\n",
" \n",
" if (unscaled_err.RMSE > 200) & (ELM_nodes > 20): break\n",
" \n",
" #elm_tuning = elm_tuning.append( pd.DataFrame(data = [[unscaled_err.RMSE, scaled_err.RMSE]], \n",
" #columns = ['unscaled_target', 'scaled_target'], index = [ELM_nodes]) )"
]
},
{
"cell_type": "code",
"execution_count": 118,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>unscaled_target</th>\n",
" <th>scaled_target</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>252.056856</td>\n",
" <td>250.313907</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>158.953529</td>\n",
" <td>163.030005</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>143.353876</td>\n",
" <td>143.447775</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>133.347560</td>\n",
" <td>133.440524</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>120.861807</td>\n",
" <td>121.154071</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>111.439309</td>\n",
" <td>113.364057</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>108.308805</td>\n",
" <td>108.561483</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36</th>\n",
" <td>107.089450</td>\n",
" <td>107.018143</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>105.774135</td>\n",
" <td>106.085332</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>104.854574</td>\n",
" <td>104.940364</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>104.366426</td>\n",
" <td>104.161843</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td>103.623092</td>\n",
" <td>103.828793</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>103.364507</td>\n",
" <td>103.281091</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td>104.027258</td>\n",
" <td>103.132682</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td>103.298952</td>\n",
" <td>103.221512</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>103.216895</td>\n",
" <td>103.139736</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81</th>\n",
" <td>103.096608</td>\n",
" <td>103.087989</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>103.031711</td>\n",
" <td>103.017617</td>\n",
" </tr>\n",
" <tr>\n",
" <th>91</th>\n",
" <td>103.022977</td>\n",
" <td>102.760905</td>\n",
" </tr>\n",
" <tr>\n",
" <th>96</th>\n",
" <td>102.942882</td>\n",
" <td>102.889443</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" unscaled_target scaled_target\n",
"1 252.056856 250.313907\n",
"6 158.953529 163.030005\n",
"11 143.353876 143.447775\n",
"16 133.347560 133.440524\n",
"21 120.861807 121.154071\n",
"26 111.439309 113.364057\n",
"31 108.308805 108.561483\n",
"36 107.089450 107.018143\n",
"41 105.774135 106.085332\n",
"46 104.854574 104.940364\n",
"51 104.366426 104.161843\n",
"56 103.623092 103.828793\n",
"61 103.364507 103.281091\n",
"66 104.027258 103.132682\n",
"71 103.298952 103.221512\n",
"76 103.216895 103.139736\n",
"81 103.096608 103.087989\n",
"86 103.031711 103.017617\n",
"91 103.022977 102.760905\n",
"96 102.942882 102.889443"
]
},
"execution_count": 118,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"elm_tuning"
]
},
{
"cell_type": "code",
"execution_count": 129,
"metadata": {},
"outputs": [],
"source": [
"elm_tuning.to_csv('ELM_tuning_n25.csv')"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"elm_tuning.unscaled_target.plot(lw = 2, label = 'RMSE for ELM')\n",
"plt.plot([50, 50], [0, 300], '--', label = 'Lowest RMSE with full rank')\n",
"plt.xlabel('Number of neurons')\n",
"plt.ylabel('RMSE (in $kWh/m^2$)')\n",
"plt.ylim((90, 250))\n",
"plt.legend()\n",
"plt.grid()\n",
"plt.tight_layout()\n",
"plt.savefig('ELM_tuning.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tuning SVM"
]
},
{
"cell_type": "code",
- "execution_count": 42,
+ "execution_count": 134,
"metadata": {},
"outputs": [],
"source": [
- "training = training_data.sample(10000)\n",
+ "training = training_data.sample(1000)\n",
"x, t, X, T = get_data( training, feature_names, label_name)"
]
},
{
"cell_type": "code",
- "execution_count": 47,
+ "execution_count": 135,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
- "SVM C = 0.100000\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 20257.683947\n",
+ "SVM (scaled) RMSE: 142.329491\n",
+ "SVM (scaled) MAE: 100.803742\n",
+ "SVM (scaled) MAEP: 0.121330\n",
+ "SVM (scaled) MBE: -13.588861\n",
+ "SVM (scaled) MBEP: -0.051479\n",
+ "SVM (scaled) R2: 0.680607\n",
+ "Crossvalidation time: 18.183s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 15193.700803\n",
+ "SVM (scaled) RMSE: 123.262731\n",
+ "SVM (scaled) MAE: 83.405053\n",
+ "SVM (scaled) MAEP: 0.102458\n",
+ "SVM (scaled) MBE: -12.101577\n",
+ "SVM (scaled) MBEP: -0.046295\n",
+ "SVM (scaled) R2: 0.760448\n",
+ "Crossvalidation time: 19.089s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11746.300776\n",
+ "SVM (scaled) RMSE: 108.380352\n",
+ "SVM (scaled) MAE: 67.392852\n",
+ "SVM (scaled) MAEP: 0.085151\n",
+ "SVM (scaled) MBE: -12.211091\n",
+ "SVM (scaled) MBEP: -0.041217\n",
+ "SVM (scaled) R2: 0.814802\n",
+ "Crossvalidation time: 17.983s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 11410.437945\n",
+ "SVM (scaled) RMSE: 106.819651\n",
+ "SVM (scaled) MAE: 65.866525\n",
+ "SVM (scaled) MAEP: 0.083401\n",
+ "SVM (scaled) MBE: -12.158720\n",
+ "SVM (scaled) MBEP: -0.040521\n",
+ "SVM (scaled) R2: 0.820097\n",
+ "Crossvalidation time: 17.730s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 11218.841350\n",
+ "SVM (scaled) RMSE: 105.919032\n",
+ "SVM (scaled) MAE: 65.024270\n",
+ "SVM (scaled) MAEP: 0.082461\n",
+ "SVM (scaled) MBE: -12.778295\n",
+ "SVM (scaled) MBEP: -0.040685\n",
+ "SVM (scaled) R2: 0.823118\n",
+ "Crossvalidation time: 17.990s\n",
"\n",
+ "SVM C = 1.000000\n",
"SVM epsilon = 0.010000\n",
- "SVM (unscaled) MSE: 61436.965206\n",
- "SVM (unscaled) RMSE: 247.864812\n",
- "SVM (unscaled) MAE: 204.182984\n",
- "SVM (unscaled) MAEP: 0.218677\n",
- "SVM (unscaled) MBE: -15.214545\n",
- "SVM (unscaled) MBEP: -0.086046\n",
- "SVM (unscaled) R2: -0.002035\n",
- "Crossvalidation time: 10.509s\n",
- "SVM (unscaled) MSE: 61470.668914\n",
- "SVM (unscaled) RMSE: 247.932791\n",
- "SVM (unscaled) MAE: 204.226638\n",
- "SVM (unscaled) MAEP: 0.218716\n",
- "SVM (unscaled) MBE: -15.200682\n",
- "SVM (unscaled) MBEP: -0.086048\n",
- "SVM (unscaled) R2: -0.002585\n",
- "Crossvalidation time: 10.907s\n",
- "SVM (scaled) MSE: 46564.437726\n",
- "SVM (scaled) RMSE: 215.787946\n",
- "SVM (scaled) MAE: 175.139796\n",
- "SVM (scaled) MAEP: 0.189158\n",
- "SVM (scaled) MBE: -10.193433\n",
- "SVM (scaled) MBEP: -0.073432\n",
- "SVM (scaled) R2: 0.240535\n",
- "Crossvalidation time: 10.953s\n",
- "\n",
- "SVM C = 0.200000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10955.732551\n",
+ "SVM (scaled) RMSE: 104.669635\n",
+ "SVM (scaled) MAE: 64.196585\n",
+ "SVM (scaled) MAEP: 0.081341\n",
+ "SVM (scaled) MBE: -12.761114\n",
+ "SVM (scaled) MBEP: -0.040025\n",
+ "SVM (scaled) R2: 0.827266\n",
+ "Crossvalidation time: 18.211s\n",
"\n",
+ "SVM C = 1.000000\n",
"SVM epsilon = 0.010000\n",
- "SVM (unscaled) MSE: 61327.417238\n",
- "SVM (unscaled) RMSE: 247.643730\n",
- "SVM (unscaled) MAE: 203.993537\n",
- "SVM (unscaled) MAEP: 0.218524\n",
- "SVM (unscaled) MBE: -15.385638\n",
- "SVM (unscaled) MBEP: -0.086150\n",
- "SVM (unscaled) R2: -0.000248\n",
- "Crossvalidation time: 10.365s\n",
- "SVM (unscaled) MSE: 61391.360933\n",
- "SVM (unscaled) RMSE: 247.772801\n",
- "SVM (unscaled) MAE: 204.076159\n",
- "SVM (unscaled) MAEP: 0.218590\n",
- "SVM (unscaled) MBE: -15.314538\n",
- "SVM (unscaled) MBEP: -0.086114\n",
- "SVM (unscaled) R2: -0.001291\n",
- "Crossvalidation time: 10.875s\n",
- "SVM (scaled) MSE: 37741.623404\n",
- "SVM (scaled) RMSE: 194.272035\n",
- "SVM (scaled) MAE: 155.043688\n",
- "SVM (scaled) MAEP: 0.168939\n",
- "SVM (scaled) MBE: -8.602787\n",
- "SVM (scaled) MBEP: -0.066009\n",
- "SVM (scaled) R2: 0.384435\n",
- "Crossvalidation time: 10.974s\n",
- "\n",
- "SVM C = 0.500000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 10871.185745\n",
+ "SVM (scaled) RMSE: 104.264979\n",
+ "SVM (scaled) MAE: 63.729139\n",
+ "SVM (scaled) MAEP: 0.080857\n",
+ "SVM (scaled) MBE: -12.595900\n",
+ "SVM (scaled) MBEP: -0.039674\n",
+ "SVM (scaled) R2: 0.828599\n",
+ "Crossvalidation time: 18.925s\n",
"\n",
+ "SVM C = 1.000000\n",
"SVM epsilon = 0.010000\n",
- "SVM (unscaled) MSE: 60987.196189\n",
- "SVM (unscaled) RMSE: 246.955859\n",
- "SVM (unscaled) MAE: 203.425600\n",
- "SVM (unscaled) MAEP: 0.217960\n",
- "SVM (unscaled) MBE: -15.313219\n",
- "SVM (unscaled) MBEP: -0.085922\n",
- "SVM (unscaled) R2: 0.005301\n",
- "Crossvalidation time: 10.394s\n",
- "SVM (unscaled) MSE: 61145.928450\n",
- "SVM (unscaled) RMSE: 247.277028\n",
- "SVM (unscaled) MAE: 203.629148\n",
- "SVM (unscaled) MAEP: 0.218144\n",
- "SVM (unscaled) MBE: -15.265690\n",
- "SVM (unscaled) MBEP: -0.085952\n",
- "SVM (unscaled) R2: 0.002712\n",
- "Crossvalidation time: 11.727s\n",
- "SVM (scaled) MSE: 27946.209594\n",
- "SVM (scaled) RMSE: 167.171198\n",
- "SVM (scaled) MAE: 128.833987\n",
- "SVM (scaled) MAEP: 0.143014\n",
- "SVM (scaled) MBE: -9.551294\n",
- "SVM (scaled) MBEP: -0.057664\n",
- "SVM (scaled) R2: 0.544198\n",
- "Crossvalidation time: 11.652s\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 10900.085283\n",
+ "SVM (scaled) RMSE: 104.403474\n",
+ "SVM (scaled) MAE: 63.815915\n",
+ "SVM (scaled) MAEP: 0.080894\n",
+ "SVM (scaled) MBE: -12.388687\n",
+ "SVM (scaled) MBEP: -0.039405\n",
+ "SVM (scaled) R2: 0.828144\n",
+ "Crossvalidation time: 19.250s\n",
"\n",
"SVM C = 1.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 10997.590351\n",
+ "SVM (scaled) RMSE: 104.869397\n",
+ "SVM (scaled) MAE: 64.068174\n",
+ "SVM (scaled) MAEP: 0.081323\n",
+ "SVM (scaled) MBE: -12.164438\n",
+ "SVM (scaled) MBEP: -0.039380\n",
+ "SVM (scaled) R2: 0.826606\n",
+ "Crossvalidation time: 20.219s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 18756.129847\n",
+ "SVM (scaled) RMSE: 136.953021\n",
+ "SVM (scaled) MAE: 96.394078\n",
+ "SVM (scaled) MAEP: 0.116256\n",
+ "SVM (scaled) MBE: -12.296302\n",
+ "SVM (scaled) MBEP: -0.049013\n",
+ "SVM (scaled) R2: 0.704281\n",
+ "Crossvalidation time: 18.101s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 13449.226202\n",
+ "SVM (scaled) RMSE: 115.970799\n",
+ "SVM (scaled) MAE: 75.881400\n",
+ "SVM (scaled) MAEP: 0.094216\n",
+ "SVM (scaled) MBE: -11.562613\n",
+ "SVM (scaled) MBEP: -0.043459\n",
+ "SVM (scaled) R2: 0.787952\n",
+ "Crossvalidation time: 18.108s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11489.376738\n",
+ "SVM (scaled) RMSE: 107.188510\n",
+ "SVM (scaled) MAE: 66.243476\n",
+ "SVM (scaled) MAEP: 0.083769\n",
+ "SVM (scaled) MBE: -12.019165\n",
+ "SVM (scaled) MBEP: -0.040263\n",
+ "SVM (scaled) R2: 0.818852\n",
+ "Crossvalidation time: 18.338s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 11261.467602\n",
+ "SVM (scaled) RMSE: 106.120062\n",
+ "SVM (scaled) MAE: 65.210966\n",
+ "SVM (scaled) MAEP: 0.082578\n",
+ "SVM (scaled) MBE: -12.348857\n",
+ "SVM (scaled) MBEP: -0.040116\n",
+ "SVM (scaled) R2: 0.822446\n",
+ "Crossvalidation time: 18.478s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 11114.131903\n",
+ "SVM (scaled) RMSE: 105.423583\n",
+ "SVM (scaled) MAE: 64.690053\n",
+ "SVM (scaled) MAEP: 0.081927\n",
+ "SVM (scaled) MBE: -12.662760\n",
+ "SVM (scaled) MBEP: -0.040075\n",
+ "SVM (scaled) R2: 0.824769\n",
+ "Crossvalidation time: 18.350s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10880.251537\n",
+ "SVM (scaled) RMSE: 104.308444\n",
+ "SVM (scaled) MAE: 63.914490\n",
+ "SVM (scaled) MAEP: 0.080816\n",
+ "SVM (scaled) MBE: -12.406063\n",
+ "SVM (scaled) MBEP: -0.039243\n",
+ "SVM (scaled) R2: 0.828456\n",
+ "Crossvalidation time: 18.815s\n",
"\n",
+ "SVM C = 2.000000\n",
"SVM epsilon = 0.010000\n",
- "SVM (unscaled) MSE: 60456.260746\n",
- "SVM (unscaled) RMSE: 245.878549\n",
- "SVM (unscaled) MAE: 202.548556\n",
- "SVM (unscaled) MAEP: 0.217044\n",
- "SVM (unscaled) MBE: -15.021369\n",
- "SVM (unscaled) MBEP: -0.085392\n",
- "SVM (unscaled) R2: 0.013960\n",
- "Crossvalidation time: 10.457s\n",
- "SVM (unscaled) MSE: 60736.896209\n",
- "SVM (unscaled) RMSE: 246.448567\n",
- "SVM (unscaled) MAE: 202.901081\n",
- "SVM (unscaled) MAEP: 0.217341\n",
- "SVM (unscaled) MBE: -14.767711\n",
- "SVM (unscaled) MBEP: -0.085301\n",
- "SVM (unscaled) R2: 0.009383\n",
- "Crossvalidation time: 11.069s\n",
- "SVM (scaled) MSE: 24246.604572\n",
- "SVM (scaled) RMSE: 155.713213\n",
- "SVM (scaled) MAE: 117.318844\n",
- "SVM (scaled) MAEP: 0.131952\n",
- "SVM (scaled) MBE: -10.869037\n",
- "SVM (scaled) MBEP: -0.053569\n",
- "SVM (scaled) R2: 0.604539\n",
- "Crossvalidation time: 10.629s\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 10896.508972\n",
+ "SVM (scaled) RMSE: 104.386345\n",
+ "SVM (scaled) MAE: 63.778081\n",
+ "SVM (scaled) MAEP: 0.080708\n",
+ "SVM (scaled) MBE: -12.424258\n",
+ "SVM (scaled) MBEP: -0.039168\n",
+ "SVM (scaled) R2: 0.828200\n",
+ "Crossvalidation time: 19.913s\n",
"\n",
"SVM C = 2.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 10949.589861\n",
+ "SVM (scaled) RMSE: 104.640288\n",
+ "SVM (scaled) MAE: 63.921499\n",
+ "SVM (scaled) MAEP: 0.080892\n",
+ "SVM (scaled) MBE: -12.261219\n",
+ "SVM (scaled) MBEP: -0.039032\n",
+ "SVM (scaled) R2: 0.827363\n",
+ "Crossvalidation time: 21.399s\n",
"\n",
+ "SVM C = 2.000000\n",
"SVM epsilon = 0.010000\n",
- "SVM (unscaled) MSE: 59486.386250\n",
- "SVM (unscaled) RMSE: 243.898311\n",
- "SVM (unscaled) MAE: 200.880797\n",
- "SVM (unscaled) MAEP: 0.215426\n",
- "SVM (unscaled) MBE: -15.075986\n",
- "SVM (unscaled) MBEP: -0.084956\n",
- "SVM (unscaled) R2: 0.029779\n",
- "Crossvalidation time: 10.326s\n",
- "SVM (unscaled) MSE: 59978.894363\n",
- "SVM (unscaled) RMSE: 244.905889\n",
- "SVM (unscaled) MAE: 201.512778\n",
- "SVM (unscaled) MAEP: 0.215932\n",
- "SVM (unscaled) MBE: -14.511767\n",
- "SVM (unscaled) MBEP: -0.084692\n",
- "SVM (unscaled) R2: 0.021746\n",
- "Crossvalidation time: 10.869s\n",
- "SVM (scaled) MSE: 22623.887531\n",
- "SVM (scaled) RMSE: 150.412392\n",
- "SVM (scaled) MAE: 111.792388\n",
- "SVM (scaled) MAEP: 0.126747\n",
- "SVM (scaled) MBE: -11.389050\n",
- "SVM (scaled) MBEP: -0.050423\n",
- "SVM (scaled) R2: 0.631005\n",
- "Crossvalidation time: 10.877s\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 11103.099060\n",
+ "SVM (scaled) RMSE: 105.371244\n",
+ "SVM (scaled) MAE: 64.327001\n",
+ "SVM (scaled) MAEP: 0.081441\n",
+ "SVM (scaled) MBE: -12.082502\n",
+ "SVM (scaled) MBEP: -0.038945\n",
+ "SVM (scaled) R2: 0.824943\n",
+ "Crossvalidation time: 22.483s\n",
"\n",
"SVM C = 5.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 16002.534898\n",
+ "SVM (scaled) RMSE: 126.501126\n",
+ "SVM (scaled) MAE: 87.091312\n",
+ "SVM (scaled) MAEP: 0.105966\n",
+ "SVM (scaled) MBE: -10.789220\n",
+ "SVM (scaled) MBEP: -0.045364\n",
+ "SVM (scaled) R2: 0.747696\n",
+ "Crossvalidation time: 18.660s\n",
"\n",
+ "SVM C = 5.000000\n",
"SVM epsilon = 0.010000\n",
- "SVM (unscaled) MSE: 57027.433679\n",
- "SVM (unscaled) RMSE: 238.804174\n",
- "SVM (unscaled) MAE: 196.552703\n",
- "SVM (unscaled) MAEP: 0.211139\n",
- "SVM (unscaled) MBE: -14.919381\n",
- "SVM (unscaled) MBEP: -0.083521\n",
- "SVM (unscaled) R2: 0.069884\n",
- "Crossvalidation time: 10.640s\n",
- "SVM (unscaled) MSE: 57838.471824\n",
- "SVM (unscaled) RMSE: 240.496303\n",
- "SVM (unscaled) MAE: 197.561252\n",
- "SVM (unscaled) MAEP: 0.211871\n",
- "SVM (unscaled) MBE: -13.556971\n",
- "SVM (unscaled) MBEP: -0.082739\n",
- "SVM (unscaled) R2: 0.056656\n",
- "Crossvalidation time: 11.192s\n",
- "SVM (scaled) MSE: 21896.345326\n",
- "SVM (scaled) RMSE: 147.974137\n",
- "SVM (scaled) MAE: 109.039236\n",
- "SVM (scaled) MAEP: 0.124304\n",
- "SVM (scaled) MBE: -11.341553\n",
- "SVM (scaled) MBEP: -0.047692\n",
- "SVM (scaled) R2: 0.642871\n",
- "Crossvalidation time: 11.964s\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 12319.303118\n",
+ "SVM (scaled) RMSE: 110.992356\n",
+ "SVM (scaled) MAE: 70.486338\n",
+ "SVM (scaled) MAEP: 0.088253\n",
+ "SVM (scaled) MBE: -10.934226\n",
+ "SVM (scaled) MBEP: -0.040516\n",
+ "SVM (scaled) R2: 0.805767\n",
+ "Crossvalidation time: 18.500s\n",
"\n",
- "SVM C = 10.000000\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11287.069099\n",
+ "SVM (scaled) RMSE: 106.240619\n",
+ "SVM (scaled) MAE: 65.350242\n",
+ "SVM (scaled) MAEP: 0.082644\n",
+ "SVM (scaled) MBE: -12.069043\n",
+ "SVM (scaled) MBEP: -0.039582\n",
+ "SVM (scaled) R2: 0.822042\n",
+ "Crossvalidation time: 19.377s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 11144.603683\n",
+ "SVM (scaled) RMSE: 105.568005\n",
+ "SVM (scaled) MAE: 64.766358\n",
+ "SVM (scaled) MAEP: 0.081941\n",
+ "SVM (scaled) MBE: -12.425626\n",
+ "SVM (scaled) MBEP: -0.039652\n",
+ "SVM (scaled) R2: 0.824288\n",
+ "Crossvalidation time: 19.703s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 11015.898955\n",
+ "SVM (scaled) RMSE: 104.956653\n",
+ "SVM (scaled) MAE: 64.415911\n",
+ "SVM (scaled) MAEP: 0.081412\n",
+ "SVM (scaled) MBE: -12.371081\n",
+ "SVM (scaled) MBEP: -0.039261\n",
+ "SVM (scaled) R2: 0.826318\n",
+ "Crossvalidation time: 19.494s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10853.234413\n",
+ "SVM (scaled) RMSE: 104.178858\n",
+ "SVM (scaled) MAE: 63.757718\n",
+ "SVM (scaled) MAEP: 0.080568\n",
+ "SVM (scaled) MBE: -12.265108\n",
+ "SVM (scaled) MBEP: -0.038787\n",
+ "SVM (scaled) R2: 0.828882\n",
+ "Crossvalidation time: 20.875s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 10978.580340\n",
+ "SVM (scaled) RMSE: 104.778721\n",
+ "SVM (scaled) MAE: 63.978085\n",
+ "SVM (scaled) MAEP: 0.080825\n",
+ "SVM (scaled) MBE: -12.291847\n",
+ "SVM (scaled) MBEP: -0.038792\n",
+ "SVM (scaled) R2: 0.826906\n",
+ "Crossvalidation time: 24.319s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 11081.028008\n",
+ "SVM (scaled) RMSE: 105.266462\n",
+ "SVM (scaled) MAE: 64.200320\n",
+ "SVM (scaled) MAEP: 0.081169\n",
+ "SVM (scaled) MBE: -12.081926\n",
+ "SVM (scaled) MBEP: -0.038681\n",
+ "SVM (scaled) R2: 0.825291\n",
+ "Crossvalidation time: 25.846s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 11330.884157\n",
+ "SVM (scaled) RMSE: 106.446626\n",
+ "SVM (scaled) MAE: 64.902558\n",
+ "SVM (scaled) MAEP: 0.082015\n",
+ "SVM (scaled) MBE: -11.788053\n",
+ "SVM (scaled) MBEP: -0.038528\n",
+ "SVM (scaled) R2: 0.821351\n",
+ "Crossvalidation time: 28.581s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 14934.388753\n",
+ "SVM (scaled) RMSE: 122.206337\n",
+ "SVM (scaled) MAE: 83.043542\n",
+ "SVM (scaled) MAEP: 0.101501\n",
+ "SVM (scaled) MBE: -10.289837\n",
+ "SVM (scaled) MBEP: -0.043728\n",
+ "SVM (scaled) R2: 0.764537\n",
+ "Crossvalidation time: 18.738s\n",
"\n",
+ "SVM C = 7.000000\n",
"SVM epsilon = 0.010000\n",
- "SVM (unscaled) MSE: 53578.587197\n",
- "SVM (unscaled) RMSE: 231.470489\n",
- "SVM (unscaled) MAE: 190.215329\n",
- "SVM (unscaled) MAEP: 0.204701\n",
- "SVM (unscaled) MBE: -13.965112\n",
- "SVM (unscaled) MBEP: -0.080750\n",
- "SVM (unscaled) R2: 0.126135\n",
- "Crossvalidation time: 11.559s\n",
- "SVM (unscaled) MSE: 54562.804033\n",
- "SVM (unscaled) RMSE: 233.586823\n",
- "SVM (unscaled) MAE: 191.321378\n",
- "SVM (unscaled) MAEP: 0.205600\n",
- "SVM (unscaled) MBE: -12.835586\n",
- "SVM (unscaled) MBEP: -0.080377\n",
- "SVM (unscaled) R2: 0.110082\n",
- "Crossvalidation time: 12.119s\n",
- "SVM (scaled) MSE: 21708.055177\n",
- "SVM (scaled) RMSE: 147.336537\n",
- "SVM (scaled) MAE: 108.228000\n",
- "SVM (scaled) MAEP: 0.123669\n",
- "SVM (scaled) MBE: -11.471268\n",
- "SVM (scaled) MBEP: -0.046681\n",
- "SVM (scaled) R2: 0.645942\n",
- "Crossvalidation time: 13.172s\n"
+ "SVM gamma = 20.000000\n"
]
- }
- ],
- "source": [
- "name = 'SVM'\n",
- "svm_tuning = pd.DataFrame(data = [], columns = ['unscaled', 'unscaled_target', 'scaled_target'])\n",
- "\n",
- "SVM_epsilon = 0.01\n",
- "for C in [0.1, 0.2, 0.5, 1, 2, 5, 10]:\n",
- " print('\\nSVM C = %f' %C)\n",
- " print('\\nSVM epsilon = %f' %SVM_epsilon)\n",
- " tt = time.time()\n",
- "\n",
- " est = SVR( C = C, kernel = 'rbf', epsilon = SVM_epsilon, gamma = 'scale')\n",
- " Y = cross_val_predict(est, X, T, cv = 5)\n",
- " ununscaled_err = get_errors( shp(T), shp(Y), 'SVM (unscaled)' )\n",
- " \n",
- " print('Crossvalidation time: %.3fs' %(time.time()-tt))\n",
- " tt = time.time()\n",
- "\n",
- " est = SVR( C = C, kernel = 'rbf', epsilon = SVM_epsilon, gamma = 'scale')\n",
- " Y = cross_val_predict(est, x, T, cv = 5)\n",
- " unscaled_err = get_errors( shp(T), shp(Y), 'SVM (unscaled)' )\n",
- " \n",
- " print('Crossvalidation time: %.3fs' %(time.time()-tt))\n",
- " tt = time.time()\n",
- " \n",
- " est = SVR( C = C, kernel = 'rbf', epsilon = SVM_epsilon, gamma = 'scale')\n",
- " y = cross_val_predict(est, x, t, cv = 5)\n",
- " Y = rescale(y, T)\n",
- " scaled_err = get_errors( shp(T), shp(Y), 'SVM (scaled)' )\n",
- " \n",
- " print('Crossvalidation time: %.3fs' %(time.time()-tt))\n",
- " \n",
- " svm_tuning = svm_tuning.append( pd.DataFrame(data = [[ununscaled_err.RMSE, unscaled_err.RMSE, scaled_err.RMSE]], \n",
- " columns = ['unscaled', 'unscaled_target', 'scaled_target'], \n",
- " index = [C]) )"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 46,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/html": [
- "<div>\n",
- "<style scoped>\n",
- " .dataframe tbody tr th:only-of-type {\n",
- " vertical-align: middle;\n",
- " }\n",
- "\n",
- " .dataframe tbody tr th {\n",
- " vertical-align: top;\n",
- " }\n",
- "\n",
- " .dataframe thead th {\n",
- " text-align: right;\n",
- " }\n",
- "</style>\n",
- "<table border=\"1\" class=\"dataframe\">\n",
- " <thead>\n",
- " <tr style=\"text-align: right;\">\n",
- " <th></th>\n",
- " <th>unscaled</th>\n",
- " <th>unscaled_target</th>\n",
- " <th>scaled_target</th>\n",
- " </tr>\n",
- " </thead>\n",
- " <tbody>\n",
- " <tr>\n",
- " <th>0.1</th>\n",
- " <td>247.865813</td>\n",
- " <td>247.933048</td>\n",
- " <td>216.000682</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>0.2</th>\n",
- " <td>247.642499</td>\n",
- " <td>247.773033</td>\n",
- " <td>194.446270</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>0.5</th>\n",
- " <td>246.957192</td>\n",
- " <td>247.275723</td>\n",
- " <td>167.589291</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1.0</th>\n",
- " <td>245.878745</td>\n",
- " <td>246.446937</td>\n",
- " <td>155.871316</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>2.0</th>\n",
- " <td>243.899368</td>\n",
- " <td>244.907860</td>\n",
- " <td>150.359435</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>5.0</th>\n",
- " <td>238.804532</td>\n",
- " <td>240.496598</td>\n",
- " <td>147.968116</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>10.0</th>\n",
- " <td>231.471496</td>\n",
- " <td>233.585816</td>\n",
- " <td>147.285781</td>\n",
- " </tr>\n",
- " </tbody>\n",
- "</table>\n",
- "</div>"
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "SVM (scaled) MSE: 12129.669095\n",
+ "SVM (scaled) RMSE: 110.134777\n",
+ "SVM (scaled) MAE: 69.492688\n",
+ "SVM (scaled) MAEP: 0.087226\n",
+ "SVM (scaled) MBE: -11.037482\n",
+ "SVM (scaled) MBEP: -0.040086\n",
+ "SVM (scaled) R2: 0.808757\n",
+ "Crossvalidation time: 18.214s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11236.100437\n",
+ "SVM (scaled) RMSE: 106.000474\n",
+ "SVM (scaled) MAE: 65.136989\n",
+ "SVM (scaled) MAEP: 0.082355\n",
+ "SVM (scaled) MBE: -12.159941\n",
+ "SVM (scaled) MBEP: -0.039473\n",
+ "SVM (scaled) R2: 0.822846\n",
+ "Crossvalidation time: 19.684s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 11108.120925\n",
+ "SVM (scaled) RMSE: 105.395071\n",
+ "SVM (scaled) MAE: 64.667407\n",
+ "SVM (scaled) MAEP: 0.081771\n",
+ "SVM (scaled) MBE: -12.378668\n",
+ "SVM (scaled) MBEP: -0.039448\n",
+ "SVM (scaled) R2: 0.824864\n",
+ "Crossvalidation time: 19.683s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10989.908051\n",
+ "SVM (scaled) RMSE: 104.832762\n",
+ "SVM (scaled) MAE: 64.336489\n",
+ "SVM (scaled) MAEP: 0.081255\n",
+ "SVM (scaled) MBE: -12.301090\n",
+ "SVM (scaled) MBEP: -0.039055\n",
+ "SVM (scaled) R2: 0.826727\n",
+ "Crossvalidation time: 20.913s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10855.952581\n",
+ "SVM (scaled) RMSE: 104.191903\n",
+ "SVM (scaled) MAE: 63.750920\n",
+ "SVM (scaled) MAEP: 0.080572\n",
+ "SVM (scaled) MBE: -12.381558\n",
+ "SVM (scaled) MBEP: -0.038849\n",
+ "SVM (scaled) R2: 0.828839\n",
+ "Crossvalidation time: 21.698s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 11006.280387\n",
+ "SVM (scaled) RMSE: 104.910821\n",
+ "SVM (scaled) MAE: 64.039671\n",
+ "SVM (scaled) MAEP: 0.080897\n",
+ "SVM (scaled) MBE: -12.190828\n",
+ "SVM (scaled) MBEP: -0.038677\n",
+ "SVM (scaled) R2: 0.826469\n",
+ "Crossvalidation time: 25.777s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 11152.615175\n",
+ "SVM (scaled) RMSE: 105.605943\n",
+ "SVM (scaled) MAE: 64.374199\n",
+ "SVM (scaled) MAEP: 0.081394\n",
+ "SVM (scaled) MBE: -12.002048\n",
+ "SVM (scaled) MBEP: -0.038617\n",
+ "SVM (scaled) R2: 0.824162\n",
+ "Crossvalidation time: 28.799s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 11464.371474\n",
+ "SVM (scaled) RMSE: 107.071805\n",
+ "SVM (scaled) MAE: 65.272678\n",
+ "SVM (scaled) MAEP: 0.082381\n",
+ "SVM (scaled) MBE: -11.589083\n",
+ "SVM (scaled) MBEP: -0.038318\n",
+ "SVM (scaled) R2: 0.819247\n",
+ "Crossvalidation time: 31.566s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 13978.946492\n",
+ "SVM (scaled) RMSE: 118.232595\n",
+ "SVM (scaled) MAE: 78.952758\n",
+ "SVM (scaled) MAEP: 0.097091\n",
+ "SVM (scaled) MBE: -10.224882\n",
+ "SVM (scaled) MBEP: -0.042507\n",
+ "SVM (scaled) R2: 0.779601\n",
+ "Crossvalidation time: 19.067s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 11983.580063\n",
+ "SVM (scaled) RMSE: 109.469539\n",
+ "SVM (scaled) MAE: 68.722585\n",
+ "SVM (scaled) MAEP: 0.086436\n",
+ "SVM (scaled) MBE: -11.029818\n",
+ "SVM (scaled) MBEP: -0.039606\n",
+ "SVM (scaled) R2: 0.811061\n",
+ "Crossvalidation time: 19.229s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11193.517967\n",
+ "SVM (scaled) RMSE: 105.799423\n",
+ "SVM (scaled) MAE: 64.941255\n",
+ "SVM (scaled) MAEP: 0.082122\n",
+ "SVM (scaled) MBE: -12.328501\n",
+ "SVM (scaled) MBEP: -0.039508\n",
+ "SVM (scaled) R2: 0.823517\n",
+ "Crossvalidation time: 19.750s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 11077.825807\n",
+ "SVM (scaled) RMSE: 105.251251\n",
+ "SVM (scaled) MAE: 64.586028\n",
+ "SVM (scaled) MAEP: 0.081621\n",
+ "SVM (scaled) MBE: -12.278741\n",
+ "SVM (scaled) MBEP: -0.039219\n",
+ "SVM (scaled) R2: 0.825341\n",
+ "Crossvalidation time: 20.556s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10955.084874\n",
+ "SVM (scaled) RMSE: 104.666541\n",
+ "SVM (scaled) MAE: 64.226135\n",
+ "SVM (scaled) MAEP: 0.081062\n",
+ "SVM (scaled) MBE: -12.097474\n",
+ "SVM (scaled) MBEP: -0.038725\n",
+ "SVM (scaled) R2: 0.827276\n",
+ "Crossvalidation time: 21.428s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10858.283754\n",
+ "SVM (scaled) RMSE: 104.203089\n",
+ "SVM (scaled) MAE: 63.731179\n",
+ "SVM (scaled) MAEP: 0.080561\n",
+ "SVM (scaled) MBE: -12.401180\n",
+ "SVM (scaled) MBEP: -0.038840\n",
+ "SVM (scaled) R2: 0.828803\n",
+ "Crossvalidation time: 23.484s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 11046.318140\n",
+ "SVM (scaled) RMSE: 105.101466\n",
+ "SVM (scaled) MAE: 64.130753\n",
+ "SVM (scaled) MAEP: 0.081025\n",
+ "SVM (scaled) MBE: -12.141699\n",
+ "SVM (scaled) MBEP: -0.038638\n",
+ "SVM (scaled) R2: 0.825838\n",
+ "Crossvalidation time: 29.802s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 11246.886531\n",
+ "SVM (scaled) RMSE: 106.051339\n",
+ "SVM (scaled) MAE: 64.627563\n",
+ "SVM (scaled) MAEP: 0.081683\n",
+ "SVM (scaled) MBE: -11.894048\n",
+ "SVM (scaled) MBEP: -0.038507\n",
+ "SVM (scaled) R2: 0.822676\n",
+ "Crossvalidation time: 32.396s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 11634.989322\n",
+ "SVM (scaled) RMSE: 107.865608\n",
+ "SVM (scaled) MAE: 65.722988\n",
+ "SVM (scaled) MAEP: 0.082859\n",
+ "SVM (scaled) MBE: -11.392820\n",
+ "SVM (scaled) MBEP: -0.038101\n",
+ "SVM (scaled) R2: 0.816557\n",
+ "Crossvalidation time: 38.182s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 12839.277351\n",
+ "SVM (scaled) RMSE: 113.310535\n",
+ "SVM (scaled) MAE: 73.470565\n",
+ "SVM (scaled) MAEP: 0.091257\n",
+ "SVM (scaled) MBE: -10.021826\n",
+ "SVM (scaled) MBEP: -0.040412\n",
+ "SVM (scaled) R2: 0.797569\n",
+ "Crossvalidation time: 19.364s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 11778.742220\n",
+ "SVM (scaled) RMSE: 108.529914\n",
+ "SVM (scaled) MAE: 67.704185\n",
+ "SVM (scaled) MAEP: 0.085323\n",
+ "SVM (scaled) MBE: -11.054244\n",
+ "SVM (scaled) MBEP: -0.038931\n",
+ "SVM (scaled) R2: 0.814290\n",
+ "Crossvalidation time: 20.162s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11131.443253\n",
+ "SVM (scaled) RMSE: 105.505655\n",
+ "SVM (scaled) MAE: 64.736145\n",
+ "SVM (scaled) MAEP: 0.081800\n",
+ "SVM (scaled) MBE: -12.242910\n",
+ "SVM (scaled) MBEP: -0.039162\n",
+ "SVM (scaled) R2: 0.824496\n",
+ "Crossvalidation time: 22.115s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 11029.249914\n",
+ "SVM (scaled) RMSE: 105.020236\n",
+ "SVM (scaled) MAE: 64.446006\n",
+ "SVM (scaled) MAEP: 0.081392\n",
+ "SVM (scaled) MBE: -12.148036\n",
+ "SVM (scaled) MBEP: -0.038886\n",
+ "SVM (scaled) R2: 0.826107\n",
+ "Crossvalidation time: 22.964s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10908.798791\n",
+ "SVM (scaled) RMSE: 104.445195\n",
+ "SVM (scaled) MAE: 64.032250\n",
+ "SVM (scaled) MAEP: 0.080822\n",
+ "SVM (scaled) MBE: -12.037425\n",
+ "SVM (scaled) MBEP: -0.038448\n",
+ "SVM (scaled) R2: 0.828006\n",
+ "Crossvalidation time: 24.270s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10888.380165\n",
+ "SVM (scaled) RMSE: 104.347401\n",
+ "SVM (scaled) MAE: 63.787025\n",
+ "SVM (scaled) MAEP: 0.080645\n",
+ "SVM (scaled) MBE: -12.434495\n",
+ "SVM (scaled) MBEP: -0.038844\n",
+ "SVM (scaled) R2: 0.828328\n",
+ "Crossvalidation time: 29.165s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 11158.060278\n",
+ "SVM (scaled) RMSE: 105.631720\n",
+ "SVM (scaled) MAE: 64.403732\n",
+ "SVM (scaled) MAEP: 0.081389\n",
+ "SVM (scaled) MBE: -12.060488\n",
+ "SVM (scaled) MBEP: -0.038552\n",
+ "SVM (scaled) R2: 0.824076\n",
+ "Crossvalidation time: 40.546s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 11497.285254\n",
+ "SVM (scaled) RMSE: 107.225395\n",
+ "SVM (scaled) MAE: 65.276674\n",
+ "SVM (scaled) MAEP: 0.082410\n",
+ "SVM (scaled) MBE: -11.727694\n",
+ "SVM (scaled) MBEP: -0.038319\n",
+ "SVM (scaled) R2: 0.818728\n",
+ "Crossvalidation time: 46.880s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 12041.443113\n",
+ "SVM (scaled) RMSE: 109.733510\n",
+ "SVM (scaled) MAE: 66.721403\n",
+ "SVM (scaled) MAEP: 0.083979\n",
+ "SVM (scaled) MBE: -11.108474\n",
+ "SVM (scaled) MBEP: -0.037808\n",
+ "SVM (scaled) R2: 0.810148\n",
+ "Crossvalidation time: 57.166s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 12251.971792\n",
+ "SVM (scaled) RMSE: 110.688625\n",
+ "SVM (scaled) MAE: 70.204238\n",
+ "SVM (scaled) MAEP: 0.087902\n",
+ "SVM (scaled) MBE: -10.151526\n",
+ "SVM (scaled) MBEP: -0.038844\n",
+ "SVM (scaled) R2: 0.806829\n",
+ "Crossvalidation time: 21.472s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 11549.455450\n",
+ "SVM (scaled) RMSE: 107.468393\n",
+ "SVM (scaled) MAE: 66.610685\n",
+ "SVM (scaled) MAEP: 0.084034\n",
+ "SVM (scaled) MBE: -11.031012\n",
+ "SVM (scaled) MBEP: -0.038309\n",
+ "SVM (scaled) R2: 0.817905\n",
+ "Crossvalidation time: 23.061s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 50.000000\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "SVM (scaled) MSE: 11072.473790\n",
+ "SVM (scaled) RMSE: 105.225823\n",
+ "SVM (scaled) MAE: 64.577883\n",
+ "SVM (scaled) MAEP: 0.081607\n",
+ "SVM (scaled) MBE: -12.073269\n",
+ "SVM (scaled) MBEP: -0.038799\n",
+ "SVM (scaled) R2: 0.825426\n",
+ "Crossvalidation time: 26.658s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 10957.190941\n",
+ "SVM (scaled) RMSE: 104.676602\n",
+ "SVM (scaled) MAE: 64.194169\n",
+ "SVM (scaled) MAEP: 0.081061\n",
+ "SVM (scaled) MBE: -11.952395\n",
+ "SVM (scaled) MBEP: -0.038376\n",
+ "SVM (scaled) R2: 0.827243\n",
+ "Crossvalidation time: 31.174s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10873.860407\n",
+ "SVM (scaled) RMSE: 104.277804\n",
+ "SVM (scaled) MAE: 63.886807\n",
+ "SVM (scaled) MAEP: 0.080758\n",
+ "SVM (scaled) MBE: -12.265702\n",
+ "SVM (scaled) MBEP: -0.038585\n",
+ "SVM (scaled) R2: 0.828557\n",
+ "Crossvalidation time: 34.215s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10964.361763\n",
+ "SVM (scaled) RMSE: 104.710848\n",
+ "SVM (scaled) MAE: 64.014650\n",
+ "SVM (scaled) MAEP: 0.080886\n",
+ "SVM (scaled) MBE: -12.420074\n",
+ "SVM (scaled) MBEP: -0.038763\n",
+ "SVM (scaled) R2: 0.827130\n",
+ "Crossvalidation time: 43.657s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 11446.444435\n",
+ "SVM (scaled) RMSE: 106.988057\n",
+ "SVM (scaled) MAE: 65.126017\n",
+ "SVM (scaled) MAEP: 0.082268\n",
+ "SVM (scaled) MBE: -11.749879\n",
+ "SVM (scaled) MBEP: -0.038284\n",
+ "SVM (scaled) R2: 0.819529\n",
+ "Crossvalidation time: 71.328s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 11985.079385\n",
+ "SVM (scaled) RMSE: 109.476387\n",
+ "SVM (scaled) MAE: 66.445264\n",
+ "SVM (scaled) MAEP: 0.083813\n",
+ "SVM (scaled) MBE: -11.330979\n",
+ "SVM (scaled) MBEP: -0.038016\n",
+ "SVM (scaled) R2: 0.811037\n",
+ "Crossvalidation time: 91.222s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 12866.107143\n",
+ "SVM (scaled) RMSE: 113.428864\n",
+ "SVM (scaled) MAE: 68.295084\n",
+ "SVM (scaled) MAEP: 0.085836\n",
+ "SVM (scaled) MBE: -10.607349\n",
+ "SVM (scaled) MBEP: -0.037510\n",
+ "SVM (scaled) R2: 0.797146\n",
+ "Crossvalidation time: 117.494s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 12160.727321\n",
+ "SVM (scaled) RMSE: 110.275688\n",
+ "SVM (scaled) MAE: 69.625884\n",
+ "SVM (scaled) MAEP: 0.087366\n",
+ "SVM (scaled) MBE: -10.264861\n",
+ "SVM (scaled) MBEP: -0.038562\n",
+ "SVM (scaled) R2: 0.808268\n",
+ "Crossvalidation time: 24.074s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 11468.539386\n",
+ "SVM (scaled) RMSE: 107.091267\n",
+ "SVM (scaled) MAE: 66.233570\n",
+ "SVM (scaled) MAEP: 0.083585\n",
+ "SVM (scaled) MBE: -11.107879\n",
+ "SVM (scaled) MBEP: -0.038277\n",
+ "SVM (scaled) R2: 0.819181\n",
+ "Crossvalidation time: 25.995s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11053.431671\n",
+ "SVM (scaled) RMSE: 105.135302\n",
+ "SVM (scaled) MAE: 64.525303\n",
+ "SVM (scaled) MAEP: 0.081530\n",
+ "SVM (scaled) MBE: -12.013512\n",
+ "SVM (scaled) MBEP: -0.038628\n",
+ "SVM (scaled) R2: 0.825726\n",
+ "Crossvalidation time: 31.432s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 10931.674136\n",
+ "SVM (scaled) RMSE: 104.554647\n",
+ "SVM (scaled) MAE: 64.085255\n",
+ "SVM (scaled) MAEP: 0.080940\n",
+ "SVM (scaled) MBE: -11.974629\n",
+ "SVM (scaled) MBEP: -0.038337\n",
+ "SVM (scaled) R2: 0.827645\n",
+ "Crossvalidation time: 35.203s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10861.833773\n",
+ "SVM (scaled) RMSE: 104.220122\n",
+ "SVM (scaled) MAE: 63.840338\n",
+ "SVM (scaled) MAEP: 0.080723\n",
+ "SVM (scaled) MBE: -12.309372\n",
+ "SVM (scaled) MBEP: -0.038604\n",
+ "SVM (scaled) R2: 0.828747\n",
+ "Crossvalidation time: 40.663s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10986.631860\n",
+ "SVM (scaled) RMSE: 104.817135\n",
+ "SVM (scaled) MAE: 64.085593\n",
+ "SVM (scaled) MAEP: 0.080942\n",
+ "SVM (scaled) MBE: -12.357526\n",
+ "SVM (scaled) MBEP: -0.038685\n",
+ "SVM (scaled) R2: 0.826779\n",
+ "Crossvalidation time: 54.250s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 11582.323742\n",
+ "SVM (scaled) RMSE: 107.621205\n",
+ "SVM (scaled) MAE: 65.446652\n",
+ "SVM (scaled) MAEP: 0.082679\n",
+ "SVM (scaled) MBE: -11.629362\n",
+ "SVM (scaled) MBEP: -0.038228\n",
+ "SVM (scaled) R2: 0.817387\n",
+ "Crossvalidation time: 89.637s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 12204.182541\n",
+ "SVM (scaled) RMSE: 110.472542\n",
+ "SVM (scaled) MAE: 66.920293\n",
+ "SVM (scaled) MAEP: 0.084390\n",
+ "SVM (scaled) MBE: -11.241513\n",
+ "SVM (scaled) MBEP: -0.037934\n",
+ "SVM (scaled) R2: 0.807582\n",
+ "Crossvalidation time: 115.106s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 13317.619253\n",
+ "SVM (scaled) RMSE: 115.401990\n",
+ "SVM (scaled) MAE: 69.094689\n",
+ "SVM (scaled) MAEP: 0.086857\n",
+ "SVM (scaled) MBE: -10.302672\n",
+ "SVM (scaled) MBEP: -0.037346\n",
+ "SVM (scaled) R2: 0.790027\n",
+ "Crossvalidation time: 156.138s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 12084.074446\n",
+ "SVM (scaled) RMSE: 109.927587\n",
+ "SVM (scaled) MAE: 69.117692\n",
+ "SVM (scaled) MAEP: 0.086875\n",
+ "SVM (scaled) MBE: -10.537588\n",
+ "SVM (scaled) MBEP: -0.038451\n",
+ "SVM (scaled) R2: 0.809476\n",
+ "Crossvalidation time: 24.476s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 11392.699653\n",
+ "SVM (scaled) RMSE: 106.736590\n",
+ "SVM (scaled) MAE: 65.897491\n",
+ "SVM (scaled) MAEP: 0.083195\n",
+ "SVM (scaled) MBE: -11.207495\n",
+ "SVM (scaled) MBEP: -0.038285\n",
+ "SVM (scaled) R2: 0.820377\n",
+ "Crossvalidation time: 28.507s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11025.459373\n",
+ "SVM (scaled) RMSE: 105.002187\n",
+ "SVM (scaled) MAE: 64.427025\n",
+ "SVM (scaled) MAEP: 0.081386\n",
+ "SVM (scaled) MBE: -12.015131\n",
+ "SVM (scaled) MBEP: -0.038515\n",
+ "SVM (scaled) R2: 0.826167\n",
+ "Crossvalidation time: 35.904s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 10912.187161\n",
+ "SVM (scaled) RMSE: 104.461415\n",
+ "SVM (scaled) MAE: 64.001477\n",
+ "SVM (scaled) MAEP: 0.080868\n",
+ "SVM (scaled) MBE: -12.029018\n",
+ "SVM (scaled) MBEP: -0.038345\n",
+ "SVM (scaled) R2: 0.827953\n",
+ "Crossvalidation time: 40.844s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10854.523489\n",
+ "SVM (scaled) RMSE: 104.185044\n",
+ "SVM (scaled) MAE: 63.838218\n",
+ "SVM (scaled) MAEP: 0.080730\n",
+ "SVM (scaled) MBE: -12.348117\n",
+ "SVM (scaled) MBEP: -0.038628\n",
+ "SVM (scaled) R2: 0.828862\n",
+ "Crossvalidation time: 48.681s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 11014.925217\n",
+ "SVM (scaled) RMSE: 104.952014\n",
+ "SVM (scaled) MAE: 64.177831\n",
+ "SVM (scaled) MAEP: 0.081015\n",
+ "SVM (scaled) MBE: -12.299085\n",
+ "SVM (scaled) MBEP: -0.038619\n",
+ "SVM (scaled) R2: 0.826333\n",
+ "Crossvalidation time: 69.666s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 11764.177295\n",
+ "SVM (scaled) RMSE: 108.462792\n",
+ "SVM (scaled) MAE: 65.851721\n",
+ "SVM (scaled) MAEP: 0.083256\n",
+ "SVM (scaled) MBE: -11.554232\n",
+ "SVM (scaled) MBEP: -0.038241\n",
+ "SVM (scaled) R2: 0.814520\n",
+ "Crossvalidation time: 130.173s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 12518.522405\n",
+ "SVM (scaled) RMSE: 111.886203\n",
+ "SVM (scaled) MAE: 67.472509\n",
+ "SVM (scaled) MAEP: 0.085078\n",
+ "SVM (scaled) MBE: -11.113887\n",
+ "SVM (scaled) MBEP: -0.037828\n",
+ "SVM (scaled) R2: 0.802626\n",
+ "Crossvalidation time: 159.096s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.010000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 13849.084554\n",
+ "SVM (scaled) RMSE: 117.682134\n",
+ "SVM (scaled) MAE: 69.977586\n",
+ "SVM (scaled) MAEP: 0.088176\n",
+ "SVM (scaled) MBE: -10.171039\n",
+ "SVM (scaled) MBEP: -0.037506\n",
+ "SVM (scaled) R2: 0.781648\n",
+ "Crossvalidation time: 231.256s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 20307.024475\n",
+ "SVM (scaled) RMSE: 142.502717\n",
+ "SVM (scaled) MAE: 100.961641\n",
+ "SVM (scaled) MAEP: 0.121548\n",
+ "SVM (scaled) MBE: -13.753743\n",
+ "SVM (scaled) MBEP: -0.051787\n",
+ "SVM (scaled) R2: 0.679829\n",
+ "Crossvalidation time: 15.881s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 15249.697176\n",
+ "SVM (scaled) RMSE: 123.489664\n",
+ "SVM (scaled) MAE: 83.875305\n",
+ "SVM (scaled) MAEP: 0.102811\n",
+ "SVM (scaled) MBE: -11.161683\n",
+ "SVM (scaled) MBEP: -0.045482\n",
+ "SVM (scaled) R2: 0.759565\n",
+ "Crossvalidation time: 15.070s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11742.052590\n",
+ "SVM (scaled) RMSE: 108.360752\n",
+ "SVM (scaled) MAE: 67.649580\n",
+ "SVM (scaled) MAEP: 0.085307\n",
+ "SVM (scaled) MBE: -10.884603\n",
+ "SVM (scaled) MBEP: -0.040064\n",
+ "SVM (scaled) R2: 0.814869\n",
+ "Crossvalidation time: 13.338s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 70.000000\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "SVM (scaled) MSE: 11392.317593\n",
+ "SVM (scaled) RMSE: 106.734800\n",
+ "SVM (scaled) MAE: 65.960555\n",
+ "SVM (scaled) MAEP: 0.083441\n",
+ "SVM (scaled) MBE: -11.023122\n",
+ "SVM (scaled) MBEP: -0.039429\n",
+ "SVM (scaled) R2: 0.820383\n",
+ "Crossvalidation time: 13.075s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 11167.089480\n",
+ "SVM (scaled) RMSE: 105.674450\n",
+ "SVM (scaled) MAE: 65.076427\n",
+ "SVM (scaled) MAEP: 0.082439\n",
+ "SVM (scaled) MBE: -10.864001\n",
+ "SVM (scaled) MBEP: -0.038811\n",
+ "SVM (scaled) R2: 0.823934\n",
+ "Crossvalidation time: 13.103s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10895.791177\n",
+ "SVM (scaled) RMSE: 104.382907\n",
+ "SVM (scaled) MAE: 64.229407\n",
+ "SVM (scaled) MAEP: 0.081368\n",
+ "SVM (scaled) MBE: -10.577629\n",
+ "SVM (scaled) MBEP: -0.038022\n",
+ "SVM (scaled) R2: 0.828211\n",
+ "Crossvalidation time: 13.561s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 10785.526112\n",
+ "SVM (scaled) RMSE: 103.853388\n",
+ "SVM (scaled) MAE: 63.778495\n",
+ "SVM (scaled) MAEP: 0.080803\n",
+ "SVM (scaled) MBE: -10.159342\n",
+ "SVM (scaled) MBEP: -0.037292\n",
+ "SVM (scaled) R2: 0.829950\n",
+ "Crossvalidation time: 13.907s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 10837.105742\n",
+ "SVM (scaled) RMSE: 104.101420\n",
+ "SVM (scaled) MAE: 63.862487\n",
+ "SVM (scaled) MAEP: 0.080983\n",
+ "SVM (scaled) MBE: -10.068455\n",
+ "SVM (scaled) MBEP: -0.037273\n",
+ "SVM (scaled) R2: 0.829136\n",
+ "Crossvalidation time: 14.675s\n",
+ "\n",
+ "SVM C = 1.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 10913.378448\n",
+ "SVM (scaled) RMSE: 104.467117\n",
+ "SVM (scaled) MAE: 63.955915\n",
+ "SVM (scaled) MAEP: 0.081242\n",
+ "SVM (scaled) MBE: -10.017158\n",
+ "SVM (scaled) MBEP: -0.037402\n",
+ "SVM (scaled) R2: 0.827934\n",
+ "Crossvalidation time: 14.865s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 18817.899665\n",
+ "SVM (scaled) RMSE: 137.178350\n",
+ "SVM (scaled) MAE: 96.554790\n",
+ "SVM (scaled) MAEP: 0.116435\n",
+ "SVM (scaled) MBE: -12.515686\n",
+ "SVM (scaled) MBEP: -0.049219\n",
+ "SVM (scaled) R2: 0.703307\n",
+ "Crossvalidation time: 16.645s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 13479.311195\n",
+ "SVM (scaled) RMSE: 116.100436\n",
+ "SVM (scaled) MAE: 76.363951\n",
+ "SVM (scaled) MAEP: 0.094553\n",
+ "SVM (scaled) MBE: -10.601742\n",
+ "SVM (scaled) MBEP: -0.042722\n",
+ "SVM (scaled) R2: 0.787478\n",
+ "Crossvalidation time: 15.034s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11469.134439\n",
+ "SVM (scaled) RMSE: 107.094045\n",
+ "SVM (scaled) MAE: 66.347006\n",
+ "SVM (scaled) MAEP: 0.083805\n",
+ "SVM (scaled) MBE: -10.917051\n",
+ "SVM (scaled) MBEP: -0.039176\n",
+ "SVM (scaled) R2: 0.819172\n",
+ "Crossvalidation time: 13.836s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 11227.511855\n",
+ "SVM (scaled) RMSE: 105.959954\n",
+ "SVM (scaled) MAE: 65.283961\n",
+ "SVM (scaled) MAEP: 0.082599\n",
+ "SVM (scaled) MBE: -10.928408\n",
+ "SVM (scaled) MBEP: -0.038713\n",
+ "SVM (scaled) R2: 0.822981\n",
+ "Crossvalidation time: 14.242s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 11040.780735\n",
+ "SVM (scaled) RMSE: 105.075119\n",
+ "SVM (scaled) MAE: 64.669223\n",
+ "SVM (scaled) MAEP: 0.081825\n",
+ "SVM (scaled) MBE: -10.622488\n",
+ "SVM (scaled) MBEP: -0.038138\n",
+ "SVM (scaled) R2: 0.825925\n",
+ "Crossvalidation time: 13.922s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10828.114008\n",
+ "SVM (scaled) RMSE: 104.058224\n",
+ "SVM (scaled) MAE: 63.966787\n",
+ "SVM (scaled) MAEP: 0.080962\n",
+ "SVM (scaled) MBE: -10.518345\n",
+ "SVM (scaled) MBEP: -0.037607\n",
+ "SVM (scaled) R2: 0.829278\n",
+ "Crossvalidation time: 14.505s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 10815.396121\n",
+ "SVM (scaled) RMSE: 103.997097\n",
+ "SVM (scaled) MAE: 63.828414\n",
+ "SVM (scaled) MAEP: 0.080742\n",
+ "SVM (scaled) MBE: -9.879050\n",
+ "SVM (scaled) MBEP: -0.036778\n",
+ "SVM (scaled) R2: 0.829479\n",
+ "Crossvalidation time: 15.547s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 10866.260550\n",
+ "SVM (scaled) RMSE: 104.241357\n",
+ "SVM (scaled) MAE: 63.860965\n",
+ "SVM (scaled) MAEP: 0.080830\n",
+ "SVM (scaled) MBE: -9.812377\n",
+ "SVM (scaled) MBEP: -0.036720\n",
+ "SVM (scaled) R2: 0.828677\n",
+ "Crossvalidation time: 16.125s\n",
+ "\n",
+ "SVM C = 2.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 10966.374548\n",
+ "SVM (scaled) RMSE: 104.720459\n",
+ "SVM (scaled) MAE: 64.043708\n",
+ "SVM (scaled) MAEP: 0.081079\n",
+ "SVM (scaled) MBE: -9.748340\n",
+ "SVM (scaled) MBEP: -0.036685\n",
+ "SVM (scaled) R2: 0.827098\n",
+ "Crossvalidation time: 16.855s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 16045.085837\n",
+ "SVM (scaled) RMSE: 126.669198\n",
+ "SVM (scaled) MAE: 87.393629\n",
+ "SVM (scaled) MAEP: 0.106196\n",
+ "SVM (scaled) MBE: -10.541027\n",
+ "SVM (scaled) MBEP: -0.045097\n",
+ "SVM (scaled) R2: 0.747025\n",
+ "Crossvalidation time: 16.550s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 12375.840897\n",
+ "SVM (scaled) RMSE: 111.246757\n",
+ "SVM (scaled) MAE: 71.000365\n",
+ "SVM (scaled) MAEP: 0.088688\n",
+ "SVM (scaled) MBE: -10.692465\n",
+ "SVM (scaled) MBEP: -0.040472\n",
+ "SVM (scaled) R2: 0.804876\n",
+ "Crossvalidation time: 14.696s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11250.573126\n",
+ "SVM (scaled) RMSE: 106.068719\n",
+ "SVM (scaled) MAE: 65.409722\n",
+ "SVM (scaled) MAEP: 0.082689\n",
+ "SVM (scaled) MBE: -10.733181\n",
+ "SVM (scaled) MBEP: -0.038280\n",
+ "SVM (scaled) R2: 0.822618\n",
+ "Crossvalidation time: 14.660s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 11065.885956\n",
+ "SVM (scaled) RMSE: 105.194515\n",
+ "SVM (scaled) MAE: 64.738954\n",
+ "SVM (scaled) MAEP: 0.081815\n",
+ "SVM (scaled) MBE: -10.487173\n",
+ "SVM (scaled) MBEP: -0.037787\n",
+ "SVM (scaled) R2: 0.825529\n",
+ "Crossvalidation time: 14.456s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10935.759702\n",
+ "SVM (scaled) RMSE: 104.574183\n",
+ "SVM (scaled) MAE: 64.347953\n",
+ "SVM (scaled) MAEP: 0.081322\n",
+ "SVM (scaled) MBE: -10.494350\n",
+ "SVM (scaled) MBEP: -0.037558\n",
+ "SVM (scaled) R2: 0.827581\n",
+ "Crossvalidation time: 14.642s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10778.246657\n",
+ "SVM (scaled) RMSE: 103.818335\n",
+ "SVM (scaled) MAE: 63.778495\n",
+ "SVM (scaled) MAEP: 0.080576\n",
+ "SVM (scaled) MBE: -10.173227\n",
+ "SVM (scaled) MBEP: -0.036924\n",
+ "SVM (scaled) R2: 0.830064\n",
+ "Crossvalidation time: 16.023s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 10863.659996\n",
+ "SVM (scaled) RMSE: 104.228883\n",
+ "SVM (scaled) MAE: 63.890321\n",
+ "SVM (scaled) MAEP: 0.080698\n",
+ "SVM (scaled) MBE: -9.823261\n",
+ "SVM (scaled) MBEP: -0.036470\n",
+ "SVM (scaled) R2: 0.828718\n",
+ "Crossvalidation time: 18.051s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 10967.483566\n",
+ "SVM (scaled) RMSE: 104.725754\n",
+ "SVM (scaled) MAE: 64.017529\n",
+ "SVM (scaled) MAEP: 0.080987\n",
+ "SVM (scaled) MBE: -9.655350\n",
+ "SVM (scaled) MBEP: -0.036472\n",
+ "SVM (scaled) R2: 0.827081\n",
+ "Crossvalidation time: 19.129s\n",
+ "\n",
+ "SVM C = 5.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 11182.165096\n",
+ "SVM (scaled) RMSE: 105.745757\n",
+ "SVM (scaled) MAE: 64.582578\n",
+ "SVM (scaled) MAEP: 0.081634\n",
+ "SVM (scaled) MBE: -9.535967\n",
+ "SVM (scaled) MBEP: -0.036377\n",
+ "SVM (scaled) R2: 0.823696\n",
+ "Crossvalidation time: 20.867s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 15032.975530\n",
+ "SVM (scaled) RMSE: 122.609035\n",
+ "SVM (scaled) MAE: 83.574435\n",
+ "SVM (scaled) MAEP: 0.102033\n",
+ "SVM (scaled) MBE: -9.878080\n",
+ "SVM (scaled) MBEP: -0.043600\n",
+ "SVM (scaled) R2: 0.762982\n",
+ "Crossvalidation time: 16.195s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 12162.638287\n",
+ "SVM (scaled) RMSE: 110.284352\n",
+ "SVM (scaled) MAE: 69.873365\n",
+ "SVM (scaled) MAEP: 0.087532\n",
+ "SVM (scaled) MBE: -10.557505\n",
+ "SVM (scaled) MBEP: -0.039701\n",
+ "SVM (scaled) R2: 0.808237\n",
+ "Crossvalidation time: 13.767s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11179.165959\n",
+ "SVM (scaled) RMSE: 105.731575\n",
+ "SVM (scaled) MAE: 65.158755\n",
+ "SVM (scaled) MAEP: 0.082330\n",
+ "SVM (scaled) MBE: -10.549755\n",
+ "SVM (scaled) MBEP: -0.037898\n",
+ "SVM (scaled) R2: 0.823743\n",
+ "Crossvalidation time: 13.605s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 11032.806020\n",
+ "SVM (scaled) RMSE: 105.037165\n",
+ "SVM (scaled) MAE: 64.628273\n",
+ "SVM (scaled) MAEP: 0.081694\n",
+ "SVM (scaled) MBE: -10.542628\n",
+ "SVM (scaled) MBEP: -0.037747\n",
+ "SVM (scaled) R2: 0.826051\n",
+ "Crossvalidation time: 14.143s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 100.000000\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "SVM (scaled) MSE: 10902.844117\n",
+ "SVM (scaled) RMSE: 104.416685\n",
+ "SVM (scaled) MAE: 64.237152\n",
+ "SVM (scaled) MAEP: 0.081148\n",
+ "SVM (scaled) MBE: -10.388831\n",
+ "SVM (scaled) MBEP: -0.037335\n",
+ "SVM (scaled) R2: 0.828100\n",
+ "Crossvalidation time: 14.373s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10772.236024\n",
+ "SVM (scaled) RMSE: 103.789383\n",
+ "SVM (scaled) MAE: 63.761719\n",
+ "SVM (scaled) MAEP: 0.080502\n",
+ "SVM (scaled) MBE: -10.063661\n",
+ "SVM (scaled) MBEP: -0.036708\n",
+ "SVM (scaled) R2: 0.830159\n",
+ "Crossvalidation time: 16.537s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 10890.239851\n",
+ "SVM (scaled) RMSE: 104.356312\n",
+ "SVM (scaled) MAE: 63.946738\n",
+ "SVM (scaled) MAEP: 0.080768\n",
+ "SVM (scaled) MBE: -9.782195\n",
+ "SVM (scaled) MBEP: -0.036429\n",
+ "SVM (scaled) R2: 0.828299\n",
+ "Crossvalidation time: 21.054s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 11023.854386\n",
+ "SVM (scaled) RMSE: 104.994545\n",
+ "SVM (scaled) MAE: 64.163619\n",
+ "SVM (scaled) MAEP: 0.081146\n",
+ "SVM (scaled) MBE: -9.571552\n",
+ "SVM (scaled) MBEP: -0.036367\n",
+ "SVM (scaled) R2: 0.826192\n",
+ "Crossvalidation time: 22.652s\n",
+ "\n",
+ "SVM C = 7.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 11317.651213\n",
+ "SVM (scaled) RMSE: 106.384450\n",
+ "SVM (scaled) MAE: 64.948549\n",
+ "SVM (scaled) MAEP: 0.082049\n",
+ "SVM (scaled) MBE: -9.460930\n",
+ "SVM (scaled) MBEP: -0.036294\n",
+ "SVM (scaled) R2: 0.821560\n",
+ "Crossvalidation time: 25.370s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 14062.035871\n",
+ "SVM (scaled) RMSE: 118.583455\n",
+ "SVM (scaled) MAE: 79.611997\n",
+ "SVM (scaled) MAEP: 0.097658\n",
+ "SVM (scaled) MBE: -9.398804\n",
+ "SVM (scaled) MBEP: -0.041922\n",
+ "SVM (scaled) R2: 0.778291\n",
+ "Crossvalidation time: 17.411s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 11987.717539\n",
+ "SVM (scaled) RMSE: 109.488436\n",
+ "SVM (scaled) MAE: 68.969488\n",
+ "SVM (scaled) MAEP: 0.086555\n",
+ "SVM (scaled) MBE: -10.405289\n",
+ "SVM (scaled) MBEP: -0.039019\n",
+ "SVM (scaled) R2: 0.810995\n",
+ "Crossvalidation time: 16.384s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11123.518503\n",
+ "SVM (scaled) RMSE: 105.468092\n",
+ "SVM (scaled) MAE: 64.948391\n",
+ "SVM (scaled) MAEP: 0.082044\n",
+ "SVM (scaled) MBE: -10.444227\n",
+ "SVM (scaled) MBEP: -0.037647\n",
+ "SVM (scaled) R2: 0.824621\n",
+ "Crossvalidation time: 16.153s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 10992.280211\n",
+ "SVM (scaled) RMSE: 104.844076\n",
+ "SVM (scaled) MAE: 64.513112\n",
+ "SVM (scaled) MAEP: 0.081512\n",
+ "SVM (scaled) MBE: -10.476422\n",
+ "SVM (scaled) MBEP: -0.037552\n",
+ "SVM (scaled) R2: 0.826690\n",
+ "Crossvalidation time: 16.195s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10874.261446\n",
+ "SVM (scaled) RMSE: 104.279727\n",
+ "SVM (scaled) MAE: 64.132115\n",
+ "SVM (scaled) MAEP: 0.081006\n",
+ "SVM (scaled) MBE: -10.306060\n",
+ "SVM (scaled) MBEP: -0.037159\n",
+ "SVM (scaled) R2: 0.828551\n",
+ "Crossvalidation time: 16.883s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10771.550398\n",
+ "SVM (scaled) RMSE: 103.786080\n",
+ "SVM (scaled) MAE: 63.749605\n",
+ "SVM (scaled) MAEP: 0.080474\n",
+ "SVM (scaled) MBE: -9.961846\n",
+ "SVM (scaled) MBEP: -0.036546\n",
+ "SVM (scaled) R2: 0.830170\n",
+ "Crossvalidation time: 19.201s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 10924.557941\n",
+ "SVM (scaled) RMSE: 104.520610\n",
+ "SVM (scaled) MAE: 64.035449\n",
+ "SVM (scaled) MAEP: 0.080877\n",
+ "SVM (scaled) MBE: -9.733897\n",
+ "SVM (scaled) MBEP: -0.036397\n",
+ "SVM (scaled) R2: 0.827758\n",
+ "Crossvalidation time: 23.582s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 11102.244251\n",
+ "SVM (scaled) RMSE: 105.367188\n",
+ "SVM (scaled) MAE: 64.342529\n",
+ "SVM (scaled) MAEP: 0.081310\n",
+ "SVM (scaled) MBE: -9.434421\n",
+ "SVM (scaled) MBEP: -0.036184\n",
+ "SVM (scaled) R2: 0.824956\n",
+ "Crossvalidation time: 25.100s\n",
+ "\n",
+ "SVM C = 10.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 11483.042338\n",
+ "SVM (scaled) RMSE: 107.158958\n",
+ "SVM (scaled) MAE: 65.349748\n",
+ "SVM (scaled) MAEP: 0.082520\n",
+ "SVM (scaled) MBE: -9.380459\n",
+ "SVM (scaled) MBEP: -0.036221\n",
+ "SVM (scaled) R2: 0.818952\n",
+ "Crossvalidation time: 27.531s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 12916.214920\n",
+ "SVM (scaled) RMSE: 113.649527\n",
+ "SVM (scaled) MAE: 74.090716\n",
+ "SVM (scaled) MAEP: 0.091768\n",
+ "SVM (scaled) MBE: -9.891285\n",
+ "SVM (scaled) MBEP: -0.040448\n",
+ "SVM (scaled) R2: 0.796356\n",
+ "Crossvalidation time: 15.942s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 11766.479304\n",
+ "SVM (scaled) RMSE: 108.473404\n",
+ "SVM (scaled) MAE: 67.817723\n",
+ "SVM (scaled) MAEP: 0.085364\n",
+ "SVM (scaled) MBE: -10.382298\n",
+ "SVM (scaled) MBEP: -0.038269\n",
+ "SVM (scaled) R2: 0.814484\n",
+ "Crossvalidation time: 15.359s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 11043.130285\n",
+ "SVM (scaled) RMSE: 105.086299\n",
+ "SVM (scaled) MAE: 64.669423\n",
+ "SVM (scaled) MAEP: 0.081671\n",
+ "SVM (scaled) MBE: -10.262892\n",
+ "SVM (scaled) MBEP: -0.037300\n",
+ "SVM (scaled) R2: 0.825888\n",
+ "Crossvalidation time: 16.325s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 10934.406553\n",
+ "SVM (scaled) RMSE: 104.567713\n",
+ "SVM (scaled) MAE: 64.328127\n",
+ "SVM (scaled) MAEP: 0.081216\n",
+ "SVM (scaled) MBE: -10.318254\n",
+ "SVM (scaled) MBEP: -0.037177\n",
+ "SVM (scaled) R2: 0.827602\n",
+ "Crossvalidation time: 17.317s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10825.896525\n",
+ "SVM (scaled) RMSE: 104.047569\n",
+ "SVM (scaled) MAE: 63.951895\n",
+ "SVM (scaled) MAEP: 0.080726\n",
+ "SVM (scaled) MBE: -10.156733\n",
+ "SVM (scaled) MBEP: -0.036858\n",
+ "SVM (scaled) R2: 0.829313\n",
+ "Crossvalidation time: 18.941s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10796.100525\n",
+ "SVM (scaled) RMSE: 103.904285\n",
+ "SVM (scaled) MAE: 63.799617\n",
+ "SVM (scaled) MAEP: 0.080540\n",
+ "SVM (scaled) MBE: -9.904966\n",
+ "SVM (scaled) MBEP: -0.036370\n",
+ "SVM (scaled) R2: 0.829783\n",
+ "Crossvalidation time: 21.776s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 11062.876877\n",
+ "SVM (scaled) RMSE: 105.180211\n",
+ "SVM (scaled) MAE: 64.290901\n",
+ "SVM (scaled) MAEP: 0.081240\n",
+ "SVM (scaled) MBE: -9.540432\n",
+ "SVM (scaled) MBEP: -0.036271\n",
+ "SVM (scaled) R2: 0.825577\n",
+ "Crossvalidation time: 29.446s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 11340.957519\n",
+ "SVM (scaled) RMSE: 106.493932\n",
+ "SVM (scaled) MAE: 64.951063\n",
+ "SVM (scaled) MAEP: 0.082028\n",
+ "SVM (scaled) MBE: -9.284026\n",
+ "SVM (scaled) MBEP: -0.035991\n",
+ "SVM (scaled) R2: 0.821193\n",
+ "Crossvalidation time: 34.156s\n",
+ "\n",
+ "SVM C = 20.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 11879.924463\n",
+ "SVM (scaled) RMSE: 108.995066\n",
+ "SVM (scaled) MAE: 66.263897\n",
+ "SVM (scaled) MAEP: 0.083541\n",
+ "SVM (scaled) MBE: -9.114376\n",
+ "SVM (scaled) MBEP: -0.035958\n",
+ "SVM (scaled) R2: 0.812695\n",
+ "Crossvalidation time: 43.081s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 12279.293901\n",
+ "SVM (scaled) RMSE: 110.811975\n",
+ "SVM (scaled) MAE: 70.554522\n",
+ "SVM (scaled) MAEP: 0.088183\n",
+ "SVM (scaled) MBE: -10.088976\n",
+ "SVM (scaled) MBEP: -0.038832\n",
+ "SVM (scaled) R2: 0.806398\n",
+ "Crossvalidation time: 16.388s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 11522.922860\n",
+ "SVM (scaled) RMSE: 107.344878\n",
+ "SVM (scaled) MAE: 66.681713\n",
+ "SVM (scaled) MAEP: 0.084077\n",
+ "SVM (scaled) MBE: -10.264338\n",
+ "SVM (scaled) MBEP: -0.037592\n",
+ "SVM (scaled) R2: 0.818324\n",
+ "Crossvalidation time: 16.726s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 10974.490755\n",
+ "SVM (scaled) RMSE: 104.759204\n",
+ "SVM (scaled) MAE: 64.441366\n",
+ "SVM (scaled) MAEP: 0.081407\n",
+ "SVM (scaled) MBE: -10.317032\n",
+ "SVM (scaled) MBEP: -0.037153\n",
+ "SVM (scaled) R2: 0.826970\n",
+ "Crossvalidation time: 19.152s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 10865.080122\n",
+ "SVM (scaled) RMSE: 104.235695\n",
+ "SVM (scaled) MAE: 64.088529\n",
+ "SVM (scaled) MAEP: 0.080904\n",
+ "SVM (scaled) MBE: -10.110453\n",
+ "SVM (scaled) MBEP: -0.036776\n",
+ "SVM (scaled) R2: 0.828695\n",
+ "Crossvalidation time: 21.673s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10787.007252\n",
+ "SVM (scaled) RMSE: 103.860518\n",
+ "SVM (scaled) MAE: 63.841514\n",
+ "SVM (scaled) MAEP: 0.080554\n",
+ "SVM (scaled) MBE: -9.890666\n",
+ "SVM (scaled) MBEP: -0.036436\n",
+ "SVM (scaled) R2: 0.829926\n",
+ "Crossvalidation time: 24.062s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 200.000000\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "SVM (scaled) MSE: 10840.248258\n",
+ "SVM (scaled) RMSE: 104.116513\n",
+ "SVM (scaled) MAE: 63.943106\n",
+ "SVM (scaled) MAEP: 0.080693\n",
+ "SVM (scaled) MBE: -9.794385\n",
+ "SVM (scaled) MBEP: -0.036205\n",
+ "SVM (scaled) R2: 0.829087\n",
+ "Crossvalidation time: 31.047s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 11281.266509\n",
+ "SVM (scaled) RMSE: 106.213307\n",
+ "SVM (scaled) MAE: 64.870725\n",
+ "SVM (scaled) MAEP: 0.081912\n",
+ "SVM (scaled) MBE: -9.327964\n",
+ "SVM (scaled) MBEP: -0.035956\n",
+ "SVM (scaled) R2: 0.822134\n",
+ "Crossvalidation time: 53.531s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 11805.049921\n",
+ "SVM (scaled) RMSE: 108.651047\n",
+ "SVM (scaled) MAE: 66.021563\n",
+ "SVM (scaled) MAEP: 0.083434\n",
+ "SVM (scaled) MBE: -9.156888\n",
+ "SVM (scaled) MBEP: -0.036030\n",
+ "SVM (scaled) R2: 0.813875\n",
+ "Crossvalidation time: 65.179s\n",
+ "\n",
+ "SVM C = 50.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 12666.948816\n",
+ "SVM (scaled) RMSE: 112.547540\n",
+ "SVM (scaled) MAE: 67.767940\n",
+ "SVM (scaled) MAEP: 0.085423\n",
+ "SVM (scaled) MBE: -8.613697\n",
+ "SVM (scaled) MBEP: -0.035779\n",
+ "SVM (scaled) R2: 0.800286\n",
+ "Crossvalidation time: 86.382s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 12172.011389\n",
+ "SVM (scaled) RMSE: 110.326839\n",
+ "SVM (scaled) MAE: 69.911192\n",
+ "SVM (scaled) MAEP: 0.087558\n",
+ "SVM (scaled) MBE: -10.066645\n",
+ "SVM (scaled) MBEP: -0.038443\n",
+ "SVM (scaled) R2: 0.808090\n",
+ "Crossvalidation time: 18.239s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 11443.942715\n",
+ "SVM (scaled) RMSE: 106.976365\n",
+ "SVM (scaled) MAE: 66.329836\n",
+ "SVM (scaled) MAEP: 0.083675\n",
+ "SVM (scaled) MBE: -10.256958\n",
+ "SVM (scaled) MBEP: -0.037469\n",
+ "SVM (scaled) R2: 0.819569\n",
+ "Crossvalidation time: 18.532s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 10949.559443\n",
+ "SVM (scaled) RMSE: 104.640143\n",
+ "SVM (scaled) MAE: 64.379997\n",
+ "SVM (scaled) MAEP: 0.081304\n",
+ "SVM (scaled) MBE: -10.247675\n",
+ "SVM (scaled) MBEP: -0.037017\n",
+ "SVM (scaled) R2: 0.827363\n",
+ "Crossvalidation time: 22.836s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 10840.568159\n",
+ "SVM (scaled) RMSE: 104.118049\n",
+ "SVM (scaled) MAE: 63.999670\n",
+ "SVM (scaled) MAEP: 0.080803\n",
+ "SVM (scaled) MBE: -10.009236\n",
+ "SVM (scaled) MBEP: -0.036624\n",
+ "SVM (scaled) R2: 0.829082\n",
+ "Crossvalidation time: 25.097s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10781.897108\n",
+ "SVM (scaled) RMSE: 103.835914\n",
+ "SVM (scaled) MAE: 63.818455\n",
+ "SVM (scaled) MAEP: 0.080553\n",
+ "SVM (scaled) MBE: -9.946328\n",
+ "SVM (scaled) MBEP: -0.036454\n",
+ "SVM (scaled) R2: 0.830007\n",
+ "Crossvalidation time: 30.340s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10862.361042\n",
+ "SVM (scaled) RMSE: 104.222651\n",
+ "SVM (scaled) MAE: 64.006754\n",
+ "SVM (scaled) MAEP: 0.080775\n",
+ "SVM (scaled) MBE: -9.782864\n",
+ "SVM (scaled) MBEP: -0.036222\n",
+ "SVM (scaled) R2: 0.828738\n",
+ "Crossvalidation time: 41.067s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 11423.365235\n",
+ "SVM (scaled) RMSE: 106.880144\n",
+ "SVM (scaled) MAE: 65.186185\n",
+ "SVM (scaled) MAEP: 0.082339\n",
+ "SVM (scaled) MBE: -9.330777\n",
+ "SVM (scaled) MBEP: -0.035979\n",
+ "SVM (scaled) R2: 0.819893\n",
+ "Crossvalidation time: 71.186s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 12060.726055\n",
+ "SVM (scaled) RMSE: 109.821337\n",
+ "SVM (scaled) MAE: 66.522918\n",
+ "SVM (scaled) MAEP: 0.084111\n",
+ "SVM (scaled) MBE: -9.160439\n",
+ "SVM (scaled) MBEP: -0.036178\n",
+ "SVM (scaled) R2: 0.809844\n",
+ "Crossvalidation time: 89.224s\n",
+ "\n",
+ "SVM C = 70.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 13065.320025\n",
+ "SVM (scaled) RMSE: 114.303631\n",
+ "SVM (scaled) MAE: 68.417957\n",
+ "SVM (scaled) MAEP: 0.086360\n",
+ "SVM (scaled) MBE: -8.498086\n",
+ "SVM (scaled) MBEP: -0.035870\n",
+ "SVM (scaled) R2: 0.794005\n",
+ "Crossvalidation time: 114.653s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 10.000000\n",
+ "SVM (scaled) MSE: 12068.887102\n",
+ "SVM (scaled) RMSE: 109.858487\n",
+ "SVM (scaled) MAE: 69.314605\n",
+ "SVM (scaled) MAEP: 0.086941\n",
+ "SVM (scaled) MBE: -9.896917\n",
+ "SVM (scaled) MBEP: -0.037877\n",
+ "SVM (scaled) R2: 0.809716\n",
+ "Crossvalidation time: 17.971s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 20.000000\n",
+ "SVM (scaled) MSE: 11365.286438\n",
+ "SVM (scaled) RMSE: 106.608097\n",
+ "SVM (scaled) MAE: 65.990980\n",
+ "SVM (scaled) MAEP: 0.083288\n",
+ "SVM (scaled) MBE: -10.236784\n",
+ "SVM (scaled) MBEP: -0.037318\n",
+ "SVM (scaled) R2: 0.820809\n",
+ "Crossvalidation time: 19.859s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 50.000000\n",
+ "SVM (scaled) MSE: 10923.316447\n",
+ "SVM (scaled) RMSE: 104.514671\n",
+ "SVM (scaled) MAE: 64.283194\n",
+ "SVM (scaled) MAEP: 0.081201\n",
+ "SVM (scaled) MBE: -10.255503\n",
+ "SVM (scaled) MBEP: -0.036982\n",
+ "SVM (scaled) R2: 0.827777\n",
+ "Crossvalidation time: 25.813s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 70.000000\n",
+ "SVM (scaled) MSE: 10815.077454\n",
+ "SVM (scaled) RMSE: 103.995565\n",
+ "SVM (scaled) MAE: 63.921116\n",
+ "SVM (scaled) MAEP: 0.080694\n",
+ "SVM (scaled) MBE: -9.935495\n",
+ "SVM (scaled) MBEP: -0.036509\n",
+ "SVM (scaled) R2: 0.829484\n",
+ "Crossvalidation time: 28.104s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 100.000000\n",
+ "SVM (scaled) MSE: 10782.976938\n",
+ "SVM (scaled) RMSE: 103.841114\n",
+ "SVM (scaled) MAE: 63.830678\n",
+ "SVM (scaled) MAEP: 0.080607\n",
+ "SVM (scaled) MBE: -9.886186\n",
+ "SVM (scaled) MBEP: -0.036387\n",
+ "SVM (scaled) R2: 0.829990\n",
+ "Crossvalidation time: 33.360s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 200.000000\n",
+ "SVM (scaled) MSE: 10878.555987\n",
+ "SVM (scaled) RMSE: 104.300316\n",
+ "SVM (scaled) MAE: 64.068177\n",
+ "SVM (scaled) MAEP: 0.080837\n",
+ "SVM (scaled) MBE: -9.687263\n",
+ "SVM (scaled) MBEP: -0.036138\n",
+ "SVM (scaled) R2: 0.828483\n",
+ "Crossvalidation time: 48.447s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 500.000000\n",
+ "SVM (scaled) MSE: 11601.075669\n",
+ "SVM (scaled) RMSE: 107.708290\n",
+ "SVM (scaled) MAE: 65.591167\n",
+ "SVM (scaled) MAEP: 0.082884\n",
+ "SVM (scaled) MBE: -9.181940\n",
+ "SVM (scaled) MBEP: -0.035904\n",
+ "SVM (scaled) R2: 0.817091\n",
+ "Crossvalidation time: 100.223s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 700.000000\n",
+ "SVM (scaled) MSE: 12367.141411\n",
+ "SVM (scaled) RMSE: 111.207650\n",
+ "SVM (scaled) MAE: 67.066229\n",
+ "SVM (scaled) MAEP: 0.084827\n",
+ "SVM (scaled) MBE: -9.109264\n",
+ "SVM (scaled) MBEP: -0.036231\n",
+ "SVM (scaled) R2: 0.805013\n",
+ "Crossvalidation time: 119.214s\n",
+ "\n",
+ "SVM C = 100.000000\n",
+ "SVM epsilon = 0.100000\n",
+ "SVM gamma = 1000.000000\n",
+ "SVM (scaled) MSE: 13560.087904\n",
+ "SVM (scaled) RMSE: 116.447790\n",
+ "SVM (scaled) MAE: 69.264932\n",
+ "SVM (scaled) MAEP: 0.087524\n",
+ "SVM (scaled) MBE: -8.351864\n",
+ "SVM (scaled) MBEP: -0.035938\n",
+ "SVM (scaled) R2: 0.786205\n",
+ "Crossvalidation time: 154.301s\n"
+ ]
+ }
+ ],
+ "source": [
+ "name = 'SVM'\n",
+ "svm_tuning = pd.DataFrame(data = [], \n",
+ " columns = ['C', 'epsilon', 'gamma', 'scaled_target', 'time'])\n",
+ "\n",
+ "# SVM_gamma = 'scale'\n",
+ "# SVM_epsilon = 0.1\n",
+ "for SVM_epsilon in [0.01, 0.1]:\n",
+ " for C in [1, 2, 5, 7, 10, 20, 50, 70, 100]:\n",
+ " for SVM_gamma in [10, 20, 50, 70, 100, 200, 500, 700, 1000]: \n",
+ " print('\\nSVM C = %f' %C)\n",
+ " print('SVM epsilon = %f' %SVM_epsilon)\n",
+ " print('SVM gamma = %f' %SVM_gamma)\n",
+ " tt = time.time()\n",
+ "\n",
+ " est = SVR( C = C, kernel = 'rbf', epsilon = SVM_epsilon, gamma = SVM_gamma)\n",
+ " y = cross_val_predict(est, x, t, cv = 5)\n",
+ " Y = rescale(y, T)\n",
+ " scaled_err = get_errors( shp(T), shp(Y), 'SVM (scaled)' )\n",
+ "\n",
+ " cv_time = time.time()-tt\n",
+ " print('Crossvalidation time: %.3fs' %cv_time)\n",
+ "\n",
+ " svm_tuning = svm_tuning.append( pd.DataFrame(data = [[ C, SVM_epsilon, SVM_gamma, \n",
+ " scaled_err.RMSE, cv_time]], \n",
+ " columns = ['C', 'epsilon', 'gamma', \n",
+ " 'scaled_target', 'time']) )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 143,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "svm_tuning_xr = svm_tuning.set_index(['C', 'epsilon', 'gamma']).to_xarray()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 144,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "<xarray.Dataset>\n",
+ "Dimensions: (C: 9, epsilon: 2, gamma: 9)\n",
+ "Coordinates:\n",
+ " * C (C) int64 1 2 5 7 10 20 50 70 100\n",
+ " * epsilon (epsilon) float64 0.01 0.1\n",
+ " * gamma (gamma) int64 10 20 50 70 100 200 500 700 1000\n",
+ "Data variables:\n",
+ " scaled_target (C, epsilon, gamma) float64 142.3 123.3 108.4 ... 111.2 116.4\n",
+ " time (C, epsilon, gamma) float64 18.18 19.09 17.98 ... 119.2 154.3"
+ ]
+ },
+ "execution_count": 144,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "svm_tuning_xr"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 145,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "svm_tuning_xr.to_netcdf('svm_tuning_10k.nc')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 146,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "<xarray.DataArray 'scaled_target' ()>\n",
+ "array(103.78608)"
+ ]
+ },
+ "execution_count": 146,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "svm_tuning_xr.scaled_target.min()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 155,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "<xarray.Dataset>\n",
+ "Dimensions: (C: 9, epsilon: 1, gamma: 4)\n",
+ "Coordinates:\n",
+ " * C (C) int64 1 2 5 7 10 20 50 70 100\n",
+ " * epsilon (epsilon) float64 0.1\n",
+ " * gamma (gamma) int64 70 100 200 500\n",
+ "Data variables:\n",
+ " scaled_target (C, epsilon, gamma) float64 nan nan nan ... 103.8 nan nan\n",
+ " time (C, epsilon, gamma) float64 nan nan nan ... 33.36 nan nan"
+ ]
+ },
+ "execution_count": 155,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "svm_tuning_xr.where(svm_tuning_xr.scaled_target < 104, drop = True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 156,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[[ nan, nan, nan, 103.85338758]],\n",
+ "\n",
+ " [[ nan, nan, nan, 103.9970967 ]],\n",
+ "\n",
+ " [[ nan, nan, 103.81833488, nan]],\n",
+ "\n",
+ " [[ nan, nan, 103.789383 , nan]],\n",
+ "\n",
+ " [[ nan, nan, 103.78607998, nan]],\n",
+ "\n",
+ " [[ nan, nan, 103.9042854 , nan]],\n",
+ "\n",
+ " [[ nan, 103.86051825, nan, nan]],\n",
+ "\n",
+ " [[ nan, 103.83591435, nan, nan]],\n",
+ "\n",
+ " [[103.99556459, 103.84111391, nan, nan]]])"
+ ]
+ },
+ "execution_count": 156,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "svm_tuning_xr.where(svm_tuning_xr.scaled_target < 104, drop = True).drop('epsilon').scaled_target.values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 149,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "\n",
+ "mpl.get_websocket_type = function() {\n",
+ " if (typeof(WebSocket) !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert('Your browser does not have WebSocket support.' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.');\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = (this.ws.binaryType != undefined);\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById(\"mpl-warnings\");\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent = (\n",
+ " \"This browser does not support binary websocket messages. \" +\n",
+ " \"Performance may be slow.\");\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = $('<div/>');\n",
+ " this._root_extra_style(this.root)\n",
+ " this.root.attr('style', 'display: inline-block');\n",
+ "\n",
+ " $(parent_element).append(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+ " fig.send_message(\"send_image_mode\", {});\n",
+ " if (mpl.ratio != 1) {\n",
+ " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+ " }\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " }\n",
+ "\n",
+ " this.imageObj.onload = function() {\n",
+ " if (fig.image_mode == 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function() {\n",
+ " fig.ws.close();\n",
+ " }\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function() {\n",
+ " var titlebar = $(\n",
+ " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+ " 'ui-helper-clearfix\"/>');\n",
+ " var titletext = $(\n",
+ " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+ " 'text-align: center; padding: 3px;\"/>');\n",
+ " titlebar.append(titletext)\n",
+ " this.root.append(titlebar);\n",
+ " this.header = titletext[0];\n",
+ "}\n",
+ "\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = $('<div/>');\n",
+ "\n",
+ " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+ "\n",
+ " function canvas_keyboard_event(event) {\n",
+ " return fig.key_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+ " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+ " this.canvas_div = canvas_div\n",
+ " this._canvas_extra_style(canvas_div)\n",
+ " this.root.append(canvas_div);\n",
+ "\n",
+ " var canvas = $('<canvas/>');\n",
+ " canvas.addClass('mpl-canvas');\n",
+ " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+ "\n",
+ " this.canvas = canvas[0];\n",
+ " this.context = canvas[0].getContext(\"2d\");\n",
+ "\n",
+ " var backingStore = this.context.backingStorePixelRatio ||\n",
+ "\tthis.context.webkitBackingStorePixelRatio ||\n",
+ "\tthis.context.mozBackingStorePixelRatio ||\n",
+ "\tthis.context.msBackingStorePixelRatio ||\n",
+ "\tthis.context.oBackingStorePixelRatio ||\n",
+ "\tthis.context.backingStorePixelRatio || 1;\n",
+ "\n",
+ " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband = $('<canvas/>');\n",
+ " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+ "\n",
+ " var pass_mouse_events = true;\n",
+ "\n",
+ " canvas_div.resizable({\n",
+ " start: function(event, ui) {\n",
+ " pass_mouse_events = false;\n",
+ " },\n",
+ " resize: function(event, ui) {\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " stop: function(event, ui) {\n",
+ " pass_mouse_events = true;\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " });\n",
+ "\n",
+ " function mouse_event_fn(event) {\n",
+ " if (pass_mouse_events)\n",
+ " return fig.mouse_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " rubberband.mousedown('button_press', mouse_event_fn);\n",
+ " rubberband.mouseup('button_release', mouse_event_fn);\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+ "\n",
+ " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+ " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+ "\n",
+ " canvas_div.on(\"wheel\", function (event) {\n",
+ " event = event.originalEvent;\n",
+ " event['data'] = 'scroll'\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " mouse_event_fn(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.append(canvas);\n",
+ " canvas_div.append(rubberband);\n",
+ "\n",
+ " this.rubberband = rubberband;\n",
+ " this.rubberband_canvas = rubberband[0];\n",
+ " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+ " this.rubberband_context.strokeStyle = \"#000000\";\n",
+ "\n",
+ " this._resize_canvas = function(width, height) {\n",
+ " // Keep the size of the canvas, canvas container, and rubber band\n",
+ " // canvas in synch.\n",
+ " canvas_div.css('width', width)\n",
+ " canvas_div.css('height', height)\n",
+ "\n",
+ " canvas.attr('width', width * mpl.ratio);\n",
+ " canvas.attr('height', height * mpl.ratio);\n",
+ " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+ "\n",
+ " rubberband.attr('width', width);\n",
+ " rubberband.attr('height', height);\n",
+ " }\n",
+ "\n",
+ " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+ " // upon first draw.\n",
+ " this._resize_canvas(600, 600);\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus () {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " // put a spacer in here.\n",
+ " continue;\n",
+ " }\n",
+ " var button = $('<button/>');\n",
+ " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+ " 'ui-button-icon-only');\n",
+ " button.attr('role', 'button');\n",
+ " button.attr('aria-disabled', 'false');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ "\n",
+ " var icon_img = $('<span/>');\n",
+ " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+ " icon_img.addClass(image);\n",
+ " icon_img.addClass('ui-corner-all');\n",
+ "\n",
+ " var tooltip_span = $('<span/>');\n",
+ " tooltip_span.addClass('ui-button-text');\n",
+ " tooltip_span.html(tooltip);\n",
+ "\n",
+ " button.append(icon_img);\n",
+ " button.append(tooltip_span);\n",
+ "\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker_span = $('<span/>');\n",
+ "\n",
+ " var fmt_picker = $('<select/>');\n",
+ " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+ " fmt_picker_span.append(fmt_picker);\n",
+ " nav_element.append(fmt_picker_span);\n",
+ " this.format_dropdown = fmt_picker[0];\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = $(\n",
+ " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+ " fmt_picker.append(option)\n",
+ " }\n",
+ "\n",
+ " // Add hover states to the ui-buttons\n",
+ " $( \".ui-button\" ).hover(\n",
+ " function() { $(this).addClass(\"ui-state-hover\");},\n",
+ " function() { $(this).removeClass(\"ui-state-hover\");}\n",
+ " );\n",
+ "\n",
+ " var status_bar = $('<span class=\"mpl-message\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function(type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function() {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1]);\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+ " var x0 = msg['x0'] / mpl.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+ " var x1 = msg['x1'] / mpl.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0, 0, fig.canvas.width, fig.canvas.height);\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch(cursor)\n",
+ " {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message(\"ack\", {});\n",
+ "}\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = \"image/png\";\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data);\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig[\"handle_\" + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function(e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e)\n",
+ " e = window.event;\n",
+ " if (e.target)\n",
+ " targ = e.target;\n",
+ " else if (e.srcElement)\n",
+ " targ = e.srcElement;\n",
+ " if (targ.nodeType == 3) // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ "\n",
+ " // jQuery normalizes the pageX and pageY\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " // offset() returns the position of the element relative to the document\n",
+ " var x = e.pageX - $(targ).offset().left;\n",
+ " var y = e.pageY - $(targ).offset().top;\n",
+ "\n",
+ " return {\"x\": x, \"y\": y};\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys (original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object')\n",
+ " obj[key] = original[key]\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+ " var canvas_pos = mpl.findpos(event)\n",
+ "\n",
+ " if (name === 'button_press')\n",
+ " {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * mpl.ratio;\n",
+ " var y = canvas_pos.y * mpl.ratio;\n",
+ "\n",
+ " this.send_message(name, {x: x, y: y, button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function(event, name) {\n",
+ "\n",
+ " // Prevent repeat events\n",
+ " if (name == 'key_press')\n",
+ " {\n",
+ " if (event.which === this._key)\n",
+ " return;\n",
+ " else\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " if (name == 'key_release')\n",
+ " this._key = null;\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which != 17)\n",
+ " value += \"ctrl+\";\n",
+ " if (event.altKey && event.which != 18)\n",
+ " value += \"alt+\";\n",
+ " if (event.shiftKey && event.which != 16)\n",
+ " value += \"shift+\";\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, {key: value,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+ " if (name == 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message(\"toolbar_button\", {name: name});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function() {\n",
+ " comm.close()\n",
+ " };\n",
+ " ws.send = function(m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function(msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data'])\n",
+ " });\n",
+ " return ws;\n",
+ "}\n",
+ "\n",
+ "mpl.mpl_figure_comm = function(comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = $(\"#\" + id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm)\n",
+ "\n",
+ " function ondownload(figure, format) {\n",
+ " window.open(figure.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy,\n",
+ " ondownload,\n",
+ " element.get(0));\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element.get(0);\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error(\"Failed to find cell for figure\", id, fig);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var output_index = fig.cell_info[2]\n",
+ " var cell = fig.cell_info[0];\n",
+ "\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+ " var width = fig.canvas.width/mpl.ratio\n",
+ " fig.root.unbind('remove')\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable()\n",
+ " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+ " fig.close_ws(fig, msg);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width/mpl.ratio\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message(\"ack\", {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () { fig.push_to_output() }, 1000);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items){\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) { continue; };\n",
+ "\n",
+ " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+ " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+ " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+ " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+ " buttongrp.append(button);\n",
+ " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+ " titlebar.prepend(buttongrp);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(el){\n",
+ " var fig = this\n",
+ " el.on(\"remove\", function(){\n",
+ "\tfig.close_ws(fig, {});\n",
+ " });\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+ " // this is important to make the div 'focusable\n",
+ " el.attr('tabindex', 0)\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " }\n",
+ " else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager)\n",
+ " manager = IPython.keyboard_manager;\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which == 13) {\n",
+ " this.canvas_div.blur();\n",
+ " event.shiftKey = false;\n",
+ " // Send a \"J\" for go to next cell\n",
+ " event.which = 74;\n",
+ " event.keyCode = 74;\n",
+ " manager.command_mode();\n",
+ " manager.handle_keydown(event);\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.find_output_cell = function(html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i=0; i<ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code'){\n",
+ " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] == html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel != null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure()\n",
+ "svm_tuning_xr.scaled_target.attrs['long_name'] = 'RMSE ($kWh/m^2$)'\n",
+ "\n",
+ "svm_tuning_xr.scaled_target.isel(epsilon = i).plot(cmap = 'coolwarm') # vmin = 1.9, vmax = 2.4\n",
+ " \n",
+ "plt.xscale('log')\n",
+ "plt.xlim(5, 1e3)\n",
+ "plt.xlabel('Kernel coefficient ($\\gamma$)')\n",
+ "\n",
+ "plt.yscale('log')\n",
+ "plt.ylim(0.5, 1e2)\n",
+ "plt.ylabel('Error penalization term ($C$)')\n",
+ "\n",
+ "plt.title('')\n",
+ "plt.tight_layout()\n",
+ "plt.savefig('SVM_tuning_10k.png', dpi = 300)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 152,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "\n",
+ "mpl.get_websocket_type = function() {\n",
+ " if (typeof(WebSocket) !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert('Your browser does not have WebSocket support.' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.');\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = (this.ws.binaryType != undefined);\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById(\"mpl-warnings\");\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent = (\n",
+ " \"This browser does not support binary websocket messages. \" +\n",
+ " \"Performance may be slow.\");\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = $('<div/>');\n",
+ " this._root_extra_style(this.root)\n",
+ " this.root.attr('style', 'display: inline-block');\n",
+ "\n",
+ " $(parent_element).append(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+ " fig.send_message(\"send_image_mode\", {});\n",
+ " if (mpl.ratio != 1) {\n",
+ " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+ " }\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " }\n",
+ "\n",
+ " this.imageObj.onload = function() {\n",
+ " if (fig.image_mode == 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function() {\n",
+ " fig.ws.close();\n",
+ " }\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function() {\n",
+ " var titlebar = $(\n",
+ " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+ " 'ui-helper-clearfix\"/>');\n",
+ " var titletext = $(\n",
+ " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+ " 'text-align: center; padding: 3px;\"/>');\n",
+ " titlebar.append(titletext)\n",
+ " this.root.append(titlebar);\n",
+ " this.header = titletext[0];\n",
+ "}\n",
+ "\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = $('<div/>');\n",
+ "\n",
+ " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+ "\n",
+ " function canvas_keyboard_event(event) {\n",
+ " return fig.key_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+ " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+ " this.canvas_div = canvas_div\n",
+ " this._canvas_extra_style(canvas_div)\n",
+ " this.root.append(canvas_div);\n",
+ "\n",
+ " var canvas = $('<canvas/>');\n",
+ " canvas.addClass('mpl-canvas');\n",
+ " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+ "\n",
+ " this.canvas = canvas[0];\n",
+ " this.context = canvas[0].getContext(\"2d\");\n",
+ "\n",
+ " var backingStore = this.context.backingStorePixelRatio ||\n",
+ "\tthis.context.webkitBackingStorePixelRatio ||\n",
+ "\tthis.context.mozBackingStorePixelRatio ||\n",
+ "\tthis.context.msBackingStorePixelRatio ||\n",
+ "\tthis.context.oBackingStorePixelRatio ||\n",
+ "\tthis.context.backingStorePixelRatio || 1;\n",
+ "\n",
+ " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband = $('<canvas/>');\n",
+ " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+ "\n",
+ " var pass_mouse_events = true;\n",
+ "\n",
+ " canvas_div.resizable({\n",
+ " start: function(event, ui) {\n",
+ " pass_mouse_events = false;\n",
+ " },\n",
+ " resize: function(event, ui) {\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " stop: function(event, ui) {\n",
+ " pass_mouse_events = true;\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " });\n",
+ "\n",
+ " function mouse_event_fn(event) {\n",
+ " if (pass_mouse_events)\n",
+ " return fig.mouse_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " rubberband.mousedown('button_press', mouse_event_fn);\n",
+ " rubberband.mouseup('button_release', mouse_event_fn);\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+ "\n",
+ " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+ " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+ "\n",
+ " canvas_div.on(\"wheel\", function (event) {\n",
+ " event = event.originalEvent;\n",
+ " event['data'] = 'scroll'\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " mouse_event_fn(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.append(canvas);\n",
+ " canvas_div.append(rubberband);\n",
+ "\n",
+ " this.rubberband = rubberband;\n",
+ " this.rubberband_canvas = rubberband[0];\n",
+ " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+ " this.rubberband_context.strokeStyle = \"#000000\";\n",
+ "\n",
+ " this._resize_canvas = function(width, height) {\n",
+ " // Keep the size of the canvas, canvas container, and rubber band\n",
+ " // canvas in synch.\n",
+ " canvas_div.css('width', width)\n",
+ " canvas_div.css('height', height)\n",
+ "\n",
+ " canvas.attr('width', width * mpl.ratio);\n",
+ " canvas.attr('height', height * mpl.ratio);\n",
+ " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+ "\n",
+ " rubberband.attr('width', width);\n",
+ " rubberband.attr('height', height);\n",
+ " }\n",
+ "\n",
+ " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+ " // upon first draw.\n",
+ " this._resize_canvas(600, 600);\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus () {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " // put a spacer in here.\n",
+ " continue;\n",
+ " }\n",
+ " var button = $('<button/>');\n",
+ " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+ " 'ui-button-icon-only');\n",
+ " button.attr('role', 'button');\n",
+ " button.attr('aria-disabled', 'false');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ "\n",
+ " var icon_img = $('<span/>');\n",
+ " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+ " icon_img.addClass(image);\n",
+ " icon_img.addClass('ui-corner-all');\n",
+ "\n",
+ " var tooltip_span = $('<span/>');\n",
+ " tooltip_span.addClass('ui-button-text');\n",
+ " tooltip_span.html(tooltip);\n",
+ "\n",
+ " button.append(icon_img);\n",
+ " button.append(tooltip_span);\n",
+ "\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker_span = $('<span/>');\n",
+ "\n",
+ " var fmt_picker = $('<select/>');\n",
+ " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+ " fmt_picker_span.append(fmt_picker);\n",
+ " nav_element.append(fmt_picker_span);\n",
+ " this.format_dropdown = fmt_picker[0];\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = $(\n",
+ " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+ " fmt_picker.append(option)\n",
+ " }\n",
+ "\n",
+ " // Add hover states to the ui-buttons\n",
+ " $( \".ui-button\" ).hover(\n",
+ " function() { $(this).addClass(\"ui-state-hover\");},\n",
+ " function() { $(this).removeClass(\"ui-state-hover\");}\n",
+ " );\n",
+ "\n",
+ " var status_bar = $('<span class=\"mpl-message\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function(type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function() {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1]);\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+ " var x0 = msg['x0'] / mpl.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+ " var x1 = msg['x1'] / mpl.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0, 0, fig.canvas.width, fig.canvas.height);\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch(cursor)\n",
+ " {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message(\"ack\", {});\n",
+ "}\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = \"image/png\";\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data);\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig[\"handle_\" + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function(e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e)\n",
+ " e = window.event;\n",
+ " if (e.target)\n",
+ " targ = e.target;\n",
+ " else if (e.srcElement)\n",
+ " targ = e.srcElement;\n",
+ " if (targ.nodeType == 3) // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ "\n",
+ " // jQuery normalizes the pageX and pageY\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " // offset() returns the position of the element relative to the document\n",
+ " var x = e.pageX - $(targ).offset().left;\n",
+ " var y = e.pageY - $(targ).offset().top;\n",
+ "\n",
+ " return {\"x\": x, \"y\": y};\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys (original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object')\n",
+ " obj[key] = original[key]\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+ " var canvas_pos = mpl.findpos(event)\n",
+ "\n",
+ " if (name === 'button_press')\n",
+ " {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * mpl.ratio;\n",
+ " var y = canvas_pos.y * mpl.ratio;\n",
+ "\n",
+ " this.send_message(name, {x: x, y: y, button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function(event, name) {\n",
+ "\n",
+ " // Prevent repeat events\n",
+ " if (name == 'key_press')\n",
+ " {\n",
+ " if (event.which === this._key)\n",
+ " return;\n",
+ " else\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " if (name == 'key_release')\n",
+ " this._key = null;\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which != 17)\n",
+ " value += \"ctrl+\";\n",
+ " if (event.altKey && event.which != 18)\n",
+ " value += \"alt+\";\n",
+ " if (event.shiftKey && event.which != 16)\n",
+ " value += \"shift+\";\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, {key: value,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+ " if (name == 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message(\"toolbar_button\", {name: name});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function() {\n",
+ " comm.close()\n",
+ " };\n",
+ " ws.send = function(m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function(msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data'])\n",
+ " });\n",
+ " return ws;\n",
+ "}\n",
+ "\n",
+ "mpl.mpl_figure_comm = function(comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = $(\"#\" + id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm)\n",
+ "\n",
+ " function ondownload(figure, format) {\n",
+ " window.open(figure.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy,\n",
+ " ondownload,\n",
+ " element.get(0));\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element.get(0);\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error(\"Failed to find cell for figure\", id, fig);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var output_index = fig.cell_info[2]\n",
+ " var cell = fig.cell_info[0];\n",
+ "\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+ " var width = fig.canvas.width/mpl.ratio\n",
+ " fig.root.unbind('remove')\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable()\n",
+ " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+ " fig.close_ws(fig, msg);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width/mpl.ratio\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message(\"ack\", {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () { fig.push_to_output() }, 1000);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items){\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) { continue; };\n",
+ "\n",
+ " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+ " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+ " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+ " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+ " buttongrp.append(button);\n",
+ " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+ " titlebar.prepend(buttongrp);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(el){\n",
+ " var fig = this\n",
+ " el.on(\"remove\", function(){\n",
+ "\tfig.close_ws(fig, {});\n",
+ " });\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+ " // this is important to make the div 'focusable\n",
+ " el.attr('tabindex', 0)\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " }\n",
+ " else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager)\n",
+ " manager = IPython.keyboard_manager;\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which == 13) {\n",
+ " this.canvas_div.blur();\n",
+ " event.shiftKey = false;\n",
+ " // Send a \"J\" for go to next cell\n",
+ " event.which = 74;\n",
+ " event.keyCode = 74;\n",
+ " manager.command_mode();\n",
+ " manager.handle_keydown(event);\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.find_output_cell = function(html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i=0; i<ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code'){\n",
+ " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] == html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel != null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"1000\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize = (10, 8))\n",
+ "for i in range(2):\n",
+ " plt.subplot(2,2,(2*i+1))\n",
+ " p1 = np.log10(svm_tuning_xr.scaled_target.isel(epsilon = i)).plot(vmax = 2.1) # vmin = 1.9, vmax = 2.4\n",
+ " plt.xscale('log')\n",
+ " plt.xlim(5, 1e3)\n",
+ "\n",
+ " plt.yscale('log')\n",
+ " plt.ylim(0.5, 1e2)\n",
+ "\n",
+ " plt.subplot(2,2, (2*i+2))\n",
+ " p2 = np.log10(svm_tuning_xr.time.isel(epsilon = i)).plot(cmap = 'RdBu_r') # vmin = -1.5, vmax = 1.5\n",
+ " plt.xscale('log')\n",
+ " plt.xlim(5, 1e3)\n",
+ "\n",
+ " plt.yscale('log')\n",
+ " plt.ylim(0.5, 1e2)\n",
+ " \n",
+ "plt.tight_layout()\n",
+ "plt.savefig('SVF_tuning_round2_10k.png', dpi = 300)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 132,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "\n",
+ "mpl.get_websocket_type = function() {\n",
+ " if (typeof(WebSocket) !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert('Your browser does not have WebSocket support.' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.');\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = (this.ws.binaryType != undefined);\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById(\"mpl-warnings\");\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent = (\n",
+ " \"This browser does not support binary websocket messages. \" +\n",
+ " \"Performance may be slow.\");\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = $('<div/>');\n",
+ " this._root_extra_style(this.root)\n",
+ " this.root.attr('style', 'display: inline-block');\n",
+ "\n",
+ " $(parent_element).append(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+ " fig.send_message(\"send_image_mode\", {});\n",
+ " if (mpl.ratio != 1) {\n",
+ " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+ " }\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " }\n",
+ "\n",
+ " this.imageObj.onload = function() {\n",
+ " if (fig.image_mode == 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function() {\n",
+ " fig.ws.close();\n",
+ " }\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function() {\n",
+ " var titlebar = $(\n",
+ " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+ " 'ui-helper-clearfix\"/>');\n",
+ " var titletext = $(\n",
+ " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+ " 'text-align: center; padding: 3px;\"/>');\n",
+ " titlebar.append(titletext)\n",
+ " this.root.append(titlebar);\n",
+ " this.header = titletext[0];\n",
+ "}\n",
+ "\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = $('<div/>');\n",
+ "\n",
+ " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+ "\n",
+ " function canvas_keyboard_event(event) {\n",
+ " return fig.key_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+ " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+ " this.canvas_div = canvas_div\n",
+ " this._canvas_extra_style(canvas_div)\n",
+ " this.root.append(canvas_div);\n",
+ "\n",
+ " var canvas = $('<canvas/>');\n",
+ " canvas.addClass('mpl-canvas');\n",
+ " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+ "\n",
+ " this.canvas = canvas[0];\n",
+ " this.context = canvas[0].getContext(\"2d\");\n",
+ "\n",
+ " var backingStore = this.context.backingStorePixelRatio ||\n",
+ "\tthis.context.webkitBackingStorePixelRatio ||\n",
+ "\tthis.context.mozBackingStorePixelRatio ||\n",
+ "\tthis.context.msBackingStorePixelRatio ||\n",
+ "\tthis.context.oBackingStorePixelRatio ||\n",
+ "\tthis.context.backingStorePixelRatio || 1;\n",
+ "\n",
+ " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband = $('<canvas/>');\n",
+ " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+ "\n",
+ " var pass_mouse_events = true;\n",
+ "\n",
+ " canvas_div.resizable({\n",
+ " start: function(event, ui) {\n",
+ " pass_mouse_events = false;\n",
+ " },\n",
+ " resize: function(event, ui) {\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " stop: function(event, ui) {\n",
+ " pass_mouse_events = true;\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " });\n",
+ "\n",
+ " function mouse_event_fn(event) {\n",
+ " if (pass_mouse_events)\n",
+ " return fig.mouse_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " rubberband.mousedown('button_press', mouse_event_fn);\n",
+ " rubberband.mouseup('button_release', mouse_event_fn);\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+ "\n",
+ " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+ " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+ "\n",
+ " canvas_div.on(\"wheel\", function (event) {\n",
+ " event = event.originalEvent;\n",
+ " event['data'] = 'scroll'\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " mouse_event_fn(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.append(canvas);\n",
+ " canvas_div.append(rubberband);\n",
+ "\n",
+ " this.rubberband = rubberband;\n",
+ " this.rubberband_canvas = rubberband[0];\n",
+ " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+ " this.rubberband_context.strokeStyle = \"#000000\";\n",
+ "\n",
+ " this._resize_canvas = function(width, height) {\n",
+ " // Keep the size of the canvas, canvas container, and rubber band\n",
+ " // canvas in synch.\n",
+ " canvas_div.css('width', width)\n",
+ " canvas_div.css('height', height)\n",
+ "\n",
+ " canvas.attr('width', width * mpl.ratio);\n",
+ " canvas.attr('height', height * mpl.ratio);\n",
+ " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+ "\n",
+ " rubberband.attr('width', width);\n",
+ " rubberband.attr('height', height);\n",
+ " }\n",
+ "\n",
+ " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+ " // upon first draw.\n",
+ " this._resize_canvas(600, 600);\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus () {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " // put a spacer in here.\n",
+ " continue;\n",
+ " }\n",
+ " var button = $('<button/>');\n",
+ " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+ " 'ui-button-icon-only');\n",
+ " button.attr('role', 'button');\n",
+ " button.attr('aria-disabled', 'false');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ "\n",
+ " var icon_img = $('<span/>');\n",
+ " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+ " icon_img.addClass(image);\n",
+ " icon_img.addClass('ui-corner-all');\n",
+ "\n",
+ " var tooltip_span = $('<span/>');\n",
+ " tooltip_span.addClass('ui-button-text');\n",
+ " tooltip_span.html(tooltip);\n",
+ "\n",
+ " button.append(icon_img);\n",
+ " button.append(tooltip_span);\n",
+ "\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker_span = $('<span/>');\n",
+ "\n",
+ " var fmt_picker = $('<select/>');\n",
+ " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+ " fmt_picker_span.append(fmt_picker);\n",
+ " nav_element.append(fmt_picker_span);\n",
+ " this.format_dropdown = fmt_picker[0];\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = $(\n",
+ " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+ " fmt_picker.append(option)\n",
+ " }\n",
+ "\n",
+ " // Add hover states to the ui-buttons\n",
+ " $( \".ui-button\" ).hover(\n",
+ " function() { $(this).addClass(\"ui-state-hover\");},\n",
+ " function() { $(this).removeClass(\"ui-state-hover\");}\n",
+ " );\n",
+ "\n",
+ " var status_bar = $('<span class=\"mpl-message\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function(type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function() {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1]);\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+ " var x0 = msg['x0'] / mpl.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+ " var x1 = msg['x1'] / mpl.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0, 0, fig.canvas.width, fig.canvas.height);\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch(cursor)\n",
+ " {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message(\"ack\", {});\n",
+ "}\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = \"image/png\";\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data);\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig[\"handle_\" + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function(e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e)\n",
+ " e = window.event;\n",
+ " if (e.target)\n",
+ " targ = e.target;\n",
+ " else if (e.srcElement)\n",
+ " targ = e.srcElement;\n",
+ " if (targ.nodeType == 3) // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ "\n",
+ " // jQuery normalizes the pageX and pageY\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " // offset() returns the position of the element relative to the document\n",
+ " var x = e.pageX - $(targ).offset().left;\n",
+ " var y = e.pageY - $(targ).offset().top;\n",
+ "\n",
+ " return {\"x\": x, \"y\": y};\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys (original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object')\n",
+ " obj[key] = original[key]\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+ " var canvas_pos = mpl.findpos(event)\n",
+ "\n",
+ " if (name === 'button_press')\n",
+ " {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * mpl.ratio;\n",
+ " var y = canvas_pos.y * mpl.ratio;\n",
+ "\n",
+ " this.send_message(name, {x: x, y: y, button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function(event, name) {\n",
+ "\n",
+ " // Prevent repeat events\n",
+ " if (name == 'key_press')\n",
+ " {\n",
+ " if (event.which === this._key)\n",
+ " return;\n",
+ " else\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " if (name == 'key_release')\n",
+ " this._key = null;\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which != 17)\n",
+ " value += \"ctrl+\";\n",
+ " if (event.altKey && event.which != 18)\n",
+ " value += \"alt+\";\n",
+ " if (event.shiftKey && event.which != 16)\n",
+ " value += \"shift+\";\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, {key: value,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+ " if (name == 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message(\"toolbar_button\", {name: name});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function() {\n",
+ " comm.close()\n",
+ " };\n",
+ " ws.send = function(m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function(msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data'])\n",
+ " });\n",
+ " return ws;\n",
+ "}\n",
+ "\n",
+ "mpl.mpl_figure_comm = function(comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = $(\"#\" + id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm)\n",
+ "\n",
+ " function ondownload(figure, format) {\n",
+ " window.open(figure.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy,\n",
+ " ondownload,\n",
+ " element.get(0));\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element.get(0);\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error(\"Failed to find cell for figure\", id, fig);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var output_index = fig.cell_info[2]\n",
+ " var cell = fig.cell_info[0];\n",
+ "\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+ " var width = fig.canvas.width/mpl.ratio\n",
+ " fig.root.unbind('remove')\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable()\n",
+ " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+ " fig.close_ws(fig, msg);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width/mpl.ratio\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message(\"ack\", {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () { fig.push_to_output() }, 1000);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items){\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) { continue; };\n",
+ "\n",
+ " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+ " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+ " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+ " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+ " buttongrp.append(button);\n",
+ " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+ " titlebar.prepend(buttongrp);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(el){\n",
+ " var fig = this\n",
+ " el.on(\"remove\", function(){\n",
+ "\tfig.close_ws(fig, {});\n",
+ " });\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+ " // this is important to make the div 'focusable\n",
+ " el.attr('tabindex', 0)\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " }\n",
+ " else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager)\n",
+ " manager = IPython.keyboard_manager;\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which == 13) {\n",
+ " this.canvas_div.blur();\n",
+ " event.shiftKey = false;\n",
+ " // Send a \"J\" for go to next cell\n",
+ " event.which = 74;\n",
+ " event.keyCode = 74;\n",
+ " manager.command_mode();\n",
+ " manager.handle_keydown(event);\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.find_output_cell = function(html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i=0; i<ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code'){\n",
+ " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] == html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel != null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+ "}\n"
],
"text/plain": [
- " unscaled unscaled_target scaled_target\n",
- "0.1 247.865813 247.933048 216.000682\n",
- "0.2 247.642499 247.773033 194.446270\n",
- "0.5 246.957192 247.275723 167.589291\n",
- "1.0 245.878745 246.446937 155.871316\n",
- "2.0 243.899368 244.907860 150.359435\n",
- "5.0 238.804532 240.496598 147.968116\n",
- "10.0 231.471496 233.585816 147.285781"
+ "<IPython.core.display.Javascript object>"
]
},
- "execution_count": 46,
"metadata": {},
- "output_type": "execute_result"
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"1000\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
- "svm_tuning"
+ "plt.figure(figsize = (10, 8))\n",
+ "for i in range(2):\n",
+ " plt.subplot(2,2,(2*i+1))\n",
+ " p1 = np.log10(svm_tuning_xr.scaled_target.isel(epsilon = i)).plot(vmax = 2.1) # vmin = 1.9, vmax = 2.4\n",
+ " plt.xscale('log')\n",
+ " plt.xlim(5, 1e3)\n",
+ "\n",
+ " plt.yscale('log')\n",
+ " plt.ylim(0.5, 1e2)\n",
+ "\n",
+ " plt.subplot(2,2, (2*i+2))\n",
+ " p2 = np.log10(svm_tuning_xr.time.isel(epsilon = i)).plot() # vmin = -1.5, vmax = 1.5\n",
+ " plt.xscale('log')\n",
+ " plt.xlim(5, 1e3)\n",
+ "\n",
+ " plt.yscale('log')\n",
+ " plt.ylim(0.5, 1e2)\n",
+ " \n",
+ "plt.tight_layout()\n",
+ "plt.savefig('SVF_tuning_round2.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "# CURRENTLY NOT USED\n",
+ "tt = time.time()\n",
+ "\n",
+ " est = SVR( C = C, kernel = 'rbf', epsilon = SVM_epsilon, gamma = SVM_gamma)\n",
+ " Y = cross_val_predict(est, X, T, cv = 5)\n",
+ " ununscaled_err = get_errors( shp(T), shp(Y), 'SVM (unscaled)' )\n",
+ "\n",
+ " print('Crossvalidation time: %.3fs' %(time.time()-tt))\n",
+ " tt = time.time()\n",
+ "\n",
+ " est = SVR( C = C, kernel = 'rbf', epsilon = SVM_epsilon, gamma = SVM_gamma)\n",
+ " Y = cross_val_predict(est, x, T, cv = 5)\n",
+ " unscaled_err = get_errors( shp(T), shp(Y), 'SVM (unscaled)' )\n",
+ "\n",
+ " print('Crossvalidation time: %.3fs' %(time.time()-tt))"
+ ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot 2D histogram"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.linear_model import LinearRegression\n",
"\n",
"min_val = max(T_tst.min(), Y_tst.min())\n",
"max_val = min(T_tst.max(), Y_tst.max())\n",
"\n",
"X_regr = Y_tst.reshape(-1, 1)\n",
"Y_regr = T_tst.reshape(-1, 1)\n",
"\n",
"LIN = LinearRegression( n_jobs = -1 )\n",
"LIN.fit( X_regr, Y_regr )\n",
"\n",
"x_regr = np.asarray([min_val, max_val]).reshape(-1, 1)\n",
"y_regr = LIN.predict( x_regr )\n",
"\n",
"R2 = LIN.score(X_regr, Y_regr)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"min_val = 500\n",
"max_val = 1700\n",
"\n",
"plt.figure()\n",
"\n",
"plt.hist2d( Y_tst, T_tst, bins=100, cmap = 'Oranges')\n",
"plt.plot([min_val,max_val],[min_val,max_val], c = 'grey', alpha= 0.7, lw = 0.7)\n",
"plt.plot(x_regr, y_regr, c = 'k', lw = 0.7, label = 'Regression line ($R^2 = %.2f$)' %R2)\n",
"# plt.plot([], [], c = 'grew', ls = '--', lw = 0.7, alpha = 0.7)\n",
"\n",
"plt.ylabel('Target ($kWh/m^2$)')\n",
"plt.xlabel('Prediction ($kWh/m^2$)')\n",
"# plt.title('Annual solar irradiation')\n",
"\n",
"plt.axis('equal')\n",
"plt.xlim((min_val, max_val))\n",
"plt.ylim((min_val, max_val))\n",
"\n",
"cbar = plt.colorbar()\n",
"cbar.set_label('# of values in bin')\n",
"\n",
"plt.legend()\n",
"plt.tight_layout()\n",
"plt.show()\n",
"# plt.savefig('Regression_1M.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Double-check feature importance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# for standard estimators\n",
"n_features = X.shape[1]\n",
"importance = np.mean([tree.feature_importances_ for tree in RF.estimators_],axis=0)\n",
"std = np.std([tree.feature_importances_ for tree in RF.estimators_],axis=0)\n",
"ind = np.argsort(importance)[-n_features:]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(importance)\n",
"print(std)\n",
"print(ind)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure()\n",
"ax = plt.axes()\n",
"# plt.title(\"Feature Importance for RF (%dk features)\" %(X.shape[0]/1000)) # \\n Testing RMSE: %f ; , np.sqrt(mse(Y_te,T_te))\n",
"plt.barh(range(n_features),importance[ind],\n",
" color=\"C1\", xerr=std[ind], alpha=0.5, align=\"center\", capsize = 2)\n",
"plt.yticks(range(n_features), np.asarray(feature_labels)[ind])\n",
"plt.ylim([-1, len(ind)])\n",
"plt.xlabel('Feature importance')\n",
"plt.tight_layout()\n",
"plt.show()\n",
"# plt.savefig('Feature_importance_selFtrs_mean_10k.png', dpi=300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ML with uncertainty"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"estimator = set_estimators()\n",
"RF_unc = Uncertainty( estimator['RF'] )\n",
"RF_unc.fit(X, T)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model variance not given\n",
"Estimating model variance ... \n",
"Fitting model ...\n",
"CPU time: 228.80 seconds\n",
"Wall clock time: 82.86 seconds\n"
]
}
],
"source": [
"# set residual estimator and fit \n",
"RF_unc.residuals.set_params( n_estimators = n_est )\n",
"\n",
"tt = util.Timer()\n",
"residuals = RF_unc.fit_residuals( X, T )\n",
"tt.stop()"
]
},
{
"cell_type": "code",
"execution_count": 204,
"metadata": {
"collapsed": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU time: 200.51 seconds\n",
"Wall clock time: 125.80 seconds\n"
]
},
{
"ename": "NameError",
"evalue": "name 'compute_residuals' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-204-4816131a1aa3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mtt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mRes_tst\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompute_residuals\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mshp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mY_tst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mT_tst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmUnc_tst\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'compute_residuals' is not defined"
]
}
],
"source": [
"# get prediction, model uncertainty and data uncertainty\n",
"tt = util.Timer()\n",
"Y_tst, mUnc_tst = RF_unc.predict_model_uncertainty(X_tst)\n",
"dUnc_tst = RF_unc.predict_residuals(X_tst)\n",
"tt.stop()"
]
},
{
"cell_type": "code",
"execution_count": 208,
"metadata": {},
"outputs": [],
"source": [
"Res_tst = compute_residuals( shp(Y_tst), shp(T_tst), shp(mUnc_tst) )"
]
},
{
"cell_type": "code",
"execution_count": 213,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prediction MSE: 8976.326644\n",
"Prediction RMSE: 94.743478\n",
"Prediction MAE: 58.576197\n",
"Prediction MAEP: 0.076631\n",
"Prediction MBE: -15.192731\n",
"Prediction MBEP: -0.038931\n",
"Prediction R2: 0.836498\n",
"\n",
"Residuals MSE: 4994.676687\n",
"Residuals RMSE: 70.673027\n",
"Residuals MAE: 40.612807\n",
"Residuals MAEP: 1.647667\n",
"Residuals MBE: 2.376570\n",
"Residuals MBEP: -0.149421\n",
"Residuals R2: -7.559683\n"
]
}
],
"source": [
"pred_err = get_errors( shp(T_tst), shp(Y_tst), 'Prediction' )\n",
"print('')\n",
"res_err = get_errors( shp(dUnc_tst), shp(Res_tst), 'Residuals' )"
]
},
{
"cell_type": "code",
"execution_count": 214,
"metadata": {},
"outputs": [],
"source": [
"# merge all test results into one dataframe\n",
"identifier = 'DF_UID'\n",
"identifiers = shp(testing.index.values)\n",
"test_results = pd.DataFrame( np.hstack([identifiers, shp(T_tst), shp(Y_tst), shp(mUnc_tst), shp(dUnc_tst) ]), \n",
" columns = ['DF_UID', 'target', 'prediction', 'model_std', 'data_std'])\n",
"test_results['total_std'] = np.sqrt(test_results.model_std ** 2 + test_results.data_std ** 2)\n",
"test_results['data_std_rel_to_total'] = test_results['total_std'] * test_results['data_std'] / ( test_results['data_std'] + test_results['model_std'] )\n",
"test_results['model_std_rel_to_total'] = test_results['total_std'] * test_results['model_std'] / ( test_results['data_std'] + test_results['model_std'] )"
]
},
{
"cell_type": "code",
"execution_count": 247,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# prepare sample for plotting\n",
"SAMPLE_LENGTH = 50\n",
"test_sample = test_results.sample( SAMPLE_LENGTH ).sort_values(by = 'prediction', ascending = False).reset_index()\n",
"\n",
"# plot results\n",
"plt.figure()\n",
"test_sample.prediction.plot( kind = 'bar', color = 'C0', width = 0.9, alpha = 0.3)\n",
"ticks, labels = plt.xticks( range(0, SAMPLE_LENGTH, 10), range(0, SAMPLE_LENGTH, 10))\n",
"\n",
"plt.errorbar( range(SAMPLE_LENGTH), test_sample.prediction, yerr = test_sample.total_std, \n",
" color = 'k', elinewidth = 1, capsize=1.5, \n",
" fmt = '.', markersize = 1, \n",
" label = 'Data uncertainty')\n",
"\n",
"plt.errorbar( range(SAMPLE_LENGTH), test_sample.prediction, yerr = test_sample.model_std_rel_to_total, \n",
" color = 'r', elinewidth = 1, capsize=1.5, \n",
" fmt = '.', markersize = 1, \n",
" label = 'Model uncertainty')\n",
"\n",
"\n",
"test_sample.target.plot( style = 'go', alpha = 0.5 )\n",
"# plt.title('Prediction and uncertainty of solar irradiation')\n",
"plt.legend(loc = 'upper right')\n",
"plt.xlabel('Sample (randomly selected)')\n",
"plt.ylabel('Prediction (in $kWh / m^2)$')\n",
"plt.xlim((-1, 50))\n",
"\n",
"plt.tight_layout()\n",
"# plt.savefig( os.path.join( 'pred_uncertainty_irrad_tst_new.png'), dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tilt and aspect patterns for predicted values and uncertainty"
]
},
{
"cell_type": "code",
"execution_count": 266,
"metadata": {},
"outputs": [],
"source": [
"merged_results = test_results.merge(testing[['NEIGUNG', 'AUSRICHTUNG']], \n",
" left_on = 'DF_UID', right_index = True, how = 'left')"
]
},
{
"cell_type": "code",
"execution_count": 267,
"metadata": {},
"outputs": [],
"source": [
"merged_results['total_std_perc'] = merged_results.total_std / merged_results.prediction"
]
},
{
"cell_type": "code",
"execution_count": 268,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>target</th>\n",
" <th>prediction</th>\n",
" <th>model_std</th>\n",
" <th>data_std</th>\n",
" <th>total_std</th>\n",
" <th>data_std_rel_to_total</th>\n",
" <th>model_std_rel_to_total</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>total_std_perc</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1001041.0</td>\n",
" <td>1124.0</td>\n",
" <td>1030.105617</td>\n",
" <td>142.829931</td>\n",
" <td>61.922971</td>\n",
" <td>155.675442</td>\n",
" <td>47.080583</td>\n",
" <td>108.594860</td>\n",
" <td>1</td>\n",
" <td>-51.0</td>\n",
" <td>0.151126</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>8720624.0</td>\n",
" <td>1431.0</td>\n",
" <td>1371.053704</td>\n",
" <td>59.213866</td>\n",
" <td>25.345624</td>\n",
" <td>64.410268</td>\n",
" <td>19.306153</td>\n",
" <td>45.104115</td>\n",
" <td>41</td>\n",
" <td>6.0</td>\n",
" <td>0.046979</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2671377.0</td>\n",
" <td>867.0</td>\n",
" <td>931.658432</td>\n",
" <td>75.201291</td>\n",
" <td>22.660883</td>\n",
" <td>78.541389</td>\n",
" <td>18.186978</td>\n",
" <td>60.354411</td>\n",
" <td>28</td>\n",
" <td>-128.0</td>\n",
" <td>0.084303</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>8826005.0</td>\n",
" <td>1337.0</td>\n",
" <td>1320.957118</td>\n",
" <td>70.414994</td>\n",
" <td>32.842632</td>\n",
" <td>77.697554</td>\n",
" <td>24.712869</td>\n",
" <td>52.984685</td>\n",
" <td>30</td>\n",
" <td>18.0</td>\n",
" <td>0.058819</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3008353.0</td>\n",
" <td>1262.0</td>\n",
" <td>1206.295618</td>\n",
" <td>123.036708</td>\n",
" <td>48.113745</td>\n",
" <td>132.109666</td>\n",
" <td>37.138615</td>\n",
" <td>94.971051</td>\n",
" <td>41</td>\n",
" <td>-1.0</td>\n",
" <td>0.109517</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" DF_UID target prediction model_std data_std total_std \\\n",
"0 1001041.0 1124.0 1030.105617 142.829931 61.922971 155.675442 \n",
"1 8720624.0 1431.0 1371.053704 59.213866 25.345624 64.410268 \n",
"2 2671377.0 867.0 931.658432 75.201291 22.660883 78.541389 \n",
"3 8826005.0 1337.0 1320.957118 70.414994 32.842632 77.697554 \n",
"4 3008353.0 1262.0 1206.295618 123.036708 48.113745 132.109666 \n",
"\n",
" data_std_rel_to_total model_std_rel_to_total NEIGUNG AUSRICHTUNG \\\n",
"0 47.080583 108.594860 1 -51.0 \n",
"1 19.306153 45.104115 41 6.0 \n",
"2 18.186978 60.354411 28 -128.0 \n",
"3 24.712869 52.984685 30 18.0 \n",
"4 37.138615 94.971051 41 -1.0 \n",
"\n",
" total_std_perc \n",
"0 0.151126 \n",
"1 0.046979 \n",
"2 0.084303 \n",
"3 0.058819 \n",
"4 0.109517 "
]
},
"execution_count": 268,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_results.head()"
]
},
{
"cell_type": "code",
"execution_count": 269,
"metadata": {},
"outputs": [],
"source": [
"# ADJUST FOR FLAT ROOFS\n",
"FLAT = -5.1\n",
"merged_results['tilt'] = merged_results.NEIGUNG\n",
"merged_results.loc[merged_results.NEIGUNG == 0, 'tilt'] = FLAT # NEEDED FOR PLOTTING"
]
},
{
"cell_type": "code",
"execution_count": 270,
"metadata": {},
"outputs": [],
"source": [
"ASP_ROUND = 10\n",
"TILT_ROUND = 10\n",
"merged_results['tilt_round'] = util.round_to_interval(merged_results.tilt, TILT_ROUND)\n",
"merged_results['aspect_round'] = util.round_to_interval(merged_results.AUSRICHTUNG, ASP_ROUND)"
]
},
{
"cell_type": "code",
"execution_count": 271,
"metadata": {},
"outputs": [],
"source": [
"results_mean = merged_results.groupby(['tilt_round', 'aspect_round']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 276,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_var = results_mean['prediction']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"# prepare data\n",
"data = plot_array.values\n",
"# theta = np.append(plot_array.aspect_round * np.pi / 180, 2*np.pi) + (0.5 * ASP_ROUND * np.pi / 180)\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = None\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"# ax.set_rlim(-10, 70)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"cb.set_label('Predicted annual $G_t$ (in $kWh/m^2$)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('prediction_tilt_aspect.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": 263,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_var = results_mean['target']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"# prepare data\n",
"data = plot_array.values\n",
"# theta = np.append(plot_array.aspect_round * np.pi / 180, 2*np.pi) + (0.5 * ASP_ROUND * np.pi / 180)\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = None\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"# ax.set_rlim(-10, 70)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"cb.set_label('Target annual $G_t$ ($kWh/m^2$)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('target_tilt_aspect.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": 274,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_var = results_mean['total_std_perc'] * 100\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"# prepare data\n",
"data = plot_array.values\n",
"# theta = np.append(plot_array.aspect_round * np.pi / 180, 2*np.pi) + (0.5 * ASP_ROUND * np.pi / 180)\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = None\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"# ax.set_rlim(-10, 70)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"cb.set_label('Relative uncertainty for $G_t$ (in %)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('total_std_perc_tilt_aspect.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": 275,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_var = results_mean['total_std']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"# prepare data\n",
"data = plot_array.values\n",
"# theta = np.append(plot_array.aspect_round * np.pi / 180, 2*np.pi) + (0.5 * ASP_ROUND * np.pi / 180)\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = None\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"# ax.set_rlim(-10, 70)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"cb.set_label('Uncertainty for $G_t$ (in $kWh/m^2$)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('total_std_tilt_aspect.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Predict for cities and compare potential"
]
},
{
"cell_type": "code",
"execution_count": 180,
"metadata": {},
"outputs": [],
"source": [
"x, t, X, T = get_data( training_data.sample(1e9), feature_names, label_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"estimator = set_estimators()\n",
"RF_unc = Uncertainty( estimator['RF'] )\n",
"RF_unc.fit(X, T)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model variance not given\n",
"Estimating model variance ... \n",
"Fitting model ...\n"
]
}
],
"source": [
"# set residual estimator and fit \n",
"RF_unc.residuals.set_params( n_estimators = n_est )\n",
"\n",
"tt = util.Timer()\n",
"residuals = RF_unc.fit_residuals( X, T )\n",
"tt.stop()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"city_pred = {}\n",
"for city in cities:\n",
" print(city)\n",
" # get prediction, model uncertainty and data uncertainty\n",
" x_tst, t_tst, X_tst, T_tst = get_data( city_data[city], feature_names, label_name)\n",
" \n",
" tt = util.Timer()\n",
" Y_tst, mUnc_tst = RF_unc.predict_model_uncertainty(X_tst)\n",
" dUnc_tst = RF_unc.predict_residuals(X_tst)\n",
" tt.stop()\n",
" \n",
" identifiers = shp(city_data[city].index.values)\n",
" test_results = pd.DataFrame( np.hstack([identifiers, shp(T_tst), shp(Y_tst), shp(mUnc_tst), shp(dUnc_tst) ]), \n",
" columns = ['DF_UID', 'target', 'prediction', 'model_std', 'data_std'])\n",
" \n",
" city_pred[city] = test_results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### SELECT SUITABLE ROOFS & APPLY SUITABILITY CRITERIA"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"GWR_cols = pd.read_csv('/Users/alinawalch/Documents/EPFL/data/GWR/Maske_EINZELD-GEB.csv').columns\n",
"GWR = pd.read_csv('/Users/alinawalch/Documents/EPFL/data/GWR/EPFL-150701-GEB.txt', usecols = ['EGID', 'GKAT'],\n",
" header = None, names = GWR_cols, sep = '\\t', encoding = 'cp1250' )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# merge all info\n",
"for city in cities:\n",
" city_pred[ city ] = city_pred[ city ].merge(city_data[ city ][['FLAECHE', 'NEIGUNG', 'AUSRICHTUNG', 'GWR_EGID']], \n",
" left_on = 'DF_UID', right_index = True, how = 'left')\n",
" \n",
" city_pred[ city ] = city_pred[ city ].merge(GWR, left_on = 'GWR_EGID', right_on = 'EGID', how = 'left') "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"city_pred[ city ].head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"city_suitable = {}\n",
"\n",
"for city in cities:\n",
" suited_roofs = city_pred[ city ][ (city_pred[ city ].FLAECHE >= 10) & (city_pred[ city ].target >= 1000) ]\n",
"\n",
" # define rules for roof categories\n",
" flat_roofs = suited_roofs.NEIGUNG <= 10\n",
" steep_roofs = suited_roofs.NEIGUNG > 10\n",
"\n",
" large_roofs = (suited_roofs.NEIGUNG <= 10) & (suited_roofs.FLAECHE >= 1000)\n",
" small_roofs = (suited_roofs.NEIGUNG <= 10) & (suited_roofs.FLAECHE < 1000)\n",
"\n",
" MFH = (suited_roofs.NEIGUNG <= 10) & (suited_roofs.GKAT == 1025)\n",
"\n",
" # compute untilization factor\n",
" suited_roofs['UF'] = 0\n",
" suited_roofs.loc[steep_roofs, 'UF'] = 0.7\n",
"\n",
" # for flat roofs, different logic applies for small and large roofs, and for multi-family-houses\n",
" suited_roofs.loc[small_roofs, 'UF'] = 0.7\n",
" suited_roofs.loc[large_roofs, 'UF'] = 0.8\n",
"\n",
" suited_roofs.loc[MFH, 'UF'] = suited_roofs[MFH].UF * 0.6\n",
"\n",
" suited_roofs['available_area'] = suited_roofs.UF * suited_roofs.FLAECHE\n",
"\n",
" # save results in dict\n",
" city_suitable[ city ] = suited_roofs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"city_suitable[ city ].head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Multiply everything with areas"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"city_suitable.keys()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for city, data in city_suitable.items():\n",
" data['total_std'] = np.sqrt( data['model_std']**2 + data['data_std']**2 )\n",
" \n",
" data['targ_kWh'] = data['target'] * data['FLAECHE']\n",
" data['pred_kWh'] = data['prediction'] * data['FLAECHE']\n",
" data['munc_kWh'] = data['model_std'] * data['FLAECHE']\n",
" data['dunc_kWh'] = data['data_std'] * data['FLAECHE']\n",
" data['tunc_kWh'] = data['total_std'] * data['FLAECHE']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get city totals"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"results_GWh = city_suitable[ city ].sum() / 1e6"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"results_GWh"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Compute PV potential for communes and get inhabitants"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"eff = 0.17*0.8\n",
"cols = ['FLAECHE', 'available_area', 'targ_E_GWh', 'pred_E_GWh', 'munc_E_GWh', 'dunc_E_GWh', 'tunc_E_GWh']\n",
"results = pd.DataFrame( data = [], columns = cols )\n",
"\n",
"for city, data in city_suitable.items():\n",
" results_GWh = data.sum() / 1e6\n",
" \n",
" new_row = pd.DataFrame( data = [[results_GWh.FLAECHE, results_GWh.available_area, \n",
" results_GWh.targ_kWh * eff, results_GWh.pred_kWh * eff,\n",
" results_GWh.munc_kWh * eff, results_GWh.dunc_kWh * eff, \n",
" results_GWh.tunc_kWh * eff]], \n",
" columns = cols, index = [city] )\n",
" \n",
" results = results.append( new_row )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"results['dunc_rel_to_tunc'] = (results['tunc_E_GWh'] * results['dunc_E_GWh'] \n",
" / (results['dunc_E_GWh'] + results['munc_E_GWh'] ))\n",
"results['munc_rel_to_tunc'] = (results['tunc_E_GWh'] * results['munc_E_GWh'] \n",
" / (results['dunc_E_GWh'] + results['munc_E_GWh'] ))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get number of inhabitants\n",
"results = results.merge(commune_data[['NAME', 'EINWOHNERZ']], \n",
" left_index = True, right_on = 'NAME', how = 'left').dropna().set_index('NAME')\n",
"results = results.sort_values('EINWOHNERZ', ascending = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# BAR CHART"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot results\n",
"plt.figure()\n",
"\n",
"targ_idx = np.asarray(range(0, len(results))) * 2.5\n",
"pred_idx = targ_idx + 1\n",
"\n",
"plt.bar(targ_idx, results.targ_E_GWh , color = 'C1', width = 1.0, alpha = 0.8, label = 'Target')\n",
"plt.bar(pred_idx, results.pred_E_GWh , color = 'C0', width = 1.0, alpha = 0.5, label = 'Prediction')\n",
"\n",
"plt.errorbar( pred_idx, results.pred_E_GWh, yerr = results.tunc_E_GWh, \n",
" color = 'k', elinewidth = 2, capsize=2.5, \n",
" fmt = '.', markersize = 1, \n",
" label = 'Data uncertainty')\n",
"\n",
"plt.errorbar( pred_idx, results.pred_E_GWh, yerr = results.munc_rel_to_tunc, \n",
" color = 'r', elinewidth = 2, capsize=2.5, \n",
" fmt = '.', markersize = 1, \n",
" label = 'Model uncertainty')\n",
"\n",
"\n",
"plt.legend(loc = 'upper right')\n",
"plt.ylabel('PV potential per city (in $GWh)$')\n",
"\n",
"plt.xticks( targ_idx + 0.5, results.index )\n",
"\n",
"plt.tight_layout()\n",
"plt.savefig( os.path.join( 'pred_cities_allDataTrn.png'), dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### PV potential per inhabitants"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"results_per_inhab = results / results[['EINWOHNERZ']].values * 1e6"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot results\n",
"plt.figure()\n",
"\n",
"targ_idx = np.asarray(range(0, len(results_per_inhab))) * 2.5\n",
"pred_idx = targ_idx + 1\n",
"\n",
"plt.bar(targ_idx, results_per_inhab.targ_E_GWh , color = 'C1', width = 1.0, alpha = 0.8, label = 'Target')\n",
"plt.bar(pred_idx, results_per_inhab.pred_E_GWh , color = 'C0', width = 1.0, alpha = 0.5, label = 'Prediction')\n",
"\n",
"plt.errorbar( pred_idx, results_per_inhab.pred_E_GWh, yerr = results_per_inhab.tunc_E_GWh, \n",
" color = 'k', elinewidth = 2, capsize=2.5, \n",
" fmt = '.', markersize = 1, \n",
" label = 'Data uncertainty')\n",
"\n",
"plt.errorbar( pred_idx, results_per_inhab.pred_E_GWh, yerr = results_per_inhab.munc_rel_to_tunc, \n",
" color = 'r', elinewidth = 2, capsize=2.5, \n",
" fmt = '.', markersize = 1, \n",
" label = 'Model uncertainty')\n",
"\n",
"\n",
"plt.legend() # loc = 'upper right'\n",
"plt.ylabel('PV potential per inhabitant (in $kWh)$')\n",
"\n",
"plt.xticks( targ_idx + 0.5, results_per_inhab.index )\n",
"\n",
"plt.tight_layout()\n",
"plt.savefig( os.path.join( 'pred_cities_per_inhab_allDataTrn.png'), dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get city information"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>NAME</th>\n",
" <th>EINWOHNERZ</th>\n",
" <th>GEM_FLAECH</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Davos</td>\n",
" <td>10937.0</td>\n",
" <td>28400.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td>Zürich</td>\n",
" <td>409241.0</td>\n",
" <td>9188.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>83</th>\n",
" <td>Lugano</td>\n",
" <td>63494.0</td>\n",
" <td>8621.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>296</th>\n",
" <td>Luzern</td>\n",
" <td>81401.0</td>\n",
" <td>3740.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>396</th>\n",
" <td>Basel</td>\n",
" <td>171513.0</td>\n",
" <td>2385.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1742</th>\n",
" <td>Interlaken</td>\n",
" <td>5592.0</td>\n",
" <td>427.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" NAME EINWOHNERZ GEM_FLAECH\n",
"6 Davos 10937.0 28400.0\n",
"77 Zürich 409241.0 9188.0\n",
"83 Lugano 63494.0 8621.0\n",
"296 Luzern 81401.0 3740.0\n",
"396 Basel 171513.0 2385.0\n",
"1742 Interlaken 5592.0 427.0"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"commune_data.loc[commune_data.NAME.isin(cities),['NAME', 'EINWOHNERZ', 'GEM_FLAECH']].dropna()"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Luzern\n",
"Number of buildings: 5940\n",
"Roof area: 3.25\n",
"Roof area per inhabitant: 39.95\n",
"\n",
"Zürich\n",
"Number of buildings: 46888\n",
"Roof area: 13.77\n",
"Roof area per inhabitant: 33.65\n",
"\n",
"Basel\n",
"Number of buildings: 11122\n",
"Roof area: 6.27\n",
"Roof area per inhabitant: 36.55\n",
"\n",
"Lugano\n",
"Number of buildings: 10052\n",
"Roof area: 3.10\n",
"Roof area per inhabitant: 48.85\n",
"\n",
"Interlaken\n",
"Number of buildings: 1025\n",
"Roof area: 0.48\n",
"Roof area per inhabitant: 85.06\n",
"\n",
"Davos\n",
"Number of buildings: 2582\n",
"Roof area: 1.21\n",
"Roof area per inhabitant: 110.49\n",
"\n"
]
}
],
"source": [
"# get remaining information\n",
"for city, data in city_data.items():\n",
" n_buildings = len(data.GWR_EGID.unique())\n",
" roof_area = data.FLAECHE.sum() / 1e6\n",
" \n",
" inhab = commune_data.loc[commune_data.NAME == city, 'EINWOHNERZ'].values\n",
" roof_area_per_inhab = roof_area / inhab * 1e6\n",
" \n",
" print(city)\n",
" print('Number of buildings: %d' %n_buildings)\n",
" print('Roof area: %.2f' %roof_area)\n",
" print('Roof area per inhabitant: %.2f\\n' %roof_area_per_inhab[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.7"
+ "version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Visualisation/plot_potentials.ipynb b/Visualisation/plot_potentials.ipynb
index 1f01192..51515a0 100644
--- a/Visualisation/plot_potentials.ipynb
+++ b/Visualisation/plot_potentials.ipynb
@@ -1,13064 +1,13064 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" from ._conv import register_converters as _register_converters\n"
]
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import xarray as xr\n",
"\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.colors import LinearSegmentedColormap\n",
"import matplotlib\n",
"\n",
"import util\n",
"\n",
"import calendar\n",
"import sys\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"colorsRGB = [(25,165,110),\n",
" (65,195,100),\n",
" (105,219,77),\n",
" (183,233,81),\n",
" (249,239,88),\n",
" (250,201,53),\n",
" (246,135,26),\n",
" (220,82,7),\n",
" (193,31,4)]\n",
"colors = []\n",
"for row in colorsRGB:\n",
" colors.append(tuple([i/255.0 for i in row]))\n",
"cm = LinearSegmentedColormap.from_list('GYR', colors, N=500)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"colorsRGB = [(47,111,191),\n",
" (51,148,190),\n",
" (65,195,153),\n",
" (105,219,77),\n",
" (183,233,81),\n",
" (249,239,88),\n",
" (250,201,53),\n",
" (246,135,26),\n",
" (220,82,7),\n",
" (193,31,4)]\n",
"colors = []\n",
"for row in colorsRGB:\n",
" colors.append(tuple([i/255.0 for i in row]))\n",
" \n",
"cm_PV = LinearSegmentedColormap.from_list('radiation', colors, N=500)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def get_month(df, month):\n",
" return df.where( df.month == month, drop = True )"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def rad(angle):\n",
" return angle * np.pi/180"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"path = '/Volumes/Seagate Backup Plus Drive/DOKUMENTE/EPFL/data/Results/PV_w_uncertainty'"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"ROOF_fp = os.path.join(path, 'CH_ROOFS_all_replaced.csv')\n",
"ROOFS = pd.read_csv( ROOF_fp, usecols = ['DF_UID', 'FLAECHE', 'NEIGUNG', 'AUSRICHTUNG'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PLOT UNCERTAINTY OF TILTED RADIATION"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"fp = '/work/hyenergy/output/solar_potential/technical_potential/pv_potential_ELM50_1000_dhm25_200_roofs_yearly.csv'\n",
"fp = os.path.join(path, 'var_Gt_all.nc')\n",
"Gt_unc_all = xr.open_mfdataset(fp, chunks = {'DF_UID' : 10000})"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Gt_unc_annual = util.get_yearly_sum( Gt_unc_all, 'sigma_Gt_dep' )\n",
"# Gt_unc_annual_df = Gt_unc_annual.rename('sigma_Gt_annual').to_dataframe()\n",
"# Gt_unc_annual_df.to_csv(os.path.join(path, 'sigma_Gt_annual.csv'))"
]
},
{
"cell_type": "code",
"execution_count": 191,
"metadata": {},
"outputs": [],
"source": [
"Gt_unc_annual_df = pd.read_csv( os.path.join(path, 'sigma_Gt_annual.csv') )"
]
},
{
"cell_type": "code",
"execution_count": 194,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x38714e2b0>"
]
},
"execution_count": 194,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plt.figure()\n",
"(Gt_unc_annual_df.sigma_Gt_annual / 1000).hist()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"Gt = xr.open_mfdataset( os.path.join(path, 'tilted_irradiance_ELM50_1000_dhm25_200_interp_SVF_nobias.nc'), \n",
" chunks = {'DF_UID' : 10000})"
]
},
{
"cell_type": "code",
"execution_count": 140,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (DF_UID: 9639231, timestamp: 146)\n",
"Coordinates:\n",
" * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ...\n",
" * DF_UID (DF_UID) int64 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 ...\n",
"Data variables:\n",
" tilted_irradiance (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(10000, 146)>\n",
" yearly_kWh_m2 (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(10000,)>"
]
},
"execution_count": 140,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Gt"
]
},
{
"cell_type": "code",
"execution_count": 195,
"metadata": {},
"outputs": [],
"source": [
"annual_Gt = Gt.yearly_kWh_m2.to_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": 196,
"metadata": {},
"outputs": [],
"source": [
"PV_yearly = Gt_unc_annual_df.merge(annual_Gt, on = 'DF_UID')\n",
"PV_yearly['unc_perc'] = (PV_yearly.sigma_Gt_annual/1000) / PV_yearly.yearly_kWh_m2"
]
},
{
"cell_type": "code",
"execution_count": 197,
"metadata": {},
"outputs": [],
"source": [
"PV_yearly = PV_yearly.merge(ROOFS[['DF_UID', 'NEIGUNG', 'AUSRICHTUNG']], on = 'DF_UID')"
]
},
{
"cell_type": "code",
"execution_count": 198,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>sigma_Gt_annual</th>\n",
" <th>yearly_kWh_m2</th>\n",
" <th>unc_perc</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>309039.122076</td>\n",
" <td>1210.184846</td>\n",
" <td>0.255365</td>\n",
" <td>37</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>85539.804185</td>\n",
" <td>474.558362</td>\n",
" <td>0.180251</td>\n",
" <td>44</td>\n",
" <td>-170.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>239814.424285</td>\n",
" <td>951.934814</td>\n",
" <td>0.251923</td>\n",
" <td>12</td>\n",
" <td>-80.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>259121.815839</td>\n",
" <td>1029.797436</td>\n",
" <td>0.251624</td>\n",
" <td>33</td>\n",
" <td>-80.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>188438.261899</td>\n",
" <td>711.799309</td>\n",
" <td>0.264735</td>\n",
" <td>35</td>\n",
" <td>100.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" DF_UID sigma_Gt_annual yearly_kWh_m2 unc_perc NEIGUNG AUSRICHTUNG\n",
"0 1 309039.122076 1210.184846 0.255365 37 10.0\n",
"1 2 85539.804185 474.558362 0.180251 44 -170.0\n",
"2 3 239814.424285 951.934814 0.251923 12 -80.0\n",
"3 4 259121.815839 1029.797436 0.251624 33 -80.0\n",
"4 5 188438.261899 711.799309 0.264735 35 100.0"
]
},
"execution_count": 198,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"PV_yearly.head()"
]
},
{
"cell_type": "code",
"execution_count": 199,
"metadata": {},
"outputs": [],
"source": [
"# ADJUST FOR FLAT ROOFS\n",
"FLAT = -5.1\n",
"PV_yearly['tilt'] = PV_yearly.NEIGUNG\n",
"PV_yearly.loc[PV_yearly.NEIGUNG == 0, 'tilt'] = FLAT # NEEDED FOR PLOTTING"
]
},
{
"cell_type": "code",
"execution_count": 200,
"metadata": {},
"outputs": [],
"source": [
"ASP_ROUND = 10\n",
"TILT_ROUND = 10\n",
"PV_yearly['tilt_round'] = util.round_to_interval(PV_yearly.tilt, TILT_ROUND)\n",
"PV_yearly['aspect_round'] = util.round_to_interval(PV_yearly.AUSRICHTUNG, ASP_ROUND)"
]
},
{
"cell_type": "code",
"execution_count": 201,
"metadata": {},
"outputs": [],
"source": [
"PV_mean = PV_yearly.groupby(['tilt_round', 'aspect_round']).mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot final version of tilted irradiance"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_var = PV_mean['yearly_kWh_m2']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"# prepare data\n",
"data = plot_array.values\n",
"# theta = np.append(plot_array.aspect_round * np.pi / 180, 2*np.pi) + (0.5 * ASP_ROUND * np.pi / 180)\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = None\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"# ax.set_rlim(-10, 70)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"cb.set_label('Annual tilted radiation $G_t$ ($kWh/m^2$)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('annual_Gt.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Uncertainty as a proportion of tilted irradiance"
]
},
{
"cell_type": "code",
"execution_count": 203,
"metadata": {},
"outputs": [],
"source": [
"PV_mean.loc[-10,0]['unc_perc'] = PV_mean.loc[30,0]['unc_perc']"
]
},
{
"cell_type": "code",
"execution_count": 204,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_var = PV_mean['unc_perc']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"# prepare data\n",
"data = plot_array.values\n",
"# theta = np.append(plot_array.aspect_round * np.pi / 180, 2*np.pi) + (0.5 * ASP_ROUND * np.pi / 180)\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = None\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"# ax.set_rlim(-10, 70)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"cb.set_label('Relative uncertainty of annual $G_t$ ($\\sigma_{Gt}/G_t$)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('relative_unc_Gt.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Final PV potential"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"EPV = xr.open_mfdataset( os.path.join(path, 'pv_potential_ELM50_1000_dhm25_200_SVF_eff_nobias.nc'), \n",
" chunks = {'DF_UID' : 10000})"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (DF_UID: 9639231, timestamp: 143)\n",
"Coordinates:\n",
" * DF_UID (DF_UID) int64 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 ...\n",
" * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ...\n",
"Data variables:\n",
" pv_potential (DF_UID, timestamp) float32 dask.array<shape=(9639231, 143), chunksize=(10000, 143)>\n",
" yearly_PV_kWh (DF_UID) float32 dask.array<shape=(9639231,), chunksize=(10000,)>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"EPV"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"annual_EPV = EPV.yearly_PV_kWh.to_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"unc_EPV = xr.open_mfdataset( os.path.join(path, 'unc_pv_potential/*'), \n",
" chunks = {'DF_UID' : 10000})"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (DF_UID: 9639231, timestamp: 143)\n",
"Coordinates:\n",
" * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ...\n",
" * DF_UID (DF_UID) int64 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 ...\n",
"Data variables:\n",
" sigma_PV (DF_UID, timestamp) float64 dask.array<shape=(9639231, 143), chunksize=(10000, 143)>\n",
" var_PV (DF_UID, timestamp) float64 dask.array<shape=(9639231, 143), chunksize=(10000, 143)>\n",
" yearly_std_PV (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(10000,)>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unc_EPV"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"unc_EPV_annual = unc_EPV.yearly_std_PV.to_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"PV_yearly = unc_EPV_annual.merge(annual_EPV, on = 'DF_UID')\n",
"PV_yearly['unc_perc'] = (PV_yearly.yearly_std_PV / PV_yearly.yearly_PV_kWh).fillna(0)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"PV_yearly = PV_yearly.merge(ROOFS, on = 'DF_UID')"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>yearly_std_PV</th>\n",
" <th>yearly_PV_kWh</th>\n",
" <th>unc_perc</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>324.268393</td>\n",
" <td>239.800095</td>\n",
" <td>1.352245</td>\n",
" <td>15.948816</td>\n",
" <td>37</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>13.730555</td>\n",
" <td>44</td>\n",
" <td>-170.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>2071.079104</td>\n",
" <td>3891.605469</td>\n",
" <td>0.532191</td>\n",
" <td>63.437476</td>\n",
" <td>12</td>\n",
" <td>-80.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>1044.604313</td>\n",
" <td>2022.193970</td>\n",
" <td>0.516570</td>\n",
" <td>38.368910</td>\n",
" <td>33</td>\n",
" <td>-80.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>702.281552</td>\n",
" <td>1030.456787</td>\n",
" <td>0.681525</td>\n",
" <td>36.403273</td>\n",
" <td>35</td>\n",
" <td>100.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" DF_UID yearly_std_PV yearly_PV_kWh unc_perc FLAECHE NEIGUNG \\\n",
"0 1 324.268393 239.800095 1.352245 15.948816 37 \n",
"1 2 0.000000 0.000000 0.000000 13.730555 44 \n",
"2 3 2071.079104 3891.605469 0.532191 63.437476 12 \n",
"3 4 1044.604313 2022.193970 0.516570 38.368910 33 \n",
"4 5 702.281552 1030.456787 0.681525 36.403273 35 \n",
"\n",
" AUSRICHTUNG \n",
"0 10.0 \n",
"1 -170.0 \n",
"2 -80.0 \n",
"3 -80.0 \n",
"4 100.0 "
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"PV_yearly.head()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"PV_yearly['PV_norm'] = PV_yearly.yearly_PV_kWh / PV_yearly.FLAECHE\n",
"PV_yearly['PV_std_norm'] = PV_yearly.yearly_std_PV / PV_yearly.FLAECHE\n",
"PV_yearly['unc_perc_norm'] = PV_yearly.PV_std_norm / PV_yearly.PV_norm"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"# ADJUST FOR FLAT ROOFS\n",
"FLAT = -5.1\n",
"PV_yearly['tilt'] = PV_yearly.NEIGUNG\n",
"PV_yearly.loc[PV_yearly.NEIGUNG == 0, 'tilt'] = FLAT # NEEDED FOR PLOTTING"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"ASP_ROUND = 10\n",
"TILT_ROUND = 10\n",
"PV_yearly['tilt_round'] = util.round_to_interval(PV_yearly.tilt, TILT_ROUND)\n",
"PV_yearly['aspect_round'] = util.round_to_interval(PV_yearly.AUSRICHTUNG, ASP_ROUND)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"PV_mean = PV_yearly.groupby(['tilt_round', 'aspect_round']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# CONSIDER ONLY SUITABLE AREAS!!!!!\n",
"# prepare data\n",
"plot_var = PV_mean['PV_norm']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"data = plot_array.values\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = None\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"# cb.set_label('Uncertainty on annual tilted radiation (kWh/m2)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"# plt.savefig('PV_slope_azimuth_suitable_flat.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# prepare data\n",
"plot_var = PV_mean['yearly_PV_kWh']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"data = plot_array.values\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = None\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"cb.set_label('Annual PV potential per roof surface (kWh)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('PV_slope_azimuth.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Potential for suitable roof surfaces"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"avail_area = pd.read_csv( os.path.join(path, 'PRED_available_area_unc_filled.csv'), \n",
" usecols = ['DF_UID', 'available_area'] )"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"PV_yearly = PV_yearly.merge( avail_area, on = 'DF_UID', how = 'left' )"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"PV_yearly['PV_norm_avail'] = PV_yearly.yearly_PV_kWh / PV_yearly.available_area"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>yearly_std_PV</th>\n",
" <th>yearly_PV_kWh</th>\n",
" <th>unc_perc</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>PV_norm</th>\n",
" <th>PV_std_norm</th>\n",
" <th>unc_perc_norm</th>\n",
" <th>tilt</th>\n",
" <th>tilt_round</th>\n",
" <th>aspect_round</th>\n",
" <th>available_area</th>\n",
" <th>PV_norm_avail</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>324.268393</td>\n",
" <td>239.800095</td>\n",
" <td>1.352245</td>\n",
" <td>15.948816</td>\n",
" <td>37</td>\n",
" <td>10.0</td>\n",
" <td>15.035605</td>\n",
" <td>20.331816</td>\n",
" <td>1.352245</td>\n",
" <td>37.0</td>\n",
" <td>40.0</td>\n",
" <td>10.0</td>\n",
" <td>1.437423</td>\n",
" <td>166.826355</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>13.730555</td>\n",
" <td>44</td>\n",
" <td>-170.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>44.0</td>\n",
" <td>40.0</td>\n",
" <td>-170.0</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>2071.079104</td>\n",
" <td>3891.605469</td>\n",
" <td>0.532191</td>\n",
" <td>63.437476</td>\n",
" <td>12</td>\n",
" <td>-80.0</td>\n",
" <td>61.345528</td>\n",
" <td>32.647564</td>\n",
" <td>0.532191</td>\n",
" <td>12.0</td>\n",
" <td>10.0</td>\n",
" <td>-80.0</td>\n",
" <td>29.414390</td>\n",
" <td>132.302778</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>1044.604313</td>\n",
" <td>2022.193970</td>\n",
" <td>0.516570</td>\n",
" <td>38.368910</td>\n",
" <td>33</td>\n",
" <td>-80.0</td>\n",
" <td>52.703972</td>\n",
" <td>27.225280</td>\n",
" <td>0.516570</td>\n",
" <td>33.0</td>\n",
" <td>30.0</td>\n",
" <td>-80.0</td>\n",
" <td>14.224941</td>\n",
" <td>142.158335</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>702.281552</td>\n",
" <td>1030.456787</td>\n",
" <td>0.681525</td>\n",
" <td>36.403273</td>\n",
" <td>35</td>\n",
" <td>100.0</td>\n",
" <td>28.306707</td>\n",
" <td>19.291715</td>\n",
" <td>0.681525</td>\n",
" <td>35.0</td>\n",
" <td>40.0</td>\n",
" <td>100.0</td>\n",
" <td>10.472945</td>\n",
" <td>98.392264</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" DF_UID yearly_std_PV yearly_PV_kWh unc_perc FLAECHE NEIGUNG \\\n",
"0 1 324.268393 239.800095 1.352245 15.948816 37 \n",
"1 2 0.000000 0.000000 0.000000 13.730555 44 \n",
"2 3 2071.079104 3891.605469 0.532191 63.437476 12 \n",
"3 4 1044.604313 2022.193970 0.516570 38.368910 33 \n",
"4 5 702.281552 1030.456787 0.681525 36.403273 35 \n",
"\n",
" AUSRICHTUNG PV_norm PV_std_norm unc_perc_norm tilt tilt_round \\\n",
"0 10.0 15.035605 20.331816 1.352245 37.0 40.0 \n",
"1 -170.0 0.000000 0.000000 NaN 44.0 40.0 \n",
"2 -80.0 61.345528 32.647564 0.532191 12.0 10.0 \n",
"3 -80.0 52.703972 27.225280 0.516570 33.0 30.0 \n",
"4 100.0 28.306707 19.291715 0.681525 35.0 40.0 \n",
"\n",
" aspect_round available_area PV_norm_avail \n",
"0 10.0 1.437423 166.826355 \n",
"1 -170.0 0.000000 NaN \n",
"2 -80.0 29.414390 132.302778 \n",
"3 -80.0 14.224941 142.158335 \n",
"4 100.0 10.472945 98.392264 "
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"PV_yearly.head()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"PV_suitable = PV_yearly[(abs(PV_yearly.AUSRICHTUNG) <= 90) &(PV_yearly.available_area >= 8) ] #\n",
"PV_area = PV_yearly[(PV_yearly.available_area >= 8) ] #"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"PV_suitable_mean = PV_suitable.groupby(['tilt_round', 'aspect_round']).mean()\n",
"PV_area_mean = PV_area.groupby(['tilt_round', 'aspect_round']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# prepare data\n",
"plot_var = PV_area_mean['PV_norm']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"data = plot_array.values\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = 0\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"cb.set_label('Normalized annual PV potential ($kWh/m^2_{roof}$)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('PV_slope_azimuth_suitable_norm.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Uncertainty"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# prepare data\n",
"plot_var = PV_area_mean['yearly_std_PV']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"data = plot_array.values\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = None\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"cb.set_label('Uncertainty for annual PV potential ($kWh$)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('PV_uncertainty.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# prepare data\n",
"plot_var = PV_area_mean['yearly_std_PV'] / PV_area_mean['yearly_PV_kWh']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"data = plot_array.values\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = 0.2\n",
"VMAX = 0.8\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"\n",
"plt.pcolor(X, Y, data, cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar(extend = 'max') # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"cb.set_label('Relative uncertainty of annual $E_{PV}$ ($\\sigma_{PV}/E_{PV}$)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('PV_unc_relative_asp_tilt.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot by roof size and tilt"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"PV_yearly['area_log'] = np.log10(PV_yearly.FLAECHE)\n",
"PV_yearly['area_log_round'] = util.round_to_interval(PV_yearly.area_log, 0.2)\n",
"PV_yearly['area_log_round'] = np.minimum(np.maximum(PV_yearly.area_log_round, 0.7), 3.2)\n",
"\n",
"PV_yearly['tilt_round'] = util.round_to_interval(PV_yearly.NEIGUNG, 5)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"PV_suitable = PV_yearly[(abs(PV_yearly.AUSRICHTUNG) <= 90) &(PV_yearly.available_area >= 8) ] #\n",
"PV_area = PV_yearly[(PV_yearly.available_area >= 8) ] #"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2699240"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(PV_suitable)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"DF_UID 12902.292384\n",
"yearly_std_PV 9.026094\n",
"yearly_PV_kWh 24.579205\n",
"unc_perc 0.001242\n",
"FLAECHE 0.345530\n",
"NEIGUNG 0.062100\n",
"AUSRICHTUNG 0.005650\n",
"PV_norm 0.177667\n",
"PV_std_norm 0.075837\n",
"unc_perc_norm 0.001242\n",
"tilt 0.060014\n",
"tilt_round 0.062092\n",
"aspect_round 0.005671\n",
"available_area 0.150671\n",
"PV_norm_avail 0.435311\n",
"area_log 0.005249\n",
"area_log_round 0.005246\n",
"dtype: float64"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"PV_suitable.sum()/1e9"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>yearly_std_PV</th>\n",
" <th>yearly_PV_kWh</th>\n",
" <th>unc_perc</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>PV_norm</th>\n",
" <th>PV_std_norm</th>\n",
" <th>unc_perc_norm</th>\n",
" <th>tilt</th>\n",
" <th>aspect_round</th>\n",
" <th>available_area</th>\n",
" <th>PV_norm_avail</th>\n",
" <th>area_log</th>\n",
" </tr>\n",
" <tr>\n",
" <th>area_log_round</th>\n",
" <th>tilt_round</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"5\" valign=\"top\">0.7</th>\n",
" <th>0.0</th>\n",
" <td>6.311366e+06</td>\n",
" <td>0.077004</td>\n",
" <td>0.020694</td>\n",
" <td>0.012311</td>\n",
" <td>1.345483</td>\n",
" <td>0.608299</td>\n",
" <td>-0.285763</td>\n",
" <td>0.004602</td>\n",
" <td>0.017021</td>\n",
" <td>4.888975</td>\n",
" <td>-2.418045</td>\n",
" <td>-0.290222</td>\n",
" <td>0.000146</td>\n",
" <td>147.100725</td>\n",
" <td>-0.359284</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5.0</th>\n",
" <td>5.185035e+06</td>\n",
" <td>0.066672</td>\n",
" <td>0.028715</td>\n",
" <td>0.004395</td>\n",
" <td>0.794718</td>\n",
" <td>5.047209</td>\n",
" <td>-0.032425</td>\n",
" <td>0.006158</td>\n",
" <td>0.014265</td>\n",
" <td>2.393938</td>\n",
" <td>5.047209</td>\n",
" <td>-0.038874</td>\n",
" <td>0.000216</td>\n",
" <td>133.153006</td>\n",
" <td>-0.590664</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10.0</th>\n",
" <td>5.277349e+06</td>\n",
" <td>0.070311</td>\n",
" <td>0.028216</td>\n",
" <td>0.007391</td>\n",
" <td>1.110745</td>\n",
" <td>9.967286</td>\n",
" <td>0.559539</td>\n",
" <td>0.006090</td>\n",
" <td>0.015131</td>\n",
" <td>3.187717</td>\n",
" <td>9.967286</td>\n",
" <td>0.565373</td>\n",
" <td>0.000217</td>\n",
" <td>130.846158</td>\n",
" <td>-0.358124</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15.0</th>\n",
" <td>5.253403e+06</td>\n",
" <td>0.073288</td>\n",
" <td>0.021203</td>\n",
" <td>0.016880</td>\n",
" <td>1.286099</td>\n",
" <td>14.976086</td>\n",
" <td>1.513717</td>\n",
" <td>0.004517</td>\n",
" <td>0.015590</td>\n",
" <td>4.332349</td>\n",
" <td>14.976086</td>\n",
" <td>1.533664</td>\n",
" <td>0.000167</td>\n",
" <td>133.515244</td>\n",
" <td>-0.264767</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20.0</th>\n",
" <td>5.634215e+06</td>\n",
" <td>0.085869</td>\n",
" <td>0.023149</td>\n",
" <td>0.027982</td>\n",
" <td>1.564211</td>\n",
" <td>20.034149</td>\n",
" <td>2.244052</td>\n",
" <td>0.004952</td>\n",
" <td>0.018351</td>\n",
" <td>5.716406</td>\n",
" <td>20.034149</td>\n",
" <td>2.253861</td>\n",
" <td>0.000182</td>\n",
" <td>132.516750</td>\n",
" <td>-0.139866</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" DF_UID yearly_std_PV yearly_PV_kWh \\\n",
"area_log_round tilt_round \n",
"0.7 0.0 6.311366e+06 0.077004 0.020694 \n",
" 5.0 5.185035e+06 0.066672 0.028715 \n",
" 10.0 5.277349e+06 0.070311 0.028216 \n",
" 15.0 5.253403e+06 0.073288 0.021203 \n",
" 20.0 5.634215e+06 0.085869 0.023149 \n",
"\n",
" unc_perc FLAECHE NEIGUNG AUSRICHTUNG \\\n",
"area_log_round tilt_round \n",
"0.7 0.0 0.012311 1.345483 0.608299 -0.285763 \n",
" 5.0 0.004395 0.794718 5.047209 -0.032425 \n",
" 10.0 0.007391 1.110745 9.967286 0.559539 \n",
" 15.0 0.016880 1.286099 14.976086 1.513717 \n",
" 20.0 0.027982 1.564211 20.034149 2.244052 \n",
"\n",
" PV_norm PV_std_norm unc_perc_norm tilt \\\n",
"area_log_round tilt_round \n",
"0.7 0.0 0.004602 0.017021 4.888975 -2.418045 \n",
" 5.0 0.006158 0.014265 2.393938 5.047209 \n",
" 10.0 0.006090 0.015131 3.187717 9.967286 \n",
" 15.0 0.004517 0.015590 4.332349 14.976086 \n",
" 20.0 0.004952 0.018351 5.716406 20.034149 \n",
"\n",
" aspect_round available_area PV_norm_avail \\\n",
"area_log_round tilt_round \n",
"0.7 0.0 -0.290222 0.000146 147.100725 \n",
" 5.0 -0.038874 0.000216 133.153006 \n",
" 10.0 0.565373 0.000217 130.846158 \n",
" 15.0 1.533664 0.000167 133.515244 \n",
" 20.0 2.253861 0.000182 132.516750 \n",
"\n",
" area_log \n",
"area_log_round tilt_round \n",
"0.7 0.0 -0.359284 \n",
" 5.0 -0.590664 \n",
" 10.0 -0.358124 \n",
" 15.0 -0.264767 \n",
" 20.0 -0.139866 "
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"PV_grouped_all = PV_yearly.groupby(['area_log_round','tilt_round']).mean()\n",
"PV_grouped_all.head()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"PV_grouped = PV_suitable.groupby(['area_log_round','tilt_round']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"PV_area_grouped = PV_area.groupby(['area_log_round', 'tilt_round']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>yearly_std_PV</th>\n",
" <th>yearly_PV_kWh</th>\n",
" <th>unc_perc</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>PV_norm</th>\n",
" <th>PV_std_norm</th>\n",
" <th>unc_perc_norm</th>\n",
" <th>tilt</th>\n",
" <th>aspect_round</th>\n",
" <th>available_area</th>\n",
" <th>PV_norm_avail</th>\n",
" <th>area_log</th>\n",
" </tr>\n",
" <tr>\n",
" <th>area_log_round</th>\n",
" <th>tilt_round</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1.2</th>\n",
" <th>20.0</th>\n",
" <td>4.922855e+06</td>\n",
" <td>737.396294</td>\n",
" <td>1484.851929</td>\n",
" <td>0.496931</td>\n",
" <td>19.671486</td>\n",
" <td>21.000000</td>\n",
" <td>-4.000000</td>\n",
" <td>75.482643</td>\n",
" <td>37.485429</td>\n",
" <td>0.496931</td>\n",
" <td>21.000000</td>\n",
" <td>-5.000000</td>\n",
" <td>8.222259</td>\n",
" <td>180.579360</td>\n",
" <td>1.293837</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"12\" valign=\"top\">1.4</th>\n",
" <th>0.0</th>\n",
" <td>4.991159e+06</td>\n",
" <td>846.543206</td>\n",
" <td>1276.234863</td>\n",
" <td>0.666533</td>\n",
" <td>30.121106</td>\n",
" <td>1.510018</td>\n",
" <td>4.752277</td>\n",
" <td>42.374094</td>\n",
" <td>28.111003</td>\n",
" <td>0.666533</td>\n",
" <td>1.472860</td>\n",
" <td>4.608379</td>\n",
" <td>9.111348</td>\n",
" <td>140.078023</td>\n",
" <td>1.478558</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5.0</th>\n",
" <td>4.983143e+06</td>\n",
" <td>870.264521</td>\n",
" <td>1354.986328</td>\n",
" <td>0.646378</td>\n",
" <td>29.575212</td>\n",
" <td>5.282188</td>\n",
" <td>-0.292862</td>\n",
" <td>45.804186</td>\n",
" <td>29.443319</td>\n",
" <td>0.646378</td>\n",
" <td>5.282188</td>\n",
" <td>-0.216811</td>\n",
" <td>9.417600</td>\n",
" <td>143.821512</td>\n",
" <td>1.470355</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10.0</th>\n",
" <td>5.071083e+06</td>\n",
" <td>821.709982</td>\n",
" <td>1456.086914</td>\n",
" <td>0.569864</td>\n",
" <td>28.684999</td>\n",
" <td>10.313896</td>\n",
" <td>0.751486</td>\n",
" <td>50.758410</td>\n",
" <td>28.653456</td>\n",
" <td>0.569864</td>\n",
" <td>10.313896</td>\n",
" <td>0.767871</td>\n",
" <td>9.776327</td>\n",
" <td>148.852457</td>\n",
" <td>1.456468</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15.0</th>\n",
" <td>5.170085e+06</td>\n",
" <td>810.658545</td>\n",
" <td>1527.205444</td>\n",
" <td>0.535713</td>\n",
" <td>28.404236</td>\n",
" <td>15.316825</td>\n",
" <td>4.005807</td>\n",
" <td>53.763273</td>\n",
" <td>28.572719</td>\n",
" <td>0.535713</td>\n",
" <td>15.316825</td>\n",
" <td>4.030489</td>\n",
" <td>9.835057</td>\n",
" <td>155.124417</td>\n",
" <td>1.451879</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20.0</th>\n",
" <td>5.600528e+06</td>\n",
" <td>835.221891</td>\n",
" <td>1564.418701</td>\n",
" <td>0.537386</td>\n",
" <td>28.465090</td>\n",
" <td>20.188589</td>\n",
" <td>5.152788</td>\n",
" <td>54.992023</td>\n",
" <td>29.389077</td>\n",
" <td>0.537386</td>\n",
" <td>20.188589</td>\n",
" <td>5.146703</td>\n",
" <td>9.719741</td>\n",
" <td>160.802232</td>\n",
" <td>1.452893</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25.0</th>\n",
" <td>5.874602e+06</td>\n",
" <td>886.120006</td>\n",
" <td>1580.860840</td>\n",
" <td>0.564857</td>\n",
" <td>28.447489</td>\n",
" <td>24.848985</td>\n",
" <td>2.963148</td>\n",
" <td>55.632880</td>\n",
" <td>31.186998</td>\n",
" <td>0.564857</td>\n",
" <td>24.848985</td>\n",
" <td>2.970820</td>\n",
" <td>9.695890</td>\n",
" <td>162.872597</td>\n",
" <td>1.452640</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30.0</th>\n",
" <td>5.479405e+06</td>\n",
" <td>929.084273</td>\n",
" <td>1554.904297</td>\n",
" <td>0.603273</td>\n",
" <td>28.842710</td>\n",
" <td>29.548098</td>\n",
" <td>1.777137</td>\n",
" <td>54.002934</td>\n",
" <td>32.251004</td>\n",
" <td>0.603273</td>\n",
" <td>29.548098</td>\n",
" <td>1.788832</td>\n",
" <td>9.531214</td>\n",
" <td>162.919393</td>\n",
" <td>1.458889</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35.0</th>\n",
" <td>5.092650e+06</td>\n",
" <td>972.240344</td>\n",
" <td>1526.887329</td>\n",
" <td>0.643225</td>\n",
" <td>29.497133</td>\n",
" <td>34.669332</td>\n",
" <td>2.427184</td>\n",
" <td>51.784100</td>\n",
" <td>32.991376</td>\n",
" <td>0.643225</td>\n",
" <td>34.669332</td>\n",
" <td>2.451932</td>\n",
" <td>9.458938</td>\n",
" <td>161.211644</td>\n",
" <td>1.469130</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40.0</th>\n",
" <td>4.670344e+06</td>\n",
" <td>986.904481</td>\n",
" <td>1449.411377</td>\n",
" <td>0.685644</td>\n",
" <td>29.988260</td>\n",
" <td>39.429379</td>\n",
" <td>2.671061</td>\n",
" <td>48.364133</td>\n",
" <td>32.925774</td>\n",
" <td>0.685644</td>\n",
" <td>39.429379</td>\n",
" <td>2.592593</td>\n",
" <td>9.015932</td>\n",
" <td>160.665208</td>\n",
" <td>1.476555</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45.0</th>\n",
" <td>4.434124e+06</td>\n",
" <td>950.961890</td>\n",
" <td>1380.598511</td>\n",
" <td>0.691905</td>\n",
" <td>30.324031</td>\n",
" <td>44.138264</td>\n",
" <td>9.054662</td>\n",
" <td>45.585943</td>\n",
" <td>31.380749</td>\n",
" <td>0.691905</td>\n",
" <td>44.138264</td>\n",
" <td>8.874598</td>\n",
" <td>8.662721</td>\n",
" <td>159.211704</td>\n",
" <td>1.481497</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50.0</th>\n",
" <td>5.397987e+06</td>\n",
" <td>954.971739</td>\n",
" <td>1401.950195</td>\n",
" <td>0.683588</td>\n",
" <td>30.152160</td>\n",
" <td>49.325581</td>\n",
" <td>13.139535</td>\n",
" <td>46.569936</td>\n",
" <td>31.713690</td>\n",
" <td>0.683588</td>\n",
" <td>49.325581</td>\n",
" <td>13.488372</td>\n",
" <td>8.599080</td>\n",
" <td>162.916852</td>\n",
" <td>1.478817</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55.0</th>\n",
" <td>4.228050e+06</td>\n",
" <td>882.337867</td>\n",
" <td>1267.921631</td>\n",
" <td>0.697989</td>\n",
" <td>30.376475</td>\n",
" <td>53.714286</td>\n",
" <td>20.428571</td>\n",
" <td>41.723263</td>\n",
" <td>29.035060</td>\n",
" <td>0.697989</td>\n",
" <td>53.714286</td>\n",
" <td>20.000000</td>\n",
" <td>8.340789</td>\n",
" <td>151.849459</td>\n",
" <td>1.482462</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"15\" valign=\"top\">1.6</th>\n",
" <th>0.0</th>\n",
" <td>4.847767e+06</td>\n",
" <td>1034.705114</td>\n",
" <td>1792.938110</td>\n",
" <td>0.594201</td>\n",
" <td>42.153685</td>\n",
" <td>1.079224</td>\n",
" <td>1.703719</td>\n",
" <td>42.901326</td>\n",
" <td>24.857076</td>\n",
" <td>0.594201</td>\n",
" <td>-0.209175</td>\n",
" <td>1.747507</td>\n",
" <td>12.604728</td>\n",
" <td>143.379677</td>\n",
" <td>1.621102</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5.0</th>\n",
" <td>5.012187e+06</td>\n",
" <td>1144.295860</td>\n",
" <td>2148.248779</td>\n",
" <td>0.557283</td>\n",
" <td>40.457534</td>\n",
" <td>5.159211</td>\n",
" <td>2.896725</td>\n",
" <td>52.754742</td>\n",
" <td>28.277330</td>\n",
" <td>0.557283</td>\n",
" <td>5.159211</td>\n",
" <td>2.892427</td>\n",
" <td>14.909844</td>\n",
" <td>143.529014</td>\n",
" <td>1.603304</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10.0</th>\n",
" <td>5.032371e+06</td>\n",
" <td>1139.504929</td>\n",
" <td>2290.311035</td>\n",
" <td>0.520164</td>\n",
" <td>40.381743</td>\n",
" <td>10.112763</td>\n",
" <td>3.074239</td>\n",
" <td>56.342171</td>\n",
" <td>28.174946</td>\n",
" <td>0.520164</td>\n",
" <td>10.112763</td>\n",
" <td>3.103512</td>\n",
" <td>15.298740</td>\n",
" <td>149.052519</td>\n",
" <td>1.602465</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15.0</th>\n",
" <td>5.192000e+06</td>\n",
" <td>1113.752276</td>\n",
" <td>2498.217285</td>\n",
" <td>0.467514</td>\n",
" <td>40.549804</td>\n",
" <td>15.448423</td>\n",
" <td>3.686345</td>\n",
" <td>60.996809</td>\n",
" <td>27.429673</td>\n",
" <td>0.467514</td>\n",
" <td>15.448423</td>\n",
" <td>3.680526</td>\n",
" <td>15.816341</td>\n",
" <td>157.340127</td>\n",
" <td>1.604323</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20.0</th>\n",
" <td>5.560078e+06</td>\n",
" <td>1155.995316</td>\n",
" <td>2554.993652</td>\n",
" <td>0.470362</td>\n",
" <td>40.775929</td>\n",
" <td>20.172611</td>\n",
" <td>3.724043</td>\n",
" <td>61.986896</td>\n",
" <td>28.271660</td>\n",
" <td>0.470362</td>\n",
" <td>20.172611</td>\n",
" <td>3.713311</td>\n",
" <td>15.647574</td>\n",
" <td>162.743362</td>\n",
" <td>1.606736</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25.0</th>\n",
" <td>5.572341e+06</td>\n",
" <td>1238.475901</td>\n",
" <td>2450.680664</td>\n",
" <td>0.523951</td>\n",
" <td>40.989444</td>\n",
" <td>24.884738</td>\n",
" <td>2.530027</td>\n",
" <td>59.461761</td>\n",
" <td>30.183381</td>\n",
" <td>0.523951</td>\n",
" <td>24.884738</td>\n",
" <td>2.539690</td>\n",
" <td>14.922700</td>\n",
" <td>163.815639</td>\n",
" <td>1.609065</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30.0</th>\n",
" <td>5.091576e+06</td>\n",
" <td>1249.636290</td>\n",
" <td>2277.821289</td>\n",
" <td>0.567900</td>\n",
" <td>41.497187</td>\n",
" <td>29.900428</td>\n",
" <td>2.412170</td>\n",
" <td>54.698361</td>\n",
" <td>30.174227</td>\n",
" <td>0.567900</td>\n",
" <td>29.900428</td>\n",
" <td>2.421336</td>\n",
" <td>13.993038</td>\n",
" <td>162.439253</td>\n",
" <td>1.614560</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35.0</th>\n",
" <td>4.698548e+06</td>\n",
" <td>1245.305810</td>\n",
" <td>2065.924805</td>\n",
" <td>0.621090</td>\n",
" <td>42.004127</td>\n",
" <td>34.827292</td>\n",
" <td>1.867437</td>\n",
" <td>49.176932</td>\n",
" <td>29.734884</td>\n",
" <td>0.621090</td>\n",
" <td>34.827292</td>\n",
" <td>1.893384</td>\n",
" <td>12.780383</td>\n",
" <td>161.434444</td>\n",
" <td>1.620042</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40.0</th>\n",
" <td>4.316527e+06</td>\n",
" <td>1235.783447</td>\n",
" <td>1913.404663</td>\n",
" <td>0.660857</td>\n",
" <td>42.614539</td>\n",
" <td>39.719544</td>\n",
" <td>3.590973</td>\n",
" <td>44.987709</td>\n",
" <td>29.126394</td>\n",
" <td>0.660857</td>\n",
" <td>39.719544</td>\n",
" <td>3.624287</td>\n",
" <td>11.955068</td>\n",
" <td>160.025726</td>\n",
" <td>1.626475</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45.0</th>\n",
" <td>4.500311e+06</td>\n",
" <td>1192.335667</td>\n",
" <td>1808.299805</td>\n",
" <td>0.672751</td>\n",
" <td>43.305404</td>\n",
" <td>44.562190</td>\n",
" <td>5.650154</td>\n",
" <td>41.858020</td>\n",
" <td>27.669479</td>\n",
" <td>0.672751</td>\n",
" <td>44.562190</td>\n",
" <td>5.667425</td>\n",
" <td>11.378948</td>\n",
" <td>158.892691</td>\n",
" <td>1.633850</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50.0</th>\n",
" <td>4.808124e+06</td>\n",
" <td>1130.524486</td>\n",
" <td>1677.364380</td>\n",
" <td>0.683857</td>\n",
" <td>44.068475</td>\n",
" <td>49.534243</td>\n",
" <td>7.254935</td>\n",
" <td>38.203887</td>\n",
" <td>25.778324</td>\n",
" <td>0.683857</td>\n",
" <td>49.534243</td>\n",
" <td>7.180112</td>\n",
" <td>10.693811</td>\n",
" <td>156.761561</td>\n",
" <td>1.641924</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55.0</th>\n",
" <td>4.849210e+06</td>\n",
" <td>1083.115904</td>\n",
" <td>1528.984253</td>\n",
" <td>0.717531</td>\n",
" <td>44.798637</td>\n",
" <td>54.316038</td>\n",
" <td>5.892453</td>\n",
" <td>34.314777</td>\n",
" <td>24.305447</td>\n",
" <td>0.717531</td>\n",
" <td>54.316038</td>\n",
" <td>5.801887</td>\n",
" <td>9.934153</td>\n",
" <td>153.849873</td>\n",
" <td>1.649486</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60.0</th>\n",
" <td>4.549698e+06</td>\n",
" <td>1062.341579</td>\n",
" <td>1453.603516</td>\n",
" <td>0.738470</td>\n",
" <td>44.902651</td>\n",
" <td>59.567485</td>\n",
" <td>2.720859</td>\n",
" <td>32.543461</td>\n",
" <td>23.779204</td>\n",
" <td>0.738470</td>\n",
" <td>59.567485</td>\n",
" <td>2.638037</td>\n",
" <td>9.698868</td>\n",
" <td>149.946680</td>\n",
" <td>1.650578</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65.0</th>\n",
" <td>4.150396e+06</td>\n",
" <td>1076.638908</td>\n",
" <td>1414.788086</td>\n",
" <td>0.765872</td>\n",
" <td>45.629422</td>\n",
" <td>64.626667</td>\n",
" <td>0.333333</td>\n",
" <td>31.097107</td>\n",
" <td>23.650310</td>\n",
" <td>0.765872</td>\n",
" <td>64.626667</td>\n",
" <td>0.666667</td>\n",
" <td>9.665644</td>\n",
" <td>146.469527</td>\n",
" <td>1.658158</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70.0</th>\n",
" <td>5.389880e+06</td>\n",
" <td>960.857536</td>\n",
" <td>1154.847656</td>\n",
" <td>0.835550</td>\n",
" <td>46.745857</td>\n",
" <td>68.500000</td>\n",
" <td>-32.250000</td>\n",
" <td>24.801501</td>\n",
" <td>20.587047</td>\n",
" <td>0.835550</td>\n",
" <td>68.500000</td>\n",
" <td>-32.500000</td>\n",
" <td>8.551242</td>\n",
" <td>135.586556</td>\n",
" <td>1.669261</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">1.8</th>\n",
" <th>0.0</th>\n",
" <td>4.463076e+06</td>\n",
" <td>934.781481</td>\n",
" <td>1842.069336</td>\n",
" <td>0.520758</td>\n",
" <td>66.365404</td>\n",
" <td>0.108354</td>\n",
" <td>0.073110</td>\n",
" <td>27.835242</td>\n",
" <td>14.171956</td>\n",
" <td>0.520758</td>\n",
" <td>-4.602885</td>\n",
" <td>0.076100</td>\n",
" <td>11.871803</td>\n",
" <td>156.433922</td>\n",
" <td>1.818853</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5.0</th>\n",
" <td>4.993923e+06</td>\n",
" <td>1796.889724</td>\n",
" <td>3983.610596</td>\n",
" <td>0.492103</td>\n",
" <td>63.025545</td>\n",
" <td>5.188114</td>\n",
" <td>2.887485</td>\n",
" <td>62.710007</td>\n",
" <td>28.543367</td>\n",
" <td>0.492103</td>\n",
" <td>5.188114</td>\n",
" <td>2.899594</td>\n",
" <td>27.582810</td>\n",
" <td>142.871479</td>\n",
" <td>1.795734</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2.8</th>\n",
" <th>70.0</th>\n",
" <td>5.813572e+06</td>\n",
" <td>11498.121554</td>\n",
" <td>6728.736328</td>\n",
" <td>1.708808</td>\n",
" <td>794.178454</td>\n",
" <td>69.000000</td>\n",
" <td>33.000000</td>\n",
" <td>8.472575</td>\n",
" <td>14.478007</td>\n",
" <td>1.708808</td>\n",
" <td>69.000000</td>\n",
" <td>30.000000</td>\n",
" <td>61.804471</td>\n",
" <td>108.871352</td>\n",
" <td>2.899918</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"14\" valign=\"top\">3.0</th>\n",
" <th>0.0</th>\n",
" <td>4.610407e+06</td>\n",
" <td>17358.207676</td>\n",
" <td>55626.113281</td>\n",
" <td>0.330505</td>\n",
" <td>985.320416</td>\n",
" <td>0.050246</td>\n",
" <td>-0.095330</td>\n",
" <td>56.315952</td>\n",
" <td>17.575026</td>\n",
" <td>0.330505</td>\n",
" <td>-4.868360</td>\n",
" <td>-0.097589</td>\n",
" <td>337.263413</td>\n",
" <td>164.075977</td>\n",
" <td>2.989804</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5.0</th>\n",
" <td>4.773191e+06</td>\n",
" <td>29650.703392</td>\n",
" <td>120149.445312</td>\n",
" <td>0.251857</td>\n",
" <td>987.747229</td>\n",
" <td>4.955985</td>\n",
" <td>1.811583</td>\n",
" <td>121.568879</td>\n",
" <td>29.999578</td>\n",
" <td>0.251857</td>\n",
" <td>4.955985</td>\n",
" <td>1.953668</td>\n",
" <td>770.995462</td>\n",
" <td>155.357352</td>\n",
" <td>2.990732</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10.0</th>\n",
" <td>4.644329e+06</td>\n",
" <td>30610.805485</td>\n",
" <td>124099.296875</td>\n",
" <td>0.250688</td>\n",
" <td>974.404203</td>\n",
" <td>10.021348</td>\n",
" <td>1.851234</td>\n",
" <td>127.291409</td>\n",
" <td>31.396981</td>\n",
" <td>0.250688</td>\n",
" <td>10.021348</td>\n",
" <td>2.028019</td>\n",
" <td>771.236054</td>\n",
" <td>160.520415</td>\n",
" <td>2.985069</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15.0</th>\n",
" <td>4.716177e+06</td>\n",
" <td>31839.388829</td>\n",
" <td>127598.609375</td>\n",
" <td>0.253859</td>\n",
" <td>966.486330</td>\n",
" <td>14.945755</td>\n",
" <td>-1.561321</td>\n",
" <td>131.843423</td>\n",
" <td>32.918405</td>\n",
" <td>0.253859</td>\n",
" <td>14.945755</td>\n",
" <td>-1.501572</td>\n",
" <td>770.820229</td>\n",
" <td>165.031396</td>\n",
" <td>2.981504</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20.0</th>\n",
" <td>4.808413e+06</td>\n",
" <td>32308.133489</td>\n",
" <td>121700.359375</td>\n",
" <td>0.270395</td>\n",
" <td>951.379233</td>\n",
" <td>19.700000</td>\n",
" <td>0.586567</td>\n",
" <td>127.997083</td>\n",
" <td>33.939039</td>\n",
" <td>0.270395</td>\n",
" <td>19.700000</td>\n",
" <td>0.716418</td>\n",
" <td>726.206900</td>\n",
" <td>167.059997</td>\n",
" <td>2.975021</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25.0</th>\n",
" <td>4.992114e+06</td>\n",
" <td>32638.649356</td>\n",
" <td>117421.406250</td>\n",
" <td>0.280811</td>\n",
" <td>936.795331</td>\n",
" <td>24.545455</td>\n",
" <td>1.210031</td>\n",
" <td>125.306379</td>\n",
" <td>34.805085</td>\n",
" <td>0.280811</td>\n",
" <td>24.545455</td>\n",
" <td>1.191223</td>\n",
" <td>690.589577</td>\n",
" <td>169.789009</td>\n",
" <td>2.968738</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30.0</th>\n",
" <td>4.720241e+06</td>\n",
" <td>33874.789332</td>\n",
" <td>108668.382812</td>\n",
" <td>0.322116</td>\n",
" <td>945.283146</td>\n",
" <td>29.746988</td>\n",
" <td>-1.024096</td>\n",
" <td>114.884309</td>\n",
" <td>35.784861</td>\n",
" <td>0.322116</td>\n",
" <td>29.746988</td>\n",
" <td>-0.602410</td>\n",
" <td>644.359883</td>\n",
" <td>168.031694</td>\n",
" <td>2.972170</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35.0</th>\n",
" <td>4.733707e+06</td>\n",
" <td>33732.642274</td>\n",
" <td>95235.492188</td>\n",
" <td>0.364572</td>\n",
" <td>929.186690</td>\n",
" <td>34.592105</td>\n",
" <td>0.868421</td>\n",
" <td>102.502394</td>\n",
" <td>36.291986</td>\n",
" <td>0.364572</td>\n",
" <td>34.592105</td>\n",
" <td>0.921053</td>\n",
" <td>574.778540</td>\n",
" <td>165.497726</td>\n",
" <td>2.964612</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40.0</th>\n",
" <td>5.056836e+06</td>\n",
" <td>32535.396276</td>\n",
" <td>89059.046875</td>\n",
" <td>0.376999</td>\n",
" <td>920.668757</td>\n",
" <td>39.758621</td>\n",
" <td>-12.344828</td>\n",
" <td>97.588252</td>\n",
" <td>35.593356</td>\n",
" <td>0.376999</td>\n",
" <td>39.758621</td>\n",
" <td>-12.758621</td>\n",
" <td>535.869781</td>\n",
" <td>165.715696</td>\n",
" <td>2.961577</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45.0</th>\n",
" <td>4.457209e+06</td>\n",
" <td>32677.426406</td>\n",
" <td>80110.148438</td>\n",
" <td>0.437025</td>\n",
" <td>933.909234</td>\n",
" <td>44.523810</td>\n",
" <td>1.047619</td>\n",
" <td>85.824836</td>\n",
" <td>35.102563</td>\n",
" <td>0.437025</td>\n",
" <td>44.523810</td>\n",
" <td>0.476190</td>\n",
" <td>512.494302</td>\n",
" <td>154.944375</td>\n",
" <td>2.966355</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50.0</th>\n",
" <td>7.141918e+06</td>\n",
" <td>28585.509833</td>\n",
" <td>61521.804688</td>\n",
" <td>0.502566</td>\n",
" <td>941.082932</td>\n",
" <td>50.666667</td>\n",
" <td>25.266667</td>\n",
" <td>65.494455</td>\n",
" <td>30.411222</td>\n",
" <td>0.502566</td>\n",
" <td>50.666667</td>\n",
" <td>24.666667</td>\n",
" <td>405.336649</td>\n",
" <td>153.963258</td>\n",
" <td>2.972406</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55.0</th>\n",
" <td>5.456202e+06</td>\n",
" <td>35408.124381</td>\n",
" <td>92893.750000</td>\n",
" <td>0.400626</td>\n",
" <td>912.252883</td>\n",
" <td>55.750000</td>\n",
" <td>-26.250000</td>\n",
" <td>99.910395</td>\n",
" <td>38.469464</td>\n",
" <td>0.400626</td>\n",
" <td>55.750000</td>\n",
" <td>-27.500000</td>\n",
" <td>533.974264</td>\n",
" <td>169.674858</td>\n",
" <td>2.958968</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60.0</th>\n",
" <td>7.067711e+06</td>\n",
" <td>34019.960425</td>\n",
" <td>74242.156250</td>\n",
" <td>0.450593</td>\n",
" <td>1020.258887</td>\n",
" <td>59.000000</td>\n",
" <td>7.000000</td>\n",
" <td>73.079361</td>\n",
" <td>32.846818</td>\n",
" <td>0.450593</td>\n",
" <td>59.000000</td>\n",
" <td>5.000000</td>\n",
" <td>525.323327</td>\n",
" <td>146.024838</td>\n",
" <td>3.001408</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65.0</th>\n",
" <td>7.281614e+06</td>\n",
" <td>26273.881652</td>\n",
" <td>56430.296875</td>\n",
" <td>0.490356</td>\n",
" <td>925.992068</td>\n",
" <td>63.666667</td>\n",
" <td>21.000000</td>\n",
" <td>58.481592</td>\n",
" <td>27.613920</td>\n",
" <td>0.490356</td>\n",
" <td>63.666667</td>\n",
" <td>23.333333</td>\n",
" <td>419.484887</td>\n",
" <td>129.927222</td>\n",
" <td>2.960412</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"15\" valign=\"top\">3.2</th>\n",
" <th>0.0</th>\n",
" <td>4.612284e+06</td>\n",
" <td>53754.523306</td>\n",
" <td>177141.109375</td>\n",
" <td>0.319376</td>\n",
" <td>2681.724550</td>\n",
" <td>0.053873</td>\n",
" <td>-0.065669</td>\n",
" <td>62.813583</td>\n",
" <td>19.252345</td>\n",
" <td>0.319376</td>\n",
" <td>-4.853979</td>\n",
" <td>-0.057218</td>\n",
" <td>1044.194992</td>\n",
" <td>167.590268</td>\n",
" <td>3.343962</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5.0</th>\n",
" <td>4.805704e+06</td>\n",
" <td>70680.701530</td>\n",
" <td>281310.156250</td>\n",
" <td>0.254008</td>\n",
" <td>2273.494614</td>\n",
" <td>4.668627</td>\n",
" <td>-1.469608</td>\n",
" <td>123.638752</td>\n",
" <td>30.853184</td>\n",
" <td>0.254008</td>\n",
" <td>4.668627</td>\n",
" <td>-1.352941</td>\n",
" <td>1793.556361</td>\n",
" <td>156.280016</td>\n",
" <td>3.303289</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10.0</th>\n",
" <td>4.579210e+06</td>\n",
" <td>56302.159565</td>\n",
" <td>226404.750000</td>\n",
" <td>0.250352</td>\n",
" <td>1786.061947</td>\n",
" <td>9.908702</td>\n",
" <td>-2.078459</td>\n",
" <td>127.220557</td>\n",
" <td>31.525870</td>\n",
" <td>0.250352</td>\n",
" <td>9.908702</td>\n",
" <td>-1.811698</td>\n",
" <td>1405.237111</td>\n",
" <td>160.907365</td>\n",
" <td>3.233721</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15.0</th>\n",
" <td>4.591854e+06</td>\n",
" <td>57205.162058</td>\n",
" <td>221417.187500</td>\n",
" <td>0.260783</td>\n",
" <td>1719.751544</td>\n",
" <td>14.704485</td>\n",
" <td>-3.110818</td>\n",
" <td>129.899321</td>\n",
" <td>33.249001</td>\n",
" <td>0.260783</td>\n",
" <td>14.704485</td>\n",
" <td>-3.087071</td>\n",
" <td>1345.194919</td>\n",
" <td>164.521558</td>\n",
" <td>3.216255</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20.0</th>\n",
" <td>4.640565e+06</td>\n",
" <td>57045.631418</td>\n",
" <td>216828.984375</td>\n",
" <td>0.266807</td>\n",
" <td>1668.465357</td>\n",
" <td>19.400000</td>\n",
" <td>-0.242424</td>\n",
" <td>130.527406</td>\n",
" <td>34.269996</td>\n",
" <td>0.266807</td>\n",
" <td>19.400000</td>\n",
" <td>0.000000</td>\n",
" <td>1293.871194</td>\n",
" <td>166.982565</td>\n",
" <td>3.203539</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25.0</th>\n",
" <td>5.874464e+06</td>\n",
" <td>57942.123804</td>\n",
" <td>201531.093750</td>\n",
" <td>0.291287</td>\n",
" <td>1667.140614</td>\n",
" <td>24.568421</td>\n",
" <td>1.947368</td>\n",
" <td>121.350427</td>\n",
" <td>34.937842</td>\n",
" <td>0.291287</td>\n",
" <td>24.568421</td>\n",
" <td>1.473684</td>\n",
" <td>1209.794278</td>\n",
" <td>167.393144</td>\n",
" <td>3.205478</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30.0</th>\n",
" <td>5.315096e+06</td>\n",
" <td>67961.582031</td>\n",
" <td>212953.937500</td>\n",
" <td>0.322755</td>\n",
" <td>1843.874473</td>\n",
" <td>30.243243</td>\n",
" <td>12.297297</td>\n",
" <td>114.732570</td>\n",
" <td>36.769846</td>\n",
" <td>0.322755</td>\n",
" <td>30.243243</td>\n",
" <td>11.081081</td>\n",
" <td>1287.331705</td>\n",
" <td>164.620170</td>\n",
" <td>3.248956</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35.0</th>\n",
" <td>6.949979e+06</td>\n",
" <td>80167.920594</td>\n",
" <td>227434.343750</td>\n",
" <td>0.406038</td>\n",
" <td>2162.652394</td>\n",
" <td>34.250000</td>\n",
" <td>-12.000000</td>\n",
" <td>98.711584</td>\n",
" <td>35.955324</td>\n",
" <td>0.406038</td>\n",
" <td>34.250000</td>\n",
" <td>-10.000000</td>\n",
" <td>1352.564730</td>\n",
" <td>157.802668</td>\n",
" <td>3.291222</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40.0</th>\n",
" <td>4.959043e+06</td>\n",
" <td>103538.153130</td>\n",
" <td>241769.406250</td>\n",
" <td>0.455339</td>\n",
" <td>2601.427148</td>\n",
" <td>40.125000</td>\n",
" <td>-10.625000</td>\n",
" <td>84.126951</td>\n",
" <td>36.801064</td>\n",
" <td>0.455339</td>\n",
" <td>40.125000</td>\n",
" <td>-11.250000</td>\n",
" <td>1421.387412</td>\n",
" <td>161.589680</td>\n",
" <td>3.343874</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45.0</th>\n",
" <td>5.488224e+06</td>\n",
" <td>74869.979701</td>\n",
" <td>155584.406250</td>\n",
" <td>0.481882</td>\n",
" <td>1982.120042</td>\n",
" <td>44.666667</td>\n",
" <td>-4.000000</td>\n",
" <td>80.853257</td>\n",
" <td>38.576271</td>\n",
" <td>0.481882</td>\n",
" <td>44.666667</td>\n",
" <td>-3.333333</td>\n",
" <td>932.004791</td>\n",
" <td>168.514058</td>\n",
" <td>3.245654</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50.0</th>\n",
" <td>6.192028e+06</td>\n",
" <td>54059.458650</td>\n",
" <td>132167.187500</td>\n",
" <td>0.418838</td>\n",
" <td>1728.650792</td>\n",
" <td>50.000000</td>\n",
" <td>2.200000</td>\n",
" <td>83.728707</td>\n",
" <td>33.422152</td>\n",
" <td>0.418838</td>\n",
" <td>50.000000</td>\n",
" <td>0.000000</td>\n",
" <td>799.909810</td>\n",
" <td>165.174176</td>\n",
" <td>3.217785</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55.0</th>\n",
" <td>2.867770e+06</td>\n",
" <td>80801.557239</td>\n",
" <td>183988.828125</td>\n",
" <td>0.451774</td>\n",
" <td>2573.899267</td>\n",
" <td>54.000000</td>\n",
" <td>3.666667</td>\n",
" <td>73.181026</td>\n",
" <td>31.676750</td>\n",
" <td>0.451774</td>\n",
" <td>54.000000</td>\n",
" <td>3.333333</td>\n",
" <td>1323.974209</td>\n",
" <td>138.293545</td>\n",
" <td>3.373594</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60.0</th>\n",
" <td>4.412172e+06</td>\n",
" <td>80784.479711</td>\n",
" <td>195334.531250</td>\n",
" <td>0.424525</td>\n",
" <td>2784.263993</td>\n",
" <td>60.500000</td>\n",
" <td>-20.750000</td>\n",
" <td>70.491754</td>\n",
" <td>29.545444</td>\n",
" <td>0.424525</td>\n",
" <td>60.500000</td>\n",
" <td>-20.000000</td>\n",
" <td>1472.935765</td>\n",
" <td>150.591604</td>\n",
" <td>3.389600</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65.0</th>\n",
" <td>3.915371e+06</td>\n",
" <td>53020.958536</td>\n",
" <td>105637.171875</td>\n",
" <td>0.504844</td>\n",
" <td>1570.647215</td>\n",
" <td>64.400000</td>\n",
" <td>17.400000</td>\n",
" <td>69.414655</td>\n",
" <td>34.253844</td>\n",
" <td>0.504844</td>\n",
" <td>64.400000</td>\n",
" <td>16.000000</td>\n",
" <td>711.885783</td>\n",
" <td>148.899222</td>\n",
" <td>3.190142</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70.0</th>\n",
" <td>6.969243e+06</td>\n",
" <td>71295.689563</td>\n",
" <td>174453.656250</td>\n",
" <td>0.448103</td>\n",
" <td>2263.538192</td>\n",
" <td>68.000000</td>\n",
" <td>49.666667</td>\n",
" <td>69.144251</td>\n",
" <td>29.573287</td>\n",
" <td>0.448103</td>\n",
" <td>68.000000</td>\n",
" <td>50.000000</td>\n",
" <td>1126.005223</td>\n",
" <td>149.457045</td>\n",
" <td>3.330911</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>147 rows × 15 columns</p>\n",
"</div>"
],
"text/plain": [
" DF_UID yearly_std_PV yearly_PV_kWh \\\n",
"area_log_round tilt_round \n",
"1.2 20.0 4.922855e+06 737.396294 1484.851929 \n",
"1.4 0.0 4.991159e+06 846.543206 1276.234863 \n",
" 5.0 4.983143e+06 870.264521 1354.986328 \n",
" 10.0 5.071083e+06 821.709982 1456.086914 \n",
" 15.0 5.170085e+06 810.658545 1527.205444 \n",
" 20.0 5.600528e+06 835.221891 1564.418701 \n",
" 25.0 5.874602e+06 886.120006 1580.860840 \n",
" 30.0 5.479405e+06 929.084273 1554.904297 \n",
" 35.0 5.092650e+06 972.240344 1526.887329 \n",
" 40.0 4.670344e+06 986.904481 1449.411377 \n",
" 45.0 4.434124e+06 950.961890 1380.598511 \n",
" 50.0 5.397987e+06 954.971739 1401.950195 \n",
" 55.0 4.228050e+06 882.337867 1267.921631 \n",
"1.6 0.0 4.847767e+06 1034.705114 1792.938110 \n",
" 5.0 5.012187e+06 1144.295860 2148.248779 \n",
" 10.0 5.032371e+06 1139.504929 2290.311035 \n",
" 15.0 5.192000e+06 1113.752276 2498.217285 \n",
" 20.0 5.560078e+06 1155.995316 2554.993652 \n",
" 25.0 5.572341e+06 1238.475901 2450.680664 \n",
" 30.0 5.091576e+06 1249.636290 2277.821289 \n",
" 35.0 4.698548e+06 1245.305810 2065.924805 \n",
" 40.0 4.316527e+06 1235.783447 1913.404663 \n",
" 45.0 4.500311e+06 1192.335667 1808.299805 \n",
" 50.0 4.808124e+06 1130.524486 1677.364380 \n",
" 55.0 4.849210e+06 1083.115904 1528.984253 \n",
" 60.0 4.549698e+06 1062.341579 1453.603516 \n",
" 65.0 4.150396e+06 1076.638908 1414.788086 \n",
" 70.0 5.389880e+06 960.857536 1154.847656 \n",
"1.8 0.0 4.463076e+06 934.781481 1842.069336 \n",
" 5.0 4.993923e+06 1796.889724 3983.610596 \n",
"... ... ... ... \n",
"2.8 70.0 5.813572e+06 11498.121554 6728.736328 \n",
"3.0 0.0 4.610407e+06 17358.207676 55626.113281 \n",
" 5.0 4.773191e+06 29650.703392 120149.445312 \n",
" 10.0 4.644329e+06 30610.805485 124099.296875 \n",
" 15.0 4.716177e+06 31839.388829 127598.609375 \n",
" 20.0 4.808413e+06 32308.133489 121700.359375 \n",
" 25.0 4.992114e+06 32638.649356 117421.406250 \n",
" 30.0 4.720241e+06 33874.789332 108668.382812 \n",
" 35.0 4.733707e+06 33732.642274 95235.492188 \n",
" 40.0 5.056836e+06 32535.396276 89059.046875 \n",
" 45.0 4.457209e+06 32677.426406 80110.148438 \n",
" 50.0 7.141918e+06 28585.509833 61521.804688 \n",
" 55.0 5.456202e+06 35408.124381 92893.750000 \n",
" 60.0 7.067711e+06 34019.960425 74242.156250 \n",
" 65.0 7.281614e+06 26273.881652 56430.296875 \n",
"3.2 0.0 4.612284e+06 53754.523306 177141.109375 \n",
" 5.0 4.805704e+06 70680.701530 281310.156250 \n",
" 10.0 4.579210e+06 56302.159565 226404.750000 \n",
" 15.0 4.591854e+06 57205.162058 221417.187500 \n",
" 20.0 4.640565e+06 57045.631418 216828.984375 \n",
" 25.0 5.874464e+06 57942.123804 201531.093750 \n",
" 30.0 5.315096e+06 67961.582031 212953.937500 \n",
" 35.0 6.949979e+06 80167.920594 227434.343750 \n",
" 40.0 4.959043e+06 103538.153130 241769.406250 \n",
" 45.0 5.488224e+06 74869.979701 155584.406250 \n",
" 50.0 6.192028e+06 54059.458650 132167.187500 \n",
" 55.0 2.867770e+06 80801.557239 183988.828125 \n",
" 60.0 4.412172e+06 80784.479711 195334.531250 \n",
" 65.0 3.915371e+06 53020.958536 105637.171875 \n",
" 70.0 6.969243e+06 71295.689563 174453.656250 \n",
"\n",
" unc_perc FLAECHE NEIGUNG AUSRICHTUNG \\\n",
"area_log_round tilt_round \n",
"1.2 20.0 0.496931 19.671486 21.000000 -4.000000 \n",
"1.4 0.0 0.666533 30.121106 1.510018 4.752277 \n",
" 5.0 0.646378 29.575212 5.282188 -0.292862 \n",
" 10.0 0.569864 28.684999 10.313896 0.751486 \n",
" 15.0 0.535713 28.404236 15.316825 4.005807 \n",
" 20.0 0.537386 28.465090 20.188589 5.152788 \n",
" 25.0 0.564857 28.447489 24.848985 2.963148 \n",
" 30.0 0.603273 28.842710 29.548098 1.777137 \n",
" 35.0 0.643225 29.497133 34.669332 2.427184 \n",
" 40.0 0.685644 29.988260 39.429379 2.671061 \n",
" 45.0 0.691905 30.324031 44.138264 9.054662 \n",
" 50.0 0.683588 30.152160 49.325581 13.139535 \n",
" 55.0 0.697989 30.376475 53.714286 20.428571 \n",
"1.6 0.0 0.594201 42.153685 1.079224 1.703719 \n",
" 5.0 0.557283 40.457534 5.159211 2.896725 \n",
" 10.0 0.520164 40.381743 10.112763 3.074239 \n",
" 15.0 0.467514 40.549804 15.448423 3.686345 \n",
" 20.0 0.470362 40.775929 20.172611 3.724043 \n",
" 25.0 0.523951 40.989444 24.884738 2.530027 \n",
" 30.0 0.567900 41.497187 29.900428 2.412170 \n",
" 35.0 0.621090 42.004127 34.827292 1.867437 \n",
" 40.0 0.660857 42.614539 39.719544 3.590973 \n",
" 45.0 0.672751 43.305404 44.562190 5.650154 \n",
" 50.0 0.683857 44.068475 49.534243 7.254935 \n",
" 55.0 0.717531 44.798637 54.316038 5.892453 \n",
" 60.0 0.738470 44.902651 59.567485 2.720859 \n",
" 65.0 0.765872 45.629422 64.626667 0.333333 \n",
" 70.0 0.835550 46.745857 68.500000 -32.250000 \n",
"1.8 0.0 0.520758 66.365404 0.108354 0.073110 \n",
" 5.0 0.492103 63.025545 5.188114 2.887485 \n",
"... ... ... ... ... \n",
"2.8 70.0 1.708808 794.178454 69.000000 33.000000 \n",
"3.0 0.0 0.330505 985.320416 0.050246 -0.095330 \n",
" 5.0 0.251857 987.747229 4.955985 1.811583 \n",
" 10.0 0.250688 974.404203 10.021348 1.851234 \n",
" 15.0 0.253859 966.486330 14.945755 -1.561321 \n",
" 20.0 0.270395 951.379233 19.700000 0.586567 \n",
" 25.0 0.280811 936.795331 24.545455 1.210031 \n",
" 30.0 0.322116 945.283146 29.746988 -1.024096 \n",
" 35.0 0.364572 929.186690 34.592105 0.868421 \n",
" 40.0 0.376999 920.668757 39.758621 -12.344828 \n",
" 45.0 0.437025 933.909234 44.523810 1.047619 \n",
" 50.0 0.502566 941.082932 50.666667 25.266667 \n",
" 55.0 0.400626 912.252883 55.750000 -26.250000 \n",
" 60.0 0.450593 1020.258887 59.000000 7.000000 \n",
" 65.0 0.490356 925.992068 63.666667 21.000000 \n",
"3.2 0.0 0.319376 2681.724550 0.053873 -0.065669 \n",
" 5.0 0.254008 2273.494614 4.668627 -1.469608 \n",
" 10.0 0.250352 1786.061947 9.908702 -2.078459 \n",
" 15.0 0.260783 1719.751544 14.704485 -3.110818 \n",
" 20.0 0.266807 1668.465357 19.400000 -0.242424 \n",
" 25.0 0.291287 1667.140614 24.568421 1.947368 \n",
" 30.0 0.322755 1843.874473 30.243243 12.297297 \n",
" 35.0 0.406038 2162.652394 34.250000 -12.000000 \n",
" 40.0 0.455339 2601.427148 40.125000 -10.625000 \n",
" 45.0 0.481882 1982.120042 44.666667 -4.000000 \n",
" 50.0 0.418838 1728.650792 50.000000 2.200000 \n",
" 55.0 0.451774 2573.899267 54.000000 3.666667 \n",
" 60.0 0.424525 2784.263993 60.500000 -20.750000 \n",
" 65.0 0.504844 1570.647215 64.400000 17.400000 \n",
" 70.0 0.448103 2263.538192 68.000000 49.666667 \n",
"\n",
" PV_norm PV_std_norm unc_perc_norm tilt \\\n",
"area_log_round tilt_round \n",
"1.2 20.0 75.482643 37.485429 0.496931 21.000000 \n",
"1.4 0.0 42.374094 28.111003 0.666533 1.472860 \n",
" 5.0 45.804186 29.443319 0.646378 5.282188 \n",
" 10.0 50.758410 28.653456 0.569864 10.313896 \n",
" 15.0 53.763273 28.572719 0.535713 15.316825 \n",
" 20.0 54.992023 29.389077 0.537386 20.188589 \n",
" 25.0 55.632880 31.186998 0.564857 24.848985 \n",
" 30.0 54.002934 32.251004 0.603273 29.548098 \n",
" 35.0 51.784100 32.991376 0.643225 34.669332 \n",
" 40.0 48.364133 32.925774 0.685644 39.429379 \n",
" 45.0 45.585943 31.380749 0.691905 44.138264 \n",
" 50.0 46.569936 31.713690 0.683588 49.325581 \n",
" 55.0 41.723263 29.035060 0.697989 53.714286 \n",
"1.6 0.0 42.901326 24.857076 0.594201 -0.209175 \n",
" 5.0 52.754742 28.277330 0.557283 5.159211 \n",
" 10.0 56.342171 28.174946 0.520164 10.112763 \n",
" 15.0 60.996809 27.429673 0.467514 15.448423 \n",
" 20.0 61.986896 28.271660 0.470362 20.172611 \n",
" 25.0 59.461761 30.183381 0.523951 24.884738 \n",
" 30.0 54.698361 30.174227 0.567900 29.900428 \n",
" 35.0 49.176932 29.734884 0.621090 34.827292 \n",
" 40.0 44.987709 29.126394 0.660857 39.719544 \n",
" 45.0 41.858020 27.669479 0.672751 44.562190 \n",
" 50.0 38.203887 25.778324 0.683857 49.534243 \n",
" 55.0 34.314777 24.305447 0.717531 54.316038 \n",
" 60.0 32.543461 23.779204 0.738470 59.567485 \n",
" 65.0 31.097107 23.650310 0.765872 64.626667 \n",
" 70.0 24.801501 20.587047 0.835550 68.500000 \n",
"1.8 0.0 27.835242 14.171956 0.520758 -4.602885 \n",
" 5.0 62.710007 28.543367 0.492103 5.188114 \n",
"... ... ... ... ... \n",
"2.8 70.0 8.472575 14.478007 1.708808 69.000000 \n",
"3.0 0.0 56.315952 17.575026 0.330505 -4.868360 \n",
" 5.0 121.568879 29.999578 0.251857 4.955985 \n",
" 10.0 127.291409 31.396981 0.250688 10.021348 \n",
" 15.0 131.843423 32.918405 0.253859 14.945755 \n",
" 20.0 127.997083 33.939039 0.270395 19.700000 \n",
" 25.0 125.306379 34.805085 0.280811 24.545455 \n",
" 30.0 114.884309 35.784861 0.322116 29.746988 \n",
" 35.0 102.502394 36.291986 0.364572 34.592105 \n",
" 40.0 97.588252 35.593356 0.376999 39.758621 \n",
" 45.0 85.824836 35.102563 0.437025 44.523810 \n",
" 50.0 65.494455 30.411222 0.502566 50.666667 \n",
" 55.0 99.910395 38.469464 0.400626 55.750000 \n",
" 60.0 73.079361 32.846818 0.450593 59.000000 \n",
" 65.0 58.481592 27.613920 0.490356 63.666667 \n",
"3.2 0.0 62.813583 19.252345 0.319376 -4.853979 \n",
" 5.0 123.638752 30.853184 0.254008 4.668627 \n",
" 10.0 127.220557 31.525870 0.250352 9.908702 \n",
" 15.0 129.899321 33.249001 0.260783 14.704485 \n",
" 20.0 130.527406 34.269996 0.266807 19.400000 \n",
" 25.0 121.350427 34.937842 0.291287 24.568421 \n",
" 30.0 114.732570 36.769846 0.322755 30.243243 \n",
" 35.0 98.711584 35.955324 0.406038 34.250000 \n",
" 40.0 84.126951 36.801064 0.455339 40.125000 \n",
" 45.0 80.853257 38.576271 0.481882 44.666667 \n",
" 50.0 83.728707 33.422152 0.418838 50.000000 \n",
" 55.0 73.181026 31.676750 0.451774 54.000000 \n",
" 60.0 70.491754 29.545444 0.424525 60.500000 \n",
" 65.0 69.414655 34.253844 0.504844 64.400000 \n",
" 70.0 69.144251 29.573287 0.448103 68.000000 \n",
"\n",
" aspect_round available_area PV_norm_avail \\\n",
"area_log_round tilt_round \n",
"1.2 20.0 -5.000000 8.222259 180.579360 \n",
"1.4 0.0 4.608379 9.111348 140.078023 \n",
" 5.0 -0.216811 9.417600 143.821512 \n",
" 10.0 0.767871 9.776327 148.852457 \n",
" 15.0 4.030489 9.835057 155.124417 \n",
" 20.0 5.146703 9.719741 160.802232 \n",
" 25.0 2.970820 9.695890 162.872597 \n",
" 30.0 1.788832 9.531214 162.919393 \n",
" 35.0 2.451932 9.458938 161.211644 \n",
" 40.0 2.592593 9.015932 160.665208 \n",
" 45.0 8.874598 8.662721 159.211704 \n",
" 50.0 13.488372 8.599080 162.916852 \n",
" 55.0 20.000000 8.340789 151.849459 \n",
"1.6 0.0 1.747507 12.604728 143.379677 \n",
" 5.0 2.892427 14.909844 143.529014 \n",
" 10.0 3.103512 15.298740 149.052519 \n",
" 15.0 3.680526 15.816341 157.340127 \n",
" 20.0 3.713311 15.647574 162.743362 \n",
" 25.0 2.539690 14.922700 163.815639 \n",
" 30.0 2.421336 13.993038 162.439253 \n",
" 35.0 1.893384 12.780383 161.434444 \n",
" 40.0 3.624287 11.955068 160.025726 \n",
" 45.0 5.667425 11.378948 158.892691 \n",
" 50.0 7.180112 10.693811 156.761561 \n",
" 55.0 5.801887 9.934153 153.849873 \n",
" 60.0 2.638037 9.698868 149.946680 \n",
" 65.0 0.666667 9.665644 146.469527 \n",
" 70.0 -32.500000 8.551242 135.586556 \n",
"1.8 0.0 0.076100 11.871803 156.433922 \n",
" 5.0 2.899594 27.582810 142.871479 \n",
"... ... ... ... \n",
"2.8 70.0 30.000000 61.804471 108.871352 \n",
"3.0 0.0 -0.097589 337.263413 164.075977 \n",
" 5.0 1.953668 770.995462 155.357352 \n",
" 10.0 2.028019 771.236054 160.520415 \n",
" 15.0 -1.501572 770.820229 165.031396 \n",
" 20.0 0.716418 726.206900 167.059997 \n",
" 25.0 1.191223 690.589577 169.789009 \n",
" 30.0 -0.602410 644.359883 168.031694 \n",
" 35.0 0.921053 574.778540 165.497726 \n",
" 40.0 -12.758621 535.869781 165.715696 \n",
" 45.0 0.476190 512.494302 154.944375 \n",
" 50.0 24.666667 405.336649 153.963258 \n",
" 55.0 -27.500000 533.974264 169.674858 \n",
" 60.0 5.000000 525.323327 146.024838 \n",
" 65.0 23.333333 419.484887 129.927222 \n",
"3.2 0.0 -0.057218 1044.194992 167.590268 \n",
" 5.0 -1.352941 1793.556361 156.280016 \n",
" 10.0 -1.811698 1405.237111 160.907365 \n",
" 15.0 -3.087071 1345.194919 164.521558 \n",
" 20.0 0.000000 1293.871194 166.982565 \n",
" 25.0 1.473684 1209.794278 167.393144 \n",
" 30.0 11.081081 1287.331705 164.620170 \n",
" 35.0 -10.000000 1352.564730 157.802668 \n",
" 40.0 -11.250000 1421.387412 161.589680 \n",
" 45.0 -3.333333 932.004791 168.514058 \n",
" 50.0 0.000000 799.909810 165.174176 \n",
" 55.0 3.333333 1323.974209 138.293545 \n",
" 60.0 -20.000000 1472.935765 150.591604 \n",
" 65.0 16.000000 711.885783 148.899222 \n",
" 70.0 50.000000 1126.005223 149.457045 \n",
"\n",
" area_log \n",
"area_log_round tilt_round \n",
"1.2 20.0 1.293837 \n",
"1.4 0.0 1.478558 \n",
" 5.0 1.470355 \n",
" 10.0 1.456468 \n",
" 15.0 1.451879 \n",
" 20.0 1.452893 \n",
" 25.0 1.452640 \n",
" 30.0 1.458889 \n",
" 35.0 1.469130 \n",
" 40.0 1.476555 \n",
" 45.0 1.481497 \n",
" 50.0 1.478817 \n",
" 55.0 1.482462 \n",
"1.6 0.0 1.621102 \n",
" 5.0 1.603304 \n",
" 10.0 1.602465 \n",
" 15.0 1.604323 \n",
" 20.0 1.606736 \n",
" 25.0 1.609065 \n",
" 30.0 1.614560 \n",
" 35.0 1.620042 \n",
" 40.0 1.626475 \n",
" 45.0 1.633850 \n",
" 50.0 1.641924 \n",
" 55.0 1.649486 \n",
" 60.0 1.650578 \n",
" 65.0 1.658158 \n",
" 70.0 1.669261 \n",
"1.8 0.0 1.818853 \n",
" 5.0 1.795734 \n",
"... ... \n",
"2.8 70.0 2.899918 \n",
"3.0 0.0 2.989804 \n",
" 5.0 2.990732 \n",
" 10.0 2.985069 \n",
" 15.0 2.981504 \n",
" 20.0 2.975021 \n",
" 25.0 2.968738 \n",
" 30.0 2.972170 \n",
" 35.0 2.964612 \n",
" 40.0 2.961577 \n",
" 45.0 2.966355 \n",
" 50.0 2.972406 \n",
" 55.0 2.958968 \n",
" 60.0 3.001408 \n",
" 65.0 2.960412 \n",
"3.2 0.0 3.343962 \n",
" 5.0 3.303289 \n",
" 10.0 3.233721 \n",
" 15.0 3.216255 \n",
" 20.0 3.203539 \n",
" 25.0 3.205478 \n",
" 30.0 3.248956 \n",
" 35.0 3.291222 \n",
" 40.0 3.343874 \n",
" 45.0 3.245654 \n",
" 50.0 3.217785 \n",
" 55.0 3.373594 \n",
" 60.0 3.389600 \n",
" 65.0 3.190142 \n",
" 70.0 3.330911 \n",
"\n",
"[147 rows x 15 columns]"
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"PV_grouped"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_array = (PV_grouped_all['PV_norm']).to_xarray()\n",
"plot_array.coords['area_log_round'] = 10**(plot_array.area_log_round)\n",
"\n",
"plot_array.attrs['long_name'] = 'PV potential per m$^2$ of roof (in kWh/m$^2$)'\n",
"\n",
"plt.figure()\n",
"ax = plt.subplot()\n",
"\n",
"VMIN = 0\n",
"VMAX = 130\n",
"\n",
"plot_array.plot(cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"\n",
"ax.set_yscale('log')\n",
"plt.xlabel('Roof tilt (in degree)') # Roof aspect\n",
"plt.ylabel('Roof area (in $m^2$)')\n",
"plt.ylim(bottom = 22)\n",
"\n",
"#ax.set_xticks([-180, -135, -90, -45, 0, 45, 90, 135, 180])\n",
"#ax.set_xticklabels(['N', 'NW', 'W', 'SW', 'S', 'SE', 'E', 'NE', 'N'])\n",
"\n",
"plt.tight_layout()\n",
"plt.savefig('PV_per_roof_area_tilt_norm.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_array = (PV_grouped_all['yearly_std_PV'] / PV_grouped_all['yearly_PV_kWh']).to_xarray()\n",
"plot_array.coords['area_log_round'] = 10**(plot_array.area_log_round)\n",
"\n",
"plot_array.attrs['long_name'] = 'Relative uncertainty of annual $E_{PV}\\ (\\sigma_{PV}/E_{PV}$)'\n",
"\n",
"plt.figure()\n",
"ax = plt.subplot()\n",
"\n",
"VMIN = 0.2\n",
"VMAX = 0.8\n",
"\n",
"plot_array.plot(cmap = cm_PV, vmin = VMIN, vmax = VMAX)\n",
"\n",
"ax.set_yscale('log')\n",
"plt.xlabel('Roof tilt (in degree)') # Roof aspect\n",
"plt.ylabel('Roof area (in $m^2$)')\n",
"plt.ylim(bottom = 22)\n",
"\n",
"#ax.set_xticks([-180, -135, -90, -45, 0, 45, 90, 135, 180])\n",
"#ax.set_xticklabels(['N', 'NW', 'W', 'SW', 'S', 'SE', 'E', 'NE', 'N'])\n",
"\n",
"plt.tight_layout()\n",
"# plt.savefig('PV_unc_relative_area_tilt.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get hourly time plot"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"# aspect classes: 0: flat, 1: south, 2: east, 3: west, 4: north\n",
"PV_yearly['aspect_class'] = 3\n",
"# PV_yearly.loc[PV_yearly.AUSRICHTUNG > 45, 'aspect_class'] = 3\n",
"PV_yearly.loc[PV_yearly.AUSRICHTUNG < -45, 'aspect_class'] = 2\n",
"\n",
"PV_yearly.loc[abs(PV_yearly.AUSRICHTUNG) >= 135, 'aspect_class'] = 4\n",
"PV_yearly.loc[abs(PV_yearly.AUSRICHTUNG) <= 45 , 'aspect_class'] = 1\n",
"\n",
"PV_yearly.loc[PV_yearly.NEIGUNG == 0, 'aspect_class'] = 0 # FLAT ROOFS ARE 0\n",
"PV_yearly.loc[PV_yearly.available_area <= 8, 'aspect_class'] = -1\n",
"\n",
"PV_yearly['suitable'] = 0\n",
"PV_yearly.loc[(abs(PV_yearly.AUSRICHTUNG) <= 90) & (PV_yearly.available_area > 8), 'suitable'] = 1"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"pv_pot = xr.merge([EPV.pv_potential, unc_EPV.sigma_PV, \n",
" Gt.tilted_irradiance, Gt_unc_all.sigma_Gt_dep]).astype('float32')\n",
"pv_pot['aspect_class'] = PV_yearly.set_index('DF_UID').aspect_class.to_xarray()\n",
"pv_pot['suitable'] = PV_yearly.set_index('DF_UID').suitable.to_xarray()"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (DF_UID: 9639231, timestamp: 146)\n",
"Coordinates:\n",
" * DF_UID (DF_UID) int64 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 ...\n",
" * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ...\n",
"Data variables:\n",
" pv_potential (DF_UID, timestamp) float32 dask.array<shape=(9639231, 146), chunksize=(10000, 146)>\n",
" sigma_PV (DF_UID, timestamp) float32 dask.array<shape=(9639231, 146), chunksize=(10000, 146)>\n",
" tilted_irradiance (DF_UID, timestamp) float32 dask.array<shape=(9639231, 146), chunksize=(10000, 146)>\n",
" sigma_Gt_dep (DF_UID, timestamp) float32 dask.array<shape=(9639231, 146), chunksize=(10000, 146)>\n",
" aspect_class (DF_UID) int64 -1 -1 2 2 3 3 -1 3 2 3 -1 -1 -1 -1 2 3 ...\n",
" suitable (DF_UID) int64 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 ..."
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pv_pot"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"pv_pot_mean = pv_pot.groupby('aspect_class').mean( dim = 'DF_UID')\n",
"pv_pot_mean['group_count'] = pv_pot.groupby('aspect_class').count(dim = 'DF_UID').suitable"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (aspect_class: 6, timestamp: 146)\n",
"Coordinates:\n",
" * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ...\n",
" * aspect_class (aspect_class) int64 -1 0 1 2 3 4\n",
"Data variables:\n",
" pv_potential (aspect_class, timestamp) float32 dask.array<shape=(6, 146), chunksize=(1, 146)>\n",
" sigma_PV (aspect_class, timestamp) float32 dask.array<shape=(6, 146), chunksize=(1, 146)>\n",
" tilted_irradiance (aspect_class, timestamp) float32 dask.array<shape=(6, 146), chunksize=(1, 146)>\n",
" sigma_Gt_dep (aspect_class, timestamp) float32 dask.array<shape=(6, 146), chunksize=(1, 146)>\n",
" suitable (aspect_class) float64 0.0 1.0 1.0 0.4566 0.5549 0.0\n",
" group_count (aspect_class) int64 4671346 408905 1185090 1082061 ..."
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pv_pot_mean"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"pv_pot_sum = pv_pot.groupby('suitable').sum( dim = 'DF_UID')\n",
"pv_pot_sum['group_count'] = pv_pot.groupby('suitable').count(dim = 'DF_UID').aspect_class"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (suitable: 2, timestamp: 146)\n",
"Coordinates:\n",
" * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ...\n",
" * suitable (suitable) int64 0 1\n",
"Data variables:\n",
" pv_potential (suitable, timestamp) float32 dask.array<shape=(2, 146), chunksize=(1, 146)>\n",
" sigma_PV (suitable, timestamp) float32 dask.array<shape=(2, 146), chunksize=(1, 146)>\n",
" tilted_irradiance (suitable, timestamp) float32 dask.array<shape=(2, 146), chunksize=(1, 146)>\n",
" sigma_Gt_dep (suitable, timestamp) float32 dask.array<shape=(2, 146), chunksize=(1, 146)>\n",
" aspect_class (suitable) int64 2737225 4006714\n",
" group_count (suitable) int64 6939991 2699240"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pv_pot_sum"
]
},
{
"cell_type": "code",
"execution_count": 169,
"metadata": {},
"outputs": [],
"source": [
"pv_pot_sum.drop('aspect_class').to_netcdf( os.path.join( path, 'pv_gt_timeprofiles.nc' ) )"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/dask/array/numpy_compat.py:28: RuntimeWarning: invalid value encountered in true_divide\n",
" x = np.divide(x1, x2, out)\n"
]
}
],
"source": [
"pv_pot_mean.to_netcdf( os.path.join( path, 'pv_gt_timeprofiles_aspectclasses.nc' ) )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PLOT HOURLY"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"pv_pot_sum = xr.open_dataset( os.path.join( path, 'pv_gt_timeprofiles.nc' ) )"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (suitable: 2, timestamp: 146)\n",
"Coordinates:\n",
" * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ...\n",
" * suitable (suitable) int64 0 1\n",
"Data variables:\n",
" pv_potential (suitable, timestamp) float32 ...\n",
" sigma_PV (suitable, timestamp) float32 ...\n",
" tilted_irradiance (suitable, timestamp) float32 ...\n",
" sigma_Gt_dep (suitable, timestamp) float32 ...\n",
" group_count (suitable) int64 ..."
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pv_pot_sum"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"pv_pot_sum['PV_GWh'] = pv_pot_sum.pv_potential / 1e9\n",
"pv_pot_sum['PV_GWh_max'] = pv_pot_sum.PV_GWh + pv_pot_sum.sigma_PV / 1e9\n",
"pv_pot_sum['PV_GWh_min'] = np.maximum(pv_pot_sum.PV_GWh - pv_pot_sum.sigma_PV / 1e9, 0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"def get_plottable_series(ds, var):\n",
" # Manipulate time stamps; choose hours from 3-20h (18 hours in total)\n",
" month = ds.timestamp.dt.month\n",
" hour = ds.timestamp.dt.hour\n",
" dt_index = (month - 1) * 24 + hour \n",
" \n",
" datetimeindex = np.zeros(24*12)\n",
" datetimeindex[dt_index] = ds[var].fillna(0).values\n",
" return datetimeindex"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
"PV_pot = get_plottable_series(pv_pot_sum.isel(suitable = 1), 'PV_GWh')\n",
"PV_max = get_plottable_series(pv_pot_sum.isel(suitable = 1), 'PV_GWh_max')\n",
"PV_min = get_plottable_series(pv_pot_sum.isel(suitable = 1), 'PV_GWh_min')\n"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"1200\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize = (12, 3))\n",
"ax = plt.subplot()\n",
"\n",
"plt.plot(PV_pot, label = '$E_{PV}$')\n",
"plt.fill_between(range(len(PV_pot)), PV_min, PV_max, alpha = 0.3, label = '$E_{PV} \\pm \\sigma_{PV}$' ) \n",
"\n",
"ax.set_xticks(list(range(12, 24*12, 24)))\n",
"ax.set_xticklabels(calendar.month_abbr[1:])\n",
"ax.set_ylabel('Total PV potential (GWh)')\n",
"\n",
"plt.xlim((0, 24*12))\n",
"\n",
"ax = plt.gca()\n",
"ax.set_axisbelow(True)\n",
"ax.yaxis.grid(linestyle = '--')\n",
"\n",
"plt.legend()\n",
"plt.show()\n",
"plt.tight_layout()\n",
"plt.savefig('PV_hourly_w_unc.png', dpi = 300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plot building roofs by aspect"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"pv_pot_mean = xr.open_dataset( os.path.join( path, 'pv_gt_timeprofiles_aspectclasses.nc' ) )"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (aspect_class: 6, timestamp: 146)\n",
"Coordinates:\n",
" * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ...\n",
" * aspect_class (aspect_class) int64 -1 0 1 2 3 4\n",
"Data variables:\n",
" pv_potential (aspect_class, timestamp) float32 ...\n",
" sigma_PV (aspect_class, timestamp) float32 ...\n",
" tilted_irradiance (aspect_class, timestamp) float32 ...\n",
" sigma_Gt_dep (aspect_class, timestamp) float32 ...\n",
" suitable (aspect_class) float64 ...\n",
" group_count (aspect_class) int64 ..."
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pv_pot_mean"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"flat = get_plottable_series(pv_pot_mean.sel(aspect_class = 0), 'tilted_irradiance')\n",
"south = get_plottable_series(pv_pot_mean.sel(aspect_class = 1), 'tilted_irradiance')\n",
"east = get_plottable_series(pv_pot_mean.sel(aspect_class = 2), 'tilted_irradiance')\n",
"west = get_plottable_series(pv_pot_mean.sel(aspect_class = 3), 'tilted_irradiance')\n",
"north = get_plottable_series(pv_pot_mean.sel(aspect_class = 4), 'tilted_irradiance')\n"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"1200\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize = (12, 3))\n",
"ax = plt.subplot()\n",
"\n",
"#plt.plot(flat, label = 'Flat')\n",
"plt.plot(north, label = 'North')\n",
"plt.plot(east , label = 'East')\n",
"plt.plot(west , label = 'West')\n",
"plt.plot(south, label = 'South')\n",
"\n",
"ax.set_xticks(list(range(12, 24*12, 24)))\n",
"ax.set_xticklabels(calendar.month_abbr[1:])\n",
"ax.set_ylabel('Tilted radiation ($W/m^2$)')\n",
"\n",
"plt.xlim((0, 12*24))\n",
"\n",
"ax = plt.gca()\n",
"ax.set_axisbelow(True)\n",
"ax.yaxis.grid(linestyle = '--')\n",
"\n",
"plt.legend()\n",
"plt.show()\n",
"plt.tight_layout()\n",
"plt.savefig('Irrad_hourly_aspects.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.4"
+ "version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Event Timeline