Page MenuHomec4science

No OneTemporary

File Metadata

Created
Sun, Apr 27, 18:30
This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/Available_area/All_Roof_Info.ipynb b/Available_area/All_Roof_Info.ipynb
index 73f14a2..f9463ad 100644
--- a/Available_area/All_Roof_Info.ipynb
+++ b/Available_area/All_Roof_Info.ipynb
@@ -1,2303 +1,2941 @@
{
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import xarray as xr\n",
"import numpy as np\n",
"\n",
"import os\n",
"import time\n",
"\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"SON_fp = '/work/hyenergy/raw/Sonnendach/Sonnendach_all_roofs/SOLKAT_CH_DACH_LV03.txt'\n",
"roof_repl_fp = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/ROOFS_CH_replaced.csv'\n",
"panel_fitting_fp = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/panel_fitting/panelled_area_stats_CH_best.csv'\n",
"corners_fp = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/CH_n_corners.csv'\n",
"shade_fp = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/shading_stats/CH_shaded_area_replaced.csv'\n",
"\n",
"output_fp = '/work/hyenergy/output/solar_potential/geographic_potential/CH_ROOFS_all_replaced.csv'"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"SON_cols = pd.read_csv( SON_fp, nrows = 0 )\n",
"roof_cols = pd.read_csv( roof_repl_fp, nrows = 0 )\n",
"panel_cols = pd.read_csv( panel_fitting_fp, nrows = 0 )"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Empty DataFrame\n",
"Columns: [Unnamed: 0, OBJECTID, DF_UID, DF_NUMMER, DATUM_ERSTELLUNG, DATUM_AENDERUNG, SB_UUID, SB_OBJEKTART, SB_DATUM_ERSTELLUNG, SB_DATUM_AENDERUNG, KLASSE, FLAECHE, AUSRICHTUNG, NEIGUNG, MSTRAHLUNG, GSTRAHLUNG, STROMERTRAG, WAERMEERTRAG, DUSCHGAENGE, DG_HEIZUNG, DG_WAERMEBEDARF, BEDARF_WARMWASSER, BEDARF_HEIZUNG, FLAECHE_KOLLEKTOREN, VOLUMEN_SPEICHER, GWR_EGID, Shape_Length, Shape_Area, XCOORD, YCOORD, Estim_build_area]\n",
"Index: []\n",
"\n",
"[0 rows x 31 columns]\n",
"Empty DataFrame\n",
"Columns: [Unnamed: 0, DF_UID, FLAECHE, NEIGUNG, AUSRICHTUNG, XCOORD, YCOORD, Shape_Length, Shape_Area, GWR_EGID, GBAUP, GKAT, GAREA, GASTW, GKODX, GKODY, Shape_Ratio, n_neighbors_100, Estim_build_area]\n",
"Index: []\n",
"Empty DataFrame\n",
"Columns: [DF_UID, panel_tilt, best_align, panel_count, panelled_area, panelled_area_ratio]\n",
"Index: []\n"
]
}
],
"source": [
"print(SON_cols)\n",
"print(roof_cols)\n",
"print(panel_cols)\n"
]
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"SON_columns = ['DF_UID', 'SB_UUID', 'XCOORD', 'YCOORD', 'FLAECHE', 'NEIGUNG']\n",
"roof_columns = ['DF_UID', 'AUSRICHTUNG', 'GWR_EGID', 'GBAUP', 'GKAT', 'GAREA', 'GASTW', 'GKODX', 'GKODY', 'Shape_Ratio', 'n_neighbors_100']\n",
"panel_columns= ['DF_UID', 'panel_tilt', 'panelled_area_ratio']"
]
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"SON_info = pd.read_csv( SON_fp, usecols = SON_columns )"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"ROOF_info = pd.read_csv( roof_repl_fp, usecols = roof_columns )\n",
"ROOF_info = ROOF_info.drop_duplicates()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"PANEL_info = pd.read_csv( panel_fitting_fp, usecols = panel_columns)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"CORNER_info = pd.read_csv( corners_fp )"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"SHADE_info = pd.read_csv( shade_fp )"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"9639231\n",
"9639231\n",
"9639231\n",
"9639231\n",
"9639231\n"
]
}
],
"source": [
"print(len(SON_info))\n",
"print(len(ROOF_info))\n",
"print(len(PANEL_info))\n",
"print(len(CORNER_info))\n",
"print(len(SHADE_info))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"ALL_info = SON_info.merge( ROOF_info, on = 'DF_UID', how = 'outer' )\n",
"ALL_info = ALL_info.merge( CORNER_info, on = 'DF_UID', how = 'outer' )\n",
"\n",
"ALL_info['panel_direction'] = ALL_info['AUSRICHTUNG'] + 180\n",
"\n",
"ALL_info = ALL_info.merge( PANEL_info, on = 'DF_UID', how = 'outer' )\n",
"ALL_info = ALL_info.merge( SHADE_info, on = 'DF_UID', how = 'outer' )\n",
"\n",
"ALL_info.rename(columns = {'panelled_area_ratio' : 'panelled_area_ratio_ftr'}, inplace = True)\n",
"ALL_info.rename(columns = {'fully_shaded_ratio' : 'shaded_area_ratio_ftr'}, inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>SB_UUID</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>XCOORD</th>\n",
" <th>YCOORD</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>GWR_EGID</th>\n",
" <th>GBAUP</th>\n",
" <th>GKAT</th>\n",
" <th>...</th>\n",
" <th>GASTW</th>\n",
" <th>GKODX</th>\n",
" <th>GKODY</th>\n",
" <th>Shape_Ratio</th>\n",
" <th>n_neighbors_100</th>\n",
" <th>n_corners</th>\n",
" <th>panel_direction</th>\n",
" <th>panel_tilt</th>\n",
" <th>panelled_area_ratio_ftr</th>\n",
" <th>shaded_area_ratio_ftr</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>{DEA19230-2728-42BF-8A28-573F5EB6C214}</td>\n",
" <td>15.948816</td>\n",
" <td>37</td>\n",
" <td>621674.951286</td>\n",
" <td>254203.972784</td>\n",
" <td>10.0</td>\n",
" <td>245033426.0</td>\n",
" <td>8011.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>621682.0</td>\n",
" <td>254206.0</td>\n",
" <td>1.050710</td>\n",
" <td>2.0</td>\n",
" <td>4</td>\n",
" <td>190.0</td>\n",
" <td>37</td>\n",
" <td>0.300963</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>{DEA19230-2728-42BF-8A28-573F5EB6C214}</td>\n",
" <td>13.730555</td>\n",
" <td>44</td>\n",
" <td>621675.374179</td>\n",
" <td>254206.313551</td>\n",
" <td>-170.0</td>\n",
" <td>245033426.0</td>\n",
" <td>8011.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>621682.0</td>\n",
" <td>254206.0</td>\n",
" <td>1.132856</td>\n",
" <td>2.0</td>\n",
" <td>4</td>\n",
" <td>10.0</td>\n",
" <td>44</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>{62E12FA3-D6C9-482C-A74C-CDCCE3D32EDD}</td>\n",
" <td>63.437476</td>\n",
" <td>12</td>\n",
" <td>621673.977050</td>\n",
" <td>254186.956803</td>\n",
" <td>-80.0</td>\n",
" <td>245033426.0</td>\n",
" <td>8011.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>621682.0</td>\n",
" <td>254206.0</td>\n",
" <td>0.497312</td>\n",
" <td>2.0</td>\n",
" <td>4</td>\n",
" <td>100.0</td>\n",
" <td>12</td>\n",
" <td>0.706207</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>{99786E44-FF96-4250-A0A2-AF44CB189B28}</td>\n",
" <td>38.368910</td>\n",
" <td>33</td>\n",
" <td>621696.695450</td>\n",
" <td>254249.767806</td>\n",
" <td>-80.0</td>\n",
" <td>245033426.0</td>\n",
" <td>8011.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>621682.0</td>\n",
" <td>254206.0</td>\n",
" <td>0.629591</td>\n",
" <td>2.0</td>\n",
" <td>4</td>\n",
" <td>100.0</td>\n",
" <td>33</td>\n",
" <td>0.583806</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>{99786E44-FF96-4250-A0A2-AF44CB189B28}</td>\n",
" <td>36.403273</td>\n",
" <td>35</td>\n",
" <td>621692.928934</td>\n",
" <td>254250.448974</td>\n",
" <td>100.0</td>\n",
" <td>245033426.0</td>\n",
" <td>8011.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>621682.0</td>\n",
" <td>254206.0</td>\n",
" <td>0.647623</td>\n",
" <td>2.0</td>\n",
" <td>4</td>\n",
" <td>280.0</td>\n",
" <td>35</td>\n",
" <td>0.615329</td>\n",
" <td>0.285714</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 21 columns</p>\n",
"</div>"
],
"text/plain": [
" DF_UID SB_UUID FLAECHE NEIGUNG \\\n",
"0 1 {DEA19230-2728-42BF-8A28-573F5EB6C214} 15.948816 37 \n",
"1 2 {DEA19230-2728-42BF-8A28-573F5EB6C214} 13.730555 44 \n",
"2 3 {62E12FA3-D6C9-482C-A74C-CDCCE3D32EDD} 63.437476 12 \n",
"3 4 {99786E44-FF96-4250-A0A2-AF44CB189B28} 38.368910 33 \n",
"4 5 {99786E44-FF96-4250-A0A2-AF44CB189B28} 36.403273 35 \n",
"\n",
" XCOORD YCOORD AUSRICHTUNG GWR_EGID GBAUP GKAT \\\n",
"0 621674.951286 254203.972784 10.0 245033426.0 8011.0 1060.0 \n",
"1 621675.374179 254206.313551 -170.0 245033426.0 8011.0 1060.0 \n",
"2 621673.977050 254186.956803 -80.0 245033426.0 8011.0 1060.0 \n",
"3 621696.695450 254249.767806 -80.0 245033426.0 8011.0 1060.0 \n",
"4 621692.928934 254250.448974 100.0 245033426.0 8011.0 1060.0 \n",
"\n",
" ... GASTW GKODX GKODY Shape_Ratio \\\n",
"0 ... 2.0 621682.0 254206.0 1.050710 \n",
"1 ... 2.0 621682.0 254206.0 1.132856 \n",
"2 ... 2.0 621682.0 254206.0 0.497312 \n",
"3 ... 2.0 621682.0 254206.0 0.629591 \n",
"4 ... 2.0 621682.0 254206.0 0.647623 \n",
"\n",
" n_neighbors_100 n_corners panel_direction panel_tilt \\\n",
"0 2.0 4 190.0 37 \n",
"1 2.0 4 10.0 44 \n",
"2 2.0 4 100.0 12 \n",
"3 2.0 4 100.0 33 \n",
"4 2.0 4 280.0 35 \n",
"\n",
" panelled_area_ratio_ftr shaded_area_ratio_ftr \n",
"0 0.300963 0.000000 \n",
"1 0.000000 0.000000 \n",
"2 0.706207 0.000000 \n",
"3 0.583806 0.000000 \n",
"4 0.615329 0.285714 \n",
"\n",
"[5 rows x 21 columns]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ALL_info.head()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>SB_UUID</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>XCOORD</th>\n",
" <th>YCOORD</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>GWR_EGID</th>\n",
" <th>GBAUP</th>\n",
" <th>GKAT</th>\n",
" <th>...</th>\n",
" <th>GASTW</th>\n",
" <th>GKODX</th>\n",
" <th>GKODY</th>\n",
" <th>Shape_Ratio</th>\n",
" <th>n_neighbors_100</th>\n",
" <th>n_corners</th>\n",
" <th>panel_direction</th>\n",
" <th>panel_tilt</th>\n",
" <th>panelled_area_ratio_ftr</th>\n",
" <th>shaded_area_ratio_ftr</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>33</td>\n",
" <td>{0E182AE6-B2B7-4CF8-AB37-940E0310D6CB}</td>\n",
" <td>27.568645</td>\n",
" <td>0</td>\n",
" <td>622443.648193</td>\n",
" <td>254088.496398</td>\n",
" <td>0.0</td>\n",
" <td>245049569.0</td>\n",
" <td>8011.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>622443.0</td>\n",
" <td>254084.0</td>\n",
" <td>0.762308</td>\n",
" <td>2.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.402092</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>50</td>\n",
" <td>{AF2290C1-3867-4575-B160-54F495756DC7}</td>\n",
" <td>681.609660</td>\n",
" <td>0</td>\n",
" <td>624744.786885</td>\n",
" <td>254213.178640</td>\n",
" <td>0.0</td>\n",
" <td>2361838.0</td>\n",
" <td>8018.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>624739.0</td>\n",
" <td>254230.0</td>\n",
" <td>0.162401</td>\n",
" <td>32.0</td>\n",
" <td>5</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.412678</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>51</td>\n",
" <td>{AF2290C1-3867-4575-B160-54F495756DC7}</td>\n",
" <td>609.169499</td>\n",
" <td>0</td>\n",
" <td>624700.866428</td>\n",
" <td>254270.417857</td>\n",
" <td>0.0</td>\n",
" <td>2361838.0</td>\n",
" <td>8018.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>624739.0</td>\n",
" <td>254230.0</td>\n",
" <td>0.188920</td>\n",
" <td>32.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.402611</td>\n",
" <td>0.052288</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>52</td>\n",
" <td>{AF2290C1-3867-4575-B160-54F495756DC7}</td>\n",
" <td>1523.273993</td>\n",
" <td>0</td>\n",
" <td>624749.048656</td>\n",
" <td>254246.125799</td>\n",
" <td>0.0</td>\n",
" <td>2361838.0</td>\n",
" <td>8018.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>624739.0</td>\n",
" <td>254230.0</td>\n",
" <td>0.115776</td>\n",
" <td>32.0</td>\n",
" <td>8</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.437540</td>\n",
" <td>0.005249</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>53</td>\n",
" <td>{AF2290C1-3867-4575-B160-54F495756DC7}</td>\n",
" <td>1332.294940</td>\n",
" <td>0</td>\n",
" <td>624768.067357</td>\n",
" <td>254198.593359</td>\n",
" <td>0.0</td>\n",
" <td>2361838.0</td>\n",
" <td>8018.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>624739.0</td>\n",
" <td>254230.0</td>\n",
" <td>0.109587</td>\n",
" <td>32.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.440977</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>54</td>\n",
" <td>{AF2290C1-3867-4575-B160-54F495756DC7}</td>\n",
" <td>1344.947851</td>\n",
" <td>0</td>\n",
" <td>624721.337023</td>\n",
" <td>254227.820131</td>\n",
" <td>0.0</td>\n",
" <td>2361838.0</td>\n",
" <td>8018.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>624739.0</td>\n",
" <td>254230.0</td>\n",
" <td>0.109071</td>\n",
" <td>32.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.440950</td>\n",
" <td>0.002985</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>63</td>\n",
" <td>{F83A82E2-222B-4410-ADDE-93D16325A5FB}</td>\n",
" <td>5.166799</td>\n",
" <td>0</td>\n",
" <td>624863.365921</td>\n",
" <td>254237.320991</td>\n",
" <td>0.0</td>\n",
" <td>3032511.0</td>\n",
" <td>8017.0</td>\n",
" <td>1030.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>624870.0</td>\n",
" <td>254245.0</td>\n",
" <td>1.762661</td>\n",
" <td>21.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td>64</td>\n",
" <td>{5E4F5D5B-6C9E-4A4F-BD83-40FF4F58350A}</td>\n",
" <td>38.989391</td>\n",
" <td>0</td>\n",
" <td>624853.582435</td>\n",
" <td>254244.803252</td>\n",
" <td>0.0</td>\n",
" <td>245054942.0</td>\n",
" <td>8017.0</td>\n",
" <td>1030.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>624854.0</td>\n",
" <td>254246.0</td>\n",
" <td>0.714579</td>\n",
" <td>22.0</td>\n",
" <td>6</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.213233</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65</th>\n",
" <td>67</td>\n",
" <td>{48C1049B-A8BC-4F4F-B53A-F1B0F8299315}</td>\n",
" <td>1018.456320</td>\n",
" <td>0</td>\n",
" <td>624922.140087</td>\n",
" <td>254162.085863</td>\n",
" <td>0.0</td>\n",
" <td>245038324.0</td>\n",
" <td>8019.0</td>\n",
" <td>1040.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>624919.0</td>\n",
" <td>254163.0</td>\n",
" <td>0.148195</td>\n",
" <td>7.0</td>\n",
" <td>6</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.417683</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td>68</td>\n",
" <td>{48C1049B-A8BC-4F4F-B53A-F1B0F8299315}</td>\n",
" <td>350.584181</td>\n",
" <td>0</td>\n",
" <td>624888.562638</td>\n",
" <td>254171.393540</td>\n",
" <td>0.0</td>\n",
" <td>245038324.0</td>\n",
" <td>8019.0</td>\n",
" <td>1040.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>624919.0</td>\n",
" <td>254163.0</td>\n",
" <td>0.227961</td>\n",
" <td>7.0</td>\n",
" <td>6</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.379428</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>69</td>\n",
" <td>{48C1049B-A8BC-4F4F-B53A-F1B0F8299315}</td>\n",
" <td>552.018229</td>\n",
" <td>0</td>\n",
" <td>624902.768127</td>\n",
" <td>254181.500254</td>\n",
" <td>0.0</td>\n",
" <td>245038324.0</td>\n",
" <td>8019.0</td>\n",
" <td>1040.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>624919.0</td>\n",
" <td>254163.0</td>\n",
" <td>0.305340</td>\n",
" <td>7.0</td>\n",
" <td>12</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.389071</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>76</td>\n",
" <td>{0EC9A383-F98C-43B6-BC5D-86F32AC3753B}</td>\n",
" <td>45.863031</td>\n",
" <td>0</td>\n",
" <td>624862.277386</td>\n",
" <td>254058.546342</td>\n",
" <td>0.0</td>\n",
" <td>3032005.0</td>\n",
" <td>8019.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>624859.0</td>\n",
" <td>254062.0</td>\n",
" <td>0.590713</td>\n",
" <td>4.0</td>\n",
" <td>5</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.241701</td>\n",
" <td>0.083333</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>78</td>\n",
" <td>{0EC9A383-F98C-43B6-BC5D-86F32AC3753B}</td>\n",
" <td>73.968605</td>\n",
" <td>0</td>\n",
" <td>624855.911866</td>\n",
" <td>254063.758643</td>\n",
" <td>0.0</td>\n",
" <td>3032005.0</td>\n",
" <td>8019.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>624859.0</td>\n",
" <td>254062.0</td>\n",
" <td>0.625616</td>\n",
" <td>4.0</td>\n",
" <td>5</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.280992</td>\n",
" <td>0.631579</td>\n",
" </tr>\n",
" <tr>\n",
" <th>80</th>\n",
" <td>82</td>\n",
" <td>{817D1FC4-6DF1-4F7F-8E46-C215E1B12EBA}</td>\n",
" <td>40.704476</td>\n",
" <td>0</td>\n",
" <td>624992.172735</td>\n",
" <td>254072.793140</td>\n",
" <td>0.0</td>\n",
" <td>245061375.0</td>\n",
" <td>8019.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>624882.0</td>\n",
" <td>254083.0</td>\n",
" <td>0.627283</td>\n",
" <td>5.0</td>\n",
" <td>5</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.204249</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>88</td>\n",
" <td>{E85CC83D-D8CE-42A3-940B-0CAABD8B4D17}</td>\n",
" <td>51.579906</td>\n",
" <td>0</td>\n",
" <td>627780.974184</td>\n",
" <td>254002.644257</td>\n",
" <td>0.0</td>\n",
" <td>245000359.0</td>\n",
" <td>8015.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>627783.0</td>\n",
" <td>254011.0</td>\n",
" <td>0.612906</td>\n",
" <td>3.0</td>\n",
" <td>8</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.402959</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>101</th>\n",
" <td>105</td>\n",
" <td>{572C2E66-8D48-4A99-839A-08723755F8B0}</td>\n",
" <td>23.291964</td>\n",
" <td>0</td>\n",
" <td>628063.176823</td>\n",
" <td>254003.110151</td>\n",
" <td>0.0</td>\n",
" <td>430920.0</td>\n",
" <td>8011.0</td>\n",
" <td>1021.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>628069.0</td>\n",
" <td>254004.0</td>\n",
" <td>0.908534</td>\n",
" <td>23.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.237960</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>120</th>\n",
" <td>124</td>\n",
" <td>{F47F8780-D09E-48C1-8386-00D7F98BFEB7}</td>\n",
" <td>29.551728</td>\n",
" <td>0</td>\n",
" <td>628107.812190</td>\n",
" <td>254155.949988</td>\n",
" <td>0.0</td>\n",
" <td>430883.0</td>\n",
" <td>8011.0</td>\n",
" <td>1030.0</td>\n",
" <td>...</td>\n",
" <td>4.0</td>\n",
" <td>628113.0</td>\n",
" <td>254145.0</td>\n",
" <td>0.745832</td>\n",
" <td>33.0</td>\n",
" <td>5</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.140666</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>121</th>\n",
" <td>125</td>\n",
" <td>{45D9BF4B-789E-43F1-B75F-FBB96A0CF33B}</td>\n",
" <td>64.430985</td>\n",
" <td>0</td>\n",
" <td>628065.143850</td>\n",
" <td>254236.140115</td>\n",
" <td>0.0</td>\n",
" <td>430777.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>3.0</td>\n",
" <td>628075.0</td>\n",
" <td>254230.0</td>\n",
" <td>0.554923</td>\n",
" <td>30.0</td>\n",
" <td>6</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.258070</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>165</th>\n",
" <td>169</td>\n",
" <td>{D8C149BD-4BFE-4E9F-87FC-B84B981B22BD}</td>\n",
" <td>40.901631</td>\n",
" <td>0</td>\n",
" <td>628154.918666</td>\n",
" <td>254198.096885</td>\n",
" <td>0.0</td>\n",
" <td>245048324.0</td>\n",
" <td>8020.0</td>\n",
" <td>1021.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>628154.0</td>\n",
" <td>254203.0</td>\n",
" <td>0.829660</td>\n",
" <td>27.0</td>\n",
" <td>10</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.135510</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>214</th>\n",
" <td>219</td>\n",
" <td>{BBFA2A04-84C2-44E0-891C-22FA14A034AD}</td>\n",
" <td>49.654829</td>\n",
" <td>0</td>\n",
" <td>628062.649378</td>\n",
" <td>254053.465941</td>\n",
" <td>0.0</td>\n",
" <td>430898.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>4.0</td>\n",
" <td>628058.0</td>\n",
" <td>254043.0</td>\n",
" <td>0.607512</td>\n",
" <td>24.0</td>\n",
" <td>6</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.195338</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>215</th>\n",
" <td>220</td>\n",
" <td>{BBFA2A04-84C2-44E0-891C-22FA14A034AD}</td>\n",
" <td>30.840837</td>\n",
" <td>0</td>\n",
" <td>628062.608542</td>\n",
" <td>254048.045143</td>\n",
" <td>0.0</td>\n",
" <td>430898.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>4.0</td>\n",
" <td>628058.0</td>\n",
" <td>254043.0</td>\n",
" <td>0.962769</td>\n",
" <td>24.0</td>\n",
" <td>6</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.044929</td>\n",
" <td>0.142857</td>\n",
" </tr>\n",
" <tr>\n",
" <th>219</th>\n",
" <td>224</td>\n",
" <td>{6EB94ACE-BD99-460E-9DA3-387F17A02F88}</td>\n",
" <td>18.906543</td>\n",
" <td>0</td>\n",
" <td>628051.410827</td>\n",
" <td>254049.777477</td>\n",
" <td>0.0</td>\n",
" <td>430898.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>4.0</td>\n",
" <td>628058.0</td>\n",
" <td>254043.0</td>\n",
" <td>1.658057</td>\n",
" <td>24.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>220</th>\n",
" <td>225</td>\n",
" <td>{49C3BAA3-2267-469D-B9C4-C1B281C1FB9E}</td>\n",
" <td>7.881839</td>\n",
" <td>0</td>\n",
" <td>628198.521851</td>\n",
" <td>254067.427156</td>\n",
" <td>0.0</td>\n",
" <td>3030172.0</td>\n",
" <td>8019.0</td>\n",
" <td>1021.0</td>\n",
" <td>...</td>\n",
" <td>3.0</td>\n",
" <td>628194.0</td>\n",
" <td>254062.0</td>\n",
" <td>1.436468</td>\n",
" <td>40.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>227</th>\n",
" <td>233</td>\n",
" <td>{F59652BD-3ACE-45B1-9FBD-F2F98054770D}</td>\n",
" <td>20.499503</td>\n",
" <td>0</td>\n",
" <td>628223.898944</td>\n",
" <td>254051.908896</td>\n",
" <td>0.0</td>\n",
" <td>430925.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>628216.0</td>\n",
" <td>254049.0</td>\n",
" <td>0.901785</td>\n",
" <td>38.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.135188</td>\n",
" <td>0.200000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>311</th>\n",
" <td>330</td>\n",
" <td>{1DB7FF99-FB26-4FA6-85AC-E17E8CF77F92}</td>\n",
" <td>33.958161</td>\n",
" <td>0</td>\n",
" <td>628210.343499</td>\n",
" <td>254193.683539</td>\n",
" <td>0.0</td>\n",
" <td>3032289.0</td>\n",
" <td>8019.0</td>\n",
" <td>1021.0</td>\n",
" <td>...</td>\n",
" <td>2.0</td>\n",
" <td>628203.0</td>\n",
" <td>254195.0</td>\n",
" <td>0.697815</td>\n",
" <td>30.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.204022</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>322</th>\n",
" <td>341</td>\n",
" <td>{7E26B49D-CE7A-4A50-AF60-05A80718E36F}</td>\n",
" <td>756.108672</td>\n",
" <td>0</td>\n",
" <td>627999.258940</td>\n",
" <td>254034.056541</td>\n",
" <td>0.0</td>\n",
" <td>2360253.0</td>\n",
" <td>8015.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>628025.0</td>\n",
" <td>254034.0</td>\n",
" <td>0.169583</td>\n",
" <td>16.0</td>\n",
" <td>9</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.426995</td>\n",
" <td>0.015789</td>\n",
" </tr>\n",
" <tr>\n",
" <th>353</th>\n",
" <td>372</td>\n",
" <td>{5939F926-C517-4FBC-8BDF-E5FA63394885}</td>\n",
" <td>9.286116</td>\n",
" <td>0</td>\n",
" <td>628191.864031</td>\n",
" <td>254182.508210</td>\n",
" <td>0.0</td>\n",
" <td>245000420.0</td>\n",
" <td>8019.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>628185.0</td>\n",
" <td>254180.0</td>\n",
" <td>1.328678</td>\n",
" <td>32.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.298433</td>\n",
" <td>0.500000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>370</th>\n",
" <td>389</td>\n",
" <td>{C028D467-CFD3-4F7C-9C4D-7EDA7ACE2CED}</td>\n",
" <td>47.997201</td>\n",
" <td>0</td>\n",
" <td>628195.891187</td>\n",
" <td>254144.298289</td>\n",
" <td>0.0</td>\n",
" <td>245058420.0</td>\n",
" <td>8011.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>628196.0</td>\n",
" <td>254146.0</td>\n",
" <td>0.580531</td>\n",
" <td>41.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.230954</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>400</th>\n",
" <td>420</td>\n",
" <td>{4E485D48-299E-4328-992B-AF64F98FD330}</td>\n",
" <td>31.183380</td>\n",
" <td>0</td>\n",
" <td>628127.978124</td>\n",
" <td>254128.071967</td>\n",
" <td>0.0</td>\n",
" <td>430882.0</td>\n",
" <td>8013.0</td>\n",
" <td>1030.0</td>\n",
" <td>...</td>\n",
" <td>4.0</td>\n",
" <td>628125.0</td>\n",
" <td>254120.0</td>\n",
" <td>0.716537</td>\n",
" <td>37.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.177741</td>\n",
" <td>0.571429</td>\n",
" </tr>\n",
" <tr>\n",
" <th>407</th>\n",
" <td>427</td>\n",
" <td>{D6952202-76B8-4ED7-B4A0-1C234C112601}</td>\n",
" <td>27.367197</td>\n",
" <td>0</td>\n",
" <td>628021.042452</td>\n",
" <td>254209.020314</td>\n",
" <td>0.0</td>\n",
" <td>3030625.0</td>\n",
" <td>8019.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>3.0</td>\n",
" <td>628012.0</td>\n",
" <td>254211.0</td>\n",
" <td>0.879711</td>\n",
" <td>22.0</td>\n",
" <td>8</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.101263</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639142</th>\n",
" <td>9889935</td>\n",
" <td>{4F9E976D-6F54-4A63-BAC0-C74805EB357A}</td>\n",
" <td>7.200696</td>\n",
" <td>0</td>\n",
" <td>683599.242494</td>\n",
" <td>253872.453865</td>\n",
" <td>0.0</td>\n",
" <td>302019393.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>7.0</td>\n",
" <td>683597.0</td>\n",
" <td>253873.0</td>\n",
" <td>1.491464</td>\n",
" <td>31.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639147</th>\n",
" <td>9889940</td>\n",
" <td>{7A47B46F-8CF9-47AB-B9F4-AAED05777DDC}</td>\n",
" <td>5.602632</td>\n",
" <td>0</td>\n",
" <td>683523.790089</td>\n",
" <td>253862.179405</td>\n",
" <td>0.0</td>\n",
" <td>302019386.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>6.0</td>\n",
" <td>683523.0</td>\n",
" <td>253863.0</td>\n",
" <td>1.690676</td>\n",
" <td>44.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639153</th>\n",
" <td>9889946</td>\n",
" <td>{7A47B46F-8CF9-47AB-B9F4-AAED05777DDC}</td>\n",
" <td>12.430050</td>\n",
" <td>0</td>\n",
" <td>683520.689891</td>\n",
" <td>253869.495242</td>\n",
" <td>0.0</td>\n",
" <td>302019386.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>6.0</td>\n",
" <td>683523.0</td>\n",
" <td>253863.0</td>\n",
" <td>3.006134</td>\n",
" <td>44.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.333333</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639154</th>\n",
" <td>9889947</td>\n",
" <td>{7A47B46F-8CF9-47AB-B9F4-AAED05777DDC}</td>\n",
" <td>20.471845</td>\n",
" <td>0</td>\n",
" <td>683521.355929</td>\n",
" <td>253867.684787</td>\n",
" <td>0.0</td>\n",
" <td>302019386.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>6.0</td>\n",
" <td>683523.0</td>\n",
" <td>253863.0</td>\n",
" <td>1.868956</td>\n",
" <td>44.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639155</th>\n",
" <td>9889948</td>\n",
" <td>{7A47B46F-8CF9-47AB-B9F4-AAED05777DDC}</td>\n",
" <td>87.567810</td>\n",
" <td>0</td>\n",
" <td>683522.916840</td>\n",
" <td>253863.597073</td>\n",
" <td>0.0</td>\n",
" <td>302019386.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>6.0</td>\n",
" <td>683523.0</td>\n",
" <td>253863.0</td>\n",
" <td>0.945541</td>\n",
" <td>44.0</td>\n",
" <td>20</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.126589</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639156</th>\n",
" <td>9889949</td>\n",
" <td>{7A47B46F-8CF9-47AB-B9F4-AAED05777DDC}</td>\n",
" <td>18.711647</td>\n",
" <td>0</td>\n",
" <td>683524.576246</td>\n",
" <td>253859.314785</td>\n",
" <td>0.0</td>\n",
" <td>302019386.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>6.0</td>\n",
" <td>683523.0</td>\n",
" <td>253863.0</td>\n",
" <td>2.034357</td>\n",
" <td>44.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639157</th>\n",
" <td>9889950</td>\n",
" <td>{7A47B46F-8CF9-47AB-B9F4-AAED05777DDC}</td>\n",
" <td>15.143709</td>\n",
" <td>0</td>\n",
" <td>683525.222032</td>\n",
" <td>253857.515667</td>\n",
" <td>0.0</td>\n",
" <td>302019386.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>6.0</td>\n",
" <td>683523.0</td>\n",
" <td>253863.0</td>\n",
" <td>2.487412</td>\n",
" <td>44.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639158</th>\n",
" <td>9889951</td>\n",
" <td>{7A47B46F-8CF9-47AB-B9F4-AAED05777DDC}</td>\n",
" <td>27.718956</td>\n",
" <td>0</td>\n",
" <td>683526.105832</td>\n",
" <td>253855.371914</td>\n",
" <td>0.0</td>\n",
" <td>302019386.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>6.0</td>\n",
" <td>683523.0</td>\n",
" <td>253863.0</td>\n",
" <td>1.409381</td>\n",
" <td>44.0</td>\n",
" <td>5</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639159</th>\n",
" <td>9889952</td>\n",
" <td>{33218C41-FD05-4129-84BF-35F9AE4B8DEA}</td>\n",
" <td>27.146920</td>\n",
" <td>0</td>\n",
" <td>683522.497638</td>\n",
" <td>253848.492476</td>\n",
" <td>0.0</td>\n",
" <td>302024412.0</td>\n",
" <td>8020.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>683522.0</td>\n",
" <td>253850.0</td>\n",
" <td>0.808241</td>\n",
" <td>42.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.102085</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639160</th>\n",
" <td>9889953</td>\n",
" <td>{33218C41-FD05-4129-84BF-35F9AE4B8DEA}</td>\n",
" <td>17.937427</td>\n",
" <td>0</td>\n",
" <td>683521.384955</td>\n",
" <td>253851.418767</td>\n",
" <td>0.0</td>\n",
" <td>302024412.0</td>\n",
" <td>8020.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>683522.0</td>\n",
" <td>253850.0</td>\n",
" <td>1.080589</td>\n",
" <td>42.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.077249</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639161</th>\n",
" <td>9889954</td>\n",
" <td>{30E9FCE7-F57C-4624-9FA5-0C903931BA7A}</td>\n",
" <td>502.960187</td>\n",
" <td>0</td>\n",
" <td>683578.111644</td>\n",
" <td>253809.392928</td>\n",
" <td>0.0</td>\n",
" <td>302019398.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>5.0</td>\n",
" <td>683580.0</td>\n",
" <td>253807.0</td>\n",
" <td>0.229966</td>\n",
" <td>36.0</td>\n",
" <td>10</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.393961</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639162</th>\n",
" <td>9889955</td>\n",
" <td>{30E9FCE7-F57C-4624-9FA5-0C903931BA7A}</td>\n",
" <td>5.883528</td>\n",
" <td>0</td>\n",
" <td>683579.647834</td>\n",
" <td>253805.163006</td>\n",
" <td>0.0</td>\n",
" <td>302019398.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>5.0</td>\n",
" <td>683580.0</td>\n",
" <td>253807.0</td>\n",
" <td>1.649121</td>\n",
" <td>36.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639163</th>\n",
" <td>9889956</td>\n",
" <td>{D845500B-87C2-4171-B466-A114E27345D1}</td>\n",
" <td>6.070264</td>\n",
" <td>0</td>\n",
" <td>683537.915617</td>\n",
" <td>253910.151911</td>\n",
" <td>0.0</td>\n",
" <td>302019389.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>7.0</td>\n",
" <td>683538.0</td>\n",
" <td>253911.0</td>\n",
" <td>1.623570</td>\n",
" <td>45.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639168</th>\n",
" <td>9889961</td>\n",
" <td>{D845500B-87C2-4171-B466-A114E27345D1}</td>\n",
" <td>316.665793</td>\n",
" <td>0</td>\n",
" <td>683536.102371</td>\n",
" <td>253912.887966</td>\n",
" <td>0.0</td>\n",
" <td>302019389.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>7.0</td>\n",
" <td>683538.0</td>\n",
" <td>253911.0</td>\n",
" <td>1.568140</td>\n",
" <td>45.0</td>\n",
" <td>32</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.030630</td>\n",
" <td>0.026667</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639179</th>\n",
" <td>9889972</td>\n",
" <td>{AF5709F5-8DEB-4753-83EA-2C3BDD43656D}</td>\n",
" <td>27.149089</td>\n",
" <td>0</td>\n",
" <td>683509.039328</td>\n",
" <td>253843.371654</td>\n",
" <td>0.0</td>\n",
" <td>302024410.0</td>\n",
" <td>8020.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>683508.0</td>\n",
" <td>253845.0</td>\n",
" <td>0.808250</td>\n",
" <td>43.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.102076</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639180</th>\n",
" <td>9889973</td>\n",
" <td>{AF5709F5-8DEB-4753-83EA-2C3BDD43656D}</td>\n",
" <td>17.948295</td>\n",
" <td>0</td>\n",
" <td>683507.926278</td>\n",
" <td>253846.298011</td>\n",
" <td>0.0</td>\n",
" <td>302024410.0</td>\n",
" <td>8020.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>683508.0</td>\n",
" <td>253845.0</td>\n",
" <td>1.080241</td>\n",
" <td>43.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.077202</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639183</th>\n",
" <td>9889976</td>\n",
" <td>{85E23C32-C62C-4516-803D-6B8B45A9D376}</td>\n",
" <td>121.889368</td>\n",
" <td>0</td>\n",
" <td>683618.091902</td>\n",
" <td>253869.268816</td>\n",
" <td>0.0</td>\n",
" <td>302024764.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>3.0</td>\n",
" <td>683616.0</td>\n",
" <td>253871.0</td>\n",
" <td>0.621486</td>\n",
" <td>25.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.215992</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639184</th>\n",
" <td>9889977</td>\n",
" <td>{85E23C32-C62C-4516-803D-6B8B45A9D376}</td>\n",
" <td>100.298458</td>\n",
" <td>0</td>\n",
" <td>683617.640300</td>\n",
" <td>253872.593539</td>\n",
" <td>0.0</td>\n",
" <td>302024764.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>3.0</td>\n",
" <td>683616.0</td>\n",
" <td>253871.0</td>\n",
" <td>0.768329</td>\n",
" <td>25.0</td>\n",
" <td>6</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.124337</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639190</th>\n",
" <td>9889983</td>\n",
" <td>{D97438F4-4398-4E10-8542-284DE0BB211E}</td>\n",
" <td>192.593823</td>\n",
" <td>0</td>\n",
" <td>683489.524819</td>\n",
" <td>253849.389781</td>\n",
" <td>0.0</td>\n",
" <td>302019384.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>7.0</td>\n",
" <td>683489.0</td>\n",
" <td>253850.0</td>\n",
" <td>1.438593</td>\n",
" <td>39.0</td>\n",
" <td>28</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.079141</td>\n",
" <td>0.042553</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639194</th>\n",
" <td>9889987</td>\n",
" <td>{D97438F4-4398-4E10-8542-284DE0BB211E}</td>\n",
" <td>5.602632</td>\n",
" <td>0</td>\n",
" <td>683489.992008</td>\n",
" <td>253849.329323</td>\n",
" <td>0.0</td>\n",
" <td>302019384.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>7.0</td>\n",
" <td>683489.0</td>\n",
" <td>253850.0</td>\n",
" <td>1.690676</td>\n",
" <td>39.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639195</th>\n",
" <td>9889988</td>\n",
" <td>{A3CE165E-3A96-4E34-83BF-68B6CE064E3F}</td>\n",
" <td>168.922592</td>\n",
" <td>0</td>\n",
" <td>683537.167254</td>\n",
" <td>253810.562715</td>\n",
" <td>0.0</td>\n",
" <td>302019396.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>5.0</td>\n",
" <td>683538.0</td>\n",
" <td>253811.0</td>\n",
" <td>0.377257</td>\n",
" <td>43.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.328113</td>\n",
" <td>0.045455</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639196</th>\n",
" <td>9889989</td>\n",
" <td>{A3CE165E-3A96-4E34-83BF-68B6CE064E3F}</td>\n",
" <td>5.973544</td>\n",
" <td>0</td>\n",
" <td>683535.582918</td>\n",
" <td>253813.905211</td>\n",
" <td>0.0</td>\n",
" <td>302019396.0</td>\n",
" <td>8020.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>5.0</td>\n",
" <td>683538.0</td>\n",
" <td>253811.0</td>\n",
" <td>1.636984</td>\n",
" <td>43.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639197</th>\n",
" <td>9889990</td>\n",
" <td>{0D9CEFCD-902E-41C5-AC42-274C2E3EAE53}</td>\n",
" <td>52.048368</td>\n",
" <td>0</td>\n",
" <td>683551.017724</td>\n",
" <td>253859.341679</td>\n",
" <td>0.0</td>\n",
" <td>302024415.0</td>\n",
" <td>8020.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>683551.0</td>\n",
" <td>253861.0</td>\n",
" <td>0.675452</td>\n",
" <td>43.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.159733</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639198</th>\n",
" <td>9889991</td>\n",
" <td>{0D9CEFCD-902E-41C5-AC42-274C2E3EAE53}</td>\n",
" <td>39.066331</td>\n",
" <td>0</td>\n",
" <td>683550.345285</td>\n",
" <td>253862.659239</td>\n",
" <td>0.0</td>\n",
" <td>302024415.0</td>\n",
" <td>8020.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>683551.0</td>\n",
" <td>253861.0</td>\n",
" <td>0.889210</td>\n",
" <td>43.0</td>\n",
" <td>6</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.106407</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639199</th>\n",
" <td>9889992</td>\n",
" <td>{5EF4AE5E-5A04-43E0-B4E3-D7A6E054CA53}</td>\n",
" <td>80.279603</td>\n",
" <td>0</td>\n",
" <td>683592.935714</td>\n",
" <td>253926.358452</td>\n",
" <td>0.0</td>\n",
" <td>302033802.0</td>\n",
" <td>8020.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>683593.0</td>\n",
" <td>253926.0</td>\n",
" <td>0.746306</td>\n",
" <td>24.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.138081</td>\n",
" <td>0.050000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639200</th>\n",
" <td>9889993</td>\n",
" <td>{8E30AE19-B684-4897-941F-D2B511881621}</td>\n",
" <td>31.399356</td>\n",
" <td>0</td>\n",
" <td>683601.935180</td>\n",
" <td>253758.033967</td>\n",
" <td>0.0</td>\n",
" <td>302060962.0</td>\n",
" <td>8022.0</td>\n",
" <td>1025.0</td>\n",
" <td>...</td>\n",
" <td>7.0</td>\n",
" <td>683599.0</td>\n",
" <td>253752.0</td>\n",
" <td>0.746209</td>\n",
" <td>20.0</td>\n",
" <td>6</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.176518</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639201</th>\n",
" <td>9889994</td>\n",
" <td>{97CD100C-C434-4C03-A3F7-D3F9524AE1E5}</td>\n",
" <td>10.427635</td>\n",
" <td>0</td>\n",
" <td>683806.599770</td>\n",
" <td>253949.998246</td>\n",
" <td>0.0</td>\n",
" <td>302021356.0</td>\n",
" <td>8020.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>683807.0</td>\n",
" <td>253950.0</td>\n",
" <td>1.256860</td>\n",
" <td>1.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639202</th>\n",
" <td>9889995</td>\n",
" <td>{02024B9E-B05E-4355-BA84-AF3BB85176FB}</td>\n",
" <td>7.403436</td>\n",
" <td>0</td>\n",
" <td>683790.710893</td>\n",
" <td>253950.274145</td>\n",
" <td>0.0</td>\n",
" <td>302017881.0</td>\n",
" <td>8018.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>683795.0</td>\n",
" <td>253952.0</td>\n",
" <td>1.470500</td>\n",
" <td>1.0</td>\n",
" <td>5</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639203</th>\n",
" <td>9889996</td>\n",
" <td>{02024B9E-B05E-4355-BA84-AF3BB85176FB}</td>\n",
" <td>92.962710</td>\n",
" <td>0</td>\n",
" <td>683795.366549</td>\n",
" <td>253951.987280</td>\n",
" <td>0.0</td>\n",
" <td>302017881.0</td>\n",
" <td>8018.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>683795.0</td>\n",
" <td>253952.0</td>\n",
" <td>0.508800</td>\n",
" <td>1.0</td>\n",
" <td>8</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.268296</td>\n",
" <td>0.041667</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9639209</th>\n",
" <td>9890002</td>\n",
" <td>{C0FD62CF-FA6E-4CB0-AB96-17D725631DDA}</td>\n",
" <td>11.937935</td>\n",
" <td>0</td>\n",
" <td>684219.249721</td>\n",
" <td>253840.300209</td>\n",
" <td>0.0</td>\n",
" <td>302021503.0</td>\n",
" <td>8020.0</td>\n",
" <td>1060.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>684219.0</td>\n",
" <td>253841.0</td>\n",
" <td>1.224940</td>\n",
" <td>10.0</td>\n",
" <td>4</td>\n",
" <td>180.0</td>\n",
" <td>30</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1154667 rows × 21 columns</p>\n",
"</div>"
],
"text/plain": [
" DF_UID SB_UUID FLAECHE \\\n",
"31 33 {0E182AE6-B2B7-4CF8-AB37-940E0310D6CB} 27.568645 \n",
"48 50 {AF2290C1-3867-4575-B160-54F495756DC7} 681.609660 \n",
"49 51 {AF2290C1-3867-4575-B160-54F495756DC7} 609.169499 \n",
"50 52 {AF2290C1-3867-4575-B160-54F495756DC7} 1523.273993 \n",
"51 53 {AF2290C1-3867-4575-B160-54F495756DC7} 1332.294940 \n",
"52 54 {AF2290C1-3867-4575-B160-54F495756DC7} 1344.947851 \n",
"61 63 {F83A82E2-222B-4410-ADDE-93D16325A5FB} 5.166799 \n",
"62 64 {5E4F5D5B-6C9E-4A4F-BD83-40FF4F58350A} 38.989391 \n",
"65 67 {48C1049B-A8BC-4F4F-B53A-F1B0F8299315} 1018.456320 \n",
"66 68 {48C1049B-A8BC-4F4F-B53A-F1B0F8299315} 350.584181 \n",
"67 69 {48C1049B-A8BC-4F4F-B53A-F1B0F8299315} 552.018229 \n",
"74 76 {0EC9A383-F98C-43B6-BC5D-86F32AC3753B} 45.863031 \n",
"76 78 {0EC9A383-F98C-43B6-BC5D-86F32AC3753B} 73.968605 \n",
"80 82 {817D1FC4-6DF1-4F7F-8E46-C215E1B12EBA} 40.704476 \n",
"86 88 {E85CC83D-D8CE-42A3-940B-0CAABD8B4D17} 51.579906 \n",
"101 105 {572C2E66-8D48-4A99-839A-08723755F8B0} 23.291964 \n",
"120 124 {F47F8780-D09E-48C1-8386-00D7F98BFEB7} 29.551728 \n",
"121 125 {45D9BF4B-789E-43F1-B75F-FBB96A0CF33B} 64.430985 \n",
"165 169 {D8C149BD-4BFE-4E9F-87FC-B84B981B22BD} 40.901631 \n",
"214 219 {BBFA2A04-84C2-44E0-891C-22FA14A034AD} 49.654829 \n",
"215 220 {BBFA2A04-84C2-44E0-891C-22FA14A034AD} 30.840837 \n",
"219 224 {6EB94ACE-BD99-460E-9DA3-387F17A02F88} 18.906543 \n",
"220 225 {49C3BAA3-2267-469D-B9C4-C1B281C1FB9E} 7.881839 \n",
"227 233 {F59652BD-3ACE-45B1-9FBD-F2F98054770D} 20.499503 \n",
"311 330 {1DB7FF99-FB26-4FA6-85AC-E17E8CF77F92} 33.958161 \n",
"322 341 {7E26B49D-CE7A-4A50-AF60-05A80718E36F} 756.108672 \n",
"353 372 {5939F926-C517-4FBC-8BDF-E5FA63394885} 9.286116 \n",
"370 389 {C028D467-CFD3-4F7C-9C4D-7EDA7ACE2CED} 47.997201 \n",
"400 420 {4E485D48-299E-4328-992B-AF64F98FD330} 31.183380 \n",
"407 427 {D6952202-76B8-4ED7-B4A0-1C234C112601} 27.367197 \n",
"... ... ... ... \n",
"9639142 9889935 {4F9E976D-6F54-4A63-BAC0-C74805EB357A} 7.200696 \n",
"9639147 9889940 {7A47B46F-8CF9-47AB-B9F4-AAED05777DDC} 5.602632 \n",
"9639153 9889946 {7A47B46F-8CF9-47AB-B9F4-AAED05777DDC} 12.430050 \n",
"9639154 9889947 {7A47B46F-8CF9-47AB-B9F4-AAED05777DDC} 20.471845 \n",
"9639155 9889948 {7A47B46F-8CF9-47AB-B9F4-AAED05777DDC} 87.567810 \n",
"9639156 9889949 {7A47B46F-8CF9-47AB-B9F4-AAED05777DDC} 18.711647 \n",
"9639157 9889950 {7A47B46F-8CF9-47AB-B9F4-AAED05777DDC} 15.143709 \n",
"9639158 9889951 {7A47B46F-8CF9-47AB-B9F4-AAED05777DDC} 27.718956 \n",
"9639159 9889952 {33218C41-FD05-4129-84BF-35F9AE4B8DEA} 27.146920 \n",
"9639160 9889953 {33218C41-FD05-4129-84BF-35F9AE4B8DEA} 17.937427 \n",
"9639161 9889954 {30E9FCE7-F57C-4624-9FA5-0C903931BA7A} 502.960187 \n",
"9639162 9889955 {30E9FCE7-F57C-4624-9FA5-0C903931BA7A} 5.883528 \n",
"9639163 9889956 {D845500B-87C2-4171-B466-A114E27345D1} 6.070264 \n",
"9639168 9889961 {D845500B-87C2-4171-B466-A114E27345D1} 316.665793 \n",
"9639179 9889972 {AF5709F5-8DEB-4753-83EA-2C3BDD43656D} 27.149089 \n",
"9639180 9889973 {AF5709F5-8DEB-4753-83EA-2C3BDD43656D} 17.948295 \n",
"9639183 9889976 {85E23C32-C62C-4516-803D-6B8B45A9D376} 121.889368 \n",
"9639184 9889977 {85E23C32-C62C-4516-803D-6B8B45A9D376} 100.298458 \n",
"9639190 9889983 {D97438F4-4398-4E10-8542-284DE0BB211E} 192.593823 \n",
"9639194 9889987 {D97438F4-4398-4E10-8542-284DE0BB211E} 5.602632 \n",
"9639195 9889988 {A3CE165E-3A96-4E34-83BF-68B6CE064E3F} 168.922592 \n",
"9639196 9889989 {A3CE165E-3A96-4E34-83BF-68B6CE064E3F} 5.973544 \n",
"9639197 9889990 {0D9CEFCD-902E-41C5-AC42-274C2E3EAE53} 52.048368 \n",
"9639198 9889991 {0D9CEFCD-902E-41C5-AC42-274C2E3EAE53} 39.066331 \n",
"9639199 9889992 {5EF4AE5E-5A04-43E0-B4E3-D7A6E054CA53} 80.279603 \n",
"9639200 9889993 {8E30AE19-B684-4897-941F-D2B511881621} 31.399356 \n",
"9639201 9889994 {97CD100C-C434-4C03-A3F7-D3F9524AE1E5} 10.427635 \n",
"9639202 9889995 {02024B9E-B05E-4355-BA84-AF3BB85176FB} 7.403436 \n",
"9639203 9889996 {02024B9E-B05E-4355-BA84-AF3BB85176FB} 92.962710 \n",
"9639209 9890002 {C0FD62CF-FA6E-4CB0-AB96-17D725631DDA} 11.937935 \n",
"\n",
" NEIGUNG XCOORD YCOORD AUSRICHTUNG GWR_EGID \\\n",
"31 0 622443.648193 254088.496398 0.0 245049569.0 \n",
"48 0 624744.786885 254213.178640 0.0 2361838.0 \n",
"49 0 624700.866428 254270.417857 0.0 2361838.0 \n",
"50 0 624749.048656 254246.125799 0.0 2361838.0 \n",
"51 0 624768.067357 254198.593359 0.0 2361838.0 \n",
"52 0 624721.337023 254227.820131 0.0 2361838.0 \n",
"61 0 624863.365921 254237.320991 0.0 3032511.0 \n",
"62 0 624853.582435 254244.803252 0.0 245054942.0 \n",
"65 0 624922.140087 254162.085863 0.0 245038324.0 \n",
"66 0 624888.562638 254171.393540 0.0 245038324.0 \n",
"67 0 624902.768127 254181.500254 0.0 245038324.0 \n",
"74 0 624862.277386 254058.546342 0.0 3032005.0 \n",
"76 0 624855.911866 254063.758643 0.0 3032005.0 \n",
"80 0 624992.172735 254072.793140 0.0 245061375.0 \n",
"86 0 627780.974184 254002.644257 0.0 245000359.0 \n",
"101 0 628063.176823 254003.110151 0.0 430920.0 \n",
"120 0 628107.812190 254155.949988 0.0 430883.0 \n",
"121 0 628065.143850 254236.140115 0.0 430777.0 \n",
"165 0 628154.918666 254198.096885 0.0 245048324.0 \n",
"214 0 628062.649378 254053.465941 0.0 430898.0 \n",
"215 0 628062.608542 254048.045143 0.0 430898.0 \n",
"219 0 628051.410827 254049.777477 0.0 430898.0 \n",
"220 0 628198.521851 254067.427156 0.0 3030172.0 \n",
"227 0 628223.898944 254051.908896 0.0 430925.0 \n",
"311 0 628210.343499 254193.683539 0.0 3032289.0 \n",
"322 0 627999.258940 254034.056541 0.0 2360253.0 \n",
"353 0 628191.864031 254182.508210 0.0 245000420.0 \n",
"370 0 628195.891187 254144.298289 0.0 245058420.0 \n",
"400 0 628127.978124 254128.071967 0.0 430882.0 \n",
"407 0 628021.042452 254209.020314 0.0 3030625.0 \n",
"... ... ... ... ... ... \n",
"9639142 0 683599.242494 253872.453865 0.0 302019393.0 \n",
"9639147 0 683523.790089 253862.179405 0.0 302019386.0 \n",
"9639153 0 683520.689891 253869.495242 0.0 302019386.0 \n",
"9639154 0 683521.355929 253867.684787 0.0 302019386.0 \n",
"9639155 0 683522.916840 253863.597073 0.0 302019386.0 \n",
"9639156 0 683524.576246 253859.314785 0.0 302019386.0 \n",
"9639157 0 683525.222032 253857.515667 0.0 302019386.0 \n",
"9639158 0 683526.105832 253855.371914 0.0 302019386.0 \n",
"9639159 0 683522.497638 253848.492476 0.0 302024412.0 \n",
"9639160 0 683521.384955 253851.418767 0.0 302024412.0 \n",
"9639161 0 683578.111644 253809.392928 0.0 302019398.0 \n",
"9639162 0 683579.647834 253805.163006 0.0 302019398.0 \n",
"9639163 0 683537.915617 253910.151911 0.0 302019389.0 \n",
"9639168 0 683536.102371 253912.887966 0.0 302019389.0 \n",
"9639179 0 683509.039328 253843.371654 0.0 302024410.0 \n",
"9639180 0 683507.926278 253846.298011 0.0 302024410.0 \n",
"9639183 0 683618.091902 253869.268816 0.0 302024764.0 \n",
"9639184 0 683617.640300 253872.593539 0.0 302024764.0 \n",
"9639190 0 683489.524819 253849.389781 0.0 302019384.0 \n",
"9639194 0 683489.992008 253849.329323 0.0 302019384.0 \n",
"9639195 0 683537.167254 253810.562715 0.0 302019396.0 \n",
"9639196 0 683535.582918 253813.905211 0.0 302019396.0 \n",
"9639197 0 683551.017724 253859.341679 0.0 302024415.0 \n",
"9639198 0 683550.345285 253862.659239 0.0 302024415.0 \n",
"9639199 0 683592.935714 253926.358452 0.0 302033802.0 \n",
"9639200 0 683601.935180 253758.033967 0.0 302060962.0 \n",
"9639201 0 683806.599770 253949.998246 0.0 302021356.0 \n",
"9639202 0 683790.710893 253950.274145 0.0 302017881.0 \n",
"9639203 0 683795.366549 253951.987280 0.0 302017881.0 \n",
"9639209 0 684219.249721 253840.300209 0.0 302021503.0 \n",
"\n",
" GBAUP GKAT ... GASTW GKODX GKODY \\\n",
"31 8011.0 1060.0 ... 1.0 622443.0 254084.0 \n",
"48 8018.0 1060.0 ... 1.0 624739.0 254230.0 \n",
"49 8018.0 1060.0 ... 1.0 624739.0 254230.0 \n",
"50 8018.0 1060.0 ... 1.0 624739.0 254230.0 \n",
"51 8018.0 1060.0 ... 1.0 624739.0 254230.0 \n",
"52 8018.0 1060.0 ... 1.0 624739.0 254230.0 \n",
"61 8017.0 1030.0 ... 1.0 624870.0 254245.0 \n",
"62 8017.0 1030.0 ... 1.0 624854.0 254246.0 \n",
"65 8019.0 1040.0 ... 2.0 624919.0 254163.0 \n",
"66 8019.0 1040.0 ... 2.0 624919.0 254163.0 \n",
"67 8019.0 1040.0 ... 2.0 624919.0 254163.0 \n",
"74 8019.0 1060.0 ... 1.0 624859.0 254062.0 \n",
"76 8019.0 1060.0 ... 1.0 624859.0 254062.0 \n",
"80 8019.0 1060.0 ... 1.0 624882.0 254083.0 \n",
"86 8015.0 1060.0 ... 1.0 627783.0 254011.0 \n",
"101 8011.0 1021.0 ... 2.0 628069.0 254004.0 \n",
"120 8011.0 1030.0 ... 4.0 628113.0 254145.0 \n",
"121 8011.0 1025.0 ... 3.0 628075.0 254230.0 \n",
"165 8020.0 1021.0 ... 2.0 628154.0 254203.0 \n",
"214 8011.0 1025.0 ... 4.0 628058.0 254043.0 \n",
"215 8011.0 1025.0 ... 4.0 628058.0 254043.0 \n",
"219 8011.0 1025.0 ... 4.0 628058.0 254043.0 \n",
"220 8019.0 1021.0 ... 3.0 628194.0 254062.0 \n",
"227 8011.0 1025.0 ... 2.0 628216.0 254049.0 \n",
"311 8019.0 1021.0 ... 2.0 628203.0 254195.0 \n",
"322 8015.0 1060.0 ... 1.0 628025.0 254034.0 \n",
"353 8019.0 1060.0 ... 1.0 628185.0 254180.0 \n",
"370 8011.0 1060.0 ... 1.0 628196.0 254146.0 \n",
"400 8013.0 1030.0 ... 4.0 628125.0 254120.0 \n",
"407 8019.0 1025.0 ... 3.0 628012.0 254211.0 \n",
"... ... ... ... ... ... ... \n",
"9639142 8020.0 1025.0 ... 7.0 683597.0 253873.0 \n",
"9639147 8020.0 1025.0 ... 6.0 683523.0 253863.0 \n",
"9639153 8020.0 1025.0 ... 6.0 683523.0 253863.0 \n",
"9639154 8020.0 1025.0 ... 6.0 683523.0 253863.0 \n",
"9639155 8020.0 1025.0 ... 6.0 683523.0 253863.0 \n",
"9639156 8020.0 1025.0 ... 6.0 683523.0 253863.0 \n",
"9639157 8020.0 1025.0 ... 6.0 683523.0 253863.0 \n",
"9639158 8020.0 1025.0 ... 6.0 683523.0 253863.0 \n",
"9639159 8020.0 1060.0 ... 1.0 683522.0 253850.0 \n",
"9639160 8020.0 1060.0 ... 1.0 683522.0 253850.0 \n",
"9639161 8020.0 1025.0 ... 5.0 683580.0 253807.0 \n",
"9639162 8020.0 1025.0 ... 5.0 683580.0 253807.0 \n",
"9639163 8020.0 1025.0 ... 7.0 683538.0 253911.0 \n",
"9639168 8020.0 1025.0 ... 7.0 683538.0 253911.0 \n",
"9639179 8020.0 1060.0 ... 1.0 683508.0 253845.0 \n",
"9639180 8020.0 1060.0 ... 1.0 683508.0 253845.0 \n",
"9639183 8020.0 1025.0 ... 3.0 683616.0 253871.0 \n",
"9639184 8020.0 1025.0 ... 3.0 683616.0 253871.0 \n",
"9639190 8020.0 1025.0 ... 7.0 683489.0 253850.0 \n",
"9639194 8020.0 1025.0 ... 7.0 683489.0 253850.0 \n",
"9639195 8020.0 1025.0 ... 5.0 683538.0 253811.0 \n",
"9639196 8020.0 1025.0 ... 5.0 683538.0 253811.0 \n",
"9639197 8020.0 1060.0 ... 1.0 683551.0 253861.0 \n",
"9639198 8020.0 1060.0 ... 1.0 683551.0 253861.0 \n",
"9639199 8020.0 1060.0 ... 1.0 683593.0 253926.0 \n",
"9639200 8022.0 1025.0 ... 7.0 683599.0 253752.0 \n",
"9639201 8020.0 1060.0 ... 1.0 683807.0 253950.0 \n",
"9639202 8018.0 1060.0 ... 1.0 683795.0 253952.0 \n",
"9639203 8018.0 1060.0 ... 1.0 683795.0 253952.0 \n",
"9639209 8020.0 1060.0 ... 1.0 684219.0 253841.0 \n",
"\n",
" Shape_Ratio n_neighbors_100 n_corners panel_direction panel_tilt \\\n",
"31 0.762308 2.0 4 180.0 30 \n",
"48 0.162401 32.0 5 180.0 30 \n",
"49 0.188920 32.0 4 180.0 30 \n",
"50 0.115776 32.0 8 180.0 30 \n",
"51 0.109587 32.0 4 180.0 30 \n",
"52 0.109071 32.0 4 180.0 30 \n",
"61 1.762661 21.0 4 180.0 30 \n",
"62 0.714579 22.0 6 180.0 30 \n",
"65 0.148195 7.0 6 180.0 30 \n",
"66 0.227961 7.0 6 180.0 30 \n",
"67 0.305340 7.0 12 180.0 30 \n",
"74 0.590713 4.0 5 180.0 30 \n",
"76 0.625616 4.0 5 180.0 30 \n",
"80 0.627283 5.0 5 180.0 30 \n",
"86 0.612906 3.0 8 180.0 30 \n",
"101 0.908534 23.0 4 180.0 30 \n",
"120 0.745832 33.0 5 180.0 30 \n",
"121 0.554923 30.0 6 180.0 30 \n",
"165 0.829660 27.0 10 180.0 30 \n",
"214 0.607512 24.0 6 180.0 30 \n",
"215 0.962769 24.0 6 180.0 30 \n",
"219 1.658057 24.0 4 180.0 30 \n",
"220 1.436468 40.0 4 180.0 30 \n",
"227 0.901785 38.0 4 180.0 30 \n",
"311 0.697815 30.0 4 180.0 30 \n",
"322 0.169583 16.0 9 180.0 30 \n",
"353 1.328678 32.0 4 180.0 30 \n",
"370 0.580531 41.0 4 180.0 30 \n",
"400 0.716537 37.0 4 180.0 30 \n",
"407 0.879711 22.0 8 180.0 30 \n",
"... ... ... ... ... ... \n",
"9639142 1.491464 31.0 4 180.0 30 \n",
"9639147 1.690676 44.0 4 180.0 30 \n",
"9639153 3.006134 44.0 4 180.0 30 \n",
"9639154 1.868956 44.0 4 180.0 30 \n",
"9639155 0.945541 44.0 20 180.0 30 \n",
"9639156 2.034357 44.0 4 180.0 30 \n",
"9639157 2.487412 44.0 4 180.0 30 \n",
"9639158 1.409381 44.0 5 180.0 30 \n",
"9639159 0.808241 42.0 4 180.0 30 \n",
"9639160 1.080589 42.0 4 180.0 30 \n",
"9639161 0.229966 36.0 10 180.0 30 \n",
"9639162 1.649121 36.0 4 180.0 30 \n",
"9639163 1.623570 45.0 4 180.0 30 \n",
"9639168 1.568140 45.0 32 180.0 30 \n",
"9639179 0.808250 43.0 4 180.0 30 \n",
"9639180 1.080241 43.0 4 180.0 30 \n",
"9639183 0.621486 25.0 4 180.0 30 \n",
"9639184 0.768329 25.0 6 180.0 30 \n",
"9639190 1.438593 39.0 28 180.0 30 \n",
"9639194 1.690676 39.0 4 180.0 30 \n",
"9639195 0.377257 43.0 4 180.0 30 \n",
"9639196 1.636984 43.0 4 180.0 30 \n",
"9639197 0.675452 43.0 4 180.0 30 \n",
"9639198 0.889210 43.0 6 180.0 30 \n",
"9639199 0.746306 24.0 4 180.0 30 \n",
"9639200 0.746209 20.0 6 180.0 30 \n",
"9639201 1.256860 1.0 4 180.0 30 \n",
"9639202 1.470500 1.0 5 180.0 30 \n",
"9639203 0.508800 1.0 8 180.0 30 \n",
"9639209 1.224940 10.0 4 180.0 30 \n",
"\n",
" panelled_area_ratio_ftr shaded_area_ratio_ftr \n",
"31 0.402092 0.000000 \n",
"48 0.412678 0.000000 \n",
"49 0.402611 0.052288 \n",
"50 0.437540 0.005249 \n",
"51 0.440977 0.000000 \n",
"52 0.440950 0.002985 \n",
"61 0.000000 0.000000 \n",
"62 0.213233 0.000000 \n",
"65 0.417683 0.000000 \n",
"66 0.379428 0.000000 \n",
"67 0.389071 0.000000 \n",
"74 0.241701 0.083333 \n",
"76 0.280992 0.631579 \n",
"80 0.204249 0.000000 \n",
"86 0.402959 0.000000 \n",
"101 0.237960 0.000000 \n",
"120 0.140666 0.000000 \n",
"121 0.258070 0.000000 \n",
"165 0.135510 0.000000 \n",
"214 0.195338 0.000000 \n",
"215 0.044929 0.142857 \n",
"219 0.000000 0.000000 \n",
"220 0.000000 0.000000 \n",
"227 0.135188 0.200000 \n",
"311 0.204022 0.000000 \n",
"322 0.426995 0.015789 \n",
"353 0.298433 0.500000 \n",
"370 0.230954 0.000000 \n",
"400 0.177741 0.571429 \n",
"407 0.101263 0.000000 \n",
"... ... ... \n",
"9639142 0.000000 0.000000 \n",
"9639147 0.000000 0.000000 \n",
"9639153 0.000000 0.333333 \n",
"9639154 0.000000 0.000000 \n",
"9639155 0.126589 0.000000 \n",
"9639156 0.000000 0.000000 \n",
"9639157 0.000000 0.000000 \n",
"9639158 0.000000 0.000000 \n",
"9639159 0.102085 0.000000 \n",
"9639160 0.077249 0.000000 \n",
"9639161 0.393961 0.000000 \n",
"9639162 0.000000 0.000000 \n",
"9639163 0.000000 0.000000 \n",
"9639168 0.030630 0.026667 \n",
"9639179 0.102076 0.000000 \n",
"9639180 0.077202 0.000000 \n",
"9639183 0.215992 0.000000 \n",
"9639184 0.124337 0.000000 \n",
"9639190 0.079141 0.042553 \n",
"9639194 0.000000 0.000000 \n",
"9639195 0.328113 0.045455 \n",
"9639196 0.000000 0.000000 \n",
"9639197 0.159733 0.000000 \n",
"9639198 0.106407 0.000000 \n",
"9639199 0.138081 0.050000 \n",
"9639200 0.176518 0.000000 \n",
"9639201 0.000000 0.000000 \n",
"9639202 0.000000 0.000000 \n",
"9639203 0.268296 0.041667 \n",
"9639209 0.000000 0.000000 \n",
"\n",
"[1154667 rows x 21 columns]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ALL_info[ALL_info.NEIGUNG == 0]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9639231"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(ALL_info.dropna())"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"ALL_info.to_csv( output_fp, index = False )"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Spielwiese"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ROOFS_FP = '/work/hyenergy/output/solar_potential/geographic_potential/CH_ROOFS_all_replaced.csv'\n",
+ "roofs = pd.read_csv( ROOFS_FP )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SON_columns = ['DF_UID', 'Shape_Length']\n",
+ "SON_info = pd.read_csv( SON_fp, usecols = SON_columns )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9639231\n",
+ "9639231\n"
+ ]
+ }
+ ],
+ "source": [
+ "print( len(roofs) )\n",
+ "print( len(SON_info) )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "roofs = roofs.set_index('DF_UID')\n",
+ "SON_info = SON_info.set_index('DF_UID')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "roofs['Shape_Length'] = SON_info.Shape_Length"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>SB_UUID</th>\n",
+ " <th>FLAECHE</th>\n",
+ " <th>NEIGUNG</th>\n",
+ " <th>XCOORD</th>\n",
+ " <th>YCOORD</th>\n",
+ " <th>AUSRICHTUNG</th>\n",
+ " <th>GWR_EGID</th>\n",
+ " <th>GBAUP</th>\n",
+ " <th>GKAT</th>\n",
+ " <th>GAREA</th>\n",
+ " <th>...</th>\n",
+ " <th>GKODX</th>\n",
+ " <th>GKODY</th>\n",
+ " <th>Shape_Ratio</th>\n",
+ " <th>n_neighbors_100</th>\n",
+ " <th>n_corners</th>\n",
+ " <th>panel_direction</th>\n",
+ " <th>panel_tilt</th>\n",
+ " <th>panelled_area_ratio_ftr</th>\n",
+ " <th>shaded_area_ratio_ftr</th>\n",
+ " <th>Shape_Length</th>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>DF_UID</th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
+ " <tr>\n",
+ " <th>1</th>\n",
+ " <td>{DEA19230-2728-42BF-8A28-573F5EB6C214}</td>\n",
+ " <td>15.948816</td>\n",
+ " <td>37</td>\n",
+ " <td>621674.951286</td>\n",
+ " <td>254203.972784</td>\n",
+ " <td>10.0</td>\n",
+ " <td>245033426.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1060.0</td>\n",
+ " <td>889.0</td>\n",
+ " <td>...</td>\n",
+ " <td>621682.0</td>\n",
+ " <td>254206.0</td>\n",
+ " <td>1.050710</td>\n",
+ " <td>2.0</td>\n",
+ " <td>4</td>\n",
+ " <td>190.0</td>\n",
+ " <td>37</td>\n",
+ " <td>0.300963</td>\n",
+ " <td>0.000000</td>\n",
+ " <td>16.757573</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2</th>\n",
+ " <td>{DEA19230-2728-42BF-8A28-573F5EB6C214}</td>\n",
+ " <td>13.730555</td>\n",
+ " <td>44</td>\n",
+ " <td>621675.374179</td>\n",
+ " <td>254206.313551</td>\n",
+ " <td>-170.0</td>\n",
+ " <td>245033426.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1060.0</td>\n",
+ " <td>889.0</td>\n",
+ " <td>...</td>\n",
+ " <td>621682.0</td>\n",
+ " <td>254206.0</td>\n",
+ " <td>1.132856</td>\n",
+ " <td>2.0</td>\n",
+ " <td>4</td>\n",
+ " <td>10.0</td>\n",
+ " <td>44</td>\n",
+ " <td>0.000000</td>\n",
+ " <td>0.000000</td>\n",
+ " <td>15.554747</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>3</th>\n",
+ " <td>{62E12FA3-D6C9-482C-A74C-CDCCE3D32EDD}</td>\n",
+ " <td>63.437476</td>\n",
+ " <td>12</td>\n",
+ " <td>621673.977050</td>\n",
+ " <td>254186.956803</td>\n",
+ " <td>-80.0</td>\n",
+ " <td>245033426.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1060.0</td>\n",
+ " <td>889.0</td>\n",
+ " <td>...</td>\n",
+ " <td>621682.0</td>\n",
+ " <td>254206.0</td>\n",
+ " <td>0.497312</td>\n",
+ " <td>2.0</td>\n",
+ " <td>4</td>\n",
+ " <td>100.0</td>\n",
+ " <td>12</td>\n",
+ " <td>0.706207</td>\n",
+ " <td>0.000000</td>\n",
+ " <td>31.548229</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>4</th>\n",
+ " <td>{99786E44-FF96-4250-A0A2-AF44CB189B28}</td>\n",
+ " <td>38.368910</td>\n",
+ " <td>33</td>\n",
+ " <td>621696.695450</td>\n",
+ " <td>254249.767806</td>\n",
+ " <td>-80.0</td>\n",
+ " <td>245033426.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1060.0</td>\n",
+ " <td>889.0</td>\n",
+ " <td>...</td>\n",
+ " <td>621682.0</td>\n",
+ " <td>254206.0</td>\n",
+ " <td>0.629591</td>\n",
+ " <td>2.0</td>\n",
+ " <td>4</td>\n",
+ " <td>100.0</td>\n",
+ " <td>33</td>\n",
+ " <td>0.583806</td>\n",
+ " <td>0.000000</td>\n",
+ " <td>24.156709</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>5</th>\n",
+ " <td>{99786E44-FF96-4250-A0A2-AF44CB189B28}</td>\n",
+ " <td>36.403273</td>\n",
+ " <td>35</td>\n",
+ " <td>621692.928934</td>\n",
+ " <td>254250.448974</td>\n",
+ " <td>100.0</td>\n",
+ " <td>245033426.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1060.0</td>\n",
+ " <td>889.0</td>\n",
+ " <td>...</td>\n",
+ " <td>621682.0</td>\n",
+ " <td>254206.0</td>\n",
+ " <td>0.647623</td>\n",
+ " <td>2.0</td>\n",
+ " <td>4</td>\n",
+ " <td>280.0</td>\n",
+ " <td>35</td>\n",
+ " <td>0.615329</td>\n",
+ " <td>0.285714</td>\n",
+ " <td>23.575579</td>\n",
+ " </tr>\n",
+ " </tbody>\n",
+ "</table>\n",
+ "<p>5 rows × 21 columns</p>\n",
+ "</div>"
+ ],
+ "text/plain": [
+ " SB_UUID FLAECHE NEIGUNG \\\n",
+ "DF_UID \n",
+ "1 {DEA19230-2728-42BF-8A28-573F5EB6C214} 15.948816 37 \n",
+ "2 {DEA19230-2728-42BF-8A28-573F5EB6C214} 13.730555 44 \n",
+ "3 {62E12FA3-D6C9-482C-A74C-CDCCE3D32EDD} 63.437476 12 \n",
+ "4 {99786E44-FF96-4250-A0A2-AF44CB189B28} 38.368910 33 \n",
+ "5 {99786E44-FF96-4250-A0A2-AF44CB189B28} 36.403273 35 \n",
+ "\n",
+ " XCOORD YCOORD AUSRICHTUNG GWR_EGID GBAUP \\\n",
+ "DF_UID \n",
+ "1 621674.951286 254203.972784 10.0 245033426.0 8011.0 \n",
+ "2 621675.374179 254206.313551 -170.0 245033426.0 8011.0 \n",
+ "3 621673.977050 254186.956803 -80.0 245033426.0 8011.0 \n",
+ "4 621696.695450 254249.767806 -80.0 245033426.0 8011.0 \n",
+ "5 621692.928934 254250.448974 100.0 245033426.0 8011.0 \n",
+ "\n",
+ " GKAT GAREA ... GKODX GKODY Shape_Ratio \\\n",
+ "DF_UID ... \n",
+ "1 1060.0 889.0 ... 621682.0 254206.0 1.050710 \n",
+ "2 1060.0 889.0 ... 621682.0 254206.0 1.132856 \n",
+ "3 1060.0 889.0 ... 621682.0 254206.0 0.497312 \n",
+ "4 1060.0 889.0 ... 621682.0 254206.0 0.629591 \n",
+ "5 1060.0 889.0 ... 621682.0 254206.0 0.647623 \n",
+ "\n",
+ " n_neighbors_100 n_corners panel_direction panel_tilt \\\n",
+ "DF_UID \n",
+ "1 2.0 4 190.0 37 \n",
+ "2 2.0 4 10.0 44 \n",
+ "3 2.0 4 100.0 12 \n",
+ "4 2.0 4 100.0 33 \n",
+ "5 2.0 4 280.0 35 \n",
+ "\n",
+ " panelled_area_ratio_ftr shaded_area_ratio_ftr Shape_Length \n",
+ "DF_UID \n",
+ "1 0.300963 0.000000 16.757573 \n",
+ "2 0.000000 0.000000 15.554747 \n",
+ "3 0.706207 0.000000 31.548229 \n",
+ "4 0.583806 0.000000 24.156709 \n",
+ "5 0.615329 0.285714 23.575579 \n",
+ "\n",
+ "[5 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "roofs.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "21"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(roofs.columns)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "new_roofs = roofs[[ 'SB_UUID', 'FLAECHE', 'NEIGUNG', 'AUSRICHTUNG', 'XCOORD', 'YCOORD',\n",
+ " 'GWR_EGID', 'GBAUP', 'GKAT', 'GAREA', 'GASTW', 'GKODX', 'GKODY', \n",
+ " 'Shape_Length', 'Shape_Ratio', 'n_corners', 'n_neighbors_100', \n",
+ " 'panel_direction', 'panel_tilt', 'panelled_area_ratio_ftr', 'shaded_area_ratio_ftr' ]]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "21"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(new_roofs.columns)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>SB_UUID</th>\n",
+ " <th>FLAECHE</th>\n",
+ " <th>NEIGUNG</th>\n",
+ " <th>AUSRICHTUNG</th>\n",
+ " <th>XCOORD</th>\n",
+ " <th>YCOORD</th>\n",
+ " <th>GWR_EGID</th>\n",
+ " <th>GBAUP</th>\n",
+ " <th>GKAT</th>\n",
+ " <th>GAREA</th>\n",
+ " <th>...</th>\n",
+ " <th>GKODX</th>\n",
+ " <th>GKODY</th>\n",
+ " <th>Shape_Length</th>\n",
+ " <th>Shape_Ratio</th>\n",
+ " <th>n_corners</th>\n",
+ " <th>n_neighbors_100</th>\n",
+ " <th>panel_direction</th>\n",
+ " <th>panel_tilt</th>\n",
+ " <th>panelled_area_ratio_ftr</th>\n",
+ " <th>shaded_area_ratio_ftr</th>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>DF_UID</th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
+ " <tr>\n",
+ " <th>1</th>\n",
+ " <td>{DEA19230-2728-42BF-8A28-573F5EB6C214}</td>\n",
+ " <td>15.948816</td>\n",
+ " <td>37</td>\n",
+ " <td>10.0</td>\n",
+ " <td>621674.951286</td>\n",
+ " <td>254203.972784</td>\n",
+ " <td>245033426.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1060.0</td>\n",
+ " <td>889.0</td>\n",
+ " <td>...</td>\n",
+ " <td>621682.0</td>\n",
+ " <td>254206.0</td>\n",
+ " <td>16.757573</td>\n",
+ " <td>1.050710</td>\n",
+ " <td>4</td>\n",
+ " <td>2.0</td>\n",
+ " <td>190.0</td>\n",
+ " <td>37</td>\n",
+ " <td>0.300963</td>\n",
+ " <td>0.000000</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2</th>\n",
+ " <td>{DEA19230-2728-42BF-8A28-573F5EB6C214}</td>\n",
+ " <td>13.730555</td>\n",
+ " <td>44</td>\n",
+ " <td>-170.0</td>\n",
+ " <td>621675.374179</td>\n",
+ " <td>254206.313551</td>\n",
+ " <td>245033426.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1060.0</td>\n",
+ " <td>889.0</td>\n",
+ " <td>...</td>\n",
+ " <td>621682.0</td>\n",
+ " <td>254206.0</td>\n",
+ " <td>15.554747</td>\n",
+ " <td>1.132856</td>\n",
+ " <td>4</td>\n",
+ " <td>2.0</td>\n",
+ " <td>10.0</td>\n",
+ " <td>44</td>\n",
+ " <td>0.000000</td>\n",
+ " <td>0.000000</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>3</th>\n",
+ " <td>{62E12FA3-D6C9-482C-A74C-CDCCE3D32EDD}</td>\n",
+ " <td>63.437476</td>\n",
+ " <td>12</td>\n",
+ " <td>-80.0</td>\n",
+ " <td>621673.977050</td>\n",
+ " <td>254186.956803</td>\n",
+ " <td>245033426.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1060.0</td>\n",
+ " <td>889.0</td>\n",
+ " <td>...</td>\n",
+ " <td>621682.0</td>\n",
+ " <td>254206.0</td>\n",
+ " <td>31.548229</td>\n",
+ " <td>0.497312</td>\n",
+ " <td>4</td>\n",
+ " <td>2.0</td>\n",
+ " <td>100.0</td>\n",
+ " <td>12</td>\n",
+ " <td>0.706207</td>\n",
+ " <td>0.000000</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>4</th>\n",
+ " <td>{99786E44-FF96-4250-A0A2-AF44CB189B28}</td>\n",
+ " <td>38.368910</td>\n",
+ " <td>33</td>\n",
+ " <td>-80.0</td>\n",
+ " <td>621696.695450</td>\n",
+ " <td>254249.767806</td>\n",
+ " <td>245033426.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1060.0</td>\n",
+ " <td>889.0</td>\n",
+ " <td>...</td>\n",
+ " <td>621682.0</td>\n",
+ " <td>254206.0</td>\n",
+ " <td>24.156709</td>\n",
+ " <td>0.629591</td>\n",
+ " <td>4</td>\n",
+ " <td>2.0</td>\n",
+ " <td>100.0</td>\n",
+ " <td>33</td>\n",
+ " <td>0.583806</td>\n",
+ " <td>0.000000</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>5</th>\n",
+ " <td>{99786E44-FF96-4250-A0A2-AF44CB189B28}</td>\n",
+ " <td>36.403273</td>\n",
+ " <td>35</td>\n",
+ " <td>100.0</td>\n",
+ " <td>621692.928934</td>\n",
+ " <td>254250.448974</td>\n",
+ " <td>245033426.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1060.0</td>\n",
+ " <td>889.0</td>\n",
+ " <td>...</td>\n",
+ " <td>621682.0</td>\n",
+ " <td>254206.0</td>\n",
+ " <td>23.575579</td>\n",
+ " <td>0.647623</td>\n",
+ " <td>4</td>\n",
+ " <td>2.0</td>\n",
+ " <td>280.0</td>\n",
+ " <td>35</td>\n",
+ " <td>0.615329</td>\n",
+ " <td>0.285714</td>\n",
+ " </tr>\n",
+ " </tbody>\n",
+ "</table>\n",
+ "<p>5 rows × 21 columns</p>\n",
+ "</div>"
+ ],
+ "text/plain": [
+ " SB_UUID FLAECHE NEIGUNG \\\n",
+ "DF_UID \n",
+ "1 {DEA19230-2728-42BF-8A28-573F5EB6C214} 15.948816 37 \n",
+ "2 {DEA19230-2728-42BF-8A28-573F5EB6C214} 13.730555 44 \n",
+ "3 {62E12FA3-D6C9-482C-A74C-CDCCE3D32EDD} 63.437476 12 \n",
+ "4 {99786E44-FF96-4250-A0A2-AF44CB189B28} 38.368910 33 \n",
+ "5 {99786E44-FF96-4250-A0A2-AF44CB189B28} 36.403273 35 \n",
+ "\n",
+ " AUSRICHTUNG XCOORD YCOORD GWR_EGID GBAUP \\\n",
+ "DF_UID \n",
+ "1 10.0 621674.951286 254203.972784 245033426.0 8011.0 \n",
+ "2 -170.0 621675.374179 254206.313551 245033426.0 8011.0 \n",
+ "3 -80.0 621673.977050 254186.956803 245033426.0 8011.0 \n",
+ "4 -80.0 621696.695450 254249.767806 245033426.0 8011.0 \n",
+ "5 100.0 621692.928934 254250.448974 245033426.0 8011.0 \n",
+ "\n",
+ " GKAT GAREA ... GKODX GKODY \\\n",
+ "DF_UID ... \n",
+ "1 1060.0 889.0 ... 621682.0 254206.0 \n",
+ "2 1060.0 889.0 ... 621682.0 254206.0 \n",
+ "3 1060.0 889.0 ... 621682.0 254206.0 \n",
+ "4 1060.0 889.0 ... 621682.0 254206.0 \n",
+ "5 1060.0 889.0 ... 621682.0 254206.0 \n",
+ "\n",
+ " Shape_Length Shape_Ratio n_corners n_neighbors_100 \\\n",
+ "DF_UID \n",
+ "1 16.757573 1.050710 4 2.0 \n",
+ "2 15.554747 1.132856 4 2.0 \n",
+ "3 31.548229 0.497312 4 2.0 \n",
+ "4 24.156709 0.629591 4 2.0 \n",
+ "5 23.575579 0.647623 4 2.0 \n",
+ "\n",
+ " panel_direction panel_tilt panelled_area_ratio_ftr \\\n",
+ "DF_UID \n",
+ "1 190.0 37 0.300963 \n",
+ "2 10.0 44 0.000000 \n",
+ "3 100.0 12 0.706207 \n",
+ "4 100.0 33 0.583806 \n",
+ "5 280.0 35 0.615329 \n",
+ "\n",
+ " shaded_area_ratio_ftr \n",
+ "DF_UID \n",
+ "1 0.000000 \n",
+ "2 0.000000 \n",
+ "3 0.000000 \n",
+ "4 0.000000 \n",
+ "5 0.285714 \n",
+ "\n",
+ "[5 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_roofs.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "new_roofs.to_csv('/work/hyenergy/output/solar_potential/geographic_potential/CH_ROOFS_all_replaced_withLength.csv')"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.4"
+ "version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Hourly_PV_public/Geographic_potential/Available_area/Prepare_features/prepare_training_panelling.ipynb b/Hourly_PV_public/Geographic_potential/Available_area/Prepare_features/prepare_training_panelling.ipynb
index b273576..979e5ff 100644
--- a/Hourly_PV_public/Geographic_potential/Available_area/Prepare_features/prepare_training_panelling.ipynb
+++ b/Hourly_PV_public/Geographic_potential/Available_area/Prepare_features/prepare_training_panelling.ipynb
@@ -1,3786 +1,2309 @@
{
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import xarray as xr\n",
"import os\n",
- "import geopandas as gpd\n",
+ "# import geopandas as gpd\n",
"\n",
"import matplotlib\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load data"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
- "# General roof information\n",
- "GVA_roofs_all = pd.read_csv(\"/Users/alinawalch/Documents/EPFL/data/rooftops/ROOFS_TRN_panels_replaced.csv\")\n",
- "GVA_roof_corners = pd.read_csv(\"/Users/alinawalch/Documents/EPFL/data/rooftops/SOLKAT_DACH_GVA_ncorners.csv\")"
+ "# load rooftop information\n",
+ "ROOFS_FP = '/work/hyenergy/output/solar_potential/geographic_potential/CH_ROOFS_all_replaced.csv'\n",
+ "roofs = pd.read_csv( ROOFS_FP )"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
- "# Roof shape information (to find roofs with superstructures)\n",
- "gva_shp = gpd.read_file('/Users/alinawalch/Documents/EPFL/data/rooftops/SOLKAT_DACH_GVA/SOLKAT_DACH_GVA.shp')\n",
- "gva_shp_noSP = gpd.read_file('/Users/alinawalch/Documents/EPFL/data/rooftops/SOLKAT_DACH_GVA_noSP/SOLKAT_CH_DACH_GVA_noSP.shp')"
+ "# Roof shapes in Geneva (training area), to find those with superstructures\n",
+ "gva_full_roofs_fp = '/Users/alinawalch/Documents/EPFL/data/rooftops/SOLKAT_DACH_GVA/SOLKAT_DACH_GVA.shp'\n",
+ "gva_shp = gpd.read_file( gva_full_roof_fp )\n",
+ "\n",
+ "gva_noSP_roofs_fp = '/Users/alinawalch/Documents/EPFL/data/rooftops/SOLKAT_DACH_GVA_noSP/SOLKAT_CH_DACH_GVA_noSP.shp'\n",
+ "gva_shp_noSP = gpd.read_file( gva_noSP_roofs_fp )"
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# panel fitting information\n",
- "GVA_panels_tgt = pd.read_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/panel_stats_final/panelled_area_stats_GVA_best.csv')\n",
- "CH_panels_ftr = pd.read_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/panel_stats_final/panelled_area_stats_CH_best.csv')"
+ "target_fp = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/panel_fitting/panelled_area_stats_GVA_best.csv'\n",
+ "GVA_panels_tgt = pd.read_csv( target_fp )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Merge roofs with shading info and roofs with panelled area info"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Step 1: get roofs for training set\n",
- "By merging the roofs_w_panels and the area of the gva_shp, we get a dataframe that contains all rooftops who's footprint overlaps with the SITG roof information for which superstructure information is available (all roofs where area_with_SP == area_without_SP are excluded!!!). To complement the superstructure information, all roof surfaces smaller than 8m^2 in SITG were also categorized as superstructures."
+ "### Step 1: get roofs for training set (roofs with target information available)\n",
+ "The for training, all roofs which have a \"raw\" panelled area ratio (feature, computed from the full roofs) > 0 and which are represented in the target dataset (GVA canton) are considered."
]
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 13,
"metadata": {},
- "outputs": [],
- "source": [
- "training_roofs = pd.merge(GVA_roofs_all, GVA_roof_corners, how = 'inner', on = 'DF_UID')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "scrolled": false
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "<div>\n",
- "<style scoped>\n",
- " .dataframe tbody tr th:only-of-type {\n",
- " vertical-align: middle;\n",
- " }\n",
- "\n",
- " .dataframe tbody tr th {\n",
- " vertical-align: top;\n",
- " }\n",
- "\n",
- " .dataframe thead th {\n",
- " text-align: right;\n",
- " }\n",
- "</style>\n",
- "<table border=\"1\" class=\"dataframe\">\n",
- " <thead>\n",
- " <tr style=\"text-align: right;\">\n",
- " <th></th>\n",
- " <th>DF_UID</th>\n",
- " <th>FLAECHE</th>\n",
- " <th>NEIGUNG</th>\n",
- " <th>AUSRICHTUNG</th>\n",
- " <th>XCOORD</th>\n",
- " <th>YCOORD</th>\n",
- " <th>Shape_Length</th>\n",
- " <th>Shape_Area</th>\n",
- " <th>GWR_EGID</th>\n",
- " <th>GBAUP</th>\n",
- " <th>GKAT</th>\n",
- " <th>GAREA</th>\n",
- " <th>GASTW</th>\n",
- " <th>GKODX</th>\n",
- " <th>GKODY</th>\n",
- " <th>Shape_Ratio</th>\n",
- " <th>n_neighbors_100</th>\n",
- " <th>Estim_build_area</th>\n",
- " <th>n_corners</th>\n",
- " </tr>\n",
- " </thead>\n",
- " <tbody>\n",
- " <tr>\n",
- " <th>0</th>\n",
- " <td>4817410.0</td>\n",
- " <td>71.487047</td>\n",
- " <td>10.0</td>\n",
- " <td>127.0</td>\n",
- " <td>503491.325015</td>\n",
- " <td>134197.490397</td>\n",
- " <td>33.936595</td>\n",
- " <td>70.390620</td>\n",
- " <td>295070969.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>44.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503491.0</td>\n",
- " <td>134198.0</td>\n",
- " <td>0.474724</td>\n",
- " <td>3.0</td>\n",
- " <td>70.400998</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1</th>\n",
- " <td>4817425.0</td>\n",
- " <td>36.859836</td>\n",
- " <td>37.0</td>\n",
- " <td>33.0</td>\n",
- " <td>503503.812619</td>\n",
- " <td>134131.833522</td>\n",
- " <td>28.208608</td>\n",
- " <td>29.339500</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>152.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503507.0</td>\n",
- " <td>134137.0</td>\n",
- " <td>0.765294</td>\n",
- " <td>3.0</td>\n",
- " <td>194.813319</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>2</th>\n",
- " <td>4817426.0</td>\n",
- " <td>51.333864</td>\n",
- " <td>31.0</td>\n",
- " <td>-57.0</td>\n",
- " <td>503509.783165</td>\n",
- " <td>134135.282805</td>\n",
- " <td>40.053428</td>\n",
- " <td>44.043504</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>152.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503507.0</td>\n",
- " <td>134137.0</td>\n",
- " <td>0.780254</td>\n",
- " <td>3.0</td>\n",
- " <td>194.813319</td>\n",
- " <td>7</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>3</th>\n",
- " <td>4817427.0</td>\n",
- " <td>36.861447</td>\n",
- " <td>37.0</td>\n",
- " <td>-147.0</td>\n",
- " <td>503510.594159</td>\n",
- " <td>134142.188986</td>\n",
- " <td>28.210273</td>\n",
- " <td>29.341346</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>152.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503507.0</td>\n",
- " <td>134137.0</td>\n",
- " <td>0.765306</td>\n",
- " <td>3.0</td>\n",
- " <td>194.813319</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>4</th>\n",
- " <td>4817428.0</td>\n",
- " <td>81.256555</td>\n",
- " <td>28.0</td>\n",
- " <td>123.0</td>\n",
- " <td>503504.226918</td>\n",
- " <td>134138.960671</td>\n",
- " <td>37.840077</td>\n",
- " <td>71.574129</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>152.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503507.0</td>\n",
- " <td>134137.0</td>\n",
- " <td>0.465686</td>\n",
- " <td>3.0</td>\n",
- " <td>194.813319</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>5</th>\n",
- " <td>4817429.0</td>\n",
- " <td>11.397236</td>\n",
- " <td>27.0</td>\n",
- " <td>-144.0</td>\n",
- " <td>503512.070989</td>\n",
- " <td>134135.795686</td>\n",
- " <td>15.417311</td>\n",
- " <td>10.154872</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>152.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503507.0</td>\n",
- " <td>134137.0</td>\n",
- " <td>1.352724</td>\n",
- " <td>3.0</td>\n",
- " <td>194.813319</td>\n",
- " <td>3</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>6</th>\n",
- " <td>4817430.0</td>\n",
- " <td>11.262413</td>\n",
- " <td>27.0</td>\n",
- " <td>31.0</td>\n",
- " <td>503510.350525</td>\n",
- " <td>134133.126967</td>\n",
- " <td>15.346288</td>\n",
- " <td>10.045172</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>152.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503507.0</td>\n",
- " <td>134137.0</td>\n",
- " <td>1.362611</td>\n",
- " <td>3.0</td>\n",
- " <td>194.813319</td>\n",
- " <td>3</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>7</th>\n",
- " <td>4817431.0</td>\n",
- " <td>174.501987</td>\n",
- " <td>31.0</td>\n",
- " <td>-147.0</td>\n",
- " <td>503503.978942</td>\n",
- " <td>134181.171146</td>\n",
- " <td>59.815925</td>\n",
- " <td>149.165008</td>\n",
- " <td>1004088.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>206.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503503.0</td>\n",
- " <td>134179.0</td>\n",
- " <td>0.342781</td>\n",
- " <td>3.0</td>\n",
- " <td>298.817334</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>8</th>\n",
- " <td>4817432.0</td>\n",
- " <td>174.108293</td>\n",
- " <td>31.0</td>\n",
- " <td>33.0</td>\n",
- " <td>503500.517066</td>\n",
- " <td>134175.889168</td>\n",
- " <td>59.775896</td>\n",
- " <td>148.702405</td>\n",
- " <td>1004088.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>206.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503503.0</td>\n",
- " <td>134179.0</td>\n",
- " <td>0.343326</td>\n",
- " <td>3.0</td>\n",
- " <td>298.817334</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>9</th>\n",
- " <td>4817433.0</td>\n",
- " <td>69.216255</td>\n",
- " <td>26.0</td>\n",
- " <td>33.0</td>\n",
- " <td>503510.917446</td>\n",
- " <td>134191.713704</td>\n",
- " <td>45.633223</td>\n",
- " <td>61.997846</td>\n",
- " <td>295084893.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>100.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503512.0</td>\n",
- " <td>134193.0</td>\n",
- " <td>0.659285</td>\n",
- " <td>3.0</td>\n",
- " <td>107.414054</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>10</th>\n",
- " <td>4817434.0</td>\n",
- " <td>26.716480</td>\n",
- " <td>31.0</td>\n",
- " <td>-147.0</td>\n",
- " <td>503517.020358</td>\n",
- " <td>134191.118711</td>\n",
- " <td>23.687927</td>\n",
- " <td>22.959133</td>\n",
- " <td>295084893.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>100.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503512.0</td>\n",
- " <td>134193.0</td>\n",
- " <td>0.886641</td>\n",
- " <td>3.0</td>\n",
- " <td>107.414054</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>11</th>\n",
- " <td>4817435.0</td>\n",
- " <td>26.018729</td>\n",
- " <td>31.0</td>\n",
- " <td>-147.0</td>\n",
- " <td>503507.806109</td>\n",
- " <td>134197.114437</td>\n",
- " <td>23.199036</td>\n",
- " <td>22.360589</td>\n",
- " <td>295084893.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>100.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503512.0</td>\n",
- " <td>134193.0</td>\n",
- " <td>0.891628</td>\n",
- " <td>3.0</td>\n",
- " <td>107.414054</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>12</th>\n",
- " <td>4817436.0</td>\n",
- " <td>13.309012</td>\n",
- " <td>33.0</td>\n",
- " <td>123.0</td>\n",
- " <td>503512.471353</td>\n",
- " <td>134196.622116</td>\n",
- " <td>15.096068</td>\n",
- " <td>11.164928</td>\n",
- " <td>295084893.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>100.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503512.0</td>\n",
- " <td>134193.0</td>\n",
- " <td>1.134274</td>\n",
- " <td>3.0</td>\n",
- " <td>22.613146</td>\n",
- " <td>6</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>13</th>\n",
- " <td>4817437.0</td>\n",
- " <td>13.503089</td>\n",
- " <td>32.0</td>\n",
- " <td>-57.0</td>\n",
- " <td>503514.586126</td>\n",
- " <td>134195.245953</td>\n",
- " <td>15.198331</td>\n",
- " <td>11.396747</td>\n",
- " <td>295084893.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>100.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503512.0</td>\n",
- " <td>134193.0</td>\n",
- " <td>1.125545</td>\n",
- " <td>3.0</td>\n",
- " <td>22.613146</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>14</th>\n",
- " <td>4817438.0</td>\n",
- " <td>130.038144</td>\n",
- " <td>26.0</td>\n",
- " <td>-144.0</td>\n",
- " <td>503951.193324</td>\n",
- " <td>134195.306644</td>\n",
- " <td>64.584475</td>\n",
- " <td>117.365353</td>\n",
- " <td>295084994.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>1030.0</td>\n",
- " <td>213.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503949.0</td>\n",
- " <td>134194.0</td>\n",
- " <td>0.496658</td>\n",
- " <td>5.0</td>\n",
- " <td>230.552584</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>15</th>\n",
- " <td>4817439.0</td>\n",
- " <td>126.475108</td>\n",
- " <td>26.0</td>\n",
- " <td>36.0</td>\n",
- " <td>503948.788882</td>\n",
- " <td>134191.981218</td>\n",
- " <td>64.301850</td>\n",
- " <td>113.406403</td>\n",
- " <td>295084994.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>1030.0</td>\n",
- " <td>213.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503949.0</td>\n",
- " <td>134194.0</td>\n",
- " <td>0.508415</td>\n",
- " <td>5.0</td>\n",
- " <td>230.552584</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>16</th>\n",
- " <td>4817440.0</td>\n",
- " <td>47.540096</td>\n",
- " <td>37.0</td>\n",
- " <td>-144.0</td>\n",
- " <td>503996.949571</td>\n",
- " <td>134161.244934</td>\n",
- " <td>27.081498</td>\n",
- " <td>37.981483</td>\n",
- " <td>1004076.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>66.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>504005.0</td>\n",
- " <td>134153.0</td>\n",
- " <td>0.569656</td>\n",
- " <td>7.0</td>\n",
- " <td>68.070576</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>17</th>\n",
- " <td>4817441.0</td>\n",
- " <td>35.497241</td>\n",
- " <td>32.0</td>\n",
- " <td>36.0</td>\n",
- " <td>503994.863047</td>\n",
- " <td>134158.375583</td>\n",
- " <td>25.402378</td>\n",
- " <td>29.945648</td>\n",
- " <td>1004076.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>66.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>504005.0</td>\n",
- " <td>134153.0</td>\n",
- " <td>0.715616</td>\n",
- " <td>7.0</td>\n",
- " <td>68.070576</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>18</th>\n",
- " <td>4817442.0</td>\n",
- " <td>49.847956</td>\n",
- " <td>38.0</td>\n",
- " <td>36.0</td>\n",
- " <td>504003.468131</td>\n",
- " <td>134152.306087</td>\n",
- " <td>29.835723</td>\n",
- " <td>39.429900</td>\n",
- " <td>1004076.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>66.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>504005.0</td>\n",
- " <td>134153.0</td>\n",
- " <td>0.598535</td>\n",
- " <td>7.0</td>\n",
- " <td>96.433564</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>19</th>\n",
- " <td>4817443.0</td>\n",
- " <td>74.607733</td>\n",
- " <td>40.0</td>\n",
- " <td>-144.0</td>\n",
- " <td>504005.947778</td>\n",
- " <td>134155.715627</td>\n",
- " <td>32.967494</td>\n",
- " <td>57.409186</td>\n",
- " <td>1004076.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>66.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>504005.0</td>\n",
- " <td>134153.0</td>\n",
- " <td>0.441878</td>\n",
- " <td>7.0</td>\n",
- " <td>96.433564</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>20</th>\n",
- " <td>4817444.0</td>\n",
- " <td>12.607657</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " <td>503991.439805</td>\n",
- " <td>134163.317363</td>\n",
- " <td>17.745074</td>\n",
- " <td>12.607657</td>\n",
- " <td>1004076.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>66.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>504005.0</td>\n",
- " <td>134153.0</td>\n",
- " <td>1.407484</td>\n",
- " <td>7.0</td>\n",
- " <td>12.607657</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>21</th>\n",
- " <td>4817445.0</td>\n",
- " <td>9.973655</td>\n",
- " <td>29.0</td>\n",
- " <td>-55.0</td>\n",
- " <td>503926.571766</td>\n",
- " <td>134212.338837</td>\n",
- " <td>14.288661</td>\n",
- " <td>8.760702</td>\n",
- " <td>1004089.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>57.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503922.0</td>\n",
- " <td>134215.0</td>\n",
- " <td>1.432640</td>\n",
- " <td>4.0</td>\n",
- " <td>78.634747</td>\n",
- " <td>3</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>22</th>\n",
- " <td>4817446.0</td>\n",
- " <td>34.666521</td>\n",
- " <td>29.0</td>\n",
- " <td>35.0</td>\n",
- " <td>503921.018886</td>\n",
- " <td>134214.298798</td>\n",
- " <td>29.015856</td>\n",
- " <td>30.403885</td>\n",
- " <td>1004089.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>57.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503922.0</td>\n",
- " <td>134215.0</td>\n",
- " <td>0.836999</td>\n",
- " <td>4.0</td>\n",
- " <td>78.634747</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>23</th>\n",
- " <td>4817447.0</td>\n",
- " <td>9.971017</td>\n",
- " <td>29.0</td>\n",
- " <td>125.0</td>\n",
- " <td>503917.347567</td>\n",
- " <td>134218.902400</td>\n",
- " <td>14.287157</td>\n",
- " <td>8.757635</td>\n",
- " <td>1004089.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>57.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503922.0</td>\n",
- " <td>134215.0</td>\n",
- " <td>1.432869</td>\n",
- " <td>4.0</td>\n",
- " <td>78.634747</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>24</th>\n",
- " <td>4817448.0</td>\n",
- " <td>34.963254</td>\n",
- " <td>28.0</td>\n",
- " <td>-145.0</td>\n",
- " <td>503922.898105</td>\n",
- " <td>134216.939359</td>\n",
- " <td>29.062031</td>\n",
- " <td>30.741322</td>\n",
- " <td>1004089.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>57.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503922.0</td>\n",
- " <td>134215.0</td>\n",
- " <td>0.831216</td>\n",
- " <td>4.0</td>\n",
- " <td>78.634747</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>25</th>\n",
- " <td>4817449.0</td>\n",
- " <td>19.979434</td>\n",
- " <td>7.0</td>\n",
- " <td>35.0</td>\n",
- " <td>503916.075512</td>\n",
- " <td>134213.701005</td>\n",
- " <td>17.895750</td>\n",
- " <td>19.831984</td>\n",
- " <td>1004089.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>57.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503922.0</td>\n",
- " <td>134215.0</td>\n",
- " <td>0.895709</td>\n",
- " <td>4.0</td>\n",
- " <td>19.830510</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>26</th>\n",
- " <td>4817450.0</td>\n",
- " <td>21.119847</td>\n",
- " <td>18.0</td>\n",
- " <td>-144.0</td>\n",
- " <td>503936.461763</td>\n",
- " <td>134203.761986</td>\n",
- " <td>18.414721</td>\n",
- " <td>20.066844</td>\n",
- " <td>295084994.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>1030.0</td>\n",
- " <td>213.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503949.0</td>\n",
- " <td>134194.0</td>\n",
- " <td>0.871915</td>\n",
- " <td>5.0</td>\n",
- " <td>40.296071</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>27</th>\n",
- " <td>4817451.0</td>\n",
- " <td>21.374411</td>\n",
- " <td>19.0</td>\n",
- " <td>36.0</td>\n",
- " <td>503934.470464</td>\n",
- " <td>134200.829905</td>\n",
- " <td>19.727025</td>\n",
- " <td>20.261942</td>\n",
- " <td>295084994.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>1030.0</td>\n",
- " <td>213.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>503949.0</td>\n",
- " <td>134194.0</td>\n",
- " <td>0.922927</td>\n",
- " <td>5.0</td>\n",
- " <td>40.296071</td>\n",
- " <td>6</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>28</th>\n",
- " <td>4817452.0</td>\n",
- " <td>68.854261</td>\n",
- " <td>35.0</td>\n",
- " <td>-140.0</td>\n",
- " <td>504222.101990</td>\n",
- " <td>134017.187739</td>\n",
- " <td>31.767443</td>\n",
- " <td>56.268749</td>\n",
- " <td>1004049.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>67.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>504220.0</td>\n",
- " <td>134015.0</td>\n",
- " <td>0.461372</td>\n",
- " <td>25.0</td>\n",
- " <td>99.757951</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>29</th>\n",
- " <td>4817453.0</td>\n",
- " <td>52.296595</td>\n",
- " <td>34.0</td>\n",
- " <td>40.0</td>\n",
- " <td>504219.058562</td>\n",
- " <td>134013.574920</td>\n",
- " <td>29.327904</td>\n",
- " <td>43.406040</td>\n",
- " <td>1004049.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>67.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>504220.0</td>\n",
- " <td>134015.0</td>\n",
- " <td>0.560799</td>\n",
- " <td>25.0</td>\n",
- " <td>99.757951</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>...</th>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206432</th>\n",
- " <td>5124497.0</td>\n",
- " <td>139.413591</td>\n",
- " <td>30.0</td>\n",
- " <td>-60.0</td>\n",
- " <td>512727.853591</td>\n",
- " <td>121799.313992</td>\n",
- " <td>54.005430</td>\n",
- " <td>120.493402</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>153.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512725.0</td>\n",
- " <td>121800.0</td>\n",
- " <td>0.387376</td>\n",
- " <td>3.0</td>\n",
- " <td>239.840444</td>\n",
- " <td>9</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206433</th>\n",
- " <td>5124498.0</td>\n",
- " <td>137.530298</td>\n",
- " <td>30.0</td>\n",
- " <td>120.0</td>\n",
- " <td>512722.012941</td>\n",
- " <td>121802.781737</td>\n",
- " <td>53.905711</td>\n",
- " <td>119.641777</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>153.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512725.0</td>\n",
- " <td>121800.0</td>\n",
- " <td>0.391955</td>\n",
- " <td>3.0</td>\n",
- " <td>239.840444</td>\n",
- " <td>9</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206434</th>\n",
- " <td>5124499.0</td>\n",
- " <td>92.630815</td>\n",
- " <td>7.0</td>\n",
- " <td>-150.0</td>\n",
- " <td>512731.300787</td>\n",
- " <td>121811.881398</td>\n",
- " <td>47.143675</td>\n",
- " <td>91.927158</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>153.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512725.0</td>\n",
- " <td>121800.0</td>\n",
- " <td>0.508942</td>\n",
- " <td>3.0</td>\n",
- " <td>91.940359</td>\n",
- " <td>8</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206435</th>\n",
- " <td>5124500.0</td>\n",
- " <td>44.081253</td>\n",
- " <td>7.0</td>\n",
- " <td>-148.0</td>\n",
- " <td>512734.614676</td>\n",
- " <td>121817.612632</td>\n",
- " <td>28.618486</td>\n",
- " <td>43.718502</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>153.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512725.0</td>\n",
- " <td>121800.0</td>\n",
- " <td>0.649221</td>\n",
- " <td>3.0</td>\n",
- " <td>43.752678</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206436</th>\n",
- " <td>5124501.0</td>\n",
- " <td>12.602429</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " <td>512727.537367</td>\n",
- " <td>121820.039977</td>\n",
- " <td>14.885065</td>\n",
- " <td>12.602429</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>153.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512725.0</td>\n",
- " <td>121800.0</td>\n",
- " <td>1.181127</td>\n",
- " <td>3.0</td>\n",
- " <td>26.462734</td>\n",
- " <td>6</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206437</th>\n",
- " <td>5124502.0</td>\n",
- " <td>14.119724</td>\n",
- " <td>11.0</td>\n",
- " <td>-147.0</td>\n",
- " <td>512729.165421</td>\n",
- " <td>121822.382400</td>\n",
- " <td>16.789635</td>\n",
- " <td>13.863595</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>153.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512725.0</td>\n",
- " <td>121800.0</td>\n",
- " <td>1.189091</td>\n",
- " <td>3.0</td>\n",
- " <td>26.462734</td>\n",
- " <td>6</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206438</th>\n",
- " <td>5124503.0</td>\n",
- " <td>36.753693</td>\n",
- " <td>21.0</td>\n",
- " <td>122.0</td>\n",
- " <td>512683.971180</td>\n",
- " <td>121769.079140</td>\n",
- " <td>23.556753</td>\n",
- " <td>34.231614</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>129.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512678.0</td>\n",
- " <td>121753.0</td>\n",
- " <td>0.640936</td>\n",
- " <td>7.0</td>\n",
- " <td>68.582316</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206439</th>\n",
- " <td>5124504.0</td>\n",
- " <td>0.064896</td>\n",
- " <td>19.0</td>\n",
- " <td>-58.0</td>\n",
- " <td>512689.499215</td>\n",
- " <td>121759.357413</td>\n",
- " <td>8.350840</td>\n",
- " <td>0.061348</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>129.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512678.0</td>\n",
- " <td>121753.0</td>\n",
- " <td>128.679441</td>\n",
- " <td>7.0</td>\n",
- " <td>68.582316</td>\n",
- " <td>3</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206440</th>\n",
- " <td>5124505.0</td>\n",
- " <td>36.179539</td>\n",
- " <td>19.0</td>\n",
- " <td>-58.0</td>\n",
- " <td>512689.565868</td>\n",
- " <td>121765.612262</td>\n",
- " <td>23.566963</td>\n",
- " <td>34.201265</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>129.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512678.0</td>\n",
- " <td>121753.0</td>\n",
- " <td>0.651389</td>\n",
- " <td>7.0</td>\n",
- " <td>68.582316</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206441</th>\n",
- " <td>5124506.0</td>\n",
- " <td>57.609988</td>\n",
- " <td>17.0</td>\n",
- " <td>-57.0</td>\n",
- " <td>512685.874412</td>\n",
- " <td>121760.247993</td>\n",
- " <td>37.797327</td>\n",
- " <td>55.148314</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>129.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512678.0</td>\n",
- " <td>121753.0</td>\n",
- " <td>0.656090</td>\n",
- " <td>7.0</td>\n",
- " <td>108.760020</td>\n",
- " <td>8</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206442</th>\n",
- " <td>5124507.0</td>\n",
- " <td>57.882063</td>\n",
- " <td>22.0</td>\n",
- " <td>122.0</td>\n",
- " <td>512679.975021</td>\n",
- " <td>121763.783138</td>\n",
- " <td>29.386703</td>\n",
- " <td>53.499302</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>129.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512678.0</td>\n",
- " <td>121753.0</td>\n",
- " <td>0.507700</td>\n",
- " <td>7.0</td>\n",
- " <td>108.760020</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206443</th>\n",
- " <td>5124508.0</td>\n",
- " <td>35.898733</td>\n",
- " <td>22.0</td>\n",
- " <td>-153.0</td>\n",
- " <td>512676.571716</td>\n",
- " <td>121745.126015</td>\n",
- " <td>30.833490</td>\n",
- " <td>33.393443</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>129.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512678.0</td>\n",
- " <td>121753.0</td>\n",
- " <td>0.858902</td>\n",
- " <td>7.0</td>\n",
- " <td>116.033907</td>\n",
- " <td>7</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206444</th>\n",
- " <td>5124509.0</td>\n",
- " <td>88.059840</td>\n",
- " <td>20.0</td>\n",
- " <td>27.0</td>\n",
- " <td>512674.020870</td>\n",
- " <td>121740.921893</td>\n",
- " <td>39.260540</td>\n",
- " <td>82.722458</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>1021.0</td>\n",
- " <td>129.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512678.0</td>\n",
- " <td>121753.0</td>\n",
- " <td>0.445839</td>\n",
- " <td>7.0</td>\n",
- " <td>116.033907</td>\n",
- " <td>8</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206445</th>\n",
- " <td>5124510.0</td>\n",
- " <td>234.137426</td>\n",
- " <td>15.0</td>\n",
- " <td>-139.0</td>\n",
- " <td>512576.260995</td>\n",
- " <td>121776.663075</td>\n",
- " <td>66.560300</td>\n",
- " <td>226.093454</td>\n",
- " <td>1018659.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1030.0</td>\n",
- " <td>449.601882</td>\n",
- " <td>2.0</td>\n",
- " <td>512596.0</td>\n",
- " <td>121754.0</td>\n",
- " <td>0.284279</td>\n",
- " <td>7.0</td>\n",
- " <td>449.601882</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206446</th>\n",
- " <td>5124511.0</td>\n",
- " <td>232.447102</td>\n",
- " <td>16.0</td>\n",
- " <td>41.0</td>\n",
- " <td>512570.079754</td>\n",
- " <td>121769.520367</td>\n",
- " <td>66.292584</td>\n",
- " <td>222.913017</td>\n",
- " <td>1018659.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1030.0</td>\n",
- " <td>449.601882</td>\n",
- " <td>2.0</td>\n",
- " <td>512596.0</td>\n",
- " <td>121754.0</td>\n",
- " <td>0.285194</td>\n",
- " <td>7.0</td>\n",
- " <td>449.601882</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206447</th>\n",
- " <td>5124512.0</td>\n",
- " <td>131.925651</td>\n",
- " <td>29.0</td>\n",
- " <td>121.0</td>\n",
- " <td>512861.419320</td>\n",
- " <td>121844.774678</td>\n",
- " <td>55.702429</td>\n",
- " <td>114.847781</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>304.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>512862.0</td>\n",
- " <td>121841.0</td>\n",
- " <td>0.422226</td>\n",
- " <td>2.0</td>\n",
- " <td>236.648087</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206448</th>\n",
- " <td>5124513.0</td>\n",
- " <td>137.339196</td>\n",
- " <td>28.0</td>\n",
- " <td>-59.0</td>\n",
- " <td>512865.854189</td>\n",
- " <td>121842.120366</td>\n",
- " <td>56.243851</td>\n",
- " <td>121.027343</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>304.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>512862.0</td>\n",
- " <td>121841.0</td>\n",
- " <td>0.409525</td>\n",
- " <td>2.0</td>\n",
- " <td>236.648087</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206449</th>\n",
- " <td>5124514.0</td>\n",
- " <td>21.008432</td>\n",
- " <td>23.0</td>\n",
- " <td>-150.0</td>\n",
- " <td>512862.686744</td>\n",
- " <td>121857.263294</td>\n",
- " <td>23.119281</td>\n",
- " <td>19.328343</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>304.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>512862.0</td>\n",
- " <td>121841.0</td>\n",
- " <td>1.100476</td>\n",
- " <td>2.0</td>\n",
- " <td>39.706122</td>\n",
- " <td>6</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206450</th>\n",
- " <td>5124515.0</td>\n",
- " <td>21.541363</td>\n",
- " <td>19.0</td>\n",
- " <td>30.0</td>\n",
- " <td>512860.734800</td>\n",
- " <td>121855.152708</td>\n",
- " <td>19.585625</td>\n",
- " <td>20.336518</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>304.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>512862.0</td>\n",
- " <td>121841.0</td>\n",
- " <td>0.909210</td>\n",
- " <td>2.0</td>\n",
- " <td>39.706122</td>\n",
- " <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206451</th>\n",
- " <td>5124516.0</td>\n",
- " <td>33.342276</td>\n",
- " <td>17.0</td>\n",
- " <td>-58.0</td>\n",
- " <td>512857.342542</td>\n",
- " <td>121829.041410</td>\n",
- " <td>24.377198</td>\n",
- " <td>31.954253</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>304.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>512862.0</td>\n",
- " <td>121841.0</td>\n",
- " <td>0.731120</td>\n",
- " <td>2.0</td>\n",
- " <td>108.900435</td>\n",
- " <td>4</td>\n",
+ "outputs": [],
+ "source": [
+ "# merge panelled area ratio for training (GVA only, excluded superstrucutres)\n",
+ "training_panels = roofs.merge( GVA_panels_tgt.loc[:,['DF_UID', 'panelled_area_ratio']], \n",
+ " how = 'right', on = 'DF_UID')\n",
+ "training_panels.rename( {'panelled_area_ratio' : 'panelled_area_ratio_tgt'}, axis = 1, inplace = True)\n",
+ "training_panels.fillna(0, inplace = True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# exclude all roofs that have a feature panel count (before subtracting superstructures) equal to 0\n",
+ "training_panels = training_panels[ training_panels.panelled_area_ratio_ftr != 0 ]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>DF_UID</th>\n",
+ " <th>SB_UUID</th>\n",
+ " <th>FLAECHE</th>\n",
+ " <th>NEIGUNG</th>\n",
+ " <th>AUSRICHTUNG</th>\n",
+ " <th>XCOORD</th>\n",
+ " <th>YCOORD</th>\n",
+ " <th>GWR_EGID</th>\n",
+ " <th>GBAUP</th>\n",
+ " <th>GKAT</th>\n",
+ " <th>...</th>\n",
+ " <th>GKODY</th>\n",
+ " <th>Shape_Length</th>\n",
+ " <th>Shape_Ratio</th>\n",
+ " <th>n_corners</th>\n",
+ " <th>n_neighbors_100</th>\n",
+ " <th>panel_direction</th>\n",
+ " <th>panel_tilt</th>\n",
+ " <th>panelled_area_ratio_ftr</th>\n",
+ " <th>shaded_area_ratio_ftr</th>\n",
+ " <th>panelled_area_ratio_tgt</th>\n",
" </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
" <tr>\n",
- " <th>206452</th>\n",
- " <td>5124517.0</td>\n",
- " <td>43.358052</td>\n",
- " <td>13.0</td>\n",
- " <td>122.0</td>\n",
- " <td>512853.537208</td>\n",
- " <td>121831.368979</td>\n",
- " <td>26.787103</td>\n",
- " <td>42.321731</td>\n",
- " <td>1018654.0</td>\n",
+ " <th>0</th>\n",
+ " <td>4817410</td>\n",
+ " <td>{C0837EBA-3FE8-4166-99E4-A009D794F3F7}</td>\n",
+ " <td>71.487047</td>\n",
+ " <td>10</td>\n",
+ " <td>127.0</td>\n",
+ " <td>503491.325015</td>\n",
+ " <td>134197.490397</td>\n",
+ " <td>295070969.0</td>\n",
" <td>8011.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>304.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>512862.0</td>\n",
- " <td>121841.0</td>\n",
- " <td>0.617811</td>\n",
- " <td>2.0</td>\n",
- " <td>108.900435</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>...</td>\n",
+ " <td>134198.0</td>\n",
+ " <td>33.936595</td>\n",
+ " <td>0.474724</td>\n",
" <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206453</th>\n",
- " <td>5124518.0</td>\n",
- " <td>34.768271</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " <td>512851.492252</td>\n",
- " <td>121838.457750</td>\n",
- " <td>29.085365</td>\n",
- " <td>34.768271</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>304.000000</td>\n",
- " <td>2.0</td>\n",
- " <td>512862.0</td>\n",
- " <td>121841.0</td>\n",
- " <td>0.836549</td>\n",
- " <td>2.0</td>\n",
- " <td>108.900435</td>\n",
- " <td>6</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206454</th>\n",
- " <td>5124519.0</td>\n",
- " <td>32.262272</td>\n",
- " <td>7.0</td>\n",
- " <td>-62.0</td>\n",
- " <td>512889.292856</td>\n",
- " <td>121962.982921</td>\n",
- " <td>22.665441</td>\n",
- " <td>32.006156</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>44.936338</td>\n",
- " <td>3.0</td>\n",
- " <td>512908.0</td>\n",
- " <td>121915.0</td>\n",
- " <td>0.702537</td>\n",
- " <td>1.0</td>\n",
- " <td>44.936338</td>\n",
- " <td>5</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206455</th>\n",
- " <td>5124520.0</td>\n",
- " <td>14.249623</td>\n",
- " <td>25.0</td>\n",
- " <td>118.0</td>\n",
- " <td>512885.599017</td>\n",
- " <td>121964.977036</td>\n",
- " <td>15.514710</td>\n",
- " <td>12.886922</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>44.936338</td>\n",
" <td>3.0</td>\n",
- " <td>512908.0</td>\n",
- " <td>121915.0</td>\n",
- " <td>1.088780</td>\n",
- " <td>1.0</td>\n",
- " <td>44.936338</td>\n",
- " <td>5</td>\n",
+ " <td>307.0</td>\n",
+ " <td>10</td>\n",
+ " <td>0.805740</td>\n",
+ " <td>0.117647</td>\n",
+ " <td>0.805740</td>\n",
" </tr>\n",
" <tr>\n",
- " <th>206456</th>\n",
- " <td>5124523.0</td>\n",
- " <td>202.860586</td>\n",
- " <td>26.0</td>\n",
- " <td>-65.0</td>\n",
- " <td>512907.355343</td>\n",
- " <td>121907.640275</td>\n",
- " <td>69.264065</td>\n",
- " <td>181.708205</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>148.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512908.0</td>\n",
- " <td>121915.0</td>\n",
- " <td>0.341437</td>\n",
- " <td>1.0</td>\n",
- " <td>383.229874</td>\n",
+ " <th>1</th>\n",
+ " <td>4817425</td>\n",
+ " <td>{10B89BB0-60A3-4460-9D73-7C0036224AC5}</td>\n",
+ " <td>36.859836</td>\n",
+ " <td>37</td>\n",
+ " <td>33.0</td>\n",
+ " <td>503503.812619</td>\n",
+ " <td>134131.833522</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>...</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>28.208608</td>\n",
+ " <td>0.765294</td>\n",
" <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206457</th>\n",
- " <td>5124524.0</td>\n",
- " <td>221.668609</td>\n",
- " <td>25.0</td>\n",
- " <td>115.0</td>\n",
- " <td>512901.324171</td>\n",
- " <td>121910.827716</td>\n",
- " <td>72.136766</td>\n",
- " <td>201.586966</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>148.000000</td>\n",
" <td>3.0</td>\n",
- " <td>512908.0</td>\n",
- " <td>121915.0</td>\n",
- " <td>0.325426</td>\n",
- " <td>1.0</td>\n",
- " <td>383.229874</td>\n",
- " <td>6</td>\n",
+ " <td>213.0</td>\n",
+ " <td>37</td>\n",
+ " <td>0.390669</td>\n",
+ " <td>0.000000</td>\n",
+ " <td>0.173631</td>\n",
" </tr>\n",
" <tr>\n",
- " <th>206458</th>\n",
- " <td>5124525.0</td>\n",
- " <td>126.405824</td>\n",
- " <td>22.0</td>\n",
- " <td>118.0</td>\n",
- " <td>512801.107921</td>\n",
- " <td>121763.322478</td>\n",
- " <td>43.276794</td>\n",
- " <td>116.796274</td>\n",
- " <td>1018651.0</td>\n",
- " <td>8013.0</td>\n",
- " <td>1030.0</td>\n",
- " <td>181.000000</td>\n",
+ " <th>2</th>\n",
+ " <td>4817426</td>\n",
+ " <td>{10B89BB0-60A3-4460-9D73-7C0036224AC5}</td>\n",
+ " <td>51.333864</td>\n",
+ " <td>31</td>\n",
+ " <td>-57.0</td>\n",
+ " <td>503509.783165</td>\n",
+ " <td>134135.282805</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>...</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>40.053428</td>\n",
+ " <td>0.780254</td>\n",
+ " <td>7</td>\n",
" <td>3.0</td>\n",
- " <td>512806.0</td>\n",
- " <td>121761.0</td>\n",
- " <td>0.342364</td>\n",
- " <td>2.0</td>\n",
- " <td>234.405582</td>\n",
- " <td>4</td>\n",
+ " <td>123.0</td>\n",
+ " <td>31</td>\n",
+ " <td>0.155843</td>\n",
+ " <td>0.000000</td>\n",
+ " <td>0.155843</td>\n",
" </tr>\n",
" <tr>\n",
- " <th>206459</th>\n",
- " <td>5124526.0</td>\n",
- " <td>126.408740</td>\n",
- " <td>22.0</td>\n",
- " <td>-62.0</td>\n",
- " <td>512810.176759</td>\n",
- " <td>121758.418405</td>\n",
- " <td>43.277184</td>\n",
- " <td>116.797944</td>\n",
- " <td>1018651.0</td>\n",
- " <td>8013.0</td>\n",
- " <td>1030.0</td>\n",
- " <td>181.000000</td>\n",
- " <td>3.0</td>\n",
- " <td>512806.0</td>\n",
- " <td>121761.0</td>\n",
- " <td>0.342359</td>\n",
- " <td>2.0</td>\n",
- " <td>234.405582</td>\n",
+ " <th>3</th>\n",
+ " <td>4817427</td>\n",
+ " <td>{10B89BB0-60A3-4460-9D73-7C0036224AC5}</td>\n",
+ " <td>36.861447</td>\n",
+ " <td>37</td>\n",
+ " <td>-147.0</td>\n",
+ " <td>503510.594159</td>\n",
+ " <td>134142.188986</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>...</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>28.210273</td>\n",
+ " <td>0.765306</td>\n",
" <td>4</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>206460</th>\n",
- " <td>5124527.0</td>\n",
- " <td>17.738624</td>\n",
- " <td>32.0</td>\n",
- " <td>-67.0</td>\n",
- " <td>512895.656423</td>\n",
- " <td>121945.700714</td>\n",
- " <td>16.399780</td>\n",
- " <td>14.964642</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>29.863731</td>\n",
" <td>3.0</td>\n",
- " <td>512908.0</td>\n",
- " <td>121915.0</td>\n",
- " <td>0.924524</td>\n",
- " <td>1.0</td>\n",
- " <td>29.863731</td>\n",
- " <td>4</td>\n",
+ " <td>33.0</td>\n",
+ " <td>37</td>\n",
+ " <td>0.390652</td>\n",
+ " <td>0.166667</td>\n",
+ " <td>0.217029</td>\n",
" </tr>\n",
" <tr>\n",
- " <th>206461</th>\n",
- " <td>5124528.0</td>\n",
- " <td>17.671450</td>\n",
- " <td>33.0</td>\n",
- " <td>113.0</td>\n",
- " <td>512893.143353</td>\n",
- " <td>121946.778198</td>\n",
- " <td>16.370630</td>\n",
- " <td>14.885036</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>1025.0</td>\n",
- " <td>29.863731</td>\n",
- " <td>3.0</td>\n",
- " <td>512908.0</td>\n",
- " <td>121915.0</td>\n",
- " <td>0.926389</td>\n",
- " <td>1.0</td>\n",
- " <td>29.863731</td>\n",
+ " <th>4</th>\n",
+ " <td>4817428</td>\n",
+ " <td>{10B89BB0-60A3-4460-9D73-7C0036224AC5}</td>\n",
+ " <td>81.256555</td>\n",
+ " <td>28</td>\n",
+ " <td>123.0</td>\n",
+ " <td>503504.226918</td>\n",
+ " <td>134138.960671</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>...</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>37.840077</td>\n",
+ " <td>0.465686</td>\n",
" <td>4</td>\n",
+ " <td>3.0</td>\n",
+ " <td>303.0</td>\n",
+ " <td>28</td>\n",
+ " <td>0.708866</td>\n",
+ " <td>0.333333</td>\n",
+ " <td>0.708866</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
- "<p>206462 rows × 19 columns</p>\n",
+ "<p>5 rows × 23 columns</p>\n",
"</div>"
],
"text/plain": [
- " DF_UID FLAECHE NEIGUNG AUSRICHTUNG XCOORD \\\n",
- "0 4817410.0 71.487047 10.0 127.0 503491.325015 \n",
- "1 4817425.0 36.859836 37.0 33.0 503503.812619 \n",
- "2 4817426.0 51.333864 31.0 -57.0 503509.783165 \n",
- "3 4817427.0 36.861447 37.0 -147.0 503510.594159 \n",
- "4 4817428.0 81.256555 28.0 123.0 503504.226918 \n",
- "5 4817429.0 11.397236 27.0 -144.0 503512.070989 \n",
- "6 4817430.0 11.262413 27.0 31.0 503510.350525 \n",
- "7 4817431.0 174.501987 31.0 -147.0 503503.978942 \n",
- "8 4817432.0 174.108293 31.0 33.0 503500.517066 \n",
- "9 4817433.0 69.216255 26.0 33.0 503510.917446 \n",
- "10 4817434.0 26.716480 31.0 -147.0 503517.020358 \n",
- "11 4817435.0 26.018729 31.0 -147.0 503507.806109 \n",
- "12 4817436.0 13.309012 33.0 123.0 503512.471353 \n",
- "13 4817437.0 13.503089 32.0 -57.0 503514.586126 \n",
- "14 4817438.0 130.038144 26.0 -144.0 503951.193324 \n",
- "15 4817439.0 126.475108 26.0 36.0 503948.788882 \n",
- "16 4817440.0 47.540096 37.0 -144.0 503996.949571 \n",
- "17 4817441.0 35.497241 32.0 36.0 503994.863047 \n",
- "18 4817442.0 49.847956 38.0 36.0 504003.468131 \n",
- "19 4817443.0 74.607733 40.0 -144.0 504005.947778 \n",
- "20 4817444.0 12.607657 0.0 0.0 503991.439805 \n",
- "21 4817445.0 9.973655 29.0 -55.0 503926.571766 \n",
- "22 4817446.0 34.666521 29.0 35.0 503921.018886 \n",
- "23 4817447.0 9.971017 29.0 125.0 503917.347567 \n",
- "24 4817448.0 34.963254 28.0 -145.0 503922.898105 \n",
- "25 4817449.0 19.979434 7.0 35.0 503916.075512 \n",
- "26 4817450.0 21.119847 18.0 -144.0 503936.461763 \n",
- "27 4817451.0 21.374411 19.0 36.0 503934.470464 \n",
- "28 4817452.0 68.854261 35.0 -140.0 504222.101990 \n",
- "29 4817453.0 52.296595 34.0 40.0 504219.058562 \n",
- "... ... ... ... ... ... \n",
- "206432 5124497.0 139.413591 30.0 -60.0 512727.853591 \n",
- "206433 5124498.0 137.530298 30.0 120.0 512722.012941 \n",
- "206434 5124499.0 92.630815 7.0 -150.0 512731.300787 \n",
- "206435 5124500.0 44.081253 7.0 -148.0 512734.614676 \n",
- "206436 5124501.0 12.602429 0.0 0.0 512727.537367 \n",
- "206437 5124502.0 14.119724 11.0 -147.0 512729.165421 \n",
- "206438 5124503.0 36.753693 21.0 122.0 512683.971180 \n",
- "206439 5124504.0 0.064896 19.0 -58.0 512689.499215 \n",
- "206440 5124505.0 36.179539 19.0 -58.0 512689.565868 \n",
- "206441 5124506.0 57.609988 17.0 -57.0 512685.874412 \n",
- "206442 5124507.0 57.882063 22.0 122.0 512679.975021 \n",
- "206443 5124508.0 35.898733 22.0 -153.0 512676.571716 \n",
- "206444 5124509.0 88.059840 20.0 27.0 512674.020870 \n",
- "206445 5124510.0 234.137426 15.0 -139.0 512576.260995 \n",
- "206446 5124511.0 232.447102 16.0 41.0 512570.079754 \n",
- "206447 5124512.0 131.925651 29.0 121.0 512861.419320 \n",
- "206448 5124513.0 137.339196 28.0 -59.0 512865.854189 \n",
- "206449 5124514.0 21.008432 23.0 -150.0 512862.686744 \n",
- "206450 5124515.0 21.541363 19.0 30.0 512860.734800 \n",
- "206451 5124516.0 33.342276 17.0 -58.0 512857.342542 \n",
- "206452 5124517.0 43.358052 13.0 122.0 512853.537208 \n",
- "206453 5124518.0 34.768271 0.0 0.0 512851.492252 \n",
- "206454 5124519.0 32.262272 7.0 -62.0 512889.292856 \n",
- "206455 5124520.0 14.249623 25.0 118.0 512885.599017 \n",
- "206456 5124523.0 202.860586 26.0 -65.0 512907.355343 \n",
- "206457 5124524.0 221.668609 25.0 115.0 512901.324171 \n",
- "206458 5124525.0 126.405824 22.0 118.0 512801.107921 \n",
- "206459 5124526.0 126.408740 22.0 -62.0 512810.176759 \n",
- "206460 5124527.0 17.738624 32.0 -67.0 512895.656423 \n",
- "206461 5124528.0 17.671450 33.0 113.0 512893.143353 \n",
+ " DF_UID SB_UUID FLAECHE NEIGUNG \\\n",
+ "0 4817410 {C0837EBA-3FE8-4166-99E4-A009D794F3F7} 71.487047 10 \n",
+ "1 4817425 {10B89BB0-60A3-4460-9D73-7C0036224AC5} 36.859836 37 \n",
+ "2 4817426 {10B89BB0-60A3-4460-9D73-7C0036224AC5} 51.333864 31 \n",
+ "3 4817427 {10B89BB0-60A3-4460-9D73-7C0036224AC5} 36.861447 37 \n",
+ "4 4817428 {10B89BB0-60A3-4460-9D73-7C0036224AC5} 81.256555 28 \n",
+ "\n",
+ " AUSRICHTUNG XCOORD YCOORD GWR_EGID GBAUP GKAT \\\n",
+ "0 127.0 503491.325015 134197.490397 295070969.0 8011.0 1021.0 \n",
+ "1 33.0 503503.812619 134131.833522 1004090.0 8012.0 1021.0 \n",
+ "2 -57.0 503509.783165 134135.282805 1004090.0 8012.0 1021.0 \n",
+ "3 -147.0 503510.594159 134142.188986 1004090.0 8012.0 1021.0 \n",
+ "4 123.0 503504.226918 134138.960671 1004090.0 8012.0 1021.0 \n",
"\n",
- " YCOORD Shape_Length Shape_Area GWR_EGID GBAUP GKAT \\\n",
- "0 134197.490397 33.936595 70.390620 295070969.0 8011.0 1021.0 \n",
- "1 134131.833522 28.208608 29.339500 1004090.0 8012.0 1021.0 \n",
- "2 134135.282805 40.053428 44.043504 1004090.0 8012.0 1021.0 \n",
- "3 134142.188986 28.210273 29.341346 1004090.0 8012.0 1021.0 \n",
- "4 134138.960671 37.840077 71.574129 1004090.0 8012.0 1021.0 \n",
- "5 134135.795686 15.417311 10.154872 1004090.0 8012.0 1021.0 \n",
- "6 134133.126967 15.346288 10.045172 1004090.0 8012.0 1021.0 \n",
- "7 134181.171146 59.815925 149.165008 1004088.0 8011.0 1021.0 \n",
- "8 134175.889168 59.775896 148.702405 1004088.0 8011.0 1021.0 \n",
- "9 134191.713704 45.633223 61.997846 295084893.0 8011.0 1021.0 \n",
- "10 134191.118711 23.687927 22.959133 295084893.0 8011.0 1021.0 \n",
- "11 134197.114437 23.199036 22.360589 295084893.0 8011.0 1021.0 \n",
- "12 134196.622116 15.096068 11.164928 295084893.0 8011.0 1021.0 \n",
- "13 134195.245953 15.198331 11.396747 295084893.0 8011.0 1021.0 \n",
- "14 134195.306644 64.584475 117.365353 295084994.0 8014.0 1030.0 \n",
- "15 134191.981218 64.301850 113.406403 295084994.0 8014.0 1030.0 \n",
- "16 134161.244934 27.081498 37.981483 1004076.0 8012.0 1021.0 \n",
- "17 134158.375583 25.402378 29.945648 1004076.0 8012.0 1021.0 \n",
- "18 134152.306087 29.835723 39.429900 1004076.0 8012.0 1021.0 \n",
- "19 134155.715627 32.967494 57.409186 1004076.0 8012.0 1021.0 \n",
- "20 134163.317363 17.745074 12.607657 1004076.0 8012.0 1021.0 \n",
- "21 134212.338837 14.288661 8.760702 1004089.0 8012.0 1021.0 \n",
- "22 134214.298798 29.015856 30.403885 1004089.0 8012.0 1021.0 \n",
- "23 134218.902400 14.287157 8.757635 1004089.0 8012.0 1021.0 \n",
- "24 134216.939359 29.062031 30.741322 1004089.0 8012.0 1021.0 \n",
- "25 134213.701005 17.895750 19.831984 1004089.0 8012.0 1021.0 \n",
- "26 134203.761986 18.414721 20.066844 295084994.0 8014.0 1030.0 \n",
- "27 134200.829905 19.727025 20.261942 295084994.0 8014.0 1030.0 \n",
- "28 134017.187739 31.767443 56.268749 1004049.0 8011.0 1025.0 \n",
- "29 134013.574920 29.327904 43.406040 1004049.0 8011.0 1025.0 \n",
- "... ... ... ... ... ... ... \n",
- "206432 121799.313992 54.005430 120.493402 1018653.0 8012.0 1025.0 \n",
- "206433 121802.781737 53.905711 119.641777 1018653.0 8012.0 1025.0 \n",
- "206434 121811.881398 47.143675 91.927158 1018653.0 8012.0 1025.0 \n",
- "206435 121817.612632 28.618486 43.718502 1018653.0 8012.0 1025.0 \n",
- "206436 121820.039977 14.885065 12.602429 1018653.0 8012.0 1025.0 \n",
- "206437 121822.382400 16.789635 13.863595 1018653.0 8012.0 1025.0 \n",
- "206438 121769.079140 23.556753 34.231614 2040405.0 8012.0 1021.0 \n",
- "206439 121759.357413 8.350840 0.061348 2040405.0 8012.0 1021.0 \n",
- "206440 121765.612262 23.566963 34.201265 2040405.0 8012.0 1021.0 \n",
- "206441 121760.247993 37.797327 55.148314 2040405.0 8012.0 1021.0 \n",
- "206442 121763.783138 29.386703 53.499302 2040405.0 8012.0 1021.0 \n",
- "206443 121745.126015 30.833490 33.393443 2040405.0 8012.0 1021.0 \n",
- "206444 121740.921893 39.260540 82.722458 2040405.0 8012.0 1021.0 \n",
- "206445 121776.663075 66.560300 226.093454 1018659.0 8011.0 1030.0 \n",
- "206446 121769.520367 66.292584 222.913017 1018659.0 8011.0 1030.0 \n",
- "206447 121844.774678 55.702429 114.847781 1018654.0 8011.0 1025.0 \n",
- "206448 121842.120366 56.243851 121.027343 1018654.0 8011.0 1025.0 \n",
- "206449 121857.263294 23.119281 19.328343 1018654.0 8011.0 1025.0 \n",
- "206450 121855.152708 19.585625 20.336518 1018654.0 8011.0 1025.0 \n",
- "206451 121829.041410 24.377198 31.954253 1018654.0 8011.0 1025.0 \n",
- "206452 121831.368979 26.787103 42.321731 1018654.0 8011.0 1025.0 \n",
- "206453 121838.457750 29.085365 34.768271 1018654.0 8011.0 1025.0 \n",
- "206454 121962.982921 22.665441 32.006156 1018655.0 8014.0 1025.0 \n",
- "206455 121964.977036 15.514710 12.886922 1018655.0 8014.0 1025.0 \n",
- "206456 121907.640275 69.264065 181.708205 1018655.0 8014.0 1025.0 \n",
- "206457 121910.827716 72.136766 201.586966 1018655.0 8014.0 1025.0 \n",
- "206458 121763.322478 43.276794 116.796274 1018651.0 8013.0 1030.0 \n",
- "206459 121758.418405 43.277184 116.797944 1018651.0 8013.0 1030.0 \n",
- "206460 121945.700714 16.399780 14.964642 1018655.0 8014.0 1025.0 \n",
- "206461 121946.778198 16.370630 14.885036 1018655.0 8014.0 1025.0 \n",
+ " ... GKODY Shape_Length Shape_Ratio n_corners \\\n",
+ "0 ... 134198.0 33.936595 0.474724 4 \n",
+ "1 ... 134137.0 28.208608 0.765294 4 \n",
+ "2 ... 134137.0 40.053428 0.780254 7 \n",
+ "3 ... 134137.0 28.210273 0.765306 4 \n",
+ "4 ... 134137.0 37.840077 0.465686 4 \n",
"\n",
- " GAREA GASTW GKODX GKODY Shape_Ratio n_neighbors_100 \\\n",
- "0 44.000000 2.0 503491.0 134198.0 0.474724 3.0 \n",
- "1 152.000000 2.0 503507.0 134137.0 0.765294 3.0 \n",
- "2 152.000000 2.0 503507.0 134137.0 0.780254 3.0 \n",
- "3 152.000000 2.0 503507.0 134137.0 0.765306 3.0 \n",
- "4 152.000000 2.0 503507.0 134137.0 0.465686 3.0 \n",
- "5 152.000000 2.0 503507.0 134137.0 1.352724 3.0 \n",
- "6 152.000000 2.0 503507.0 134137.0 1.362611 3.0 \n",
- "7 206.000000 2.0 503503.0 134179.0 0.342781 3.0 \n",
- "8 206.000000 2.0 503503.0 134179.0 0.343326 3.0 \n",
- "9 100.000000 2.0 503512.0 134193.0 0.659285 3.0 \n",
- "10 100.000000 2.0 503512.0 134193.0 0.886641 3.0 \n",
- "11 100.000000 2.0 503512.0 134193.0 0.891628 3.0 \n",
- "12 100.000000 2.0 503512.0 134193.0 1.134274 3.0 \n",
- "13 100.000000 2.0 503512.0 134193.0 1.125545 3.0 \n",
- "14 213.000000 2.0 503949.0 134194.0 0.496658 5.0 \n",
- "15 213.000000 2.0 503949.0 134194.0 0.508415 5.0 \n",
- "16 66.000000 3.0 504005.0 134153.0 0.569656 7.0 \n",
- "17 66.000000 3.0 504005.0 134153.0 0.715616 7.0 \n",
- "18 66.000000 3.0 504005.0 134153.0 0.598535 7.0 \n",
- "19 66.000000 3.0 504005.0 134153.0 0.441878 7.0 \n",
- "20 66.000000 3.0 504005.0 134153.0 1.407484 7.0 \n",
- "21 57.000000 2.0 503922.0 134215.0 1.432640 4.0 \n",
- "22 57.000000 2.0 503922.0 134215.0 0.836999 4.0 \n",
- "23 57.000000 2.0 503922.0 134215.0 1.432869 4.0 \n",
- "24 57.000000 2.0 503922.0 134215.0 0.831216 4.0 \n",
- "25 57.000000 2.0 503922.0 134215.0 0.895709 4.0 \n",
- "26 213.000000 2.0 503949.0 134194.0 0.871915 5.0 \n",
- "27 213.000000 2.0 503949.0 134194.0 0.922927 5.0 \n",
- "28 67.000000 3.0 504220.0 134015.0 0.461372 25.0 \n",
- "29 67.000000 3.0 504220.0 134015.0 0.560799 25.0 \n",
- "... ... ... ... ... ... ... \n",
- "206432 153.000000 3.0 512725.0 121800.0 0.387376 3.0 \n",
- "206433 153.000000 3.0 512725.0 121800.0 0.391955 3.0 \n",
- "206434 153.000000 3.0 512725.0 121800.0 0.508942 3.0 \n",
- "206435 153.000000 3.0 512725.0 121800.0 0.649221 3.0 \n",
- "206436 153.000000 3.0 512725.0 121800.0 1.181127 3.0 \n",
- "206437 153.000000 3.0 512725.0 121800.0 1.189091 3.0 \n",
- "206438 129.000000 3.0 512678.0 121753.0 0.640936 7.0 \n",
- "206439 129.000000 3.0 512678.0 121753.0 128.679441 7.0 \n",
- "206440 129.000000 3.0 512678.0 121753.0 0.651389 7.0 \n",
- "206441 129.000000 3.0 512678.0 121753.0 0.656090 7.0 \n",
- "206442 129.000000 3.0 512678.0 121753.0 0.507700 7.0 \n",
- "206443 129.000000 3.0 512678.0 121753.0 0.858902 7.0 \n",
- "206444 129.000000 3.0 512678.0 121753.0 0.445839 7.0 \n",
- "206445 449.601882 2.0 512596.0 121754.0 0.284279 7.0 \n",
- "206446 449.601882 2.0 512596.0 121754.0 0.285194 7.0 \n",
- "206447 304.000000 2.0 512862.0 121841.0 0.422226 2.0 \n",
- "206448 304.000000 2.0 512862.0 121841.0 0.409525 2.0 \n",
- "206449 304.000000 2.0 512862.0 121841.0 1.100476 2.0 \n",
- "206450 304.000000 2.0 512862.0 121841.0 0.909210 2.0 \n",
- "206451 304.000000 2.0 512862.0 121841.0 0.731120 2.0 \n",
- "206452 304.000000 2.0 512862.0 121841.0 0.617811 2.0 \n",
- "206453 304.000000 2.0 512862.0 121841.0 0.836549 2.0 \n",
- "206454 44.936338 3.0 512908.0 121915.0 0.702537 1.0 \n",
- "206455 44.936338 3.0 512908.0 121915.0 1.088780 1.0 \n",
- "206456 148.000000 3.0 512908.0 121915.0 0.341437 1.0 \n",
- "206457 148.000000 3.0 512908.0 121915.0 0.325426 1.0 \n",
- "206458 181.000000 3.0 512806.0 121761.0 0.342364 2.0 \n",
- "206459 181.000000 3.0 512806.0 121761.0 0.342359 2.0 \n",
- "206460 29.863731 3.0 512908.0 121915.0 0.924524 1.0 \n",
- "206461 29.863731 3.0 512908.0 121915.0 0.926389 1.0 \n",
+ " n_neighbors_100 panel_direction panel_tilt panelled_area_ratio_ftr \\\n",
+ "0 3.0 307.0 10 0.805740 \n",
+ "1 3.0 213.0 37 0.390669 \n",
+ "2 3.0 123.0 31 0.155843 \n",
+ "3 3.0 33.0 37 0.390652 \n",
+ "4 3.0 303.0 28 0.708866 \n",
"\n",
- " Estim_build_area n_corners \n",
- "0 70.400998 4 \n",
- "1 194.813319 4 \n",
- "2 194.813319 7 \n",
- "3 194.813319 4 \n",
- "4 194.813319 4 \n",
- "5 194.813319 3 \n",
- "6 194.813319 3 \n",
- "7 298.817334 4 \n",
- "8 298.817334 4 \n",
- "9 107.414054 5 \n",
- "10 107.414054 5 \n",
- "11 107.414054 5 \n",
- "12 22.613146 6 \n",
- "13 22.613146 5 \n",
- "14 230.552584 4 \n",
- "15 230.552584 4 \n",
- "16 68.070576 5 \n",
- "17 68.070576 4 \n",
- "18 96.433564 4 \n",
- "19 96.433564 4 \n",
- "20 12.607657 5 \n",
- "21 78.634747 3 \n",
- "22 78.634747 4 \n",
- "23 78.634747 4 \n",
- "24 78.634747 4 \n",
- "25 19.830510 4 \n",
- "26 40.296071 5 \n",
- "27 40.296071 6 \n",
- "28 99.757951 5 \n",
- "29 99.757951 5 \n",
- "... ... ... \n",
- "206432 239.840444 9 \n",
- "206433 239.840444 9 \n",
- "206434 91.940359 8 \n",
- "206435 43.752678 4 \n",
- "206436 26.462734 6 \n",
- "206437 26.462734 6 \n",
- "206438 68.582316 5 \n",
- "206439 68.582316 3 \n",
- "206440 68.582316 4 \n",
- "206441 108.760020 8 \n",
- "206442 108.760020 5 \n",
- "206443 116.033907 7 \n",
- "206444 116.033907 8 \n",
- "206445 449.601882 4 \n",
- "206446 449.601882 4 \n",
- "206447 236.648087 5 \n",
- "206448 236.648087 4 \n",
- "206449 39.706122 6 \n",
- "206450 39.706122 4 \n",
- "206451 108.900435 4 \n",
- "206452 108.900435 4 \n",
- "206453 108.900435 6 \n",
- "206454 44.936338 5 \n",
- "206455 44.936338 5 \n",
- "206456 383.229874 4 \n",
- "206457 383.229874 6 \n",
- "206458 234.405582 4 \n",
- "206459 234.405582 4 \n",
- "206460 29.863731 4 \n",
- "206461 29.863731 4 \n",
+ " shaded_area_ratio_ftr panelled_area_ratio_tgt \n",
+ "0 0.117647 0.805740 \n",
+ "1 0.000000 0.173631 \n",
+ "2 0.000000 0.155843 \n",
+ "3 0.166667 0.217029 \n",
+ "4 0.333333 0.708866 \n",
"\n",
- "[206462 rows x 19 columns]"
+ "[5 rows x 23 columns]"
]
},
- "execution_count": 6,
+ "execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "training_roofs"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Step 2: add panel information\n",
- "Add information of panelled area for Sonnendach roof polygons (ftr) and roof polygons with excluded superstructures (tgt). Note that CH_panels_ftr contains ALL rooftops and their panel_count information. For all roofs where panel_count == 0, we know already that there cannot be any panels fitted (due to geometry/size), neither vertically nor horizontally, so any calculation of available area for these rooftops is obsolete, i.e. the panels are excluded from further analysis."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "# merge panelled area ratio for features (no superstructure excluded)\n",
- "training_roofs_panel_ftr = training_roofs.merge( CH_panels_ftr.loc[:,['DF_UID', \n",
- " 'panel_tilt', \n",
- " 'best_align', \n",
- " 'panelled_area_ratio']], \n",
- " how = 'left', on = 'DF_UID')\n",
- "training_roofs_panel_ftr.rename( {'panelled_area_ratio' : 'panelled_area_ratio_ftr'}, axis = 1, inplace = True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "# exclude all roofs that have a feature panel count (before subtracting superstructures) equal to 0\n",
- "training_panels = training_roofs_panel_ftr[training_roofs_panel_ftr.panelled_area_ratio_ftr != 0]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [],
- "source": [
- "# merge panelled area ratio for training (GVA only, excluded superstrucutres)\n",
- "training_panels = training_panels.merge( GVA_panels_tgt.loc[:,['DF_UID', 'panelled_area_ratio']], \n",
- " how = 'left', on = 'DF_UID')\n",
- "training_panels.rename( {'panelled_area_ratio' : 'panelled_area_ratio_tgt'}, axis = 1, inplace = True)\n",
- "training_panels.fillna(0, inplace = True)"
+ "training_panels.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Step 3: Exclude roofs without superstructure data\n",
+ "### Step 2: Exclude roofs without superstructure data\n",
"The shapefiles of GVA / GVA_noSP can be use to check if the area was changed when superstructures were subtracted. In the cases where this was not the case, the respective roofs are removed from training - it is assumed that the dataset is incomplete and superstructures were not correctly registered rather than there are no superstructures that can be found on the roof. This may be a conservative estimate in some cases, which however is preferred to an overestimate. Uncertainty is to be quantified to assess the level of confidence"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# extract area information from shapefiles\n",
"gva_all = gva_shp.loc[:,['DF_UID']]\n",
"gva_all['area_full'] = gva_shp.area\n",
"\n",
"gva_noSP = gva_shp_noSP.loc[:,['DF_UID']]\n",
"gva_noSP['area_noSP'] = gva_shp_noSP.area"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Merge information of areas wih and without superstructures; areas not found in gva_noSP are given area = 0\n",
"gva_data = gva_all.merge(gva_noSP, on = 'DF_UID', how = 'left')\n",
"gva_data.fillna(0, inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"unequal_area = gva_data[np.round(gva_data.area_full,2) != np.round(gva_data.area_noSP,2)]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of total roofs in Geneva: 206462\n",
"Number of roofs with some superstructure: 63225\n",
"Percentage of roofs with some superstructure: 30.62 percent\n"
]
}
],
"source": [
"print(\"Number of total roofs in Geneva: %d\" %len(gva_data))\n",
"print(\"Number of roofs with some superstructure: %d\" %len(unequal_area))\n",
"print(\"Percentage of roofs with some superstructure: %.2f percent\" %(100 * len(unequal_area) / len(gva_data)))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"TRN_data = training_panels[training_panels.DF_UID.isin(unequal_area.DF_UID)]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>XCOORD</th>\n",
" <th>YCOORD</th>\n",
" <th>Shape_Length</th>\n",
" <th>Shape_Area</th>\n",
" <th>GWR_EGID</th>\n",
" <th>GBAUP</th>\n",
" <th>...</th>\n",
" <th>GKODX</th>\n",
" <th>GKODY</th>\n",
" <th>Shape_Ratio</th>\n",
" <th>n_neighbors_100</th>\n",
" <th>Estim_build_area</th>\n",
" <th>n_corners</th>\n",
" <th>panel_tilt</th>\n",
" <th>best_align</th>\n",
" <th>panelled_area_ratio_ftr</th>\n",
" <th>panelled_area_ratio_tgt</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4817425.0</td>\n",
" <td>36.859836</td>\n",
" <td>37.0</td>\n",
" <td>33.0</td>\n",
" <td>503503.812619</td>\n",
" <td>134131.833522</td>\n",
" <td>28.208608</td>\n",
" <td>29.339500</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>503507.0</td>\n",
" <td>134137.0</td>\n",
" <td>0.765294</td>\n",
" <td>3.0</td>\n",
" <td>194.813319</td>\n",
" <td>4</td>\n",
" <td>37</td>\n",
" <td>equal</td>\n",
" <td>0.390669</td>\n",
" <td>0.173631</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4817427.0</td>\n",
" <td>36.861447</td>\n",
" <td>37.0</td>\n",
" <td>-147.0</td>\n",
" <td>503510.594159</td>\n",
" <td>134142.188986</td>\n",
" <td>28.210273</td>\n",
" <td>29.341346</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>503507.0</td>\n",
" <td>134137.0</td>\n",
" <td>0.765306</td>\n",
" <td>3.0</td>\n",
" <td>194.813319</td>\n",
" <td>4</td>\n",
" <td>37</td>\n",
" <td>horizontal</td>\n",
" <td>0.390652</td>\n",
" <td>0.217029</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>4817433.0</td>\n",
" <td>69.216255</td>\n",
" <td>26.0</td>\n",
" <td>33.0</td>\n",
" <td>503510.917446</td>\n",
" <td>134191.713704</td>\n",
" <td>45.633223</td>\n",
" <td>61.997846</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>503512.0</td>\n",
" <td>134193.0</td>\n",
" <td>0.659285</td>\n",
" <td>3.0</td>\n",
" <td>107.414054</td>\n",
" <td>5</td>\n",
" <td>26</td>\n",
" <td>horizontal</td>\n",
" <td>0.508551</td>\n",
" <td>0.277391</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>4817445.0</td>\n",
" <td>9.973655</td>\n",
" <td>29.0</td>\n",
" <td>-55.0</td>\n",
" <td>503926.571766</td>\n",
" <td>134212.338837</td>\n",
" <td>14.288661</td>\n",
" <td>8.760702</td>\n",
" <td>1004089.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>503922.0</td>\n",
" <td>134215.0</td>\n",
" <td>1.432640</td>\n",
" <td>4.0</td>\n",
" <td>78.634747</td>\n",
" <td>3</td>\n",
" <td>29</td>\n",
" <td>horizontal</td>\n",
" <td>0.160423</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>4817452.0</td>\n",
" <td>68.854261</td>\n",
" <td>35.0</td>\n",
" <td>-140.0</td>\n",
" <td>504222.101990</td>\n",
" <td>134017.187739</td>\n",
" <td>31.767443</td>\n",
" <td>56.268749</td>\n",
" <td>1004049.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504220.0</td>\n",
" <td>134015.0</td>\n",
" <td>0.461372</td>\n",
" <td>25.0</td>\n",
" <td>99.757951</td>\n",
" <td>5</td>\n",
" <td>35</td>\n",
" <td>horizontal</td>\n",
" <td>0.697125</td>\n",
" <td>0.697125</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>4817453.0</td>\n",
" <td>52.296595</td>\n",
" <td>34.0</td>\n",
" <td>40.0</td>\n",
" <td>504219.058562</td>\n",
" <td>134013.574920</td>\n",
" <td>29.327904</td>\n",
" <td>43.406040</td>\n",
" <td>1004049.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504220.0</td>\n",
" <td>134015.0</td>\n",
" <td>0.560799</td>\n",
" <td>25.0</td>\n",
" <td>99.757951</td>\n",
" <td>5</td>\n",
" <td>34</td>\n",
" <td>horizontal</td>\n",
" <td>0.734273</td>\n",
" <td>0.673084</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>4817464.0</td>\n",
" <td>78.771912</td>\n",
" <td>31.0</td>\n",
" <td>130.0</td>\n",
" <td>504150.396646</td>\n",
" <td>134085.492644</td>\n",
" <td>32.609685</td>\n",
" <td>67.373176</td>\n",
" <td>1004073.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504151.0</td>\n",
" <td>134082.0</td>\n",
" <td>0.413976</td>\n",
" <td>17.0</td>\n",
" <td>140.790186</td>\n",
" <td>5</td>\n",
" <td>31</td>\n",
" <td>vertical</td>\n",
" <td>0.710913</td>\n",
" <td>0.406236</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>4817471.0</td>\n",
" <td>73.524780</td>\n",
" <td>35.0</td>\n",
" <td>34.0</td>\n",
" <td>504039.884935</td>\n",
" <td>134127.753162</td>\n",
" <td>40.713703</td>\n",
" <td>60.474674</td>\n",
" <td>1004075.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504040.0</td>\n",
" <td>134129.0</td>\n",
" <td>0.553741</td>\n",
" <td>7.0</td>\n",
" <td>119.554424</td>\n",
" <td>6</td>\n",
" <td>35</td>\n",
" <td>horizontal</td>\n",
" <td>0.609318</td>\n",
" <td>0.652841</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>4817483.0</td>\n",
" <td>100.571828</td>\n",
" <td>27.0</td>\n",
" <td>140.0</td>\n",
" <td>504182.850754</td>\n",
" <td>134128.499894</td>\n",
" <td>41.247227</td>\n",
" <td>89.271304</td>\n",
" <td>1004060.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504185.0</td>\n",
" <td>134127.0</td>\n",
" <td>0.410127</td>\n",
" <td>13.0</td>\n",
" <td>170.407907</td>\n",
" <td>4</td>\n",
" <td>27</td>\n",
" <td>horizontal</td>\n",
" <td>0.763633</td>\n",
" <td>0.493180</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>4817487.0</td>\n",
" <td>107.363169</td>\n",
" <td>26.0</td>\n",
" <td>-50.0</td>\n",
" <td>504164.499411</td>\n",
" <td>134085.908714</td>\n",
" <td>40.126227</td>\n",
" <td>96.811374</td>\n",
" <td>1004058.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504160.0</td>\n",
" <td>134089.0</td>\n",
" <td>0.373743</td>\n",
" <td>17.0</td>\n",
" <td>232.571656</td>\n",
" <td>4</td>\n",
" <td>26</td>\n",
" <td>horizontal</td>\n",
" <td>0.834551</td>\n",
" <td>0.804745</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>4817506.0</td>\n",
" <td>338.194772</td>\n",
" <td>32.0</td>\n",
" <td>-57.0</td>\n",
" <td>504118.320342</td>\n",
" <td>134142.125054</td>\n",
" <td>89.124850</td>\n",
" <td>288.352570</td>\n",
" <td>1004078.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>504101.0</td>\n",
" <td>134121.0</td>\n",
" <td>0.263531</td>\n",
" <td>12.0</td>\n",
" <td>1265.908399</td>\n",
" <td>6</td>\n",
" <td>32</td>\n",
" <td>horizontal</td>\n",
" <td>0.794808</td>\n",
" <td>0.553527</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>4817511.0</td>\n",
" <td>20.907218</td>\n",
" <td>47.0</td>\n",
" <td>-147.0</td>\n",
" <td>504132.987332</td>\n",
" <td>134174.806150</td>\n",
" <td>20.892222</td>\n",
" <td>14.380937</td>\n",
" <td>1004078.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>504101.0</td>\n",
" <td>134121.0</td>\n",
" <td>0.999283</td>\n",
" <td>12.0</td>\n",
" <td>1265.908399</td>\n",
" <td>3</td>\n",
" <td>47</td>\n",
" <td>equal</td>\n",
" <td>0.229586</td>\n",
" <td>0.076529</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>4817513.0</td>\n",
" <td>180.037771</td>\n",
" <td>33.0</td>\n",
" <td>-57.0</td>\n",
" <td>504131.757170</td>\n",
" <td>134165.089431</td>\n",
" <td>53.979078</td>\n",
" <td>150.181533</td>\n",
" <td>1004078.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>504101.0</td>\n",
" <td>134121.0</td>\n",
" <td>0.299821</td>\n",
" <td>12.0</td>\n",
" <td>1265.908399</td>\n",
" <td>7</td>\n",
" <td>33</td>\n",
" <td>horizontal</td>\n",
" <td>0.773171</td>\n",
" <td>0.479899</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>4817534.0</td>\n",
" <td>69.050433</td>\n",
" <td>37.0</td>\n",
" <td>-145.0</td>\n",
" <td>504232.555744</td>\n",
" <td>134035.586526</td>\n",
" <td>37.131477</td>\n",
" <td>55.112486</td>\n",
" <td>1004070.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504235.0</td>\n",
" <td>134032.0</td>\n",
" <td>0.537744</td>\n",
" <td>29.0</td>\n",
" <td>148.612823</td>\n",
" <td>8</td>\n",
" <td>37</td>\n",
" <td>horizontal</td>\n",
" <td>0.625630</td>\n",
" <td>0.648801</td>\n",
" </tr>\n",
" <tr>\n",
" <th>95</th>\n",
" <td>4817543.0</td>\n",
" <td>136.154298</td>\n",
" <td>26.0</td>\n",
" <td>-58.0</td>\n",
" <td>504216.156462</td>\n",
" <td>134047.845046</td>\n",
" <td>46.060999</td>\n",
" <td>121.923272</td>\n",
" <td>1004071.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504213.0</td>\n",
" <td>134050.0</td>\n",
" <td>0.338300</td>\n",
" <td>27.0</td>\n",
" <td>260.007501</td>\n",
" <td>5</td>\n",
" <td>26</td>\n",
" <td>vertical</td>\n",
" <td>0.775591</td>\n",
" <td>0.587569</td>\n",
" </tr>\n",
" <tr>\n",
" <th>104</th>\n",
" <td>4817553.0</td>\n",
" <td>299.453663</td>\n",
" <td>28.0</td>\n",
" <td>-47.0</td>\n",
" <td>504213.418431</td>\n",
" <td>134081.933731</td>\n",
" <td>71.637039</td>\n",
" <td>265.577565</td>\n",
" <td>1004055.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504206.0</td>\n",
" <td>134087.0</td>\n",
" <td>0.239226</td>\n",
" <td>21.0</td>\n",
" <td>686.905610</td>\n",
" <td>14</td>\n",
" <td>28</td>\n",
" <td>vertical</td>\n",
" <td>0.774744</td>\n",
" <td>0.593080</td>\n",
" </tr>\n",
" <tr>\n",
" <th>108</th>\n",
" <td>4817558.0</td>\n",
" <td>232.507194</td>\n",
" <td>28.0</td>\n",
" <td>113.0</td>\n",
" <td>504140.745470</td>\n",
" <td>134060.379545</td>\n",
" <td>67.568369</td>\n",
" <td>205.428267</td>\n",
" <td>1004050.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504146.0</td>\n",
" <td>134056.0</td>\n",
" <td>0.290608</td>\n",
" <td>16.0</td>\n",
" <td>483.038711</td>\n",
" <td>10</td>\n",
" <td>28</td>\n",
" <td>horizontal</td>\n",
" <td>0.729440</td>\n",
" <td>0.633099</td>\n",
" </tr>\n",
" <tr>\n",
" <th>117</th>\n",
" <td>4817569.0</td>\n",
" <td>46.645324</td>\n",
" <td>59.0</td>\n",
" <td>47.0</td>\n",
" <td>504383.212030</td>\n",
" <td>134038.490596</td>\n",
" <td>29.044821</td>\n",
" <td>23.861811</td>\n",
" <td>1004034.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504388.0</td>\n",
" <td>134043.0</td>\n",
" <td>0.622674</td>\n",
" <td>10.0</td>\n",
" <td>221.776847</td>\n",
" <td>3</td>\n",
" <td>59</td>\n",
" <td>equal</td>\n",
" <td>0.343014</td>\n",
" <td>0.171507</td>\n",
" </tr>\n",
" <tr>\n",
" <th>118</th>\n",
" <td>4817570.0</td>\n",
" <td>114.433767</td>\n",
" <td>40.0</td>\n",
" <td>-43.0</td>\n",
" <td>504390.817811</td>\n",
" <td>134040.491507</td>\n",
" <td>40.761920</td>\n",
" <td>87.041610</td>\n",
" <td>1004034.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504388.0</td>\n",
" <td>134043.0</td>\n",
" <td>0.356205</td>\n",
" <td>10.0</td>\n",
" <td>221.776847</td>\n",
" <td>4</td>\n",
" <td>40</td>\n",
" <td>vertical</td>\n",
" <td>0.727058</td>\n",
" <td>0.531312</td>\n",
" </tr>\n",
" <tr>\n",
" <th>119</th>\n",
" <td>4817571.0</td>\n",
" <td>46.644194</td>\n",
" <td>59.0</td>\n",
" <td>-133.0</td>\n",
" <td>504393.326128</td>\n",
" <td>134047.945689</td>\n",
" <td>29.044527</td>\n",
" <td>23.859602</td>\n",
" <td>1004034.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504388.0</td>\n",
" <td>134043.0</td>\n",
" <td>0.622683</td>\n",
" <td>10.0</td>\n",
" <td>221.776847</td>\n",
" <td>3</td>\n",
" <td>59</td>\n",
" <td>horizontal</td>\n",
" <td>0.343022</td>\n",
" <td>0.102907</td>\n",
" </tr>\n",
" <tr>\n",
" <th>120</th>\n",
" <td>4817572.0</td>\n",
" <td>114.041009</td>\n",
" <td>41.0</td>\n",
" <td>137.0</td>\n",
" <td>504385.717010</td>\n",
" <td>134045.948402</td>\n",
" <td>40.689282</td>\n",
" <td>86.524609</td>\n",
" <td>1004034.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504388.0</td>\n",
" <td>134043.0</td>\n",
" <td>0.356795</td>\n",
" <td>10.0</td>\n",
" <td>221.776847</td>\n",
" <td>4</td>\n",
" <td>41</td>\n",
" <td>vertical</td>\n",
" <td>0.729562</td>\n",
" <td>0.505081</td>\n",
" </tr>\n",
" <tr>\n",
" <th>126</th>\n",
" <td>4817579.0</td>\n",
" <td>22.712083</td>\n",
" <td>31.0</td>\n",
" <td>135.0</td>\n",
" <td>504362.580721</td>\n",
" <td>134030.362133</td>\n",
" <td>23.779044</td>\n",
" <td>19.549695</td>\n",
" <td>1004033.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504369.0</td>\n",
" <td>134040.0</td>\n",
" <td>1.046978</td>\n",
" <td>16.0</td>\n",
" <td>39.954721</td>\n",
" <td>6</td>\n",
" <td>31</td>\n",
" <td>horizontal</td>\n",
" <td>0.352235</td>\n",
" <td>0.352235</td>\n",
" </tr>\n",
" <tr>\n",
" <th>131</th>\n",
" <td>4817586.0</td>\n",
" <td>15.737103</td>\n",
" <td>52.0</td>\n",
" <td>-142.0</td>\n",
" <td>504292.267286</td>\n",
" <td>134012.035242</td>\n",
" <td>15.698669</td>\n",
" <td>9.582079</td>\n",
" <td>1004062.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504291.0</td>\n",
" <td>134005.0</td>\n",
" <td>0.997558</td>\n",
" <td>30.0</td>\n",
" <td>32.402196</td>\n",
" <td>5</td>\n",
" <td>52</td>\n",
" <td>vertical</td>\n",
" <td>0.203341</td>\n",
" <td>0.203341</td>\n",
" </tr>\n",
" <tr>\n",
" <th>133</th>\n",
" <td>4817590.0</td>\n",
" <td>107.805268</td>\n",
" <td>42.0</td>\n",
" <td>128.0</td>\n",
" <td>504291.857602</td>\n",
" <td>134007.238999</td>\n",
" <td>55.805688</td>\n",
" <td>79.525784</td>\n",
" <td>1004062.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504291.0</td>\n",
" <td>134005.0</td>\n",
" <td>0.517653</td>\n",
" <td>30.0</td>\n",
" <td>349.441134</td>\n",
" <td>11</td>\n",
" <td>42</td>\n",
" <td>horizontal</td>\n",
" <td>0.400723</td>\n",
" <td>0.281990</td>\n",
" </tr>\n",
" <tr>\n",
" <th>135</th>\n",
" <td>4817592.0</td>\n",
" <td>166.696743</td>\n",
" <td>44.0</td>\n",
" <td>-52.0</td>\n",
" <td>504295.617156</td>\n",
" <td>134002.024478</td>\n",
" <td>56.562275</td>\n",
" <td>119.181308</td>\n",
" <td>1004062.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504291.0</td>\n",
" <td>134005.0</td>\n",
" <td>0.339312</td>\n",
" <td>30.0</td>\n",
" <td>349.441134</td>\n",
" <td>6</td>\n",
" <td>44</td>\n",
" <td>horizontal</td>\n",
" <td>0.700674</td>\n",
" <td>0.508708</td>\n",
" </tr>\n",
" <tr>\n",
" <th>137</th>\n",
" <td>4817594.0</td>\n",
" <td>21.341327</td>\n",
" <td>44.0</td>\n",
" <td>-142.0</td>\n",
" <td>504285.546035</td>\n",
" <td>134006.535637</td>\n",
" <td>17.605523</td>\n",
" <td>15.460501</td>\n",
" <td>1004062.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504291.0</td>\n",
" <td>134005.0</td>\n",
" <td>0.824950</td>\n",
" <td>30.0</td>\n",
" <td>349.441134</td>\n",
" <td>5</td>\n",
" <td>44</td>\n",
" <td>vertical</td>\n",
" <td>0.449831</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>138</th>\n",
" <td>4817595.0</td>\n",
" <td>7.320491</td>\n",
" <td>24.0</td>\n",
" <td>128.0</td>\n",
" <td>504287.311728</td>\n",
" <td>134009.157566</td>\n",
" <td>10.533612</td>\n",
" <td>6.664126</td>\n",
" <td>1004062.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504291.0</td>\n",
" <td>134005.0</td>\n",
" <td>1.438922</td>\n",
" <td>30.0</td>\n",
" <td>17.596906</td>\n",
" <td>4</td>\n",
" <td>24</td>\n",
" <td>vertical</td>\n",
" <td>0.437129</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>139</th>\n",
" <td>4817596.0</td>\n",
" <td>11.941720</td>\n",
" <td>24.0</td>\n",
" <td>128.0</td>\n",
" <td>504292.697300</td>\n",
" <td>134016.015514</td>\n",
" <td>14.222427</td>\n",
" <td>10.871010</td>\n",
" <td>1004062.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>504291.0</td>\n",
" <td>134005.0</td>\n",
" <td>1.190986</td>\n",
" <td>30.0</td>\n",
" <td>17.596906</td>\n",
" <td>4</td>\n",
" <td>24</td>\n",
" <td>vertical</td>\n",
" <td>0.535936</td>\n",
" <td>0.267968</td>\n",
" </tr>\n",
" <tr>\n",
" <th>144</th>\n",
" <td>4817604.0</td>\n",
" <td>28.995697</td>\n",
" <td>32.0</td>\n",
" <td>49.0</td>\n",
" <td>504248.714875</td>\n",
" <td>134022.816832</td>\n",
" <td>23.386408</td>\n",
" <td>24.560885</td>\n",
" <td>1004069.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>504254.0</td>\n",
" <td>134015.0</td>\n",
" <td>0.806548</td>\n",
" <td>28.0</td>\n",
" <td>61.764345</td>\n",
" <td>6</td>\n",
" <td>32</td>\n",
" <td>equal</td>\n",
" <td>0.331084</td>\n",
" <td>0.275903</td>\n",
" </tr>\n",
" <tr>\n",
" <th>145</th>\n",
" <td>4817605.0</td>\n",
" <td>26.436872</td>\n",
" <td>34.0</td>\n",
" <td>-131.0</td>\n",
" <td>504251.675595</td>\n",
" <td>134025.521354</td>\n",
" <td>22.737006</td>\n",
" <td>21.871817</td>\n",
" <td>1004069.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>504254.0</td>\n",
" <td>134015.0</td>\n",
" <td>0.860049</td>\n",
" <td>28.0</td>\n",
" <td>61.764345</td>\n",
" <td>5</td>\n",
" <td>34</td>\n",
" <td>equal</td>\n",
" <td>0.302608</td>\n",
" <td>0.302608</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156361</th>\n",
" <td>5124081.0</td>\n",
" <td>266.605425</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>505205.617439</td>\n",
" <td>121850.298615</td>\n",
" <td>86.079619</td>\n",
" <td>266.605425</td>\n",
" <td>1007588.0</td>\n",
" <td>8013.0</td>\n",
" <td>...</td>\n",
" <td>505200.0</td>\n",
" <td>121851.0</td>\n",
" <td>0.322873</td>\n",
" <td>11.0</td>\n",
" <td>266.605425</td>\n",
" <td>8</td>\n",
" <td>30</td>\n",
" <td>horizontal</td>\n",
" <td>0.327433</td>\n",
" <td>0.311841</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156363</th>\n",
" <td>5124083.0</td>\n",
" <td>263.545062</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>505144.771970</td>\n",
" <td>121855.495639</td>\n",
" <td>86.673944</td>\n",
" <td>263.545062</td>\n",
" <td>1007482.0</td>\n",
" <td>8013.0</td>\n",
" <td>...</td>\n",
" <td>505140.0</td>\n",
" <td>121857.0</td>\n",
" <td>0.328877</td>\n",
" <td>17.0</td>\n",
" <td>263.545062</td>\n",
" <td>8</td>\n",
" <td>30</td>\n",
" <td>horizontal</td>\n",
" <td>0.325977</td>\n",
" <td>0.304947</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156368</th>\n",
" <td>5124091.0</td>\n",
" <td>75.980910</td>\n",
" <td>37.0</td>\n",
" <td>39.0</td>\n",
" <td>505015.098230</td>\n",
" <td>121962.536676</td>\n",
" <td>31.455957</td>\n",
" <td>60.994226</td>\n",
" <td>1007458.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>505018.0</td>\n",
" <td>121966.0</td>\n",
" <td>0.413998</td>\n",
" <td>18.0</td>\n",
" <td>135.538642</td>\n",
" <td>6</td>\n",
" <td>37</td>\n",
" <td>vertical</td>\n",
" <td>0.694911</td>\n",
" <td>0.168463</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156369</th>\n",
" <td>5124092.0</td>\n",
" <td>75.983413</td>\n",
" <td>37.0</td>\n",
" <td>-141.0</td>\n",
" <td>505019.265222</td>\n",
" <td>121967.617780</td>\n",
" <td>31.456985</td>\n",
" <td>60.996623</td>\n",
" <td>1007458.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>505018.0</td>\n",
" <td>121966.0</td>\n",
" <td>0.413998</td>\n",
" <td>18.0</td>\n",
" <td>135.538642</td>\n",
" <td>6</td>\n",
" <td>37</td>\n",
" <td>vertical</td>\n",
" <td>0.694889</td>\n",
" <td>0.189515</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156374</th>\n",
" <td>5124098.0</td>\n",
" <td>10.187720</td>\n",
" <td>23.0</td>\n",
" <td>-134.0</td>\n",
" <td>505136.048480</td>\n",
" <td>121823.092968</td>\n",
" <td>13.694789</td>\n",
" <td>9.378436</td>\n",
" <td>1007538.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>505140.0</td>\n",
" <td>121816.0</td>\n",
" <td>1.344245</td>\n",
" <td>16.0</td>\n",
" <td>49.931162</td>\n",
" <td>5</td>\n",
" <td>23</td>\n",
" <td>horizontal</td>\n",
" <td>0.157052</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156388</th>\n",
" <td>5124117.0</td>\n",
" <td>116.551287</td>\n",
" <td>20.0</td>\n",
" <td>37.0</td>\n",
" <td>505212.306673</td>\n",
" <td>121944.341314</td>\n",
" <td>53.663493</td>\n",
" <td>109.837185</td>\n",
" <td>1007518.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>505222.0</td>\n",
" <td>121943.0</td>\n",
" <td>0.460428</td>\n",
" <td>10.0</td>\n",
" <td>281.042520</td>\n",
" <td>7</td>\n",
" <td>20</td>\n",
" <td>vertical</td>\n",
" <td>0.658937</td>\n",
" <td>0.604026</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156399</th>\n",
" <td>5124132.0</td>\n",
" <td>97.474823</td>\n",
" <td>18.0</td>\n",
" <td>37.0</td>\n",
" <td>505154.911718</td>\n",
" <td>121992.092114</td>\n",
" <td>41.600238</td>\n",
" <td>92.691874</td>\n",
" <td>1007515.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>505158.0</td>\n",
" <td>121996.0</td>\n",
" <td>0.426779</td>\n",
" <td>19.0</td>\n",
" <td>218.441718</td>\n",
" <td>9</td>\n",
" <td>18</td>\n",
" <td>vertical</td>\n",
" <td>0.689409</td>\n",
" <td>0.689409</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156401</th>\n",
" <td>5124138.0</td>\n",
" <td>30.082116</td>\n",
" <td>18.0</td>\n",
" <td>37.0</td>\n",
" <td>505156.643720</td>\n",
" <td>121986.481617</td>\n",
" <td>21.502608</td>\n",
" <td>28.604706</td>\n",
" <td>1007515.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>505158.0</td>\n",
" <td>121996.0</td>\n",
" <td>0.714797</td>\n",
" <td>19.0</td>\n",
" <td>36.637903</td>\n",
" <td>5</td>\n",
" <td>18</td>\n",
" <td>vertical</td>\n",
" <td>0.585065</td>\n",
" <td>0.425502</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156407</th>\n",
" <td>5124145.0</td>\n",
" <td>249.308311</td>\n",
" <td>1.0</td>\n",
" <td>37.0</td>\n",
" <td>505199.255195</td>\n",
" <td>121922.503240</td>\n",
" <td>77.354537</td>\n",
" <td>249.294867</td>\n",
" <td>1007519.0</td>\n",
" <td>8015.0</td>\n",
" <td>...</td>\n",
" <td>505199.0</td>\n",
" <td>121921.0</td>\n",
" <td>0.310277</td>\n",
" <td>12.0</td>\n",
" <td>249.270341</td>\n",
" <td>12</td>\n",
" <td>1</td>\n",
" <td>horizontal</td>\n",
" <td>0.770131</td>\n",
" <td>0.718789</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156417</th>\n",
" <td>5124157.0</td>\n",
" <td>61.049862</td>\n",
" <td>35.0</td>\n",
" <td>38.0</td>\n",
" <td>505038.054617</td>\n",
" <td>121900.383583</td>\n",
" <td>31.229961</td>\n",
" <td>49.771623</td>\n",
" <td>3131586.0</td>\n",
" <td>8019.0</td>\n",
" <td>...</td>\n",
" <td>505040.0</td>\n",
" <td>121901.0</td>\n",
" <td>0.511548</td>\n",
" <td>17.0</td>\n",
" <td>119.125599</td>\n",
" <td>8</td>\n",
" <td>35</td>\n",
" <td>vertical</td>\n",
" <td>0.524162</td>\n",
" <td>0.524162</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156442</th>\n",
" <td>5124184.0</td>\n",
" <td>152.955166</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>505138.741055</td>\n",
" <td>121751.371196</td>\n",
" <td>49.572093</td>\n",
" <td>152.955166</td>\n",
" <td>1007533.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>505119.0</td>\n",
" <td>121780.0</td>\n",
" <td>0.324096</td>\n",
" <td>15.0</td>\n",
" <td>152.955166</td>\n",
" <td>4</td>\n",
" <td>30</td>\n",
" <td>vertical</td>\n",
" <td>0.344247</td>\n",
" <td>0.235537</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156456</th>\n",
" <td>5124225.0</td>\n",
" <td>149.628056</td>\n",
" <td>24.0</td>\n",
" <td>118.0</td>\n",
" <td>507938.483195</td>\n",
" <td>121938.971036</td>\n",
" <td>47.207179</td>\n",
" <td>136.744127</td>\n",
" <td>1020465.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>507934.0</td>\n",
" <td>121918.0</td>\n",
" <td>0.315497</td>\n",
" <td>8.0</td>\n",
" <td>229.185291</td>\n",
" <td>4</td>\n",
" <td>24</td>\n",
" <td>vertical</td>\n",
" <td>0.769909</td>\n",
" <td>0.727136</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156457</th>\n",
" <td>5124226.0</td>\n",
" <td>100.481013</td>\n",
" <td>23.0</td>\n",
" <td>-62.0</td>\n",
" <td>507945.991866</td>\n",
" <td>121934.251075</td>\n",
" <td>42.236335</td>\n",
" <td>92.428410</td>\n",
" <td>1020465.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>507934.0</td>\n",
" <td>121918.0</td>\n",
" <td>0.420341</td>\n",
" <td>8.0</td>\n",
" <td>229.185291</td>\n",
" <td>6</td>\n",
" <td>23</td>\n",
" <td>horizontal</td>\n",
" <td>0.684706</td>\n",
" <td>0.636936</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156495</th>\n",
" <td>5124268.0</td>\n",
" <td>69.521653</td>\n",
" <td>26.0</td>\n",
" <td>127.0</td>\n",
" <td>507988.872644</td>\n",
" <td>121923.898204</td>\n",
" <td>41.662072</td>\n",
" <td>62.694983</td>\n",
" <td>1020473.0</td>\n",
" <td>8016.0</td>\n",
" <td>...</td>\n",
" <td>507988.0</td>\n",
" <td>121925.0</td>\n",
" <td>0.599268</td>\n",
" <td>5.0</td>\n",
" <td>138.925812</td>\n",
" <td>9</td>\n",
" <td>26</td>\n",
" <td>horizontal</td>\n",
" <td>0.460288</td>\n",
" <td>0.460288</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156496</th>\n",
" <td>5124269.0</td>\n",
" <td>80.758005</td>\n",
" <td>26.0</td>\n",
" <td>-53.0</td>\n",
" <td>507992.817789</td>\n",
" <td>121921.257256</td>\n",
" <td>38.928120</td>\n",
" <td>72.825494</td>\n",
" <td>1020473.0</td>\n",
" <td>8016.0</td>\n",
" <td>...</td>\n",
" <td>507988.0</td>\n",
" <td>121925.0</td>\n",
" <td>0.482034</td>\n",
" <td>5.0</td>\n",
" <td>138.925812</td>\n",
" <td>6</td>\n",
" <td>26</td>\n",
" <td>horizontal</td>\n",
" <td>0.633993</td>\n",
" <td>0.614181</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156502</th>\n",
" <td>5124275.0</td>\n",
" <td>33.715366</td>\n",
" <td>25.0</td>\n",
" <td>-155.0</td>\n",
" <td>507851.862589</td>\n",
" <td>121897.816540</td>\n",
" <td>27.906534</td>\n",
" <td>30.670579</td>\n",
" <td>1020460.0</td>\n",
" <td>8015.0</td>\n",
" <td>...</td>\n",
" <td>507851.0</td>\n",
" <td>121894.0</td>\n",
" <td>0.827710</td>\n",
" <td>6.0</td>\n",
" <td>256.684990</td>\n",
" <td>5</td>\n",
" <td>25</td>\n",
" <td>horizontal</td>\n",
" <td>0.284737</td>\n",
" <td>0.237281</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156503</th>\n",
" <td>5124276.0</td>\n",
" <td>38.150126</td>\n",
" <td>25.0</td>\n",
" <td>25.0</td>\n",
" <td>507845.816019</td>\n",
" <td>121895.960950</td>\n",
" <td>28.228417</td>\n",
" <td>34.456133</td>\n",
" <td>1020460.0</td>\n",
" <td>8015.0</td>\n",
" <td>...</td>\n",
" <td>507851.0</td>\n",
" <td>121894.0</td>\n",
" <td>0.739930</td>\n",
" <td>6.0</td>\n",
" <td>256.684990</td>\n",
" <td>4</td>\n",
" <td>25</td>\n",
" <td>horizontal</td>\n",
" <td>0.419396</td>\n",
" <td>0.335517</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156507</th>\n",
" <td>5124280.0</td>\n",
" <td>13.260158</td>\n",
" <td>24.0</td>\n",
" <td>-19.0</td>\n",
" <td>507852.909926</td>\n",
" <td>121900.448859</td>\n",
" <td>19.454339</td>\n",
" <td>12.143164</td>\n",
" <td>1020460.0</td>\n",
" <td>8015.0</td>\n",
" <td>...</td>\n",
" <td>507851.0</td>\n",
" <td>121894.0</td>\n",
" <td>1.467127</td>\n",
" <td>6.0</td>\n",
" <td>256.684990</td>\n",
" <td>4</td>\n",
" <td>24</td>\n",
" <td>horizontal</td>\n",
" <td>0.120662</td>\n",
" <td>0.120662</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156508</th>\n",
" <td>5124281.0</td>\n",
" <td>12.849435</td>\n",
" <td>25.0</td>\n",
" <td>160.0</td>\n",
" <td>507852.228616</td>\n",
" <td>121902.124777</td>\n",
" <td>19.208987</td>\n",
" <td>11.620749</td>\n",
" <td>1020460.0</td>\n",
" <td>8015.0</td>\n",
" <td>...</td>\n",
" <td>507851.0</td>\n",
" <td>121894.0</td>\n",
" <td>1.494929</td>\n",
" <td>6.0</td>\n",
" <td>256.684990</td>\n",
" <td>4</td>\n",
" <td>25</td>\n",
" <td>horizontal</td>\n",
" <td>0.124519</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156510</th>\n",
" <td>5124283.0</td>\n",
" <td>20.322154</td>\n",
" <td>30.0</td>\n",
" <td>-66.0</td>\n",
" <td>507863.633435</td>\n",
" <td>121905.138610</td>\n",
" <td>20.654033</td>\n",
" <td>17.628942</td>\n",
" <td>1020460.0</td>\n",
" <td>8015.0</td>\n",
" <td>...</td>\n",
" <td>507851.0</td>\n",
" <td>121894.0</td>\n",
" <td>1.016331</td>\n",
" <td>6.0</td>\n",
" <td>58.327437</td>\n",
" <td>4</td>\n",
" <td>30</td>\n",
" <td>equal</td>\n",
" <td>0.236195</td>\n",
" <td>0.157464</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156512</th>\n",
" <td>5124285.0</td>\n",
" <td>23.152132</td>\n",
" <td>26.0</td>\n",
" <td>114.0</td>\n",
" <td>507860.241136</td>\n",
" <td>121906.680783</td>\n",
" <td>21.406529</td>\n",
" <td>20.826972</td>\n",
" <td>1020460.0</td>\n",
" <td>8015.0</td>\n",
" <td>...</td>\n",
" <td>507851.0</td>\n",
" <td>121894.0</td>\n",
" <td>0.924603</td>\n",
" <td>6.0</td>\n",
" <td>58.327437</td>\n",
" <td>4</td>\n",
" <td>26</td>\n",
" <td>horizontal</td>\n",
" <td>0.414649</td>\n",
" <td>0.345541</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156516</th>\n",
" <td>5124291.0</td>\n",
" <td>90.925022</td>\n",
" <td>35.0</td>\n",
" <td>44.0</td>\n",
" <td>507943.410921</td>\n",
" <td>121877.913753</td>\n",
" <td>37.434216</td>\n",
" <td>74.778700</td>\n",
" <td>1020458.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>507945.0</td>\n",
" <td>121879.0</td>\n",
" <td>0.411704</td>\n",
" <td>7.0</td>\n",
" <td>156.302014</td>\n",
" <td>6</td>\n",
" <td>35</td>\n",
" <td>equal</td>\n",
" <td>0.651086</td>\n",
" <td>0.580698</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156549</th>\n",
" <td>5124362.0</td>\n",
" <td>119.658477</td>\n",
" <td>25.0</td>\n",
" <td>132.0</td>\n",
" <td>509833.292224</td>\n",
" <td>121883.708346</td>\n",
" <td>41.864123</td>\n",
" <td>108.376924</td>\n",
" <td>1018455.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>509835.0</td>\n",
" <td>121889.0</td>\n",
" <td>0.349863</td>\n",
" <td>2.0</td>\n",
" <td>448.199438</td>\n",
" <td>4</td>\n",
" <td>25</td>\n",
" <td>vertical</td>\n",
" <td>0.802283</td>\n",
" <td>0.748798</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156553</th>\n",
" <td>5124372.0</td>\n",
" <td>21.508865</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>509830.542020</td>\n",
" <td>121890.939403</td>\n",
" <td>19.144630</td>\n",
" <td>21.508865</td>\n",
" <td>1018455.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>509835.0</td>\n",
" <td>121889.0</td>\n",
" <td>0.890081</td>\n",
" <td>2.0</td>\n",
" <td>28.198185</td>\n",
" <td>7</td>\n",
" <td>30</td>\n",
" <td>equal</td>\n",
" <td>0.128844</td>\n",
" <td>0.128844</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156597</th>\n",
" <td>5124422.0</td>\n",
" <td>118.827342</td>\n",
" <td>33.0</td>\n",
" <td>-44.0</td>\n",
" <td>509777.061068</td>\n",
" <td>121984.581143</td>\n",
" <td>39.984208</td>\n",
" <td>99.826972</td>\n",
" <td>1018454.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>509755.0</td>\n",
" <td>121973.0</td>\n",
" <td>0.336490</td>\n",
" <td>1.0</td>\n",
" <td>732.156993</td>\n",
" <td>5</td>\n",
" <td>33</td>\n",
" <td>vertical</td>\n",
" <td>0.807895</td>\n",
" <td>0.807895</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156601</th>\n",
" <td>5124426.0</td>\n",
" <td>64.747340</td>\n",
" <td>45.0</td>\n",
" <td>-138.0</td>\n",
" <td>509791.644236</td>\n",
" <td>121764.305896</td>\n",
" <td>28.417197</td>\n",
" <td>45.662025</td>\n",
" <td>1018487.0</td>\n",
" <td>8015.0</td>\n",
" <td>...</td>\n",
" <td>509796.0</td>\n",
" <td>121759.0</td>\n",
" <td>0.438894</td>\n",
" <td>3.0</td>\n",
" <td>103.624105</td>\n",
" <td>4</td>\n",
" <td>45</td>\n",
" <td>horizontal</td>\n",
" <td>0.741343</td>\n",
" <td>0.247114</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156619</th>\n",
" <td>5124450.0</td>\n",
" <td>58.985735</td>\n",
" <td>19.0</td>\n",
" <td>141.0</td>\n",
" <td>509914.886217</td>\n",
" <td>121818.670138</td>\n",
" <td>37.958737</td>\n",
" <td>55.913928</td>\n",
" <td>1018456.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>509954.0</td>\n",
" <td>121782.0</td>\n",
" <td>0.643524</td>\n",
" <td>7.0</td>\n",
" <td>68.927176</td>\n",
" <td>5</td>\n",
" <td>19</td>\n",
" <td>horizontal</td>\n",
" <td>0.379753</td>\n",
" <td>0.352628</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156630</th>\n",
" <td>5124463.0</td>\n",
" <td>17.508327</td>\n",
" <td>34.0</td>\n",
" <td>-22.0</td>\n",
" <td>510037.013096</td>\n",
" <td>121760.096891</td>\n",
" <td>18.884070</td>\n",
" <td>14.575574</td>\n",
" <td>1018458.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>510019.0</td>\n",
" <td>121774.0</td>\n",
" <td>1.078577</td>\n",
" <td>7.0</td>\n",
" <td>24.601407</td>\n",
" <td>4</td>\n",
" <td>34</td>\n",
" <td>horizontal</td>\n",
" <td>0.365540</td>\n",
" <td>0.182770</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156671</th>\n",
" <td>5124512.0</td>\n",
" <td>131.925651</td>\n",
" <td>29.0</td>\n",
" <td>121.0</td>\n",
" <td>512861.419320</td>\n",
" <td>121844.774678</td>\n",
" <td>55.702429</td>\n",
" <td>114.847781</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>512862.0</td>\n",
" <td>121841.0</td>\n",
" <td>0.422226</td>\n",
" <td>2.0</td>\n",
" <td>236.648087</td>\n",
" <td>5</td>\n",
" <td>29</td>\n",
" <td>vertical</td>\n",
" <td>0.800451</td>\n",
" <td>0.739811</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156677</th>\n",
" <td>5124518.0</td>\n",
" <td>34.768271</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>512851.492252</td>\n",
" <td>121838.457750</td>\n",
" <td>29.085365</td>\n",
" <td>34.768271</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>512862.0</td>\n",
" <td>121841.0</td>\n",
" <td>0.836549</td>\n",
" <td>2.0</td>\n",
" <td>108.900435</td>\n",
" <td>6</td>\n",
" <td>30</td>\n",
" <td>vertical</td>\n",
" <td>0.119561</td>\n",
" <td>0.119561</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>37729 rows × 23 columns</p>\n",
"</div>"
],
"text/plain": [
" DF_UID FLAECHE NEIGUNG AUSRICHTUNG XCOORD \\\n",
"1 4817425.0 36.859836 37.0 33.0 503503.812619 \n",
"3 4817427.0 36.861447 37.0 -147.0 503510.594159 \n",
"8 4817433.0 69.216255 26.0 33.0 503510.917446 \n",
"19 4817445.0 9.973655 29.0 -55.0 503926.571766 \n",
"26 4817452.0 68.854261 35.0 -140.0 504222.101990 \n",
"27 4817453.0 52.296595 34.0 40.0 504219.058562 \n",
"33 4817464.0 78.771912 31.0 130.0 504150.396646 \n",
"40 4817471.0 73.524780 35.0 34.0 504039.884935 \n",
"48 4817483.0 100.571828 27.0 140.0 504182.850754 \n",
"52 4817487.0 107.363169 26.0 -50.0 504164.499411 \n",
"69 4817506.0 338.194772 32.0 -57.0 504118.320342 \n",
"74 4817511.0 20.907218 47.0 -147.0 504132.987332 \n",
"76 4817513.0 180.037771 33.0 -57.0 504131.757170 \n",
"86 4817534.0 69.050433 37.0 -145.0 504232.555744 \n",
"95 4817543.0 136.154298 26.0 -58.0 504216.156462 \n",
"104 4817553.0 299.453663 28.0 -47.0 504213.418431 \n",
"108 4817558.0 232.507194 28.0 113.0 504140.745470 \n",
"117 4817569.0 46.645324 59.0 47.0 504383.212030 \n",
"118 4817570.0 114.433767 40.0 -43.0 504390.817811 \n",
"119 4817571.0 46.644194 59.0 -133.0 504393.326128 \n",
"120 4817572.0 114.041009 41.0 137.0 504385.717010 \n",
"126 4817579.0 22.712083 31.0 135.0 504362.580721 \n",
"131 4817586.0 15.737103 52.0 -142.0 504292.267286 \n",
"133 4817590.0 107.805268 42.0 128.0 504291.857602 \n",
"135 4817592.0 166.696743 44.0 -52.0 504295.617156 \n",
"137 4817594.0 21.341327 44.0 -142.0 504285.546035 \n",
"138 4817595.0 7.320491 24.0 128.0 504287.311728 \n",
"139 4817596.0 11.941720 24.0 128.0 504292.697300 \n",
"144 4817604.0 28.995697 32.0 49.0 504248.714875 \n",
"145 4817605.0 26.436872 34.0 -131.0 504251.675595 \n",
"... ... ... ... ... ... \n",
"156361 5124081.0 266.605425 0.0 0.0 505205.617439 \n",
"156363 5124083.0 263.545062 0.0 0.0 505144.771970 \n",
"156368 5124091.0 75.980910 37.0 39.0 505015.098230 \n",
"156369 5124092.0 75.983413 37.0 -141.0 505019.265222 \n",
"156374 5124098.0 10.187720 23.0 -134.0 505136.048480 \n",
"156388 5124117.0 116.551287 20.0 37.0 505212.306673 \n",
"156399 5124132.0 97.474823 18.0 37.0 505154.911718 \n",
"156401 5124138.0 30.082116 18.0 37.0 505156.643720 \n",
"156407 5124145.0 249.308311 1.0 37.0 505199.255195 \n",
"156417 5124157.0 61.049862 35.0 38.0 505038.054617 \n",
"156442 5124184.0 152.955166 0.0 0.0 505138.741055 \n",
"156456 5124225.0 149.628056 24.0 118.0 507938.483195 \n",
"156457 5124226.0 100.481013 23.0 -62.0 507945.991866 \n",
"156495 5124268.0 69.521653 26.0 127.0 507988.872644 \n",
"156496 5124269.0 80.758005 26.0 -53.0 507992.817789 \n",
"156502 5124275.0 33.715366 25.0 -155.0 507851.862589 \n",
"156503 5124276.0 38.150126 25.0 25.0 507845.816019 \n",
"156507 5124280.0 13.260158 24.0 -19.0 507852.909926 \n",
"156508 5124281.0 12.849435 25.0 160.0 507852.228616 \n",
"156510 5124283.0 20.322154 30.0 -66.0 507863.633435 \n",
"156512 5124285.0 23.152132 26.0 114.0 507860.241136 \n",
"156516 5124291.0 90.925022 35.0 44.0 507943.410921 \n",
"156549 5124362.0 119.658477 25.0 132.0 509833.292224 \n",
"156553 5124372.0 21.508865 0.0 0.0 509830.542020 \n",
"156597 5124422.0 118.827342 33.0 -44.0 509777.061068 \n",
"156601 5124426.0 64.747340 45.0 -138.0 509791.644236 \n",
"156619 5124450.0 58.985735 19.0 141.0 509914.886217 \n",
"156630 5124463.0 17.508327 34.0 -22.0 510037.013096 \n",
"156671 5124512.0 131.925651 29.0 121.0 512861.419320 \n",
"156677 5124518.0 34.768271 0.0 0.0 512851.492252 \n",
"\n",
" YCOORD Shape_Length Shape_Area GWR_EGID GBAUP \\\n",
"1 134131.833522 28.208608 29.339500 1004090.0 8012.0 \n",
"3 134142.188986 28.210273 29.341346 1004090.0 8012.0 \n",
"8 134191.713704 45.633223 61.997846 295084893.0 8011.0 \n",
"19 134212.338837 14.288661 8.760702 1004089.0 8012.0 \n",
"26 134017.187739 31.767443 56.268749 1004049.0 8011.0 \n",
"27 134013.574920 29.327904 43.406040 1004049.0 8011.0 \n",
"33 134085.492644 32.609685 67.373176 1004073.0 8011.0 \n",
"40 134127.753162 40.713703 60.474674 1004075.0 8011.0 \n",
"48 134128.499894 41.247227 89.271304 1004060.0 8011.0 \n",
"52 134085.908714 40.126227 96.811374 1004058.0 8011.0 \n",
"69 134142.125054 89.124850 288.352570 1004078.0 8014.0 \n",
"74 134174.806150 20.892222 14.380937 1004078.0 8014.0 \n",
"76 134165.089431 53.979078 150.181533 1004078.0 8014.0 \n",
"86 134035.586526 37.131477 55.112486 1004070.0 8011.0 \n",
"95 134047.845046 46.060999 121.923272 1004071.0 8011.0 \n",
"104 134081.933731 71.637039 265.577565 1004055.0 8011.0 \n",
"108 134060.379545 67.568369 205.428267 1004050.0 8011.0 \n",
"117 134038.490596 29.044821 23.861811 1004034.0 8011.0 \n",
"118 134040.491507 40.761920 87.041610 1004034.0 8011.0 \n",
"119 134047.945689 29.044527 23.859602 1004034.0 8011.0 \n",
"120 134045.948402 40.689282 86.524609 1004034.0 8011.0 \n",
"126 134030.362133 23.779044 19.549695 1004033.0 8011.0 \n",
"131 134012.035242 15.698669 9.582079 1004062.0 8011.0 \n",
"133 134007.238999 55.805688 79.525784 1004062.0 8011.0 \n",
"135 134002.024478 56.562275 119.181308 1004062.0 8011.0 \n",
"137 134006.535637 17.605523 15.460501 1004062.0 8011.0 \n",
"138 134009.157566 10.533612 6.664126 1004062.0 8011.0 \n",
"139 134016.015514 14.222427 10.871010 1004062.0 8011.0 \n",
"144 134022.816832 23.386408 24.560885 1004069.0 8012.0 \n",
"145 134025.521354 22.737006 21.871817 1004069.0 8012.0 \n",
"... ... ... ... ... ... \n",
"156361 121850.298615 86.079619 266.605425 1007588.0 8013.0 \n",
"156363 121855.495639 86.673944 263.545062 1007482.0 8013.0 \n",
"156368 121962.536676 31.455957 60.994226 1007458.0 8014.0 \n",
"156369 121967.617780 31.456985 60.996623 1007458.0 8014.0 \n",
"156374 121823.092968 13.694789 9.378436 1007538.0 8014.0 \n",
"156388 121944.341314 53.663493 109.837185 1007518.0 8014.0 \n",
"156399 121992.092114 41.600238 92.691874 1007515.0 8014.0 \n",
"156401 121986.481617 21.502608 28.604706 1007515.0 8014.0 \n",
"156407 121922.503240 77.354537 249.294867 1007519.0 8015.0 \n",
"156417 121900.383583 31.229961 49.771623 3131586.0 8019.0 \n",
"156442 121751.371196 49.572093 152.955166 1007533.0 8014.0 \n",
"156456 121938.971036 47.207179 136.744127 1020465.0 8011.0 \n",
"156457 121934.251075 42.236335 92.428410 1020465.0 8011.0 \n",
"156495 121923.898204 41.662072 62.694983 1020473.0 8016.0 \n",
"156496 121921.257256 38.928120 72.825494 1020473.0 8016.0 \n",
"156502 121897.816540 27.906534 30.670579 1020460.0 8015.0 \n",
"156503 121895.960950 28.228417 34.456133 1020460.0 8015.0 \n",
"156507 121900.448859 19.454339 12.143164 1020460.0 8015.0 \n",
"156508 121902.124777 19.208987 11.620749 1020460.0 8015.0 \n",
"156510 121905.138610 20.654033 17.628942 1020460.0 8015.0 \n",
"156512 121906.680783 21.406529 20.826972 1020460.0 8015.0 \n",
"156516 121877.913753 37.434216 74.778700 1020458.0 8011.0 \n",
"156549 121883.708346 41.864123 108.376924 1018455.0 8011.0 \n",
"156553 121890.939403 19.144630 21.508865 1018455.0 8011.0 \n",
"156597 121984.581143 39.984208 99.826972 1018454.0 8011.0 \n",
"156601 121764.305896 28.417197 45.662025 1018487.0 8015.0 \n",
"156619 121818.670138 37.958737 55.913928 1018456.0 8014.0 \n",
"156630 121760.096891 18.884070 14.575574 1018458.0 8011.0 \n",
"156671 121844.774678 55.702429 114.847781 1018654.0 8011.0 \n",
"156677 121838.457750 29.085365 34.768271 1018654.0 8011.0 \n",
"\n",
" ... GKODX GKODY Shape_Ratio \\\n",
"1 ... 503507.0 134137.0 0.765294 \n",
"3 ... 503507.0 134137.0 0.765306 \n",
"8 ... 503512.0 134193.0 0.659285 \n",
"19 ... 503922.0 134215.0 1.432640 \n",
"26 ... 504220.0 134015.0 0.461372 \n",
"27 ... 504220.0 134015.0 0.560799 \n",
"33 ... 504151.0 134082.0 0.413976 \n",
"40 ... 504040.0 134129.0 0.553741 \n",
"48 ... 504185.0 134127.0 0.410127 \n",
"52 ... 504160.0 134089.0 0.373743 \n",
"69 ... 504101.0 134121.0 0.263531 \n",
"74 ... 504101.0 134121.0 0.999283 \n",
"76 ... 504101.0 134121.0 0.299821 \n",
"86 ... 504235.0 134032.0 0.537744 \n",
"95 ... 504213.0 134050.0 0.338300 \n",
"104 ... 504206.0 134087.0 0.239226 \n",
"108 ... 504146.0 134056.0 0.290608 \n",
"117 ... 504388.0 134043.0 0.622674 \n",
"118 ... 504388.0 134043.0 0.356205 \n",
"119 ... 504388.0 134043.0 0.622683 \n",
"120 ... 504388.0 134043.0 0.356795 \n",
"126 ... 504369.0 134040.0 1.046978 \n",
"131 ... 504291.0 134005.0 0.997558 \n",
"133 ... 504291.0 134005.0 0.517653 \n",
"135 ... 504291.0 134005.0 0.339312 \n",
"137 ... 504291.0 134005.0 0.824950 \n",
"138 ... 504291.0 134005.0 1.438922 \n",
"139 ... 504291.0 134005.0 1.190986 \n",
"144 ... 504254.0 134015.0 0.806548 \n",
"145 ... 504254.0 134015.0 0.860049 \n",
"... ... ... ... ... \n",
"156361 ... 505200.0 121851.0 0.322873 \n",
"156363 ... 505140.0 121857.0 0.328877 \n",
"156368 ... 505018.0 121966.0 0.413998 \n",
"156369 ... 505018.0 121966.0 0.413998 \n",
"156374 ... 505140.0 121816.0 1.344245 \n",
"156388 ... 505222.0 121943.0 0.460428 \n",
"156399 ... 505158.0 121996.0 0.426779 \n",
"156401 ... 505158.0 121996.0 0.714797 \n",
"156407 ... 505199.0 121921.0 0.310277 \n",
"156417 ... 505040.0 121901.0 0.511548 \n",
"156442 ... 505119.0 121780.0 0.324096 \n",
"156456 ... 507934.0 121918.0 0.315497 \n",
"156457 ... 507934.0 121918.0 0.420341 \n",
"156495 ... 507988.0 121925.0 0.599268 \n",
"156496 ... 507988.0 121925.0 0.482034 \n",
"156502 ... 507851.0 121894.0 0.827710 \n",
"156503 ... 507851.0 121894.0 0.739930 \n",
"156507 ... 507851.0 121894.0 1.467127 \n",
"156508 ... 507851.0 121894.0 1.494929 \n",
"156510 ... 507851.0 121894.0 1.016331 \n",
"156512 ... 507851.0 121894.0 0.924603 \n",
"156516 ... 507945.0 121879.0 0.411704 \n",
"156549 ... 509835.0 121889.0 0.349863 \n",
"156553 ... 509835.0 121889.0 0.890081 \n",
"156597 ... 509755.0 121973.0 0.336490 \n",
"156601 ... 509796.0 121759.0 0.438894 \n",
"156619 ... 509954.0 121782.0 0.643524 \n",
"156630 ... 510019.0 121774.0 1.078577 \n",
"156671 ... 512862.0 121841.0 0.422226 \n",
"156677 ... 512862.0 121841.0 0.836549 \n",
"\n",
" n_neighbors_100 Estim_build_area n_corners panel_tilt best_align \\\n",
"1 3.0 194.813319 4 37 equal \n",
"3 3.0 194.813319 4 37 horizontal \n",
"8 3.0 107.414054 5 26 horizontal \n",
"19 4.0 78.634747 3 29 horizontal \n",
"26 25.0 99.757951 5 35 horizontal \n",
"27 25.0 99.757951 5 34 horizontal \n",
"33 17.0 140.790186 5 31 vertical \n",
"40 7.0 119.554424 6 35 horizontal \n",
"48 13.0 170.407907 4 27 horizontal \n",
"52 17.0 232.571656 4 26 horizontal \n",
"69 12.0 1265.908399 6 32 horizontal \n",
"74 12.0 1265.908399 3 47 equal \n",
"76 12.0 1265.908399 7 33 horizontal \n",
"86 29.0 148.612823 8 37 horizontal \n",
"95 27.0 260.007501 5 26 vertical \n",
"104 21.0 686.905610 14 28 vertical \n",
"108 16.0 483.038711 10 28 horizontal \n",
"117 10.0 221.776847 3 59 equal \n",
"118 10.0 221.776847 4 40 vertical \n",
"119 10.0 221.776847 3 59 horizontal \n",
"120 10.0 221.776847 4 41 vertical \n",
"126 16.0 39.954721 6 31 horizontal \n",
"131 30.0 32.402196 5 52 vertical \n",
"133 30.0 349.441134 11 42 horizontal \n",
"135 30.0 349.441134 6 44 horizontal \n",
"137 30.0 349.441134 5 44 vertical \n",
"138 30.0 17.596906 4 24 vertical \n",
"139 30.0 17.596906 4 24 vertical \n",
"144 28.0 61.764345 6 32 equal \n",
"145 28.0 61.764345 5 34 equal \n",
"... ... ... ... ... ... \n",
"156361 11.0 266.605425 8 30 horizontal \n",
"156363 17.0 263.545062 8 30 horizontal \n",
"156368 18.0 135.538642 6 37 vertical \n",
"156369 18.0 135.538642 6 37 vertical \n",
"156374 16.0 49.931162 5 23 horizontal \n",
"156388 10.0 281.042520 7 20 vertical \n",
"156399 19.0 218.441718 9 18 vertical \n",
"156401 19.0 36.637903 5 18 vertical \n",
"156407 12.0 249.270341 12 1 horizontal \n",
"156417 17.0 119.125599 8 35 vertical \n",
"156442 15.0 152.955166 4 30 vertical \n",
"156456 8.0 229.185291 4 24 vertical \n",
"156457 8.0 229.185291 6 23 horizontal \n",
"156495 5.0 138.925812 9 26 horizontal \n",
"156496 5.0 138.925812 6 26 horizontal \n",
"156502 6.0 256.684990 5 25 horizontal \n",
"156503 6.0 256.684990 4 25 horizontal \n",
"156507 6.0 256.684990 4 24 horizontal \n",
"156508 6.0 256.684990 4 25 horizontal \n",
"156510 6.0 58.327437 4 30 equal \n",
"156512 6.0 58.327437 4 26 horizontal \n",
"156516 7.0 156.302014 6 35 equal \n",
"156549 2.0 448.199438 4 25 vertical \n",
"156553 2.0 28.198185 7 30 equal \n",
"156597 1.0 732.156993 5 33 vertical \n",
"156601 3.0 103.624105 4 45 horizontal \n",
"156619 7.0 68.927176 5 19 horizontal \n",
"156630 7.0 24.601407 4 34 horizontal \n",
"156671 2.0 236.648087 5 29 vertical \n",
"156677 2.0 108.900435 6 30 vertical \n",
"\n",
" panelled_area_ratio_ftr panelled_area_ratio_tgt \n",
"1 0.390669 0.173631 \n",
"3 0.390652 0.217029 \n",
"8 0.508551 0.277391 \n",
"19 0.160423 0.000000 \n",
"26 0.697125 0.697125 \n",
"27 0.734273 0.673084 \n",
"33 0.710913 0.406236 \n",
"40 0.609318 0.652841 \n",
"48 0.763633 0.493180 \n",
"52 0.834551 0.804745 \n",
"69 0.794808 0.553527 \n",
"74 0.229586 0.076529 \n",
"76 0.773171 0.479899 \n",
"86 0.625630 0.648801 \n",
"95 0.775591 0.587569 \n",
"104 0.774744 0.593080 \n",
"108 0.729440 0.633099 \n",
"117 0.343014 0.171507 \n",
"118 0.727058 0.531312 \n",
"119 0.343022 0.102907 \n",
"120 0.729562 0.505081 \n",
"126 0.352235 0.352235 \n",
"131 0.203341 0.203341 \n",
"133 0.400723 0.281990 \n",
"135 0.700674 0.508708 \n",
"137 0.449831 0.000000 \n",
"138 0.437129 0.000000 \n",
"139 0.535936 0.267968 \n",
"144 0.331084 0.275903 \n",
"145 0.302608 0.302608 \n",
"... ... ... \n",
"156361 0.327433 0.311841 \n",
"156363 0.325977 0.304947 \n",
"156368 0.694911 0.168463 \n",
"156369 0.694889 0.189515 \n",
"156374 0.157052 0.000000 \n",
"156388 0.658937 0.604026 \n",
"156399 0.689409 0.689409 \n",
"156401 0.585065 0.425502 \n",
"156407 0.770131 0.718789 \n",
"156417 0.524162 0.524162 \n",
"156442 0.344247 0.235537 \n",
"156456 0.769909 0.727136 \n",
"156457 0.684706 0.636936 \n",
"156495 0.460288 0.460288 \n",
"156496 0.633993 0.614181 \n",
"156502 0.284737 0.237281 \n",
"156503 0.419396 0.335517 \n",
"156507 0.120662 0.120662 \n",
"156508 0.124519 0.000000 \n",
"156510 0.236195 0.157464 \n",
"156512 0.414649 0.345541 \n",
"156516 0.651086 0.580698 \n",
"156549 0.802283 0.748798 \n",
"156553 0.128844 0.128844 \n",
"156597 0.807895 0.807895 \n",
"156601 0.741343 0.247114 \n",
"156619 0.379753 0.352628 \n",
"156630 0.365540 0.182770 \n",
"156671 0.800451 0.739811 \n",
"156677 0.119561 0.119561 \n",
"\n",
"[37729 rows x 23 columns]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "TRN_data"
+ "TRN_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## SAVE AS CSV"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"TRN_data.to_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/TRN_panelled_area.csv', index = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get additional info on number of BUILDINGS"
]
},
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [],
- "source": [
- "training_roofs_w_building = TRN_data.merge(gva_shp.loc[:,['DF_UID', 'SB_UUID']], on = 'DF_UID', how = 'left')"
- ]
- },
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of considered buildings in Geneva (by SB_UUID): 19174\n",
"Total number of considered buildings in Geneva (by GWR_EGID): 15919\n"
]
}
],
"source": [
- "print('Total number of considered buildings in Geneva (by SB_UUID): %d' %len(training_roofs_w_building.SB_UUID.unique()) )\n",
- "print('Total number of considered buildings in Geneva (by GWR_EGID): %d' %len(training_roofs_w_building.GWR_EGID.unique()) )"
+ "print('Total number of considered buildings in Geneva (by SB_UUID): %d' %len(TRN_data.SB_UUID.unique()) )\n",
+ "print('Total number of considered buildings in Geneva (by GWR_EGID): %d' %len(TRN_data.GWR_EGID.unique()) )"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.3"
+ "version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Hourly_PV_public/Physical_potential/Temperature/max_temperature_MMH.ipynb b/Hourly_PV_public/Physical_potential/Temperature/max_temperature_MMH.ipynb
index 5c4a82a..91c7477 100644
--- a/Hourly_PV_public/Physical_potential/Temperature/max_temperature_MMH.ipynb
+++ b/Hourly_PV_public/Physical_potential/Temperature/max_temperature_MMH.ipynb
@@ -1,9020 +1,1004 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import xarray as xr\n",
"import pandas as pd\n",
"\n",
"from pvlib import pvsystem\n",
"\n",
"import os\n",
"import time\n",
"import util\n",
" \n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Check range of $G_t$"
+ "### Create monthly-mean-hourly temperature data"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
- "fp = '/scratch/walch/workspace_tilted_irrad/PV_all_interp.nc'\n",
- "PV_hourly = xr.open_mfdataset( fp, chunks = {'DF_UID' : 100000} )"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (DF_UID: 9639231, timestamp: 146)\n",
- "Coordinates:\n",
- " * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ... 2001-12-15T15:00:00\n",
- " * DF_UID (DF_UID) int64 1 2 3 4 ... 9890021 9890022 9890023\n",
- "Data variables:\n",
- " tilted_irradiance (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " panelled_area (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " tilted_area (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " available_area (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " efficiency float64 ...\n",
- " performance_factor float64 ...\n",
- " pv_potential (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " yearly_kWh_m2 (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " yearly_PV_kWh (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " yearly_PV_all_area (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "PV_hourly"
+ "max_T = xr.open_mfdataset('/work/hyenergy/raw/MeteoSwiss_satellite/raw_data/temperature_max/TmaxD_ch01r.swisscors_20*.nc').TmaxD.load()\n"
]
},
{
"cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array(1002.4908246549828)"
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "PV_hourly.tilted_irradiance.max().values"
- ]
- },
- {
- "cell_type": "markdown",
+ "execution_count": 120,
"metadata": {},
+ "outputs": [],
"source": [
- "### Check range of temperature"
+ "# get max_T for our range of data (maximum Temperature per month, taking the average across 12 years)\n",
+ "year_sel = max_T.sel(time = slice('2004', '2015')).to_dataset()"
]
},
{
"cell_type": "code",
- "execution_count": 64,
+ "execution_count": 121,
"metadata": {},
"outputs": [],
"source": [
- "max_T = xr.open_mfdataset('/work/hyenergy/raw/MeteoSwiss_satellite/raw_data/temperature_max/TmaxD_ch01r.swisscors_20*.nc').TmaxD.load()\n"
+ "year_sel['month'] = year_sel.time.dt.month"
]
},
{
"cell_type": "code",
- "execution_count": 65,
+ "execution_count": 122,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "array(-16.48746605682373)"
+ "<xarray.Dataset>\n",
+ "Dimensions: (chx: 370, chy: 240, time: 4383)\n",
+ "Coordinates:\n",
+ " * chx (chx) float64 4.745e+05 4.755e+05 4.765e+05 ... 8.425e+05 8.435e+05\n",
+ " * chy (chy) float64 6.45e+04 6.55e+04 6.65e+04 ... 3.025e+05 3.035e+05\n",
+ " lon (chy, chx) float32 5.82685 5.83969 5.85253 ... 10.6785 10.6919\n",
+ " lat (chy, chx) float32 45.7206 45.7208 45.721 ... 47.8369 47.8366\n",
+ " * time (time) datetime64[ns] 2004-01-01 2004-01-02 ... 2015-12-31\n",
+ "Data variables:\n",
+ " TmaxD (time, chy, chx) float32 nan nan nan nan nan ... nan nan nan nan\n",
+ " month (time) int64 1 1 1 1 1 1 1 1 1 1 ... 12 12 12 12 12 12 12 12 12 12"
]
},
- "execution_count": 65,
+ "execution_count": 122,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "max_T.quantile(0.001).values"
+ "year_sel"
]
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 123,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array(33.862671474456874)"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
- "max_T.quantile(0.999).values"
+ "daily_data = year_sel.groupby('time.dayofyear').median(['time'])"
]
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 148,
"metadata": {},
"outputs": [
{
- "name": "stdout",
+ "name": "stderr",
"output_type": "stream",
"text": [
- "-35.1317024230957\n",
- "46.538177490234375\n"
+ "/home/walch/miniconda3/envs/py3/lib/python3.6/site-packages/xarray/core/nanops.py:161: RuntimeWarning: Mean of empty slice\n",
+ " return np.nanmean(a, axis=axis, dtype=dtype)\n"
]
}
],
"source": [
- "print(max_T.min().values)\n",
- "print(max_T.max().values)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "min_T = xr.open_mfdataset('/work/hyenergy/raw/MeteoSwiss_satellite/raw_data/temperature_min/TminD_ch01r.swisscors_20*.nc').TminD # .load()\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array(-23.631393720626832)"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "min_T.quantile(0.001).values"
+ "T_max_avg = daily_data.groupby('month').mean(['dayofyear']).TmaxD\n",
+ "T_max_std = daily_data.groupby('month').std( ['dayofyear']).TmaxD"
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 152,
"metadata": {},
"outputs": [],
"source": [
- "T_diff = max_T - min_T"
+ "T_max_mmd = T_max_avg.to_dataset()\n",
+ "T_max_mmd['stddev'] = T_max_std"
]
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 153,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "<xarray.DataArray (time: 6575, chy: 240, chx: 370)>\n",
- "dask.array<shape=(6575, 240, 370), dtype=float32, chunksize=(366, 240, 370)>\n",
+ "<xarray.Dataset>\n",
+ "Dimensions: (chx: 370, chy: 240, month: 12)\n",
"Coordinates:\n",
" * chx (chx) float64 4.745e+05 4.755e+05 4.765e+05 ... 8.425e+05 8.435e+05\n",
" * chy (chy) float64 6.45e+04 6.55e+04 6.65e+04 ... 3.025e+05 3.035e+05\n",
" lon (chy, chx) float32 5.82685 5.83969 5.85253 ... 10.6785 10.6919\n",
" lat (chy, chx) float32 45.7206 45.7208 45.721 ... 47.8369 47.8366\n",
- " * time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2017-12-31"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "T_diff"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array(8.099149703979492, dtype=float32)"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "T_diff.mean().values"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array(3.4837684631347656, dtype=float32)"
+ " * month (month) float64 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0\n",
+ "Data variables:\n",
+ " TmaxD (month, chy, chx) float32 nan nan nan nan nan ... nan nan nan nan\n",
+ " stddev (month, chy, chx) float32 nan nan nan nan nan ... nan nan nan nan"
]
},
- "execution_count": 7,
+ "execution_count": 153,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "T_diff.std().values"
+ "T_max_mmd"
]
},
{
"cell_type": "code",
- "execution_count": 65,
+ "execution_count": 156,
"metadata": {},
"outputs": [],
"source": [
- "T_values = max_T.values.flatten()\n",
- "T_values = T_values[~np.isnan(T_values)]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 66,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array([ 3.47477555, 3.60009646, 3.77452803, ..., 10.73526192,\n",
- " 10.71866512, 10.89078522], dtype=float32)"
- ]
- },
- "execution_count": 66,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "T_values"
+ "T_max_mmd.to_netcdf('/work/hyenergy/output/solar_potential/technical_potential/Tmax_surface_mmd.nc')"
]
},
{
"cell_type": "code",
- "execution_count": 67,
- "metadata": {},
+ "execution_count": 107,
+ "metadata": {
+ "scrolled": false
+ },
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
- }
- ],
- "source": [
- "plt.figure()\n",
- "hist = plt.hist(T_values, range=(T_range[0], T_range[-1]+1), bins = len(T_range), density = True)\n",
- "plt.xlabel('Max daily temperature')\n",
- "plt.ylabel('Occurences')\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Create monthly-mean-hourly temperature data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 120,
- "metadata": {},
- "outputs": [],
- "source": [
- "# get max_T for our range of data (maximum Temperature per month, taking the average across 12 years)\n",
- "year_sel = max_T.sel(time = slice('2004', '2015')).to_dataset()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 121,
- "metadata": {},
- "outputs": [],
- "source": [
- "year_sel['month'] = year_sel.time.dt.month"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 122,
- "metadata": {},
- "outputs": [
+ },
{
"data": {
"text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (chx: 370, chy: 240, time: 4383)\n",
- "Coordinates:\n",
- " * chx (chx) float64 4.745e+05 4.755e+05 4.765e+05 ... 8.425e+05 8.435e+05\n",
- " * chy (chy) float64 6.45e+04 6.55e+04 6.65e+04 ... 3.025e+05 3.035e+05\n",
- " lon (chy, chx) float32 5.82685 5.83969 5.85253 ... 10.6785 10.6919\n",
- " lat (chy, chx) float32 45.7206 45.7208 45.721 ... 47.8369 47.8366\n",
- " * time (time) datetime64[ns] 2004-01-01 2004-01-02 ... 2015-12-31\n",
- "Data variables:\n",
- " TmaxD (time, chy, chx) float32 nan nan nan nan nan ... nan nan nan nan\n",
- " month (time) int64 1 1 1 1 1 1 1 1 1 1 ... 12 12 12 12 12 12 12 12 12 12"
+ "[]"
]
},
- "execution_count": 122,
+ "execution_count": 107,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "year_sel"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 123,
- "metadata": {},
- "outputs": [],
- "source": [
- "daily_data = year_sel.groupby('time.dayofyear').median(['time'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 148,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/walch/miniconda3/envs/py3/lib/python3.6/site-packages/xarray/core/nanops.py:161: RuntimeWarning: Mean of empty slice\n",
- " return np.nanmean(a, axis=axis, dtype=dtype)\n"
- ]
- }
- ],
- "source": [
- "T_max_avg = daily_data.groupby('month').mean(['dayofyear']).TmaxD\n",
- "T_max_std = daily_data.groupby('month').std( ['dayofyear']).TmaxD"
+ "plt.figure()\n",
+ "T_max_mmd.TmaxD.sel(month = 7).plot()\n",
+ "plt.axis('equal')\n",
+ "plt.plot()"
]
- },
- {
- "cell_type": "code",
- "execution_count": 152,
- "metadata": {},
- "outputs": [],
- "source": [
- "T_max_mmd = T_max_avg.to_dataset()\n",
- "T_max_mmd['stddev'] = T_max_std"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 153,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (chx: 370, chy: 240, month: 12)\n",
- "Coordinates:\n",
- " * chx (chx) float64 4.745e+05 4.755e+05 4.765e+05 ... 8.425e+05 8.435e+05\n",
- " * chy (chy) float64 6.45e+04 6.55e+04 6.65e+04 ... 3.025e+05 3.035e+05\n",
- " lon (chy, chx) float32 5.82685 5.83969 5.85253 ... 10.6785 10.6919\n",
- " lat (chy, chx) float32 45.7206 45.7208 45.721 ... 47.8369 47.8366\n",
- " * month (month) float64 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0\n",
- "Data variables:\n",
- " TmaxD (month, chy, chx) float32 nan nan nan nan nan ... nan nan nan nan\n",
- " stddev (month, chy, chx) float32 nan nan nan nan nan ... nan nan nan nan"
- ]
- },
- "execution_count": 153,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "T_max_mmd"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 156,
- "metadata": {},
- "outputs": [],
- "source": [
- "T_max_mmd.to_netcdf('/work/hyenergy/output/solar_potential/technical_potential/Tmax_surface_mmd.nc')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 107,
- "metadata": {
- "scrolled": false
- },
- "outputs": [
- {
- "data": {
- "application/javascript": [
- "/* Put everything inside the global mpl namespace */\n",
- "window.mpl = {};\n",
- "\n",
- "\n",
- "mpl.get_websocket_type = function() {\n",
- " if (typeof(WebSocket) !== 'undefined') {\n",
- " return WebSocket;\n",
- " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
- " return MozWebSocket;\n",
- " } else {\n",
- " alert('Your browser does not have WebSocket support.' +\n",
- " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
- " 'Firefox 4 and 5 are also supported but you ' +\n",
- " 'have to enable WebSockets in about:config.');\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
- " this.id = figure_id;\n",
- "\n",
- " this.ws = websocket;\n",
- "\n",
- " this.supports_binary = (this.ws.binaryType != undefined);\n",
- "\n",
- " if (!this.supports_binary) {\n",
- " var warnings = document.getElementById(\"mpl-warnings\");\n",
- " if (warnings) {\n",
- " warnings.style.display = 'block';\n",
- " warnings.textContent = (\n",
- " \"This browser does not support binary websocket messages. \" +\n",
- " \"Performance may be slow.\");\n",
- " }\n",
- " }\n",
- "\n",
- " this.imageObj = new Image();\n",
- "\n",
- " this.context = undefined;\n",
- " this.message = undefined;\n",
- " this.canvas = undefined;\n",
- " this.rubberband_canvas = undefined;\n",
- " this.rubberband_context = undefined;\n",
- " this.format_dropdown = undefined;\n",
- "\n",
- " this.image_mode = 'full';\n",
- "\n",
- " this.root = $('<div/>');\n",
- " this._root_extra_style(this.root)\n",
- " this.root.attr('style', 'display: inline-block');\n",
- "\n",
- " $(parent_element).append(this.root);\n",
- "\n",
- " this._init_header(this);\n",
- " this._init_canvas(this);\n",
- " this._init_toolbar(this);\n",
- "\n",
- " var fig = this;\n",
- "\n",
- " this.waiting = false;\n",
- "\n",
- " this.ws.onopen = function () {\n",
- " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
- " fig.send_message(\"send_image_mode\", {});\n",
- " if (mpl.ratio != 1) {\n",
- " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
- " }\n",
- " fig.send_message(\"refresh\", {});\n",
- " }\n",
- "\n",
- " this.imageObj.onload = function() {\n",
- " if (fig.image_mode == 'full') {\n",
- " // Full images could contain transparency (where diff images\n",
- " // almost always do), so we need to clear the canvas so that\n",
- " // there is no ghosting.\n",
- " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
- " }\n",
- " fig.context.drawImage(fig.imageObj, 0, 0);\n",
- " };\n",
- "\n",
- " this.imageObj.onunload = function() {\n",
- " fig.ws.close();\n",
- " }\n",
- "\n",
- " this.ws.onmessage = this._make_on_message_function(this);\n",
- "\n",
- " this.ondownload = ondownload;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_header = function() {\n",
- " var titlebar = $(\n",
- " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
- " 'ui-helper-clearfix\"/>');\n",
- " var titletext = $(\n",
- " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
- " 'text-align: center; padding: 3px;\"/>');\n",
- " titlebar.append(titletext)\n",
- " this.root.append(titlebar);\n",
- " this.header = titletext[0];\n",
- "}\n",
- "\n",
- "\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_canvas = function() {\n",
- " var fig = this;\n",
- "\n",
- " var canvas_div = $('<div/>');\n",
- "\n",
- " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
- "\n",
- " function canvas_keyboard_event(event) {\n",
- " return fig.key_event(event, event['data']);\n",
- " }\n",
- "\n",
- " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
- " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
- " this.canvas_div = canvas_div\n",
- " this._canvas_extra_style(canvas_div)\n",
- " this.root.append(canvas_div);\n",
- "\n",
- " var canvas = $('<canvas/>');\n",
- " canvas.addClass('mpl-canvas');\n",
- " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
- "\n",
- " this.canvas = canvas[0];\n",
- " this.context = canvas[0].getContext(\"2d\");\n",
- "\n",
- " var backingStore = this.context.backingStorePixelRatio ||\n",
- "\tthis.context.webkitBackingStorePixelRatio ||\n",
- "\tthis.context.mozBackingStorePixelRatio ||\n",
- "\tthis.context.msBackingStorePixelRatio ||\n",
- "\tthis.context.oBackingStorePixelRatio ||\n",
- "\tthis.context.backingStorePixelRatio || 1;\n",
- "\n",
- " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
- "\n",
- " var rubberband = $('<canvas/>');\n",
- " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
- "\n",
- " var pass_mouse_events = true;\n",
- "\n",
- " canvas_div.resizable({\n",
- " start: function(event, ui) {\n",
- " pass_mouse_events = false;\n",
- " },\n",
- " resize: function(event, ui) {\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " stop: function(event, ui) {\n",
- " pass_mouse_events = true;\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " });\n",
- "\n",
- " function mouse_event_fn(event) {\n",
- " if (pass_mouse_events)\n",
- " return fig.mouse_event(event, event['data']);\n",
- " }\n",
- "\n",
- " rubberband.mousedown('button_press', mouse_event_fn);\n",
- " rubberband.mouseup('button_release', mouse_event_fn);\n",
- " // Throttle sequential mouse events to 1 every 20ms.\n",
- " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
- "\n",
- " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
- " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
- "\n",
- " canvas_div.on(\"wheel\", function (event) {\n",
- " event = event.originalEvent;\n",
- " event['data'] = 'scroll'\n",
- " if (event.deltaY < 0) {\n",
- " event.step = 1;\n",
- " } else {\n",
- " event.step = -1;\n",
- " }\n",
- " mouse_event_fn(event);\n",
- " });\n",
- "\n",
- " canvas_div.append(canvas);\n",
- " canvas_div.append(rubberband);\n",
- "\n",
- " this.rubberband = rubberband;\n",
- " this.rubberband_canvas = rubberband[0];\n",
- " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
- " this.rubberband_context.strokeStyle = \"#000000\";\n",
- "\n",
- " this._resize_canvas = function(width, height) {\n",
- " // Keep the size of the canvas, canvas container, and rubber band\n",
- " // canvas in synch.\n",
- " canvas_div.css('width', width)\n",
- " canvas_div.css('height', height)\n",
- "\n",
- " canvas.attr('width', width * mpl.ratio);\n",
- " canvas.attr('height', height * mpl.ratio);\n",
- " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
- "\n",
- " rubberband.attr('width', width);\n",
- " rubberband.attr('height', height);\n",
- " }\n",
- "\n",
- " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
- " // upon first draw.\n",
- " this._resize_canvas(600, 600);\n",
- "\n",
- " // Disable right mouse context menu.\n",
- " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
- " return false;\n",
- " });\n",
- "\n",
- " function set_focus () {\n",
- " canvas.focus();\n",
- " canvas_div.focus();\n",
- " }\n",
- "\n",
- " window.setTimeout(set_focus, 100);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('<div/>')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items) {\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) {\n",
- " // put a spacer in here.\n",
- " continue;\n",
- " }\n",
- " var button = $('<button/>');\n",
- " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
- " 'ui-button-icon-only');\n",
- " button.attr('role', 'button');\n",
- " button.attr('aria-disabled', 'false');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- "\n",
- " var icon_img = $('<span/>');\n",
- " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
- " icon_img.addClass(image);\n",
- " icon_img.addClass('ui-corner-all');\n",
- "\n",
- " var tooltip_span = $('<span/>');\n",
- " tooltip_span.addClass('ui-button-text');\n",
- " tooltip_span.html(tooltip);\n",
- "\n",
- " button.append(icon_img);\n",
- " button.append(tooltip_span);\n",
- "\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " var fmt_picker_span = $('<span/>');\n",
- "\n",
- " var fmt_picker = $('<select/>');\n",
- " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
- " fmt_picker_span.append(fmt_picker);\n",
- " nav_element.append(fmt_picker_span);\n",
- " this.format_dropdown = fmt_picker[0];\n",
- "\n",
- " for (var ind in mpl.extensions) {\n",
- " var fmt = mpl.extensions[ind];\n",
- " var option = $(\n",
- " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
- " fmt_picker.append(option)\n",
- " }\n",
- "\n",
- " // Add hover states to the ui-buttons\n",
- " $( \".ui-button\" ).hover(\n",
- " function() { $(this).addClass(\"ui-state-hover\");},\n",
- " function() { $(this).removeClass(\"ui-state-hover\");}\n",
- " );\n",
- "\n",
- " var status_bar = $('<span class=\"mpl-message\"/>');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
- " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
- " // which will in turn request a refresh of the image.\n",
- " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_message = function(type, properties) {\n",
- " properties['type'] = type;\n",
- " properties['figure_id'] = this.id;\n",
- " this.ws.send(JSON.stringify(properties));\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_draw_message = function() {\n",
- " if (!this.waiting) {\n",
- " this.waiting = true;\n",
- " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
- " }\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " var format_dropdown = fig.format_dropdown;\n",
- " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
- " fig.ondownload(fig, format);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
- " var size = msg['size'];\n",
- " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
- " fig._resize_canvas(size[0], size[1]);\n",
- " fig.send_message(\"refresh\", {});\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
- " var x0 = msg['x0'] / mpl.ratio;\n",
- " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
- " var x1 = msg['x1'] / mpl.ratio;\n",
- " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
- " x0 = Math.floor(x0) + 0.5;\n",
- " y0 = Math.floor(y0) + 0.5;\n",
- " x1 = Math.floor(x1) + 0.5;\n",
- " y1 = Math.floor(y1) + 0.5;\n",
- " var min_x = Math.min(x0, x1);\n",
- " var min_y = Math.min(y0, y1);\n",
- " var width = Math.abs(x1 - x0);\n",
- " var height = Math.abs(y1 - y0);\n",
- "\n",
- " fig.rubberband_context.clearRect(\n",
- " 0, 0, fig.canvas.width, fig.canvas.height);\n",
- "\n",
- " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
- " // Updates the figure title.\n",
- " fig.header.textContent = msg['label'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
- " var cursor = msg['cursor'];\n",
- " switch(cursor)\n",
- " {\n",
- " case 0:\n",
- " cursor = 'pointer';\n",
- " break;\n",
- " case 1:\n",
- " cursor = 'default';\n",
- " break;\n",
- " case 2:\n",
- " cursor = 'crosshair';\n",
- " break;\n",
- " case 3:\n",
- " cursor = 'move';\n",
- " break;\n",
- " }\n",
- " fig.rubberband_canvas.style.cursor = cursor;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
- " fig.message.textContent = msg['message'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
- " // Request the server to send over a new figure.\n",
- " fig.send_draw_message();\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
- " fig.image_mode = msg['mode'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Called whenever the canvas gets updated.\n",
- " this.send_message(\"ack\", {});\n",
- "}\n",
- "\n",
- "// A function to construct a web socket function for onmessage handling.\n",
- "// Called in the figure constructor.\n",
- "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
- " return function socket_on_message(evt) {\n",
- " if (evt.data instanceof Blob) {\n",
- " /* FIXME: We get \"Resource interpreted as Image but\n",
- " * transferred with MIME type text/plain:\" errors on\n",
- " * Chrome. But how to set the MIME type? It doesn't seem\n",
- " * to be part of the websocket stream */\n",
- " evt.data.type = \"image/png\";\n",
- "\n",
- " /* Free the memory for the previous frames */\n",
- " if (fig.imageObj.src) {\n",
- " (window.URL || window.webkitURL).revokeObjectURL(\n",
- " fig.imageObj.src);\n",
- " }\n",
- "\n",
- " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
- " evt.data);\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
- " fig.imageObj.src = evt.data;\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- "\n",
- " var msg = JSON.parse(evt.data);\n",
- " var msg_type = msg['type'];\n",
- "\n",
- " // Call the \"handle_{type}\" callback, which takes\n",
- " // the figure and JSON message as its only arguments.\n",
- " try {\n",
- " var callback = fig[\"handle_\" + msg_type];\n",
- " } catch (e) {\n",
- " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
- " return;\n",
- " }\n",
- "\n",
- " if (callback) {\n",
- " try {\n",
- " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
- " callback(fig, msg);\n",
- " } catch (e) {\n",
- " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
- " }\n",
- " }\n",
- " };\n",
- "}\n",
- "\n",
- "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
- "mpl.findpos = function(e) {\n",
- " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
- " var targ;\n",
- " if (!e)\n",
- " e = window.event;\n",
- " if (e.target)\n",
- " targ = e.target;\n",
- " else if (e.srcElement)\n",
- " targ = e.srcElement;\n",
- " if (targ.nodeType == 3) // defeat Safari bug\n",
- " targ = targ.parentNode;\n",
- "\n",
- " // jQuery normalizes the pageX and pageY\n",
- " // pageX,Y are the mouse positions relative to the document\n",
- " // offset() returns the position of the element relative to the document\n",
- " var x = e.pageX - $(targ).offset().left;\n",
- " var y = e.pageY - $(targ).offset().top;\n",
- "\n",
- " return {\"x\": x, \"y\": y};\n",
- "};\n",
- "\n",
- "/*\n",
- " * return a copy of an object with only non-object keys\n",
- " * we need this to avoid circular references\n",
- " * http://stackoverflow.com/a/24161582/3208463\n",
- " */\n",
- "function simpleKeys (original) {\n",
- " return Object.keys(original).reduce(function (obj, key) {\n",
- " if (typeof original[key] !== 'object')\n",
- " obj[key] = original[key]\n",
- " return obj;\n",
- " }, {});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.mouse_event = function(event, name) {\n",
- " var canvas_pos = mpl.findpos(event)\n",
- "\n",
- " if (name === 'button_press')\n",
- " {\n",
- " this.canvas.focus();\n",
- " this.canvas_div.focus();\n",
- " }\n",
- "\n",
- " var x = canvas_pos.x * mpl.ratio;\n",
- " var y = canvas_pos.y * mpl.ratio;\n",
- "\n",
- " this.send_message(name, {x: x, y: y, button: event.button,\n",
- " step: event.step,\n",
- " guiEvent: simpleKeys(event)});\n",
- "\n",
- " /* This prevents the web browser from automatically changing to\n",
- " * the text insertion cursor when the button is pressed. We want\n",
- " * to control all of the cursor setting manually through the\n",
- " * 'cursor' event from matplotlib */\n",
- " event.preventDefault();\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " // Handle any extra behaviour associated with a key event\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.key_event = function(event, name) {\n",
- "\n",
- " // Prevent repeat events\n",
- " if (name == 'key_press')\n",
- " {\n",
- " if (event.which === this._key)\n",
- " return;\n",
- " else\n",
- " this._key = event.which;\n",
- " }\n",
- " if (name == 'key_release')\n",
- " this._key = null;\n",
- "\n",
- " var value = '';\n",
- " if (event.ctrlKey && event.which != 17)\n",
- " value += \"ctrl+\";\n",
- " if (event.altKey && event.which != 18)\n",
- " value += \"alt+\";\n",
- " if (event.shiftKey && event.which != 16)\n",
- " value += \"shift+\";\n",
- "\n",
- " value += 'k';\n",
- " value += event.which.toString();\n",
- "\n",
- " this._key_event_extra(event, name);\n",
- "\n",
- " this.send_message(name, {key: value,\n",
- " guiEvent: simpleKeys(event)});\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
- " if (name == 'download') {\n",
- " this.handle_save(this, null);\n",
- " } else {\n",
- " this.send_message(\"toolbar_button\", {name: name});\n",
- " }\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
- " this.message.textContent = tooltip;\n",
- "};\n",
- "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
- "\n",
- "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
- "\n",
- "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
- " // Create a \"websocket\"-like object which calls the given IPython comm\n",
- " // object with the appropriate methods. Currently this is a non binary\n",
- " // socket, so there is still some room for performance tuning.\n",
- " var ws = {};\n",
- "\n",
- " ws.close = function() {\n",
- " comm.close()\n",
- " };\n",
- " ws.send = function(m) {\n",
- " //console.log('sending', m);\n",
- " comm.send(m);\n",
- " };\n",
- " // Register the callback with on_msg.\n",
- " comm.on_msg(function(msg) {\n",
- " //console.log('receiving', msg['content']['data'], msg);\n",
- " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
- " ws.onmessage(msg['content']['data'])\n",
- " });\n",
- " return ws;\n",
- "}\n",
- "\n",
- "mpl.mpl_figure_comm = function(comm, msg) {\n",
- " // This is the function which gets called when the mpl process\n",
- " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
- "\n",
- " var id = msg.content.data.id;\n",
- " // Get hold of the div created by the display call when the Comm\n",
- " // socket was opened in Python.\n",
- " var element = $(\"#\" + id);\n",
- " var ws_proxy = comm_websocket_adapter(comm)\n",
- "\n",
- " function ondownload(figure, format) {\n",
- " window.open(figure.imageObj.src);\n",
- " }\n",
- "\n",
- " var fig = new mpl.figure(id, ws_proxy,\n",
- " ondownload,\n",
- " element.get(0));\n",
- "\n",
- " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
- " // web socket which is closed, not our websocket->open comm proxy.\n",
- " ws_proxy.onopen();\n",
- "\n",
- " fig.parent_element = element.get(0);\n",
- " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
- " if (!fig.cell_info) {\n",
- " console.error(\"Failed to find cell for figure\", id, fig);\n",
- " return;\n",
- " }\n",
- "\n",
- " var output_index = fig.cell_info[2]\n",
- " var cell = fig.cell_info[0];\n",
- "\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
- " var width = fig.canvas.width/mpl.ratio\n",
- " fig.root.unbind('remove')\n",
- "\n",
- " // Update the output cell to use the data from the current canvas.\n",
- " fig.push_to_output();\n",
- " var dataURL = fig.canvas.toDataURL();\n",
- " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
- " // the notebook keyboard shortcuts fail.\n",
- " IPython.keyboard_manager.enable()\n",
- " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
- " fig.close_ws(fig, msg);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.close_ws = function(fig, msg){\n",
- " fig.send_message('closing', msg);\n",
- " // fig.ws.close()\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
- " // Turn the data on the canvas into data in the output cell.\n",
- " var width = this.canvas.width/mpl.ratio\n",
- " var dataURL = this.canvas.toDataURL();\n",
- " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Tell IPython that the notebook contents must change.\n",
- " IPython.notebook.set_dirty(true);\n",
- " this.send_message(\"ack\", {});\n",
- " var fig = this;\n",
- " // Wait a second, then push the new image to the DOM so\n",
- " // that it is saved nicely (might be nice to debounce this).\n",
- " setTimeout(function () { fig.push_to_output() }, 1000);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('<div/>')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items){\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) { continue; };\n",
- "\n",
- " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " // Add the status bar.\n",
- " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "\n",
- " // Add the close button to the window.\n",
- " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
- " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
- " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
- " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
- " buttongrp.append(button);\n",
- " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
- " titlebar.prepend(buttongrp);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(el){\n",
- " var fig = this\n",
- " el.on(\"remove\", function(){\n",
- "\tfig.close_ws(fig, {});\n",
- " });\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(el){\n",
- " // this is important to make the div 'focusable\n",
- " el.attr('tabindex', 0)\n",
- " // reach out to IPython and tell the keyboard manager to turn it's self\n",
- " // off when our div gets focus\n",
- "\n",
- " // location in version 3\n",
- " if (IPython.notebook.keyboard_manager) {\n",
- " IPython.notebook.keyboard_manager.register_events(el);\n",
- " }\n",
- " else {\n",
- " // location in version 2\n",
- " IPython.keyboard_manager.register_events(el);\n",
- " }\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " var manager = IPython.notebook.keyboard_manager;\n",
- " if (!manager)\n",
- " manager = IPython.keyboard_manager;\n",
- "\n",
- " // Check for shift+enter\n",
- " if (event.shiftKey && event.which == 13) {\n",
- " this.canvas_div.blur();\n",
- " event.shiftKey = false;\n",
- " // Send a \"J\" for go to next cell\n",
- " event.which = 74;\n",
- " event.keyCode = 74;\n",
- " manager.command_mode();\n",
- " manager.handle_keydown(event);\n",
- " }\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " fig.ondownload(fig, null);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.find_output_cell = function(html_output) {\n",
- " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
- " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
- " // IPython event is triggered only after the cells have been serialised, which for\n",
- " // our purposes (turning an active figure into a static one), is too late.\n",
- " var cells = IPython.notebook.get_cells();\n",
- " var ncells = cells.length;\n",
- " for (var i=0; i<ncells; i++) {\n",
- " var cell = cells[i];\n",
- " if (cell.cell_type === 'code'){\n",
- " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
- " var data = cell.output_area.outputs[j];\n",
- " if (data.data) {\n",
- " // IPython >= 3 moved mimebundle to data attribute of output\n",
- " data = data.data;\n",
- " }\n",
- " if (data['text/html'] == html_output) {\n",
- " return [cell, data, j];\n",
- " }\n",
- " }\n",
- " }\n",
- " }\n",
- "}\n",
- "\n",
- "// Register the function which deals with the matplotlib target/channel.\n",
- "// The kernel may be null if the page has been refreshed.\n",
- "if (IPython.notebook.kernel != null) {\n",
- " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
- "}\n"
- ],
- "text/plain": [
- "<IPython.core.display.Javascript object>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<img src=\"\" width=\"640\">"
- ],
- "text/plain": [
- "<IPython.core.display.HTML object>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "[]"
- ]
- },
- "execution_count": 107,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "plt.figure()\n",
- "T_max_mmd.TmaxD.sel(month = 7).plot()\n",
- "plt.axis('equal')\n",
- "plt.plot()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Find average parameters of suitable models\n",
- "1. Retrieve all models from the CEC module database\n",
- "2. Select all models which are mono-crystalline (>70% of panels in CH use mono, see Buffat et al.)\n",
- "3. Select only \"residential\"-style modules (60 cells)\n",
- "4. Obtain average P_dc0 and gamma_pdc for these panels"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {},
- "outputs": [],
- "source": [
- "models = pvsystem.retrieve_sam('CECMod').T"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "<div>\n",
- "<style scoped>\n",
- " .dataframe tbody tr th:only-of-type {\n",
- " vertical-align: middle;\n",
- " }\n",
- "\n",
- " .dataframe tbody tr th {\n",
- " vertical-align: top;\n",
- " }\n",
- "\n",
- " .dataframe thead th {\n",
- " text-align: right;\n",
- " }\n",
- "</style>\n",
- "<table border=\"1\" class=\"dataframe\">\n",
- " <thead>\n",
- " <tr style=\"text-align: right;\">\n",
- " <th></th>\n",
- " <th>BIPV</th>\n",
- " <th>Date</th>\n",
- " <th>T_NOCT</th>\n",
- " <th>A_c</th>\n",
- " <th>N_s</th>\n",
- " <th>I_sc_ref</th>\n",
- " <th>V_oc_ref</th>\n",
- " <th>I_mp_ref</th>\n",
- " <th>V_mp_ref</th>\n",
- " <th>alpha_sc</th>\n",
- " <th>...</th>\n",
- " <th>a_ref</th>\n",
- " <th>I_L_ref</th>\n",
- " <th>I_o_ref</th>\n",
- " <th>R_s</th>\n",
- " <th>R_sh_ref</th>\n",
- " <th>Adjust</th>\n",
- " <th>gamma_r</th>\n",
- " <th>Version</th>\n",
- " <th>PTC</th>\n",
- " <th>Technology</th>\n",
- " </tr>\n",
- " </thead>\n",
- " <tbody>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_215_P</th>\n",
- " <td>N</td>\n",
- " <td>10/7/2010</td>\n",
- " <td>47.4</td>\n",
- " <td>1.567</td>\n",
- " <td>60</td>\n",
- " <td>7.84</td>\n",
- " <td>36.3</td>\n",
- " <td>7.35</td>\n",
- " <td>29</td>\n",
- " <td>0.007997</td>\n",
- " <td>...</td>\n",
- " <td>1.6413</td>\n",
- " <td>7.843</td>\n",
- " <td>1.936e-09</td>\n",
- " <td>0.359</td>\n",
- " <td>839.4</td>\n",
- " <td>16.5</td>\n",
- " <td>-0.495</td>\n",
- " <td>MM107</td>\n",
- " <td>189.4</td>\n",
- " <td>Multi-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_220_P</th>\n",
- " <td>N</td>\n",
- " <td>10/4/2010</td>\n",
- " <td>47.4</td>\n",
- " <td>1.567</td>\n",
- " <td>60</td>\n",
- " <td>7.97</td>\n",
- " <td>36.6</td>\n",
- " <td>7.47</td>\n",
- " <td>29.3</td>\n",
- " <td>0.008129</td>\n",
- " <td>...</td>\n",
- " <td>1.6572</td>\n",
- " <td>7.974</td>\n",
- " <td>2.03e-09</td>\n",
- " <td>0.346</td>\n",
- " <td>751.03</td>\n",
- " <td>16.8</td>\n",
- " <td>-0.495</td>\n",
- " <td>MM107</td>\n",
- " <td>194</td>\n",
- " <td>Multi-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_225_P</th>\n",
- " <td>N</td>\n",
- " <td>10/4/2010</td>\n",
- " <td>47.4</td>\n",
- " <td>1.567</td>\n",
- " <td>60</td>\n",
- " <td>8.09</td>\n",
- " <td>36.9</td>\n",
- " <td>7.58</td>\n",
- " <td>29.6</td>\n",
- " <td>0.008252</td>\n",
- " <td>...</td>\n",
- " <td>1.6732</td>\n",
- " <td>8.094</td>\n",
- " <td>2.126e-09</td>\n",
- " <td>0.334</td>\n",
- " <td>670.65</td>\n",
- " <td>17.1</td>\n",
- " <td>-0.495</td>\n",
- " <td>MM107</td>\n",
- " <td>198.5</td>\n",
- " <td>Multi-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_230_P</th>\n",
- " <td>N</td>\n",
- " <td>10/4/2010</td>\n",
- " <td>47.4</td>\n",
- " <td>1.567</td>\n",
- " <td>60</td>\n",
- " <td>8.18</td>\n",
- " <td>37.1</td>\n",
- " <td>7.65</td>\n",
- " <td>29.9</td>\n",
- " <td>0.008344</td>\n",
- " <td>...</td>\n",
- " <td>1.6888</td>\n",
- " <td>8.185</td>\n",
- " <td>2.332e-09</td>\n",
- " <td>0.311</td>\n",
- " <td>462.56</td>\n",
- " <td>17.9</td>\n",
- " <td>-0.495</td>\n",
- " <td>MM107</td>\n",
- " <td>203.1</td>\n",
- " <td>Multi-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_235_WH</th>\n",
- " <td>N</td>\n",
- " <td>3/4/2010</td>\n",
- " <td>49.9</td>\n",
- " <td>1.635</td>\n",
- " <td>60</td>\n",
- " <td>8.54</td>\n",
- " <td>37</td>\n",
- " <td>8.02</td>\n",
- " <td>29.3</td>\n",
- " <td>0.00743</td>\n",
- " <td>...</td>\n",
- " <td>1.6292</td>\n",
- " <td>8.543</td>\n",
- " <td>1.166e-09</td>\n",
- " <td>0.383</td>\n",
- " <td>1257.84</td>\n",
- " <td>8.7</td>\n",
- " <td>-0.482</td>\n",
- " <td>MM107</td>\n",
- " <td>205.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " </tbody>\n",
- "</table>\n",
- "<p>5 rows × 21 columns</p>\n",
- "</div>"
- ],
- "text/plain": [
- " BIPV Date T_NOCT A_c N_s I_sc_ref V_oc_ref \\\n",
- "1Soltech_1STH_215_P N 10/7/2010 47.4 1.567 60 7.84 36.3 \n",
- "1Soltech_1STH_220_P N 10/4/2010 47.4 1.567 60 7.97 36.6 \n",
- "1Soltech_1STH_225_P N 10/4/2010 47.4 1.567 60 8.09 36.9 \n",
- "1Soltech_1STH_230_P N 10/4/2010 47.4 1.567 60 8.18 37.1 \n",
- "1Soltech_1STH_235_WH N 3/4/2010 49.9 1.635 60 8.54 37 \n",
- "\n",
- " I_mp_ref V_mp_ref alpha_sc ... a_ref I_L_ref \\\n",
- "1Soltech_1STH_215_P 7.35 29 0.007997 ... 1.6413 7.843 \n",
- "1Soltech_1STH_220_P 7.47 29.3 0.008129 ... 1.6572 7.974 \n",
- "1Soltech_1STH_225_P 7.58 29.6 0.008252 ... 1.6732 8.094 \n",
- "1Soltech_1STH_230_P 7.65 29.9 0.008344 ... 1.6888 8.185 \n",
- "1Soltech_1STH_235_WH 8.02 29.3 0.00743 ... 1.6292 8.543 \n",
- "\n",
- " I_o_ref R_s R_sh_ref Adjust gamma_r Version PTC \\\n",
- "1Soltech_1STH_215_P 1.936e-09 0.359 839.4 16.5 -0.495 MM107 189.4 \n",
- "1Soltech_1STH_220_P 2.03e-09 0.346 751.03 16.8 -0.495 MM107 194 \n",
- "1Soltech_1STH_225_P 2.126e-09 0.334 670.65 17.1 -0.495 MM107 198.5 \n",
- "1Soltech_1STH_230_P 2.332e-09 0.311 462.56 17.9 -0.495 MM107 203.1 \n",
- "1Soltech_1STH_235_WH 1.166e-09 0.383 1257.84 8.7 -0.482 MM107 205.1 \n",
- "\n",
- " Technology \n",
- "1Soltech_1STH_215_P Multi-c-Si \n",
- "1Soltech_1STH_220_P Multi-c-Si \n",
- "1Soltech_1STH_225_P Multi-c-Si \n",
- "1Soltech_1STH_230_P Multi-c-Si \n",
- "1Soltech_1STH_235_WH Mono-c-Si \n",
- "\n",
- "[5 rows x 21 columns]"
- ]
- },
- "execution_count": 33,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 34,
- "metadata": {},
- "outputs": [],
- "source": [
- "models['gamma_r'] = models['gamma_r'].astype(float)\n",
- "models['PTC'] = models['PTC'].astype(float)\n",
- "# models['Date'] = pd.to_datetime(models['Date'], format = '%m/%d/%Y')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 35,
- "metadata": {},
- "outputs": [],
- "source": [
- "suitable_models = models[(models.Technology == 'Mono-c-Si') & (models.N_s == 60)]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "<div>\n",
- "<style scoped>\n",
- " .dataframe tbody tr th:only-of-type {\n",
- " vertical-align: middle;\n",
- " }\n",
- "\n",
- " .dataframe tbody tr th {\n",
- " vertical-align: top;\n",
- " }\n",
- "\n",
- " .dataframe thead th {\n",
- " text-align: right;\n",
- " }\n",
- "</style>\n",
- "<table border=\"1\" class=\"dataframe\">\n",
- " <thead>\n",
- " <tr style=\"text-align: right;\">\n",
- " <th></th>\n",
- " <th>BIPV</th>\n",
- " <th>Date</th>\n",
- " <th>T_NOCT</th>\n",
- " <th>A_c</th>\n",
- " <th>N_s</th>\n",
- " <th>I_sc_ref</th>\n",
- " <th>V_oc_ref</th>\n",
- " <th>I_mp_ref</th>\n",
- " <th>V_mp_ref</th>\n",
- " <th>alpha_sc</th>\n",
- " <th>...</th>\n",
- " <th>a_ref</th>\n",
- " <th>I_L_ref</th>\n",
- " <th>I_o_ref</th>\n",
- " <th>R_s</th>\n",
- " <th>R_sh_ref</th>\n",
- " <th>Adjust</th>\n",
- " <th>gamma_r</th>\n",
- " <th>Version</th>\n",
- " <th>PTC</th>\n",
- " <th>Technology</th>\n",
- " </tr>\n",
- " </thead>\n",
- " <tbody>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_235_WH</th>\n",
- " <td>N</td>\n",
- " <td>3/4/2010</td>\n",
- " <td>49.9</td>\n",
- " <td>1.635</td>\n",
- " <td>60</td>\n",
- " <td>8.54</td>\n",
- " <td>37</td>\n",
- " <td>8.02</td>\n",
- " <td>29.3</td>\n",
- " <td>0.00743</td>\n",
- " <td>...</td>\n",
- " <td>1.6292</td>\n",
- " <td>8.543</td>\n",
- " <td>1.166e-09</td>\n",
- " <td>0.383</td>\n",
- " <td>1257.84</td>\n",
- " <td>8.7</td>\n",
- " <td>-0.482</td>\n",
- " <td>MM107</td>\n",
- " <td>205.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_240_WH</th>\n",
- " <td>N</td>\n",
- " <td>3/4/2010</td>\n",
- " <td>49.9</td>\n",
- " <td>1.635</td>\n",
- " <td>60</td>\n",
- " <td>8.58</td>\n",
- " <td>37.1</td>\n",
- " <td>8.07</td>\n",
- " <td>29.7</td>\n",
- " <td>0.007465</td>\n",
- " <td>...</td>\n",
- " <td>1.6425</td>\n",
- " <td>8.582</td>\n",
- " <td>1.325e-09</td>\n",
- " <td>0.335</td>\n",
- " <td>1463.82</td>\n",
- " <td>9.8</td>\n",
- " <td>-0.482</td>\n",
- " <td>MM107</td>\n",
- " <td>209.6</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_245_WH</th>\n",
- " <td>N</td>\n",
- " <td>3/4/2010</td>\n",
- " <td>49.9</td>\n",
- " <td>1.635</td>\n",
- " <td>60</td>\n",
- " <td>8.62</td>\n",
- " <td>37.2</td>\n",
- " <td>8.1</td>\n",
- " <td>30.2</td>\n",
- " <td>0.007499</td>\n",
- " <td>...</td>\n",
- " <td>1.6617</td>\n",
- " <td>8.623</td>\n",
- " <td>1.623e-09</td>\n",
- " <td>0.272</td>\n",
- " <td>724.06</td>\n",
- " <td>11.6</td>\n",
- " <td>-0.482</td>\n",
- " <td>MM107</td>\n",
- " <td>214.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_250_WH</th>\n",
- " <td>N</td>\n",
- " <td>3/4/2010</td>\n",
- " <td>49.9</td>\n",
- " <td>1.635</td>\n",
- " <td>60</td>\n",
- " <td>8.66</td>\n",
- " <td>37.3</td>\n",
- " <td>8.15</td>\n",
- " <td>30.7</td>\n",
- " <td>0.007534</td>\n",
- " <td>...</td>\n",
- " <td>1.6783</td>\n",
- " <td>8.662</td>\n",
- " <td>1.919e-09</td>\n",
- " <td>0.211</td>\n",
- " <td>760.07</td>\n",
- " <td>13.1</td>\n",
- " <td>-0.482</td>\n",
- " <td>MM107</td>\n",
- " <td>218.6</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_FRL_4H_245_M60_BLK</th>\n",
- " <td>N</td>\n",
- " <td>1/14/2013</td>\n",
- " <td>48.3</td>\n",
- " <td>1.668</td>\n",
- " <td>60</td>\n",
- " <td>8.81</td>\n",
- " <td>38.3</td>\n",
- " <td>8.06</td>\n",
- " <td>30.2</td>\n",
- " <td>0.006167</td>\n",
- " <td>...</td>\n",
- " <td>1.6351</td>\n",
- " <td>8.844</td>\n",
- " <td>5.7e-10</td>\n",
- " <td>0.421</td>\n",
- " <td>109.31</td>\n",
- " <td>6.502</td>\n",
- " <td>-0.453</td>\n",
- " <td>NRELv1</td>\n",
- " <td>217.7</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_FRL_4H_250_M60_BLK</th>\n",
- " <td>N</td>\n",
- " <td>1/14/2013</td>\n",
- " <td>48.3</td>\n",
- " <td>1.668</td>\n",
- " <td>60</td>\n",
- " <td>8.85</td>\n",
- " <td>38.4</td>\n",
- " <td>8.11</td>\n",
- " <td>30.7</td>\n",
- " <td>0.006195</td>\n",
- " <td>...</td>\n",
- " <td>1.6517</td>\n",
- " <td>8.878</td>\n",
- " <td>6.83e-10</td>\n",
- " <td>0.358</td>\n",
- " <td>111.51</td>\n",
- " <td>8.03</td>\n",
- " <td>-0.453</td>\n",
- " <td>NRELv1</td>\n",
- " <td>222.3</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_FRL_4H_255_M60_BLK</th>\n",
- " <td>N</td>\n",
- " <td>1/14/2013</td>\n",
- " <td>48.3</td>\n",
- " <td>1.668</td>\n",
- " <td>60</td>\n",
- " <td>8.89</td>\n",
- " <td>38.46</td>\n",
- " <td>8.16</td>\n",
- " <td>31.24</td>\n",
- " <td>0.006223</td>\n",
- " <td>...</td>\n",
- " <td>1.6688</td>\n",
- " <td>8.912</td>\n",
- " <td>8.39e-10</td>\n",
- " <td>0.285</td>\n",
- " <td>113.34</td>\n",
- " <td>9.818</td>\n",
- " <td>-0.453</td>\n",
- " <td>NRELv1</td>\n",
- " <td>226.9</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1Soltech_1STH_FRL_4H_260_M60_BLK</th>\n",
- " <td>N</td>\n",
- " <td>1/14/2013</td>\n",
- " <td>48.3</td>\n",
- " <td>1.668</td>\n",
- " <td>60</td>\n",
- " <td>8.93</td>\n",
- " <td>38.6</td>\n",
- " <td>8.21</td>\n",
- " <td>31.6</td>\n",
- " <td>0.006251</td>\n",
- " <td>...</td>\n",
- " <td>1.6811</td>\n",
- " <td>8.949</td>\n",
- " <td>9.2e-10</td>\n",
- " <td>0.249</td>\n",
- " <td>117.56</td>\n",
- " <td>10.6</td>\n",
- " <td>-0.453</td>\n",
- " <td>NRELv1</td>\n",
- " <td>231.4</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>APOS_Energy_AS220</th>\n",
- " <td>N</td>\n",
- " <td>3/29/2010</td>\n",
- " <td>47.8</td>\n",
- " <td>1.659</td>\n",
- " <td>60</td>\n",
- " <td>8.28</td>\n",
- " <td>36.63</td>\n",
- " <td>7.62</td>\n",
- " <td>29.08</td>\n",
- " <td>0.007118</td>\n",
- " <td>...</td>\n",
- " <td>1.5181</td>\n",
- " <td>8.307</td>\n",
- " <td>2.661e-10</td>\n",
- " <td>0.41</td>\n",
- " <td>127.31</td>\n",
- " <td>24.3</td>\n",
- " <td>-0.425</td>\n",
- " <td>MM107</td>\n",
- " <td>197.0</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>APOS_Energy_AS225</th>\n",
- " <td>N</td>\n",
- " <td>3/29/2010</td>\n",
- " <td>47.8</td>\n",
- " <td>1.659</td>\n",
- " <td>60</td>\n",
- " <td>8.34</td>\n",
- " <td>36.99</td>\n",
- " <td>7.69</td>\n",
- " <td>29.31</td>\n",
- " <td>0.00717</td>\n",
- " <td>...</td>\n",
- " <td>1.5291</td>\n",
- " <td>8.365</td>\n",
- " <td>2.527e-10</td>\n",
- " <td>0.419</td>\n",
- " <td>138.1</td>\n",
- " <td>23.7</td>\n",
- " <td>-0.425</td>\n",
- " <td>MM107</td>\n",
- " <td>201.6</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>APOS_Energy_AS230</th>\n",
- " <td>N</td>\n",
- " <td>3/29/2010</td>\n",
- " <td>47.8</td>\n",
- " <td>1.659</td>\n",
- " <td>60</td>\n",
- " <td>8.46</td>\n",
- " <td>37.11</td>\n",
- " <td>7.82</td>\n",
- " <td>29.42</td>\n",
- " <td>0.007276</td>\n",
- " <td>...</td>\n",
- " <td>1.533</td>\n",
- " <td>8.483</td>\n",
- " <td>2.526e-10</td>\n",
- " <td>0.412</td>\n",
- " <td>151.47</td>\n",
- " <td>23.5</td>\n",
- " <td>-0.425</td>\n",
- " <td>MM107</td>\n",
- " <td>206.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>APOS_Energy_AS235</th>\n",
- " <td>N</td>\n",
- " <td>3/29/2010</td>\n",
- " <td>47.8</td>\n",
- " <td>1.659</td>\n",
- " <td>60</td>\n",
- " <td>8.55</td>\n",
- " <td>37.34</td>\n",
- " <td>7.86</td>\n",
- " <td>29.76</td>\n",
- " <td>0.007353</td>\n",
- " <td>...</td>\n",
- " <td>1.5517</td>\n",
- " <td>8.578</td>\n",
- " <td>2.927e-10</td>\n",
- " <td>0.387</td>\n",
- " <td>119.65</td>\n",
- " <td>24.9</td>\n",
- " <td>-0.425</td>\n",
- " <td>MM107</td>\n",
- " <td>210.7</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>APOS_Energy_AS240</th>\n",
- " <td>N</td>\n",
- " <td>3/29/2010</td>\n",
- " <td>47.8</td>\n",
- " <td>1.659</td>\n",
- " <td>60</td>\n",
- " <td>8.63</td>\n",
- " <td>37.52</td>\n",
- " <td>7.95</td>\n",
- " <td>30.05</td>\n",
- " <td>0.007422</td>\n",
- " <td>...</td>\n",
- " <td>1.5616</td>\n",
- " <td>8.655</td>\n",
- " <td>3.074e-10</td>\n",
- " <td>0.363</td>\n",
- " <td>126.69</td>\n",
- " <td>25.3</td>\n",
- " <td>-0.425</td>\n",
- " <td>MM107</td>\n",
- " <td>215.4</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M00_250</th>\n",
- " <td>N</td>\n",
- " <td>11/1/2013</td>\n",
- " <td>47.3</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>8.66</td>\n",
- " <td>37.86</td>\n",
- " <td>8.22</td>\n",
- " <td>30.82</td>\n",
- " <td>0.005145</td>\n",
- " <td>...</td>\n",
- " <td>1.5635</td>\n",
- " <td>8.753</td>\n",
- " <td>2.64e-10</td>\n",
- " <td>0.293</td>\n",
- " <td>392.21</td>\n",
- " <td>18.48</td>\n",
- " <td>-0.437</td>\n",
- " <td>NRELv1</td>\n",
- " <td>224.6</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M00_255</th>\n",
- " <td>N</td>\n",
- " <td>11/1/2013</td>\n",
- " <td>47.3</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>8.72</td>\n",
- " <td>37.92</td>\n",
- " <td>8.34</td>\n",
- " <td>30.86</td>\n",
- " <td>0.005181</td>\n",
- " <td>...</td>\n",
- " <td>1.5592</td>\n",
- " <td>8.808</td>\n",
- " <td>2.41e-10</td>\n",
- " <td>0.294</td>\n",
- " <td>3072.79</td>\n",
- " <td>17.53</td>\n",
- " <td>-0.437</td>\n",
- " <td>NRELv1</td>\n",
- " <td>229.2</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M00_260</th>\n",
- " <td>N</td>\n",
- " <td>11/1/2013</td>\n",
- " <td>47.3</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>8.78</td>\n",
- " <td>37.98</td>\n",
- " <td>8.46</td>\n",
- " <td>30.91</td>\n",
- " <td>0.005216</td>\n",
- " <td>...</td>\n",
- " <td>1.5631</td>\n",
- " <td>8.959</td>\n",
- " <td>2.5e-10</td>\n",
- " <td>0.289</td>\n",
- " <td>915.51</td>\n",
- " <td>17.74</td>\n",
- " <td>-0.437</td>\n",
- " <td>NRELv1</td>\n",
- " <td>233.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M00_265</th>\n",
- " <td>N</td>\n",
- " <td>11/1/2013</td>\n",
- " <td>47.3</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>8.84</td>\n",
- " <td>38.04</td>\n",
- " <td>8.54</td>\n",
- " <td>30.96</td>\n",
- " <td>0.005252</td>\n",
- " <td>...</td>\n",
- " <td>1.5634</td>\n",
- " <td>9.019</td>\n",
- " <td>2.44e-10</td>\n",
- " <td>0.288</td>\n",
- " <td>3154.03</td>\n",
- " <td>17.43</td>\n",
- " <td>-0.437</td>\n",
- " <td>NRELv1</td>\n",
- " <td>238.5</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M00_270</th>\n",
- " <td>N</td>\n",
- " <td>7/1/2014</td>\n",
- " <td>46.5</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>9.01</td>\n",
- " <td>38.5</td>\n",
- " <td>8.5</td>\n",
- " <td>31.8</td>\n",
- " <td>0.005721</td>\n",
- " <td>...</td>\n",
- " <td>1.6407</td>\n",
- " <td>9.013</td>\n",
- " <td>5.77e-10</td>\n",
- " <td>0.216</td>\n",
- " <td>674.93</td>\n",
- " <td>15.7</td>\n",
- " <td>-0.454</td>\n",
- " <td>NRELv1</td>\n",
- " <td>243.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M00_275</th>\n",
- " <td>N</td>\n",
- " <td>7/1/2014</td>\n",
- " <td>46.5</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>9.03</td>\n",
- " <td>38.7</td>\n",
- " <td>8.52</td>\n",
- " <td>32.3</td>\n",
- " <td>0.005734</td>\n",
- " <td>...</td>\n",
- " <td>1.6589</td>\n",
- " <td>9.033</td>\n",
- " <td>6.63e-10</td>\n",
- " <td>0.171</td>\n",
- " <td>590.38</td>\n",
- " <td>17</td>\n",
- " <td>-0.454</td>\n",
- " <td>NRELv1</td>\n",
- " <td>247.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M00_280</th>\n",
- " <td>N</td>\n",
- " <td>7/1/2014</td>\n",
- " <td>46.5</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>9.06</td>\n",
- " <td>38.9</td>\n",
- " <td>8.57</td>\n",
- " <td>32.7</td>\n",
- " <td>0.005753</td>\n",
- " <td>...</td>\n",
- " <td>1.6718</td>\n",
- " <td>9.061</td>\n",
- " <td>7.08e-10</td>\n",
- " <td>0.14</td>\n",
- " <td>880.22</td>\n",
- " <td>17.58</td>\n",
- " <td>-0.454</td>\n",
- " <td>NRELv1</td>\n",
- " <td>252.4</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M00_285</th>\n",
- " <td>N</td>\n",
- " <td>7/1/2014</td>\n",
- " <td>46.5</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>9.08</td>\n",
- " <td>39.2</td>\n",
- " <td>8.59</td>\n",
- " <td>33.2</td>\n",
- " <td>0.005766</td>\n",
- " <td>...</td>\n",
- " <td>1.6918</td>\n",
- " <td>9.081</td>\n",
- " <td>7.81e-10</td>\n",
- " <td>0.107</td>\n",
- " <td>789.79</td>\n",
- " <td>18.51</td>\n",
- " <td>-0.454</td>\n",
- " <td>NRELv1</td>\n",
- " <td>257.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M00_290</th>\n",
- " <td>N</td>\n",
- " <td>7/1/2014</td>\n",
- " <td>46.5</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>9.11</td>\n",
- " <td>39.5</td>\n",
- " <td>8.61</td>\n",
- " <td>33.7</td>\n",
- " <td>0.005785</td>\n",
- " <td>...</td>\n",
- " <td>1.7128</td>\n",
- " <td>9.111</td>\n",
- " <td>8.73e-10</td>\n",
- " <td>0.074</td>\n",
- " <td>591.61</td>\n",
- " <td>19.55</td>\n",
- " <td>-0.454</td>\n",
- " <td>NRELv1</td>\n",
- " <td>261.7</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M01_250</th>\n",
- " <td>N</td>\n",
- " <td>6/2/2014</td>\n",
- " <td>47.3</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>8.66</td>\n",
- " <td>37.86</td>\n",
- " <td>8.22</td>\n",
- " <td>30.8</td>\n",
- " <td>0.005145</td>\n",
- " <td>...</td>\n",
- " <td>1.5635</td>\n",
- " <td>8.753</td>\n",
- " <td>2.64e-10</td>\n",
- " <td>0.293</td>\n",
- " <td>392.21</td>\n",
- " <td>18.48</td>\n",
- " <td>-0.437</td>\n",
- " <td>NRELv1</td>\n",
- " <td>224.6</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M01_255</th>\n",
- " <td>N</td>\n",
- " <td>6/2/2014</td>\n",
- " <td>47.3</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>8.72</td>\n",
- " <td>37.92</td>\n",
- " <td>8.34</td>\n",
- " <td>30.9</td>\n",
- " <td>0.005181</td>\n",
- " <td>...</td>\n",
- " <td>1.5592</td>\n",
- " <td>8.808</td>\n",
- " <td>2.41e-10</td>\n",
- " <td>0.294</td>\n",
- " <td>3072.79</td>\n",
- " <td>17.53</td>\n",
- " <td>-0.437</td>\n",
- " <td>NRELv1</td>\n",
- " <td>229.2</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M01_260</th>\n",
- " <td>N</td>\n",
- " <td>6/2/2014</td>\n",
- " <td>47.3</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>8.78</td>\n",
- " <td>37.98</td>\n",
- " <td>8.46</td>\n",
- " <td>30.9</td>\n",
- " <td>0.005216</td>\n",
- " <td>...</td>\n",
- " <td>1.5631</td>\n",
- " <td>8.959</td>\n",
- " <td>2.5e-10</td>\n",
- " <td>0.289</td>\n",
- " <td>915.51</td>\n",
- " <td>17.74</td>\n",
- " <td>-0.437</td>\n",
- " <td>NRELv1</td>\n",
- " <td>233.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M01_265</th>\n",
- " <td>N</td>\n",
- " <td>6/2/2014</td>\n",
- " <td>47.3</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>8.84</td>\n",
- " <td>38.04</td>\n",
- " <td>8.54</td>\n",
- " <td>31</td>\n",
- " <td>0.005252</td>\n",
- " <td>...</td>\n",
- " <td>1.5634</td>\n",
- " <td>9.019</td>\n",
- " <td>2.44e-10</td>\n",
- " <td>0.288</td>\n",
- " <td>3154.03</td>\n",
- " <td>17.43</td>\n",
- " <td>-0.437</td>\n",
- " <td>NRELv1</td>\n",
- " <td>238.5</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M01_270</th>\n",
- " <td>N</td>\n",
- " <td>7/1/2014</td>\n",
- " <td>46.5</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>9.01</td>\n",
- " <td>38.5</td>\n",
- " <td>8.5</td>\n",
- " <td>31.8</td>\n",
- " <td>0.005721</td>\n",
- " <td>...</td>\n",
- " <td>1.6407</td>\n",
- " <td>9.013</td>\n",
- " <td>5.77e-10</td>\n",
- " <td>0.216</td>\n",
- " <td>674.93</td>\n",
- " <td>15.7</td>\n",
- " <td>-0.454</td>\n",
- " <td>NRELv1</td>\n",
- " <td>243.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M01_275</th>\n",
- " <td>N</td>\n",
- " <td>7/1/2014</td>\n",
- " <td>46.5</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>9.03</td>\n",
- " <td>38.7</td>\n",
- " <td>8.52</td>\n",
- " <td>32.3</td>\n",
- " <td>0.005734</td>\n",
- " <td>...</td>\n",
- " <td>1.6589</td>\n",
- " <td>9.033</td>\n",
- " <td>6.63e-10</td>\n",
- " <td>0.171</td>\n",
- " <td>590.38</td>\n",
- " <td>17</td>\n",
- " <td>-0.454</td>\n",
- " <td>NRELv1</td>\n",
- " <td>247.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M01_280</th>\n",
- " <td>N</td>\n",
- " <td>7/1/2014</td>\n",
- " <td>46.5</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>9.06</td>\n",
- " <td>38.9</td>\n",
- " <td>8.57</td>\n",
- " <td>32.7</td>\n",
- " <td>0.005753</td>\n",
- " <td>...</td>\n",
- " <td>1.6718</td>\n",
- " <td>9.061</td>\n",
- " <td>7.08e-10</td>\n",
- " <td>0.14</td>\n",
- " <td>880.22</td>\n",
- " <td>17.58</td>\n",
- " <td>-0.454</td>\n",
- " <td>NRELv1</td>\n",
- " <td>252.4</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>AU_Optronics_PM060M01_285</th>\n",
- " <td>N</td>\n",
- " <td>7/1/2014</td>\n",
- " <td>46.5</td>\n",
- " <td>1.611</td>\n",
- " <td>60</td>\n",
- " <td>9.08</td>\n",
- " <td>39.2</td>\n",
- " <td>8.59</td>\n",
- " <td>33.2</td>\n",
- " <td>0.005766</td>\n",
- " <td>...</td>\n",
- " <td>1.6918</td>\n",
- " <td>9.081</td>\n",
- " <td>7.81e-10</td>\n",
- " <td>0.107</td>\n",
- " <td>789.79</td>\n",
- " <td>18.51</td>\n",
- " <td>-0.454</td>\n",
- " <td>NRELv1</td>\n",
- " <td>257.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>...</th>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>alfasolar_alfasolar_M6L60_240</th>\n",
- " <td>N</td>\n",
- " <td>4/2/2013</td>\n",
- " <td>44.5</td>\n",
- " <td>1.6</td>\n",
- " <td>60</td>\n",
- " <td>8.61</td>\n",
- " <td>37.41</td>\n",
- " <td>7.9</td>\n",
- " <td>30.43</td>\n",
- " <td>0.002962</td>\n",
- " <td>...</td>\n",
- " <td>1.5697</td>\n",
- " <td>8.634</td>\n",
- " <td>3.7e-10</td>\n",
- " <td>0.294</td>\n",
- " <td>106.59</td>\n",
- " <td>9.256</td>\n",
- " <td>-0.456</td>\n",
- " <td>NRELv1</td>\n",
- " <td>217.5</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>alfasolar_alfasolar_M6L60_245</th>\n",
- " <td>N</td>\n",
- " <td>4/2/2013</td>\n",
- " <td>44.5</td>\n",
- " <td>1.6</td>\n",
- " <td>60</td>\n",
- " <td>8.66</td>\n",
- " <td>37.58</td>\n",
- " <td>8.03</td>\n",
- " <td>30.55</td>\n",
- " <td>0.002979</td>\n",
- " <td>...</td>\n",
- " <td>1.5663</td>\n",
- " <td>8.676</td>\n",
- " <td>3.21e-10</td>\n",
- " <td>0.298</td>\n",
- " <td>157.07</td>\n",
- " <td>7.923</td>\n",
- " <td>-0.456</td>\n",
- " <td>NRELv1</td>\n",
- " <td>222.2</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>alfasolar_alfasolar_M6L60_250</th>\n",
- " <td>N</td>\n",
- " <td>4/2/2013</td>\n",
- " <td>44.5</td>\n",
- " <td>1.6</td>\n",
- " <td>60</td>\n",
- " <td>8.71</td>\n",
- " <td>37.75</td>\n",
- " <td>8.16</td>\n",
- " <td>30.67</td>\n",
- " <td>0.002996</td>\n",
- " <td>...</td>\n",
- " <td>1.5634</td>\n",
- " <td>8.719</td>\n",
- " <td>2.8e-10</td>\n",
- " <td>0.301</td>\n",
- " <td>295.89</td>\n",
- " <td>6.663</td>\n",
- " <td>-0.456</td>\n",
- " <td>NRELv1</td>\n",
- " <td>226.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>alfasolar_alfasolar_M6L60_255</th>\n",
- " <td>N</td>\n",
- " <td>4/2/2013</td>\n",
- " <td>44.5</td>\n",
- " <td>1.6</td>\n",
- " <td>60</td>\n",
- " <td>8.76</td>\n",
- " <td>37.92</td>\n",
- " <td>8.29</td>\n",
- " <td>30.79</td>\n",
- " <td>0.003013</td>\n",
- " <td>...</td>\n",
- " <td>1.5609</td>\n",
- " <td>8.761</td>\n",
- " <td>2.46e-10</td>\n",
- " <td>0.304</td>\n",
- " <td>2378.2</td>\n",
- " <td>5.471</td>\n",
- " <td>-0.456</td>\n",
- " <td>NRELv1</td>\n",
- " <td>231.5</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>alfasolar_alfasolar_M6L60_260</th>\n",
- " <td>N</td>\n",
- " <td>4/2/2013</td>\n",
- " <td>44.5</td>\n",
- " <td>1.6</td>\n",
- " <td>60</td>\n",
- " <td>8.81</td>\n",
- " <td>38.09</td>\n",
- " <td>8.42</td>\n",
- " <td>30.91</td>\n",
- " <td>0.003031</td>\n",
- " <td>...</td>\n",
- " <td>1.5669</td>\n",
- " <td>8.899</td>\n",
- " <td>2.46e-10</td>\n",
- " <td>0.304</td>\n",
- " <td>2284.52</td>\n",
- " <td>5.348</td>\n",
- " <td>-0.456</td>\n",
- " <td>NRELv1</td>\n",
- " <td>236.2</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>alfasolar_alfasolar_M6L60_265</th>\n",
- " <td>N</td>\n",
- " <td>4/2/2013</td>\n",
- " <td>44.5</td>\n",
- " <td>1.6</td>\n",
- " <td>60</td>\n",
- " <td>8.86</td>\n",
- " <td>38.26</td>\n",
- " <td>8.55</td>\n",
- " <td>31.03</td>\n",
- " <td>0.003048</td>\n",
- " <td>...</td>\n",
- " <td>1.5731</td>\n",
- " <td>9.04</td>\n",
- " <td>2.47e-10</td>\n",
- " <td>0.303</td>\n",
- " <td>1932.19</td>\n",
- " <td>5.247</td>\n",
- " <td>-0.456</td>\n",
- " <td>NRELv1</td>\n",
- " <td>240.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>ecoSolargy_ECO250T156M4_60</th>\n",
- " <td>N</td>\n",
- " <td>42681</td>\n",
- " <td>45.5</td>\n",
- " <td>1.627</td>\n",
- " <td>60</td>\n",
- " <td>8.74</td>\n",
- " <td>37.65</td>\n",
- " <td>8.1</td>\n",
- " <td>30.98</td>\n",
- " <td>0.005993</td>\n",
- " <td>...</td>\n",
- " <td>1.5861</td>\n",
- " <td>8.754</td>\n",
- " <td>4.17e-10</td>\n",
- " <td>0.24</td>\n",
- " <td>148.03</td>\n",
- " <td>18.71</td>\n",
- " <td>-0.432</td>\n",
- " <td>NRELv1</td>\n",
- " <td>226.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>ecoSolargy_ECO255T156M4_60</th>\n",
- " <td>N</td>\n",
- " <td>42681</td>\n",
- " <td>45.5</td>\n",
- " <td>1.627</td>\n",
- " <td>60</td>\n",
- " <td>8.79</td>\n",
- " <td>37.88</td>\n",
- " <td>8.19</td>\n",
- " <td>31.19</td>\n",
- " <td>0.006027</td>\n",
- " <td>...</td>\n",
- " <td>1.5914</td>\n",
- " <td>8.801</td>\n",
- " <td>3.96e-10</td>\n",
- " <td>0.238</td>\n",
- " <td>190.95</td>\n",
- " <td>18.12</td>\n",
- " <td>-0.432</td>\n",
- " <td>NRELv1</td>\n",
- " <td>231.5</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>ecoSolargy_ECO260T156M4_60</th>\n",
- " <td>N</td>\n",
- " <td>42681</td>\n",
- " <td>45.5</td>\n",
- " <td>1.627</td>\n",
- " <td>60</td>\n",
- " <td>8.86</td>\n",
- " <td>38.23</td>\n",
- " <td>8.29</td>\n",
- " <td>31.44</td>\n",
- " <td>0.006075</td>\n",
- " <td>...</td>\n",
- " <td>1.6011</td>\n",
- " <td>8.869</td>\n",
- " <td>3.72e-10</td>\n",
- " <td>0.244</td>\n",
- " <td>250.14</td>\n",
- " <td>17.44</td>\n",
- " <td>-0.432</td>\n",
- " <td>NRELv1</td>\n",
- " <td>236.2</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>ecoSolargy_ECO265T156M4_60</th>\n",
- " <td>N</td>\n",
- " <td>42681</td>\n",
- " <td>45.5</td>\n",
- " <td>1.627</td>\n",
- " <td>60</td>\n",
- " <td>8.93</td>\n",
- " <td>38.54</td>\n",
- " <td>8.36</td>\n",
- " <td>31.75</td>\n",
- " <td>0.006123</td>\n",
- " <td>...</td>\n",
- " <td>1.6152</td>\n",
- " <td>8.938</td>\n",
- " <td>3.81e-10</td>\n",
- " <td>0.237</td>\n",
- " <td>257.69</td>\n",
- " <td>17.6</td>\n",
- " <td>-0.432</td>\n",
- " <td>NRELv1</td>\n",
- " <td>240.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>ecoSolargy_ECO270T156M4_60</th>\n",
- " <td>N</td>\n",
- " <td>42681</td>\n",
- " <td>45.5</td>\n",
- " <td>1.627</td>\n",
- " <td>60</td>\n",
- " <td>9.37</td>\n",
- " <td>38.79</td>\n",
- " <td>8.69</td>\n",
- " <td>31.19</td>\n",
- " <td>0.006425</td>\n",
- " <td>...</td>\n",
- " <td>1.612</td>\n",
- " <td>9.39</td>\n",
- " <td>3.24e-10</td>\n",
- " <td>0.33</td>\n",
- " <td>158.28</td>\n",
- " <td>15.64</td>\n",
- " <td>-0.432</td>\n",
- " <td>NRELv1</td>\n",
- " <td>245.5</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>ecoSolargy_ECO275T156M4_60</th>\n",
- " <td>N</td>\n",
- " <td>42681</td>\n",
- " <td>45.5</td>\n",
- " <td>1.627</td>\n",
- " <td>60</td>\n",
- " <td>9.39</td>\n",
- " <td>39.28</td>\n",
- " <td>8.73</td>\n",
- " <td>31.57</td>\n",
- " <td>0.006439</td>\n",
- " <td>...</td>\n",
- " <td>1.6297</td>\n",
- " <td>9.407</td>\n",
- " <td>3.13e-10</td>\n",
- " <td>0.335</td>\n",
- " <td>181.96</td>\n",
- " <td>15.28</td>\n",
- " <td>-0.432</td>\n",
- " <td>NRELv1</td>\n",
- " <td>250.2</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>ecoSolargy_ECO280T156M4_60</th>\n",
- " <td>N</td>\n",
- " <td>42681</td>\n",
- " <td>45.5</td>\n",
- " <td>1.627</td>\n",
- " <td>60</td>\n",
- " <td>9.46</td>\n",
- " <td>39.56</td>\n",
- " <td>8.8</td>\n",
- " <td>31.9</td>\n",
- " <td>0.006487</td>\n",
- " <td>...</td>\n",
- " <td>1.6439</td>\n",
- " <td>9.476</td>\n",
- " <td>3.28e-10</td>\n",
- " <td>0.321</td>\n",
- " <td>184.91</td>\n",
- " <td>15.64</td>\n",
- " <td>-0.432</td>\n",
- " <td>NRELv1</td>\n",
- " <td>254.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>ecoSolargy_ECO285T156M4_60</th>\n",
- " <td>N</td>\n",
- " <td>42681</td>\n",
- " <td>45.5</td>\n",
- " <td>1.627</td>\n",
- " <td>60</td>\n",
- " <td>9.5</td>\n",
- " <td>39.98</td>\n",
- " <td>8.85</td>\n",
- " <td>32.28</td>\n",
- " <td>0.006514</td>\n",
- " <td>...</td>\n",
- " <td>1.6612</td>\n",
- " <td>9.515</td>\n",
- " <td>3.29e-10</td>\n",
- " <td>0.317</td>\n",
- " <td>201.22</td>\n",
- " <td>15.63</td>\n",
- " <td>-0.432</td>\n",
- " <td>NRELv1</td>\n",
- " <td>259.5</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>ecoSolargy_ECO290T156M4_60</th>\n",
- " <td>N</td>\n",
- " <td>42681</td>\n",
- " <td>45.5</td>\n",
- " <td>1.627</td>\n",
- " <td>60</td>\n",
- " <td>9.55</td>\n",
- " <td>40.36</td>\n",
- " <td>8.91</td>\n",
- " <td>32.64</td>\n",
- " <td>0.006548</td>\n",
- " <td>...</td>\n",
- " <td>1.6771</td>\n",
- " <td>9.564</td>\n",
- " <td>3.32e-10</td>\n",
- " <td>0.312</td>\n",
- " <td>220.39</td>\n",
- " <td>15.65</td>\n",
- " <td>-0.432</td>\n",
- " <td>NRELv1</td>\n",
- " <td>264.2</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>ecoSolargy_ECO295T156M4_60</th>\n",
- " <td>N</td>\n",
- " <td>42681</td>\n",
- " <td>45.5</td>\n",
- " <td>1.627</td>\n",
- " <td>60</td>\n",
- " <td>9.59</td>\n",
- " <td>40.75</td>\n",
- " <td>8.96</td>\n",
- " <td>32.99</td>\n",
- " <td>0.006576</td>\n",
- " <td>...</td>\n",
- " <td>1.693</td>\n",
- " <td>9.602</td>\n",
- " <td>3.32e-10</td>\n",
- " <td>0.309</td>\n",
- " <td>242.88</td>\n",
- " <td>15.62</td>\n",
- " <td>-0.432</td>\n",
- " <td>NRELv1</td>\n",
- " <td>268.9</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_220</th>\n",
- " <td>N</td>\n",
- " <td>10/26/2011</td>\n",
- " <td>48.2</td>\n",
- " <td>1.637</td>\n",
- " <td>60</td>\n",
- " <td>8.3</td>\n",
- " <td>37.4</td>\n",
- " <td>7.7</td>\n",
- " <td>29.6</td>\n",
- " <td>0.00332</td>\n",
- " <td>...</td>\n",
- " <td>1.6118</td>\n",
- " <td>8.316</td>\n",
- " <td>6.81e-10</td>\n",
- " <td>0.412</td>\n",
- " <td>212.87</td>\n",
- " <td>14.02</td>\n",
- " <td>-0.500</td>\n",
- " <td>NRELv1</td>\n",
- " <td>192.5</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_225</th>\n",
- " <td>N</td>\n",
- " <td>10/26/2011</td>\n",
- " <td>48.2</td>\n",
- " <td>1.637</td>\n",
- " <td>60</td>\n",
- " <td>8.4</td>\n",
- " <td>37.6</td>\n",
- " <td>7.8</td>\n",
- " <td>29.7</td>\n",
- " <td>0.00336</td>\n",
- " <td>...</td>\n",
- " <td>1.6176</td>\n",
- " <td>8.416</td>\n",
- " <td>6.63e-10</td>\n",
- " <td>0.419</td>\n",
- " <td>226.85</td>\n",
- " <td>13.66</td>\n",
- " <td>-0.500</td>\n",
- " <td>NRELv1</td>\n",
- " <td>197.0</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_230</th>\n",
- " <td>N</td>\n",
- " <td>10/26/2011</td>\n",
- " <td>48.2</td>\n",
- " <td>1.637</td>\n",
- " <td>60</td>\n",
- " <td>8.5</td>\n",
- " <td>37.7</td>\n",
- " <td>7.9</td>\n",
- " <td>29.8</td>\n",
- " <td>0.0034</td>\n",
- " <td>...</td>\n",
- " <td>1.6217</td>\n",
- " <td>8.515</td>\n",
- " <td>6.7e-10</td>\n",
- " <td>0.412</td>\n",
- " <td>237.91</td>\n",
- " <td>13.64</td>\n",
- " <td>-0.500</td>\n",
- " <td>NRELv1</td>\n",
- " <td>201.5</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_235</th>\n",
- " <td>N</td>\n",
- " <td>10/26/2011</td>\n",
- " <td>48.2</td>\n",
- " <td>1.637</td>\n",
- " <td>60</td>\n",
- " <td>8.6</td>\n",
- " <td>37.9</td>\n",
- " <td>8.1</td>\n",
- " <td>29.9</td>\n",
- " <td>0.00344</td>\n",
- " <td>...</td>\n",
- " <td>1.6161</td>\n",
- " <td>8.601</td>\n",
- " <td>5.61e-10</td>\n",
- " <td>0.418</td>\n",
- " <td>4412.37</td>\n",
- " <td>11.87</td>\n",
- " <td>-0.500</td>\n",
- " <td>NRELv1</td>\n",
- " <td>206.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_240</th>\n",
- " <td>N</td>\n",
- " <td>10/26/2011</td>\n",
- " <td>48.2</td>\n",
- " <td>1.637</td>\n",
- " <td>60</td>\n",
- " <td>8.7</td>\n",
- " <td>38</td>\n",
- " <td>8.2</td>\n",
- " <td>30</td>\n",
- " <td>0.00348</td>\n",
- " <td>...</td>\n",
- " <td>1.6204</td>\n",
- " <td>8.7</td>\n",
- " <td>5.68e-10</td>\n",
- " <td>0.411</td>\n",
- " <td>25925.1</td>\n",
- " <td>11.88</td>\n",
- " <td>-0.500</td>\n",
- " <td>NRELv1</td>\n",
- " <td>210.6</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_260_HE</th>\n",
- " <td>N</td>\n",
- " <td>2/2/2015</td>\n",
- " <td>44.5</td>\n",
- " <td>1.634</td>\n",
- " <td>60</td>\n",
- " <td>8.9</td>\n",
- " <td>38.6</td>\n",
- " <td>8.2</td>\n",
- " <td>31.7</td>\n",
- " <td>0.00356</td>\n",
- " <td>...</td>\n",
- " <td>1.527</td>\n",
- " <td>8.923</td>\n",
- " <td>9e-11</td>\n",
- " <td>0.276</td>\n",
- " <td>109.16</td>\n",
- " <td>17.19</td>\n",
- " <td>-0.400</td>\n",
- " <td>NRELv1</td>\n",
- " <td>239.0</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_265_HE</th>\n",
- " <td>N</td>\n",
- " <td>2/2/2015</td>\n",
- " <td>44.5</td>\n",
- " <td>1.634</td>\n",
- " <td>60</td>\n",
- " <td>9</td>\n",
- " <td>38.7</td>\n",
- " <td>8.3</td>\n",
- " <td>31.8</td>\n",
- " <td>0.0036</td>\n",
- " <td>...</td>\n",
- " <td>1.5306</td>\n",
- " <td>9.022</td>\n",
- " <td>9.06e-11</td>\n",
- " <td>0.271</td>\n",
- " <td>111.38</td>\n",
- " <td>17.14</td>\n",
- " <td>-0.400</td>\n",
- " <td>NRELv1</td>\n",
- " <td>243.7</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_270_HE</th>\n",
- " <td>N</td>\n",
- " <td>2/2/2015</td>\n",
- " <td>44.5</td>\n",
- " <td>1.634</td>\n",
- " <td>60</td>\n",
- " <td>9.1</td>\n",
- " <td>38.9</td>\n",
- " <td>8.4</td>\n",
- " <td>32</td>\n",
- " <td>0.00364</td>\n",
- " <td>...</td>\n",
- " <td>1.5386</td>\n",
- " <td>9.121</td>\n",
- " <td>9.19e-11</td>\n",
- " <td>0.265</td>\n",
- " <td>113.85</td>\n",
- " <td>17.17</td>\n",
- " <td>-0.400</td>\n",
- " <td>NRELv1</td>\n",
- " <td>248.4</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_275_HE</th>\n",
- " <td>N</td>\n",
- " <td>2/2/2015</td>\n",
- " <td>44.5</td>\n",
- " <td>1.634</td>\n",
- " <td>60</td>\n",
- " <td>9.2</td>\n",
- " <td>39</td>\n",
- " <td>8.5</td>\n",
- " <td>32.1</td>\n",
- " <td>0.00368</td>\n",
- " <td>...</td>\n",
- " <td>1.5422</td>\n",
- " <td>9.221</td>\n",
- " <td>9.25e-11</td>\n",
- " <td>0.26</td>\n",
- " <td>116.21</td>\n",
- " <td>17.12</td>\n",
- " <td>-0.400</td>\n",
- " <td>NRELv1</td>\n",
- " <td>253.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_280_HE</th>\n",
- " <td>N</td>\n",
- " <td>2/2/2015</td>\n",
- " <td>44.5</td>\n",
- " <td>1.634</td>\n",
- " <td>60</td>\n",
- " <td>9.3</td>\n",
- " <td>39.2</td>\n",
- " <td>8.6</td>\n",
- " <td>32.3</td>\n",
- " <td>0.00372</td>\n",
- " <td>...</td>\n",
- " <td>1.5503</td>\n",
- " <td>9.32</td>\n",
- " <td>9.39e-11</td>\n",
- " <td>0.254</td>\n",
- " <td>118.83</td>\n",
- " <td>17.15</td>\n",
- " <td>-0.400</td>\n",
- " <td>NRELv1</td>\n",
- " <td>257.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_285_HE</th>\n",
- " <td>N</td>\n",
- " <td>5/29/2015</td>\n",
- " <td>48.8</td>\n",
- " <td>1.62</td>\n",
- " <td>60</td>\n",
- " <td>10.05</td>\n",
- " <td>40.9</td>\n",
- " <td>9.53</td>\n",
- " <td>33.6</td>\n",
- " <td>0.00376</td>\n",
- " <td>...</td>\n",
- " <td>1.5904</td>\n",
- " <td>9.418</td>\n",
- " <td>1.69e-10</td>\n",
- " <td>0.241</td>\n",
- " <td>125.87</td>\n",
- " <td>18.44</td>\n",
- " <td>-0.420</td>\n",
- " <td>NRELv1</td>\n",
- " <td>292.1</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_290_HE</th>\n",
- " <td>N</td>\n",
- " <td>5/29/2015</td>\n",
- " <td>48.8</td>\n",
- " <td>1.62</td>\n",
- " <td>60</td>\n",
- " <td>10.08</td>\n",
- " <td>41.2</td>\n",
- " <td>9.57</td>\n",
- " <td>34</td>\n",
- " <td>0.0038</td>\n",
- " <td>...</td>\n",
- " <td>1.5986</td>\n",
- " <td>9.517</td>\n",
- " <td>1.71e-10</td>\n",
- " <td>0.235</td>\n",
- " <td>128.9</td>\n",
- " <td>18.47</td>\n",
- " <td>-0.420</td>\n",
- " <td>NRELv1</td>\n",
- " <td>296.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_295_HE</th>\n",
- " <td>N</td>\n",
- " <td>5/29/2015</td>\n",
- " <td>48.7</td>\n",
- " <td>1.62</td>\n",
- " <td>60</td>\n",
- " <td>9.9</td>\n",
- " <td>41.2</td>\n",
- " <td>9.43</td>\n",
- " <td>34.5</td>\n",
- " <td>0.00384</td>\n",
- " <td>...</td>\n",
- " <td>1.6069</td>\n",
- " <td>9.617</td>\n",
- " <td>1.74e-10</td>\n",
- " <td>0.229</td>\n",
- " <td>132.03</td>\n",
- " <td>18.5</td>\n",
- " <td>-0.420</td>\n",
- " <td>NRELv1</td>\n",
- " <td>296.9</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>iTek_iT_300_HE</th>\n",
- " <td>N</td>\n",
- " <td>5/29/2015</td>\n",
- " <td>48.8</td>\n",
- " <td>1.62</td>\n",
- " <td>60</td>\n",
- " <td>10.08</td>\n",
- " <td>41.2</td>\n",
- " <td>9.57</td>\n",
- " <td>34</td>\n",
- " <td>0.00388</td>\n",
- " <td>...</td>\n",
- " <td>1.6107</td>\n",
- " <td>9.716</td>\n",
- " <td>1.75e-10</td>\n",
- " <td>0.225</td>\n",
- " <td>135.1</td>\n",
- " <td>18.47</td>\n",
- " <td>-0.420</td>\n",
- " <td>NRELv1</td>\n",
- " <td>296.8</td>\n",
- " <td>Mono-c-Si</td>\n",
- " </tr>\n",
- " </tbody>\n",
- "</table>\n",
- "<p>3397 rows × 21 columns</p>\n",
- "</div>"
- ],
- "text/plain": [
- " BIPV Date T_NOCT A_c N_s I_sc_ref \\\n",
- "1Soltech_1STH_235_WH N 3/4/2010 49.9 1.635 60 8.54 \n",
- "1Soltech_1STH_240_WH N 3/4/2010 49.9 1.635 60 8.58 \n",
- "1Soltech_1STH_245_WH N 3/4/2010 49.9 1.635 60 8.62 \n",
- "1Soltech_1STH_250_WH N 3/4/2010 49.9 1.635 60 8.66 \n",
- "1Soltech_1STH_FRL_4H_245_M60_BLK N 1/14/2013 48.3 1.668 60 8.81 \n",
- "1Soltech_1STH_FRL_4H_250_M60_BLK N 1/14/2013 48.3 1.668 60 8.85 \n",
- "1Soltech_1STH_FRL_4H_255_M60_BLK N 1/14/2013 48.3 1.668 60 8.89 \n",
- "1Soltech_1STH_FRL_4H_260_M60_BLK N 1/14/2013 48.3 1.668 60 8.93 \n",
- "APOS_Energy_AS220 N 3/29/2010 47.8 1.659 60 8.28 \n",
- "APOS_Energy_AS225 N 3/29/2010 47.8 1.659 60 8.34 \n",
- "APOS_Energy_AS230 N 3/29/2010 47.8 1.659 60 8.46 \n",
- "APOS_Energy_AS235 N 3/29/2010 47.8 1.659 60 8.55 \n",
- "APOS_Energy_AS240 N 3/29/2010 47.8 1.659 60 8.63 \n",
- "AU_Optronics_PM060M00_250 N 11/1/2013 47.3 1.611 60 8.66 \n",
- "AU_Optronics_PM060M00_255 N 11/1/2013 47.3 1.611 60 8.72 \n",
- "AU_Optronics_PM060M00_260 N 11/1/2013 47.3 1.611 60 8.78 \n",
- "AU_Optronics_PM060M00_265 N 11/1/2013 47.3 1.611 60 8.84 \n",
- "AU_Optronics_PM060M00_270 N 7/1/2014 46.5 1.611 60 9.01 \n",
- "AU_Optronics_PM060M00_275 N 7/1/2014 46.5 1.611 60 9.03 \n",
- "AU_Optronics_PM060M00_280 N 7/1/2014 46.5 1.611 60 9.06 \n",
- "AU_Optronics_PM060M00_285 N 7/1/2014 46.5 1.611 60 9.08 \n",
- "AU_Optronics_PM060M00_290 N 7/1/2014 46.5 1.611 60 9.11 \n",
- "AU_Optronics_PM060M01_250 N 6/2/2014 47.3 1.611 60 8.66 \n",
- "AU_Optronics_PM060M01_255 N 6/2/2014 47.3 1.611 60 8.72 \n",
- "AU_Optronics_PM060M01_260 N 6/2/2014 47.3 1.611 60 8.78 \n",
- "AU_Optronics_PM060M01_265 N 6/2/2014 47.3 1.611 60 8.84 \n",
- "AU_Optronics_PM060M01_270 N 7/1/2014 46.5 1.611 60 9.01 \n",
- "AU_Optronics_PM060M01_275 N 7/1/2014 46.5 1.611 60 9.03 \n",
- "AU_Optronics_PM060M01_280 N 7/1/2014 46.5 1.611 60 9.06 \n",
- "AU_Optronics_PM060M01_285 N 7/1/2014 46.5 1.611 60 9.08 \n",
- "... ... ... ... ... .. ... \n",
- "alfasolar_alfasolar_M6L60_240 N 4/2/2013 44.5 1.6 60 8.61 \n",
- "alfasolar_alfasolar_M6L60_245 N 4/2/2013 44.5 1.6 60 8.66 \n",
- "alfasolar_alfasolar_M6L60_250 N 4/2/2013 44.5 1.6 60 8.71 \n",
- "alfasolar_alfasolar_M6L60_255 N 4/2/2013 44.5 1.6 60 8.76 \n",
- "alfasolar_alfasolar_M6L60_260 N 4/2/2013 44.5 1.6 60 8.81 \n",
- "alfasolar_alfasolar_M6L60_265 N 4/2/2013 44.5 1.6 60 8.86 \n",
- "ecoSolargy_ECO250T156M4_60 N 42681 45.5 1.627 60 8.74 \n",
- "ecoSolargy_ECO255T156M4_60 N 42681 45.5 1.627 60 8.79 \n",
- "ecoSolargy_ECO260T156M4_60 N 42681 45.5 1.627 60 8.86 \n",
- "ecoSolargy_ECO265T156M4_60 N 42681 45.5 1.627 60 8.93 \n",
- "ecoSolargy_ECO270T156M4_60 N 42681 45.5 1.627 60 9.37 \n",
- "ecoSolargy_ECO275T156M4_60 N 42681 45.5 1.627 60 9.39 \n",
- "ecoSolargy_ECO280T156M4_60 N 42681 45.5 1.627 60 9.46 \n",
- "ecoSolargy_ECO285T156M4_60 N 42681 45.5 1.627 60 9.5 \n",
- "ecoSolargy_ECO290T156M4_60 N 42681 45.5 1.627 60 9.55 \n",
- "ecoSolargy_ECO295T156M4_60 N 42681 45.5 1.627 60 9.59 \n",
- "iTek_iT_220 N 10/26/2011 48.2 1.637 60 8.3 \n",
- "iTek_iT_225 N 10/26/2011 48.2 1.637 60 8.4 \n",
- "iTek_iT_230 N 10/26/2011 48.2 1.637 60 8.5 \n",
- "iTek_iT_235 N 10/26/2011 48.2 1.637 60 8.6 \n",
- "iTek_iT_240 N 10/26/2011 48.2 1.637 60 8.7 \n",
- "iTek_iT_260_HE N 2/2/2015 44.5 1.634 60 8.9 \n",
- "iTek_iT_265_HE N 2/2/2015 44.5 1.634 60 9 \n",
- "iTek_iT_270_HE N 2/2/2015 44.5 1.634 60 9.1 \n",
- "iTek_iT_275_HE N 2/2/2015 44.5 1.634 60 9.2 \n",
- "iTek_iT_280_HE N 2/2/2015 44.5 1.634 60 9.3 \n",
- "iTek_iT_285_HE N 5/29/2015 48.8 1.62 60 10.05 \n",
- "iTek_iT_290_HE N 5/29/2015 48.8 1.62 60 10.08 \n",
- "iTek_iT_295_HE N 5/29/2015 48.7 1.62 60 9.9 \n",
- "iTek_iT_300_HE N 5/29/2015 48.8 1.62 60 10.08 \n",
- "\n",
- " V_oc_ref I_mp_ref V_mp_ref alpha_sc \\\n",
- "1Soltech_1STH_235_WH 37 8.02 29.3 0.00743 \n",
- "1Soltech_1STH_240_WH 37.1 8.07 29.7 0.007465 \n",
- "1Soltech_1STH_245_WH 37.2 8.1 30.2 0.007499 \n",
- "1Soltech_1STH_250_WH 37.3 8.15 30.7 0.007534 \n",
- "1Soltech_1STH_FRL_4H_245_M60_BLK 38.3 8.06 30.2 0.006167 \n",
- "1Soltech_1STH_FRL_4H_250_M60_BLK 38.4 8.11 30.7 0.006195 \n",
- "1Soltech_1STH_FRL_4H_255_M60_BLK 38.46 8.16 31.24 0.006223 \n",
- "1Soltech_1STH_FRL_4H_260_M60_BLK 38.6 8.21 31.6 0.006251 \n",
- "APOS_Energy_AS220 36.63 7.62 29.08 0.007118 \n",
- "APOS_Energy_AS225 36.99 7.69 29.31 0.00717 \n",
- "APOS_Energy_AS230 37.11 7.82 29.42 0.007276 \n",
- "APOS_Energy_AS235 37.34 7.86 29.76 0.007353 \n",
- "APOS_Energy_AS240 37.52 7.95 30.05 0.007422 \n",
- "AU_Optronics_PM060M00_250 37.86 8.22 30.82 0.005145 \n",
- "AU_Optronics_PM060M00_255 37.92 8.34 30.86 0.005181 \n",
- "AU_Optronics_PM060M00_260 37.98 8.46 30.91 0.005216 \n",
- "AU_Optronics_PM060M00_265 38.04 8.54 30.96 0.005252 \n",
- "AU_Optronics_PM060M00_270 38.5 8.5 31.8 0.005721 \n",
- "AU_Optronics_PM060M00_275 38.7 8.52 32.3 0.005734 \n",
- "AU_Optronics_PM060M00_280 38.9 8.57 32.7 0.005753 \n",
- "AU_Optronics_PM060M00_285 39.2 8.59 33.2 0.005766 \n",
- "AU_Optronics_PM060M00_290 39.5 8.61 33.7 0.005785 \n",
- "AU_Optronics_PM060M01_250 37.86 8.22 30.8 0.005145 \n",
- "AU_Optronics_PM060M01_255 37.92 8.34 30.9 0.005181 \n",
- "AU_Optronics_PM060M01_260 37.98 8.46 30.9 0.005216 \n",
- "AU_Optronics_PM060M01_265 38.04 8.54 31 0.005252 \n",
- "AU_Optronics_PM060M01_270 38.5 8.5 31.8 0.005721 \n",
- "AU_Optronics_PM060M01_275 38.7 8.52 32.3 0.005734 \n",
- "AU_Optronics_PM060M01_280 38.9 8.57 32.7 0.005753 \n",
- "AU_Optronics_PM060M01_285 39.2 8.59 33.2 0.005766 \n",
- "... ... ... ... ... \n",
- "alfasolar_alfasolar_M6L60_240 37.41 7.9 30.43 0.002962 \n",
- "alfasolar_alfasolar_M6L60_245 37.58 8.03 30.55 0.002979 \n",
- "alfasolar_alfasolar_M6L60_250 37.75 8.16 30.67 0.002996 \n",
- "alfasolar_alfasolar_M6L60_255 37.92 8.29 30.79 0.003013 \n",
- "alfasolar_alfasolar_M6L60_260 38.09 8.42 30.91 0.003031 \n",
- "alfasolar_alfasolar_M6L60_265 38.26 8.55 31.03 0.003048 \n",
- "ecoSolargy_ECO250T156M4_60 37.65 8.1 30.98 0.005993 \n",
- "ecoSolargy_ECO255T156M4_60 37.88 8.19 31.19 0.006027 \n",
- "ecoSolargy_ECO260T156M4_60 38.23 8.29 31.44 0.006075 \n",
- "ecoSolargy_ECO265T156M4_60 38.54 8.36 31.75 0.006123 \n",
- "ecoSolargy_ECO270T156M4_60 38.79 8.69 31.19 0.006425 \n",
- "ecoSolargy_ECO275T156M4_60 39.28 8.73 31.57 0.006439 \n",
- "ecoSolargy_ECO280T156M4_60 39.56 8.8 31.9 0.006487 \n",
- "ecoSolargy_ECO285T156M4_60 39.98 8.85 32.28 0.006514 \n",
- "ecoSolargy_ECO290T156M4_60 40.36 8.91 32.64 0.006548 \n",
- "ecoSolargy_ECO295T156M4_60 40.75 8.96 32.99 0.006576 \n",
- "iTek_iT_220 37.4 7.7 29.6 0.00332 \n",
- "iTek_iT_225 37.6 7.8 29.7 0.00336 \n",
- "iTek_iT_230 37.7 7.9 29.8 0.0034 \n",
- "iTek_iT_235 37.9 8.1 29.9 0.00344 \n",
- "iTek_iT_240 38 8.2 30 0.00348 \n",
- "iTek_iT_260_HE 38.6 8.2 31.7 0.00356 \n",
- "iTek_iT_265_HE 38.7 8.3 31.8 0.0036 \n",
- "iTek_iT_270_HE 38.9 8.4 32 0.00364 \n",
- "iTek_iT_275_HE 39 8.5 32.1 0.00368 \n",
- "iTek_iT_280_HE 39.2 8.6 32.3 0.00372 \n",
- "iTek_iT_285_HE 40.9 9.53 33.6 0.00376 \n",
- "iTek_iT_290_HE 41.2 9.57 34 0.0038 \n",
- "iTek_iT_295_HE 41.2 9.43 34.5 0.00384 \n",
- "iTek_iT_300_HE 41.2 9.57 34 0.00388 \n",
- "\n",
- " ... a_ref I_L_ref I_o_ref \\\n",
- "1Soltech_1STH_235_WH ... 1.6292 8.543 1.166e-09 \n",
- "1Soltech_1STH_240_WH ... 1.6425 8.582 1.325e-09 \n",
- "1Soltech_1STH_245_WH ... 1.6617 8.623 1.623e-09 \n",
- "1Soltech_1STH_250_WH ... 1.6783 8.662 1.919e-09 \n",
- "1Soltech_1STH_FRL_4H_245_M60_BLK ... 1.6351 8.844 5.7e-10 \n",
- "1Soltech_1STH_FRL_4H_250_M60_BLK ... 1.6517 8.878 6.83e-10 \n",
- "1Soltech_1STH_FRL_4H_255_M60_BLK ... 1.6688 8.912 8.39e-10 \n",
- "1Soltech_1STH_FRL_4H_260_M60_BLK ... 1.6811 8.949 9.2e-10 \n",
- "APOS_Energy_AS220 ... 1.5181 8.307 2.661e-10 \n",
- "APOS_Energy_AS225 ... 1.5291 8.365 2.527e-10 \n",
- "APOS_Energy_AS230 ... 1.533 8.483 2.526e-10 \n",
- "APOS_Energy_AS235 ... 1.5517 8.578 2.927e-10 \n",
- "APOS_Energy_AS240 ... 1.5616 8.655 3.074e-10 \n",
- "AU_Optronics_PM060M00_250 ... 1.5635 8.753 2.64e-10 \n",
- "AU_Optronics_PM060M00_255 ... 1.5592 8.808 2.41e-10 \n",
- "AU_Optronics_PM060M00_260 ... 1.5631 8.959 2.5e-10 \n",
- "AU_Optronics_PM060M00_265 ... 1.5634 9.019 2.44e-10 \n",
- "AU_Optronics_PM060M00_270 ... 1.6407 9.013 5.77e-10 \n",
- "AU_Optronics_PM060M00_275 ... 1.6589 9.033 6.63e-10 \n",
- "AU_Optronics_PM060M00_280 ... 1.6718 9.061 7.08e-10 \n",
- "AU_Optronics_PM060M00_285 ... 1.6918 9.081 7.81e-10 \n",
- "AU_Optronics_PM060M00_290 ... 1.7128 9.111 8.73e-10 \n",
- "AU_Optronics_PM060M01_250 ... 1.5635 8.753 2.64e-10 \n",
- "AU_Optronics_PM060M01_255 ... 1.5592 8.808 2.41e-10 \n",
- "AU_Optronics_PM060M01_260 ... 1.5631 8.959 2.5e-10 \n",
- "AU_Optronics_PM060M01_265 ... 1.5634 9.019 2.44e-10 \n",
- "AU_Optronics_PM060M01_270 ... 1.6407 9.013 5.77e-10 \n",
- "AU_Optronics_PM060M01_275 ... 1.6589 9.033 6.63e-10 \n",
- "AU_Optronics_PM060M01_280 ... 1.6718 9.061 7.08e-10 \n",
- "AU_Optronics_PM060M01_285 ... 1.6918 9.081 7.81e-10 \n",
- "... ... ... ... ... \n",
- "alfasolar_alfasolar_M6L60_240 ... 1.5697 8.634 3.7e-10 \n",
- "alfasolar_alfasolar_M6L60_245 ... 1.5663 8.676 3.21e-10 \n",
- "alfasolar_alfasolar_M6L60_250 ... 1.5634 8.719 2.8e-10 \n",
- "alfasolar_alfasolar_M6L60_255 ... 1.5609 8.761 2.46e-10 \n",
- "alfasolar_alfasolar_M6L60_260 ... 1.5669 8.899 2.46e-10 \n",
- "alfasolar_alfasolar_M6L60_265 ... 1.5731 9.04 2.47e-10 \n",
- "ecoSolargy_ECO250T156M4_60 ... 1.5861 8.754 4.17e-10 \n",
- "ecoSolargy_ECO255T156M4_60 ... 1.5914 8.801 3.96e-10 \n",
- "ecoSolargy_ECO260T156M4_60 ... 1.6011 8.869 3.72e-10 \n",
- "ecoSolargy_ECO265T156M4_60 ... 1.6152 8.938 3.81e-10 \n",
- "ecoSolargy_ECO270T156M4_60 ... 1.612 9.39 3.24e-10 \n",
- "ecoSolargy_ECO275T156M4_60 ... 1.6297 9.407 3.13e-10 \n",
- "ecoSolargy_ECO280T156M4_60 ... 1.6439 9.476 3.28e-10 \n",
- "ecoSolargy_ECO285T156M4_60 ... 1.6612 9.515 3.29e-10 \n",
- "ecoSolargy_ECO290T156M4_60 ... 1.6771 9.564 3.32e-10 \n",
- "ecoSolargy_ECO295T156M4_60 ... 1.693 9.602 3.32e-10 \n",
- "iTek_iT_220 ... 1.6118 8.316 6.81e-10 \n",
- "iTek_iT_225 ... 1.6176 8.416 6.63e-10 \n",
- "iTek_iT_230 ... 1.6217 8.515 6.7e-10 \n",
- "iTek_iT_235 ... 1.6161 8.601 5.61e-10 \n",
- "iTek_iT_240 ... 1.6204 8.7 5.68e-10 \n",
- "iTek_iT_260_HE ... 1.527 8.923 9e-11 \n",
- "iTek_iT_265_HE ... 1.5306 9.022 9.06e-11 \n",
- "iTek_iT_270_HE ... 1.5386 9.121 9.19e-11 \n",
- "iTek_iT_275_HE ... 1.5422 9.221 9.25e-11 \n",
- "iTek_iT_280_HE ... 1.5503 9.32 9.39e-11 \n",
- "iTek_iT_285_HE ... 1.5904 9.418 1.69e-10 \n",
- "iTek_iT_290_HE ... 1.5986 9.517 1.71e-10 \n",
- "iTek_iT_295_HE ... 1.6069 9.617 1.74e-10 \n",
- "iTek_iT_300_HE ... 1.6107 9.716 1.75e-10 \n",
- "\n",
- " R_s R_sh_ref Adjust gamma_r Version \\\n",
- "1Soltech_1STH_235_WH 0.383 1257.84 8.7 -0.482 MM107 \n",
- "1Soltech_1STH_240_WH 0.335 1463.82 9.8 -0.482 MM107 \n",
- "1Soltech_1STH_245_WH 0.272 724.06 11.6 -0.482 MM107 \n",
- "1Soltech_1STH_250_WH 0.211 760.07 13.1 -0.482 MM107 \n",
- "1Soltech_1STH_FRL_4H_245_M60_BLK 0.421 109.31 6.502 -0.453 NRELv1 \n",
- "1Soltech_1STH_FRL_4H_250_M60_BLK 0.358 111.51 8.03 -0.453 NRELv1 \n",
- "1Soltech_1STH_FRL_4H_255_M60_BLK 0.285 113.34 9.818 -0.453 NRELv1 \n",
- "1Soltech_1STH_FRL_4H_260_M60_BLK 0.249 117.56 10.6 -0.453 NRELv1 \n",
- "APOS_Energy_AS220 0.41 127.31 24.3 -0.425 MM107 \n",
- "APOS_Energy_AS225 0.419 138.1 23.7 -0.425 MM107 \n",
- "APOS_Energy_AS230 0.412 151.47 23.5 -0.425 MM107 \n",
- "APOS_Energy_AS235 0.387 119.65 24.9 -0.425 MM107 \n",
- "APOS_Energy_AS240 0.363 126.69 25.3 -0.425 MM107 \n",
- "AU_Optronics_PM060M00_250 0.293 392.21 18.48 -0.437 NRELv1 \n",
- "AU_Optronics_PM060M00_255 0.294 3072.79 17.53 -0.437 NRELv1 \n",
- "AU_Optronics_PM060M00_260 0.289 915.51 17.74 -0.437 NRELv1 \n",
- "AU_Optronics_PM060M00_265 0.288 3154.03 17.43 -0.437 NRELv1 \n",
- "AU_Optronics_PM060M00_270 0.216 674.93 15.7 -0.454 NRELv1 \n",
- "AU_Optronics_PM060M00_275 0.171 590.38 17 -0.454 NRELv1 \n",
- "AU_Optronics_PM060M00_280 0.14 880.22 17.58 -0.454 NRELv1 \n",
- "AU_Optronics_PM060M00_285 0.107 789.79 18.51 -0.454 NRELv1 \n",
- "AU_Optronics_PM060M00_290 0.074 591.61 19.55 -0.454 NRELv1 \n",
- "AU_Optronics_PM060M01_250 0.293 392.21 18.48 -0.437 NRELv1 \n",
- "AU_Optronics_PM060M01_255 0.294 3072.79 17.53 -0.437 NRELv1 \n",
- "AU_Optronics_PM060M01_260 0.289 915.51 17.74 -0.437 NRELv1 \n",
- "AU_Optronics_PM060M01_265 0.288 3154.03 17.43 -0.437 NRELv1 \n",
- "AU_Optronics_PM060M01_270 0.216 674.93 15.7 -0.454 NRELv1 \n",
- "AU_Optronics_PM060M01_275 0.171 590.38 17 -0.454 NRELv1 \n",
- "AU_Optronics_PM060M01_280 0.14 880.22 17.58 -0.454 NRELv1 \n",
- "AU_Optronics_PM060M01_285 0.107 789.79 18.51 -0.454 NRELv1 \n",
- "... ... ... ... ... ... \n",
- "alfasolar_alfasolar_M6L60_240 0.294 106.59 9.256 -0.456 NRELv1 \n",
- "alfasolar_alfasolar_M6L60_245 0.298 157.07 7.923 -0.456 NRELv1 \n",
- "alfasolar_alfasolar_M6L60_250 0.301 295.89 6.663 -0.456 NRELv1 \n",
- "alfasolar_alfasolar_M6L60_255 0.304 2378.2 5.471 -0.456 NRELv1 \n",
- "alfasolar_alfasolar_M6L60_260 0.304 2284.52 5.348 -0.456 NRELv1 \n",
- "alfasolar_alfasolar_M6L60_265 0.303 1932.19 5.247 -0.456 NRELv1 \n",
- "ecoSolargy_ECO250T156M4_60 0.24 148.03 18.71 -0.432 NRELv1 \n",
- "ecoSolargy_ECO255T156M4_60 0.238 190.95 18.12 -0.432 NRELv1 \n",
- "ecoSolargy_ECO260T156M4_60 0.244 250.14 17.44 -0.432 NRELv1 \n",
- "ecoSolargy_ECO265T156M4_60 0.237 257.69 17.6 -0.432 NRELv1 \n",
- "ecoSolargy_ECO270T156M4_60 0.33 158.28 15.64 -0.432 NRELv1 \n",
- "ecoSolargy_ECO275T156M4_60 0.335 181.96 15.28 -0.432 NRELv1 \n",
- "ecoSolargy_ECO280T156M4_60 0.321 184.91 15.64 -0.432 NRELv1 \n",
- "ecoSolargy_ECO285T156M4_60 0.317 201.22 15.63 -0.432 NRELv1 \n",
- "ecoSolargy_ECO290T156M4_60 0.312 220.39 15.65 -0.432 NRELv1 \n",
- "ecoSolargy_ECO295T156M4_60 0.309 242.88 15.62 -0.432 NRELv1 \n",
- "iTek_iT_220 0.412 212.87 14.02 -0.500 NRELv1 \n",
- "iTek_iT_225 0.419 226.85 13.66 -0.500 NRELv1 \n",
- "iTek_iT_230 0.412 237.91 13.64 -0.500 NRELv1 \n",
- "iTek_iT_235 0.418 4412.37 11.87 -0.500 NRELv1 \n",
- "iTek_iT_240 0.411 25925.1 11.88 -0.500 NRELv1 \n",
- "iTek_iT_260_HE 0.276 109.16 17.19 -0.400 NRELv1 \n",
- "iTek_iT_265_HE 0.271 111.38 17.14 -0.400 NRELv1 \n",
- "iTek_iT_270_HE 0.265 113.85 17.17 -0.400 NRELv1 \n",
- "iTek_iT_275_HE 0.26 116.21 17.12 -0.400 NRELv1 \n",
- "iTek_iT_280_HE 0.254 118.83 17.15 -0.400 NRELv1 \n",
- "iTek_iT_285_HE 0.241 125.87 18.44 -0.420 NRELv1 \n",
- "iTek_iT_290_HE 0.235 128.9 18.47 -0.420 NRELv1 \n",
- "iTek_iT_295_HE 0.229 132.03 18.5 -0.420 NRELv1 \n",
- "iTek_iT_300_HE 0.225 135.1 18.47 -0.420 NRELv1 \n",
- "\n",
- " PTC Technology \n",
- "1Soltech_1STH_235_WH 205.1 Mono-c-Si \n",
- "1Soltech_1STH_240_WH 209.6 Mono-c-Si \n",
- "1Soltech_1STH_245_WH 214.1 Mono-c-Si \n",
- "1Soltech_1STH_250_WH 218.6 Mono-c-Si \n",
- "1Soltech_1STH_FRL_4H_245_M60_BLK 217.7 Mono-c-Si \n",
- "1Soltech_1STH_FRL_4H_250_M60_BLK 222.3 Mono-c-Si \n",
- "1Soltech_1STH_FRL_4H_255_M60_BLK 226.9 Mono-c-Si \n",
- "1Soltech_1STH_FRL_4H_260_M60_BLK 231.4 Mono-c-Si \n",
- "APOS_Energy_AS220 197.0 Mono-c-Si \n",
- "APOS_Energy_AS225 201.6 Mono-c-Si \n",
- "APOS_Energy_AS230 206.1 Mono-c-Si \n",
- "APOS_Energy_AS235 210.7 Mono-c-Si \n",
- "APOS_Energy_AS240 215.4 Mono-c-Si \n",
- "AU_Optronics_PM060M00_250 224.6 Mono-c-Si \n",
- "AU_Optronics_PM060M00_255 229.2 Mono-c-Si \n",
- "AU_Optronics_PM060M00_260 233.8 Mono-c-Si \n",
- "AU_Optronics_PM060M00_265 238.5 Mono-c-Si \n",
- "AU_Optronics_PM060M00_270 243.1 Mono-c-Si \n",
- "AU_Optronics_PM060M00_275 247.8 Mono-c-Si \n",
- "AU_Optronics_PM060M00_280 252.4 Mono-c-Si \n",
- "AU_Optronics_PM060M00_285 257.1 Mono-c-Si \n",
- "AU_Optronics_PM060M00_290 261.7 Mono-c-Si \n",
- "AU_Optronics_PM060M01_250 224.6 Mono-c-Si \n",
- "AU_Optronics_PM060M01_255 229.2 Mono-c-Si \n",
- "AU_Optronics_PM060M01_260 233.8 Mono-c-Si \n",
- "AU_Optronics_PM060M01_265 238.5 Mono-c-Si \n",
- "AU_Optronics_PM060M01_270 243.1 Mono-c-Si \n",
- "AU_Optronics_PM060M01_275 247.8 Mono-c-Si \n",
- "AU_Optronics_PM060M01_280 252.4 Mono-c-Si \n",
- "AU_Optronics_PM060M01_285 257.1 Mono-c-Si \n",
- "... ... ... \n",
- "alfasolar_alfasolar_M6L60_240 217.5 Mono-c-Si \n",
- "alfasolar_alfasolar_M6L60_245 222.2 Mono-c-Si \n",
- "alfasolar_alfasolar_M6L60_250 226.8 Mono-c-Si \n",
- "alfasolar_alfasolar_M6L60_255 231.5 Mono-c-Si \n",
- "alfasolar_alfasolar_M6L60_260 236.2 Mono-c-Si \n",
- "alfasolar_alfasolar_M6L60_265 240.8 Mono-c-Si \n",
- "ecoSolargy_ECO250T156M4_60 226.8 Mono-c-Si \n",
- "ecoSolargy_ECO255T156M4_60 231.5 Mono-c-Si \n",
- "ecoSolargy_ECO260T156M4_60 236.2 Mono-c-Si \n",
- "ecoSolargy_ECO265T156M4_60 240.8 Mono-c-Si \n",
- "ecoSolargy_ECO270T156M4_60 245.5 Mono-c-Si \n",
- "ecoSolargy_ECO275T156M4_60 250.2 Mono-c-Si \n",
- "ecoSolargy_ECO280T156M4_60 254.8 Mono-c-Si \n",
- "ecoSolargy_ECO285T156M4_60 259.5 Mono-c-Si \n",
- "ecoSolargy_ECO290T156M4_60 264.2 Mono-c-Si \n",
- "ecoSolargy_ECO295T156M4_60 268.9 Mono-c-Si \n",
- "iTek_iT_220 192.5 Mono-c-Si \n",
- "iTek_iT_225 197.0 Mono-c-Si \n",
- "iTek_iT_230 201.5 Mono-c-Si \n",
- "iTek_iT_235 206.1 Mono-c-Si \n",
- "iTek_iT_240 210.6 Mono-c-Si \n",
- "iTek_iT_260_HE 239.0 Mono-c-Si \n",
- "iTek_iT_265_HE 243.7 Mono-c-Si \n",
- "iTek_iT_270_HE 248.4 Mono-c-Si \n",
- "iTek_iT_275_HE 253.1 Mono-c-Si \n",
- "iTek_iT_280_HE 257.8 Mono-c-Si \n",
- "iTek_iT_285_HE 292.1 Mono-c-Si \n",
- "iTek_iT_290_HE 296.8 Mono-c-Si \n",
- "iTek_iT_295_HE 296.9 Mono-c-Si \n",
- "iTek_iT_300_HE 296.8 Mono-c-Si \n",
- "\n",
- "[3397 rows x 21 columns]"
- ]
- },
- "execution_count": 36,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "suitable_models"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "230.873682661\n",
- "-0.455559022667\n"
- ]
- }
- ],
- "source": [
- "print(suitable_models.mean().PTC)\n",
- "print(suitable_models.mean().gamma_r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Compute efficiencies for all possible $G_t$ intervals for all temperature cells"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 38,
- "metadata": {},
- "outputs": [],
- "source": [
- "Gt_INTERVAL = 1\n",
- "Gt_range = list(range(1, 1004, Gt_INTERVAL))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 39,
- "metadata": {},
- "outputs": [],
- "source": [
- "T_INTERVAL = 1\n",
- "T_range = list(range(-24, 35, T_INTERVAL))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 40,
- "metadata": {},
- "outputs": [],
- "source": [
- "df = xr.DataArray(data = np.ones((len(Gt_range), len(T_range))), \n",
- " dims = ['G_t', 'T_amb'], coords = {'G_t' : Gt_range, 'T_amb' : T_range}, \n",
- " name = 'T_cell').to_dataframe().reset_index()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "<div>\n",
- "<style scoped>\n",
- " .dataframe tbody tr th:only-of-type {\n",
- " vertical-align: middle;\n",
- " }\n",
- "\n",
- " .dataframe tbody tr th {\n",
- " vertical-align: top;\n",
- " }\n",
- "\n",
- " .dataframe thead th {\n",
- " text-align: right;\n",
- " }\n",
- "</style>\n",
- "<table border=\"1\" class=\"dataframe\">\n",
- " <thead>\n",
- " <tr style=\"text-align: right;\">\n",
- " <th></th>\n",
- " <th>G_t</th>\n",
- " <th>T_amb</th>\n",
- " <th>T_cell</th>\n",
- " </tr>\n",
- " </thead>\n",
- " <tbody>\n",
- " <tr>\n",
- " <th>0</th>\n",
- " <td>1</td>\n",
- " <td>-24</td>\n",
- " <td>1.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1</th>\n",
- " <td>1</td>\n",
- " <td>-23</td>\n",
- " <td>1.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>2</th>\n",
- " <td>1</td>\n",
- " <td>-22</td>\n",
- " <td>1.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>3</th>\n",
- " <td>1</td>\n",
- " <td>-21</td>\n",
- " <td>1.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>4</th>\n",
- " <td>1</td>\n",
- " <td>-20</td>\n",
- " <td>1.0</td>\n",
- " </tr>\n",
- " </tbody>\n",
- "</table>\n",
- "</div>"
- ],
- "text/plain": [
- " G_t T_amb T_cell\n",
- "0 1 -24 1.0\n",
- "1 1 -23 1.0\n",
- "2 1 -22 1.0\n",
- "3 1 -21 1.0\n",
- "4 1 -20 1.0"
- ]
- },
- "execution_count": 41,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.head()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Get cell temperatures "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "59177"
- ]
- },
- "execution_count": 42,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "len(df)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 114,
- "metadata": {
- "scrolled": false
- },
- "outputs": [],
- "source": [
- "df['T_cell'] = pvsystem.pvsyst_celltemp(df.G_t, df.T_amb, model_params = 'insulated')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 116,
- "metadata": {},
- "outputs": [],
- "source": [
- "A_panel = 1.6 # in m2\n",
- "\n",
- "P_dc0 = 285 / A_panel # , PV output per m2 - 285: AVERAGE FOR 3 LARGEST PRODUCERS\n",
- "gamma = -0.39 / 100 # suitable_models.mean().gamma_r : AVERAGE FOR 3 LARGEST PRODUCERS"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 117,
- "metadata": {},
- "outputs": [],
- "source": [
- "P_dc = pvsystem.pvwatts_dc(df.G_t, df.T_cell, P_dc0, gamma)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 118,
- "metadata": {},
- "outputs": [],
- "source": [
- "df['module_eff'] = (P_dc / df['G_t'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 119,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "<div>\n",
- "<style scoped>\n",
- " .dataframe tbody tr th:only-of-type {\n",
- " vertical-align: middle;\n",
- " }\n",
- "\n",
- " .dataframe tbody tr th {\n",
- " vertical-align: top;\n",
- " }\n",
- "\n",
- " .dataframe thead th {\n",
- " text-align: right;\n",
- " }\n",
- "</style>\n",
- "<table border=\"1\" class=\"dataframe\">\n",
- " <thead>\n",
- " <tr style=\"text-align: right;\">\n",
- " <th></th>\n",
- " <th>G_t</th>\n",
- " <th>T_amb</th>\n",
- " <th>T_cell</th>\n",
- " <th>module_eff</th>\n",
- " <th>losses</th>\n",
- " <th>inverter_eff</th>\n",
- " <th>PF</th>\n",
- " </tr>\n",
- " </thead>\n",
- " <tbody>\n",
- " <tr>\n",
- " <th>0</th>\n",
- " <td>1</td>\n",
- " <td>-24</td>\n",
- " <td>-23.946</td>\n",
- " <td>0.212127</td>\n",
- " <td>14.075661</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1</th>\n",
- " <td>1</td>\n",
- " <td>-23</td>\n",
- " <td>-22.946</td>\n",
- " <td>0.211432</td>\n",
- " <td>14.075661</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>2</th>\n",
- " <td>1</td>\n",
- " <td>-22</td>\n",
- " <td>-21.946</td>\n",
- " <td>0.210738</td>\n",
- " <td>14.075661</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>3</th>\n",
- " <td>1</td>\n",
- " <td>-21</td>\n",
- " <td>-20.946</td>\n",
- " <td>0.210043</td>\n",
- " <td>14.075661</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>4</th>\n",
- " <td>1</td>\n",
- " <td>-20</td>\n",
- " <td>-19.946</td>\n",
- " <td>0.209348</td>\n",
- " <td>14.075661</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " </tr>\n",
- " </tbody>\n",
- "</table>\n",
- "</div>"
- ],
- "text/plain": [
- " G_t T_amb T_cell module_eff losses inverter_eff PF\n",
- "0 1 -24 -23.946 0.212127 14.075661 0.0 0.0\n",
- "1 1 -23 -22.946 0.211432 14.075661 0.0 0.0\n",
- "2 1 -22 -21.946 0.210738 14.075661 0.0 0.0\n",
- "3 1 -21 -20.946 0.210043 14.075661 0.0 0.0\n",
- "4 1 -20 -19.946 0.209348 14.075661 0.0 0.0"
- ]
- },
- "execution_count": 119,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.head()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Assess performance factor"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Check nominal inverter efficiencies"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 120,
- "metadata": {},
- "outputs": [],
- "source": [
- "inverters = pvsystem.retrieve_sam('CECInverter').T "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 121,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "0.9593134070067068"
- ]
- },
- "execution_count": 121,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "(inverters.Paco / inverters.Pdco).mean()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "#### Compute inverter efficiencies and other system losses"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 122,
- "metadata": {},
- "outputs": [],
- "source": [
- "P_ac = pvsystem.pvwatts_ac(P_dc, P_dc0)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 123,
- "metadata": {},
- "outputs": [],
- "source": [
- "df['losses'] = pvsystem.pvwatts_losses()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 124,
- "metadata": {},
- "outputs": [],
- "source": [
- "df['inverter_eff'] = (P_ac / P_dc)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 125,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "<div>\n",
- "<style scoped>\n",
- " .dataframe tbody tr th:only-of-type {\n",
- " vertical-align: middle;\n",
- " }\n",
- "\n",
- " .dataframe tbody tr th {\n",
- " vertical-align: top;\n",
- " }\n",
- "\n",
- " .dataframe thead th {\n",
- " text-align: right;\n",
- " }\n",
- "</style>\n",
- "<table border=\"1\" class=\"dataframe\">\n",
- " <thead>\n",
- " <tr style=\"text-align: right;\">\n",
- " <th></th>\n",
- " <th>G_t</th>\n",
- " <th>T_amb</th>\n",
- " <th>T_cell</th>\n",
- " <th>module_eff</th>\n",
- " <th>losses</th>\n",
- " <th>inverter_eff</th>\n",
- " <th>PF</th>\n",
- " </tr>\n",
- " </thead>\n",
- " <tbody>\n",
- " <tr>\n",
- " <th>0</th>\n",
- " <td>1</td>\n",
- " <td>-24</td>\n",
- " <td>-23.946</td>\n",
- " <td>0.212127</td>\n",
- " <td>14.075661</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1</th>\n",
- " <td>1</td>\n",
- " <td>-23</td>\n",
- " <td>-22.946</td>\n",
- " <td>0.211432</td>\n",
- " <td>14.075661</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>2</th>\n",
- " <td>1</td>\n",
- " <td>-22</td>\n",
- " <td>-21.946</td>\n",
- " <td>0.210738</td>\n",
- " <td>14.075661</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>3</th>\n",
- " <td>1</td>\n",
- " <td>-21</td>\n",
- " <td>-20.946</td>\n",
- " <td>0.210043</td>\n",
- " <td>14.075661</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>4</th>\n",
- " <td>1</td>\n",
- " <td>-20</td>\n",
- " <td>-19.946</td>\n",
- " <td>0.209348</td>\n",
- " <td>14.075661</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " </tr>\n",
- " </tbody>\n",
- "</table>\n",
- "</div>"
- ],
- "text/plain": [
- " G_t T_amb T_cell module_eff losses inverter_eff PF\n",
- "0 1 -24 -23.946 0.212127 14.075661 0.0 0.0\n",
- "1 1 -23 -22.946 0.211432 14.075661 0.0 0.0\n",
- "2 1 -22 -21.946 0.210738 14.075661 0.0 0.0\n",
- "3 1 -21 -20.946 0.210043 14.075661 0.0 0.0\n",
- "4 1 -20 -19.946 0.209348 14.075661 0.0 0.0"
- ]
- },
- "execution_count": 125,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 126,
- "metadata": {},
- "outputs": [],
- "source": [
- "df['PF'] = df.inverter_eff * (1 - df.losses/100)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Get overall performance\n",
- "We notice that module efficiency, in the simplified model used here, is a linear function of the ambient temperature, and hence it is averaged across G_t\n",
- "At the same time, the inverter efficiency is *almost* a function of $G_t$, except for low temperatures. We create a weighted average for computing module efficiency as a function of $G_t$, using the histogram of ambient temperatures (see above) as weighting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 136,
- "metadata": {},
- "outputs": [],
- "source": [
- "performance = df.dropna().set_index(['G_t', 'T_amb']).to_xarray()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 137,
- "metadata": {},
- "outputs": [],
- "source": [
- "# performance['T_weight'] = xr.DataArray(data = hist[0], dims = 'T_amb', coords = {'T_amb' : hist[1][:-1]})"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 138,
- "metadata": {},
- "outputs": [],
- "source": [
- "performance['PF_mean'] = performance.PF.mean('T_amb')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 139,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (G_t: 1003, T_amb: 59)\n",
- "Coordinates:\n",
- " * G_t (G_t) int64 1 2 3 4 5 6 7 ... 997 998 999 1000 1001 1002 1003\n",
- " * T_amb (T_amb) int64 -24 -23 -22 -21 -20 -19 ... 29 30 31 32 33 34\n",
- "Data variables:\n",
- " T_cell (G_t, T_amb) float64 -23.95 -22.95 -21.95 ... 87.16 88.16\n",
- " module_eff (G_t, T_amb) float64 0.2121 0.2114 0.2107 ... 0.1349 0.1342\n",
- " losses (G_t, T_amb) float64 14.08 14.08 14.08 ... 14.08 14.08 14.08\n",
- " inverter_eff (G_t, T_amb) float64 0.0 0.0 0.0 0.0 ... 0.962 0.962 0.962\n",
- " PF (G_t, T_amb) float64 0.0 0.0 0.0 0.0 ... 0.8266 0.8266 0.8266\n",
- " PF_mean (G_t) float64 0.0 0.0 0.0 0.0 ... 0.8259 0.8259 0.8259 0.8259"
- ]
- },
- "execution_count": 139,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "performance"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 141,
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "performance.to_netcdf('/work/hyenergy/output/solar_potential/technical_potential/pv_efficiencies.nc')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 131,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/javascript": [
- "/* Put everything inside the global mpl namespace */\n",
- "window.mpl = {};\n",
- "\n",
- "\n",
- "mpl.get_websocket_type = function() {\n",
- " if (typeof(WebSocket) !== 'undefined') {\n",
- " return WebSocket;\n",
- " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
- " return MozWebSocket;\n",
- " } else {\n",
- " alert('Your browser does not have WebSocket support.' +\n",
- " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
- " 'Firefox 4 and 5 are also supported but you ' +\n",
- " 'have to enable WebSockets in about:config.');\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
- " this.id = figure_id;\n",
- "\n",
- " this.ws = websocket;\n",
- "\n",
- " this.supports_binary = (this.ws.binaryType != undefined);\n",
- "\n",
- " if (!this.supports_binary) {\n",
- " var warnings = document.getElementById(\"mpl-warnings\");\n",
- " if (warnings) {\n",
- " warnings.style.display = 'block';\n",
- " warnings.textContent = (\n",
- " \"This browser does not support binary websocket messages. \" +\n",
- " \"Performance may be slow.\");\n",
- " }\n",
- " }\n",
- "\n",
- " this.imageObj = new Image();\n",
- "\n",
- " this.context = undefined;\n",
- " this.message = undefined;\n",
- " this.canvas = undefined;\n",
- " this.rubberband_canvas = undefined;\n",
- " this.rubberband_context = undefined;\n",
- " this.format_dropdown = undefined;\n",
- "\n",
- " this.image_mode = 'full';\n",
- "\n",
- " this.root = $('<div/>');\n",
- " this._root_extra_style(this.root)\n",
- " this.root.attr('style', 'display: inline-block');\n",
- "\n",
- " $(parent_element).append(this.root);\n",
- "\n",
- " this._init_header(this);\n",
- " this._init_canvas(this);\n",
- " this._init_toolbar(this);\n",
- "\n",
- " var fig = this;\n",
- "\n",
- " this.waiting = false;\n",
- "\n",
- " this.ws.onopen = function () {\n",
- " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
- " fig.send_message(\"send_image_mode\", {});\n",
- " if (mpl.ratio != 1) {\n",
- " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
- " }\n",
- " fig.send_message(\"refresh\", {});\n",
- " }\n",
- "\n",
- " this.imageObj.onload = function() {\n",
- " if (fig.image_mode == 'full') {\n",
- " // Full images could contain transparency (where diff images\n",
- " // almost always do), so we need to clear the canvas so that\n",
- " // there is no ghosting.\n",
- " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
- " }\n",
- " fig.context.drawImage(fig.imageObj, 0, 0);\n",
- " };\n",
- "\n",
- " this.imageObj.onunload = function() {\n",
- " fig.ws.close();\n",
- " }\n",
- "\n",
- " this.ws.onmessage = this._make_on_message_function(this);\n",
- "\n",
- " this.ondownload = ondownload;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_header = function() {\n",
- " var titlebar = $(\n",
- " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
- " 'ui-helper-clearfix\"/>');\n",
- " var titletext = $(\n",
- " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
- " 'text-align: center; padding: 3px;\"/>');\n",
- " titlebar.append(titletext)\n",
- " this.root.append(titlebar);\n",
- " this.header = titletext[0];\n",
- "}\n",
- "\n",
- "\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_canvas = function() {\n",
- " var fig = this;\n",
- "\n",
- " var canvas_div = $('<div/>');\n",
- "\n",
- " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
- "\n",
- " function canvas_keyboard_event(event) {\n",
- " return fig.key_event(event, event['data']);\n",
- " }\n",
- "\n",
- " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
- " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
- " this.canvas_div = canvas_div\n",
- " this._canvas_extra_style(canvas_div)\n",
- " this.root.append(canvas_div);\n",
- "\n",
- " var canvas = $('<canvas/>');\n",
- " canvas.addClass('mpl-canvas');\n",
- " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
- "\n",
- " this.canvas = canvas[0];\n",
- " this.context = canvas[0].getContext(\"2d\");\n",
- "\n",
- " var backingStore = this.context.backingStorePixelRatio ||\n",
- "\tthis.context.webkitBackingStorePixelRatio ||\n",
- "\tthis.context.mozBackingStorePixelRatio ||\n",
- "\tthis.context.msBackingStorePixelRatio ||\n",
- "\tthis.context.oBackingStorePixelRatio ||\n",
- "\tthis.context.backingStorePixelRatio || 1;\n",
- "\n",
- " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
- "\n",
- " var rubberband = $('<canvas/>');\n",
- " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
- "\n",
- " var pass_mouse_events = true;\n",
- "\n",
- " canvas_div.resizable({\n",
- " start: function(event, ui) {\n",
- " pass_mouse_events = false;\n",
- " },\n",
- " resize: function(event, ui) {\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " stop: function(event, ui) {\n",
- " pass_mouse_events = true;\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " });\n",
- "\n",
- " function mouse_event_fn(event) {\n",
- " if (pass_mouse_events)\n",
- " return fig.mouse_event(event, event['data']);\n",
- " }\n",
- "\n",
- " rubberband.mousedown('button_press', mouse_event_fn);\n",
- " rubberband.mouseup('button_release', mouse_event_fn);\n",
- " // Throttle sequential mouse events to 1 every 20ms.\n",
- " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
- "\n",
- " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
- " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
- "\n",
- " canvas_div.on(\"wheel\", function (event) {\n",
- " event = event.originalEvent;\n",
- " event['data'] = 'scroll'\n",
- " if (event.deltaY < 0) {\n",
- " event.step = 1;\n",
- " } else {\n",
- " event.step = -1;\n",
- " }\n",
- " mouse_event_fn(event);\n",
- " });\n",
- "\n",
- " canvas_div.append(canvas);\n",
- " canvas_div.append(rubberband);\n",
- "\n",
- " this.rubberband = rubberband;\n",
- " this.rubberband_canvas = rubberband[0];\n",
- " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
- " this.rubberband_context.strokeStyle = \"#000000\";\n",
- "\n",
- " this._resize_canvas = function(width, height) {\n",
- " // Keep the size of the canvas, canvas container, and rubber band\n",
- " // canvas in synch.\n",
- " canvas_div.css('width', width)\n",
- " canvas_div.css('height', height)\n",
- "\n",
- " canvas.attr('width', width * mpl.ratio);\n",
- " canvas.attr('height', height * mpl.ratio);\n",
- " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
- "\n",
- " rubberband.attr('width', width);\n",
- " rubberband.attr('height', height);\n",
- " }\n",
- "\n",
- " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
- " // upon first draw.\n",
- " this._resize_canvas(600, 600);\n",
- "\n",
- " // Disable right mouse context menu.\n",
- " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
- " return false;\n",
- " });\n",
- "\n",
- " function set_focus () {\n",
- " canvas.focus();\n",
- " canvas_div.focus();\n",
- " }\n",
- "\n",
- " window.setTimeout(set_focus, 100);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('<div/>')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items) {\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) {\n",
- " // put a spacer in here.\n",
- " continue;\n",
- " }\n",
- " var button = $('<button/>');\n",
- " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
- " 'ui-button-icon-only');\n",
- " button.attr('role', 'button');\n",
- " button.attr('aria-disabled', 'false');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- "\n",
- " var icon_img = $('<span/>');\n",
- " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
- " icon_img.addClass(image);\n",
- " icon_img.addClass('ui-corner-all');\n",
- "\n",
- " var tooltip_span = $('<span/>');\n",
- " tooltip_span.addClass('ui-button-text');\n",
- " tooltip_span.html(tooltip);\n",
- "\n",
- " button.append(icon_img);\n",
- " button.append(tooltip_span);\n",
- "\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " var fmt_picker_span = $('<span/>');\n",
- "\n",
- " var fmt_picker = $('<select/>');\n",
- " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
- " fmt_picker_span.append(fmt_picker);\n",
- " nav_element.append(fmt_picker_span);\n",
- " this.format_dropdown = fmt_picker[0];\n",
- "\n",
- " for (var ind in mpl.extensions) {\n",
- " var fmt = mpl.extensions[ind];\n",
- " var option = $(\n",
- " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
- " fmt_picker.append(option)\n",
- " }\n",
- "\n",
- " // Add hover states to the ui-buttons\n",
- " $( \".ui-button\" ).hover(\n",
- " function() { $(this).addClass(\"ui-state-hover\");},\n",
- " function() { $(this).removeClass(\"ui-state-hover\");}\n",
- " );\n",
- "\n",
- " var status_bar = $('<span class=\"mpl-message\"/>');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
- " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
- " // which will in turn request a refresh of the image.\n",
- " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_message = function(type, properties) {\n",
- " properties['type'] = type;\n",
- " properties['figure_id'] = this.id;\n",
- " this.ws.send(JSON.stringify(properties));\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_draw_message = function() {\n",
- " if (!this.waiting) {\n",
- " this.waiting = true;\n",
- " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
- " }\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " var format_dropdown = fig.format_dropdown;\n",
- " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
- " fig.ondownload(fig, format);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
- " var size = msg['size'];\n",
- " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
- " fig._resize_canvas(size[0], size[1]);\n",
- " fig.send_message(\"refresh\", {});\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
- " var x0 = msg['x0'] / mpl.ratio;\n",
- " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
- " var x1 = msg['x1'] / mpl.ratio;\n",
- " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
- " x0 = Math.floor(x0) + 0.5;\n",
- " y0 = Math.floor(y0) + 0.5;\n",
- " x1 = Math.floor(x1) + 0.5;\n",
- " y1 = Math.floor(y1) + 0.5;\n",
- " var min_x = Math.min(x0, x1);\n",
- " var min_y = Math.min(y0, y1);\n",
- " var width = Math.abs(x1 - x0);\n",
- " var height = Math.abs(y1 - y0);\n",
- "\n",
- " fig.rubberband_context.clearRect(\n",
- " 0, 0, fig.canvas.width, fig.canvas.height);\n",
- "\n",
- " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
- " // Updates the figure title.\n",
- " fig.header.textContent = msg['label'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
- " var cursor = msg['cursor'];\n",
- " switch(cursor)\n",
- " {\n",
- " case 0:\n",
- " cursor = 'pointer';\n",
- " break;\n",
- " case 1:\n",
- " cursor = 'default';\n",
- " break;\n",
- " case 2:\n",
- " cursor = 'crosshair';\n",
- " break;\n",
- " case 3:\n",
- " cursor = 'move';\n",
- " break;\n",
- " }\n",
- " fig.rubberband_canvas.style.cursor = cursor;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
- " fig.message.textContent = msg['message'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
- " // Request the server to send over a new figure.\n",
- " fig.send_draw_message();\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
- " fig.image_mode = msg['mode'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Called whenever the canvas gets updated.\n",
- " this.send_message(\"ack\", {});\n",
- "}\n",
- "\n",
- "// A function to construct a web socket function for onmessage handling.\n",
- "// Called in the figure constructor.\n",
- "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
- " return function socket_on_message(evt) {\n",
- " if (evt.data instanceof Blob) {\n",
- " /* FIXME: We get \"Resource interpreted as Image but\n",
- " * transferred with MIME type text/plain:\" errors on\n",
- " * Chrome. But how to set the MIME type? It doesn't seem\n",
- " * to be part of the websocket stream */\n",
- " evt.data.type = \"image/png\";\n",
- "\n",
- " /* Free the memory for the previous frames */\n",
- " if (fig.imageObj.src) {\n",
- " (window.URL || window.webkitURL).revokeObjectURL(\n",
- " fig.imageObj.src);\n",
- " }\n",
- "\n",
- " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
- " evt.data);\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
- " fig.imageObj.src = evt.data;\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- "\n",
- " var msg = JSON.parse(evt.data);\n",
- " var msg_type = msg['type'];\n",
- "\n",
- " // Call the \"handle_{type}\" callback, which takes\n",
- " // the figure and JSON message as its only arguments.\n",
- " try {\n",
- " var callback = fig[\"handle_\" + msg_type];\n",
- " } catch (e) {\n",
- " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
- " return;\n",
- " }\n",
- "\n",
- " if (callback) {\n",
- " try {\n",
- " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
- " callback(fig, msg);\n",
- " } catch (e) {\n",
- " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
- " }\n",
- " }\n",
- " };\n",
- "}\n",
- "\n",
- "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
- "mpl.findpos = function(e) {\n",
- " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
- " var targ;\n",
- " if (!e)\n",
- " e = window.event;\n",
- " if (e.target)\n",
- " targ = e.target;\n",
- " else if (e.srcElement)\n",
- " targ = e.srcElement;\n",
- " if (targ.nodeType == 3) // defeat Safari bug\n",
- " targ = targ.parentNode;\n",
- "\n",
- " // jQuery normalizes the pageX and pageY\n",
- " // pageX,Y are the mouse positions relative to the document\n",
- " // offset() returns the position of the element relative to the document\n",
- " var x = e.pageX - $(targ).offset().left;\n",
- " var y = e.pageY - $(targ).offset().top;\n",
- "\n",
- " return {\"x\": x, \"y\": y};\n",
- "};\n",
- "\n",
- "/*\n",
- " * return a copy of an object with only non-object keys\n",
- " * we need this to avoid circular references\n",
- " * http://stackoverflow.com/a/24161582/3208463\n",
- " */\n",
- "function simpleKeys (original) {\n",
- " return Object.keys(original).reduce(function (obj, key) {\n",
- " if (typeof original[key] !== 'object')\n",
- " obj[key] = original[key]\n",
- " return obj;\n",
- " }, {});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.mouse_event = function(event, name) {\n",
- " var canvas_pos = mpl.findpos(event)\n",
- "\n",
- " if (name === 'button_press')\n",
- " {\n",
- " this.canvas.focus();\n",
- " this.canvas_div.focus();\n",
- " }\n",
- "\n",
- " var x = canvas_pos.x * mpl.ratio;\n",
- " var y = canvas_pos.y * mpl.ratio;\n",
- "\n",
- " this.send_message(name, {x: x, y: y, button: event.button,\n",
- " step: event.step,\n",
- " guiEvent: simpleKeys(event)});\n",
- "\n",
- " /* This prevents the web browser from automatically changing to\n",
- " * the text insertion cursor when the button is pressed. We want\n",
- " * to control all of the cursor setting manually through the\n",
- " * 'cursor' event from matplotlib */\n",
- " event.preventDefault();\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " // Handle any extra behaviour associated with a key event\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.key_event = function(event, name) {\n",
- "\n",
- " // Prevent repeat events\n",
- " if (name == 'key_press')\n",
- " {\n",
- " if (event.which === this._key)\n",
- " return;\n",
- " else\n",
- " this._key = event.which;\n",
- " }\n",
- " if (name == 'key_release')\n",
- " this._key = null;\n",
- "\n",
- " var value = '';\n",
- " if (event.ctrlKey && event.which != 17)\n",
- " value += \"ctrl+\";\n",
- " if (event.altKey && event.which != 18)\n",
- " value += \"alt+\";\n",
- " if (event.shiftKey && event.which != 16)\n",
- " value += \"shift+\";\n",
- "\n",
- " value += 'k';\n",
- " value += event.which.toString();\n",
- "\n",
- " this._key_event_extra(event, name);\n",
- "\n",
- " this.send_message(name, {key: value,\n",
- " guiEvent: simpleKeys(event)});\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
- " if (name == 'download') {\n",
- " this.handle_save(this, null);\n",
- " } else {\n",
- " this.send_message(\"toolbar_button\", {name: name});\n",
- " }\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
- " this.message.textContent = tooltip;\n",
- "};\n",
- "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
- "\n",
- "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
- "\n",
- "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
- " // Create a \"websocket\"-like object which calls the given IPython comm\n",
- " // object with the appropriate methods. Currently this is a non binary\n",
- " // socket, so there is still some room for performance tuning.\n",
- " var ws = {};\n",
- "\n",
- " ws.close = function() {\n",
- " comm.close()\n",
- " };\n",
- " ws.send = function(m) {\n",
- " //console.log('sending', m);\n",
- " comm.send(m);\n",
- " };\n",
- " // Register the callback with on_msg.\n",
- " comm.on_msg(function(msg) {\n",
- " //console.log('receiving', msg['content']['data'], msg);\n",
- " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
- " ws.onmessage(msg['content']['data'])\n",
- " });\n",
- " return ws;\n",
- "}\n",
- "\n",
- "mpl.mpl_figure_comm = function(comm, msg) {\n",
- " // This is the function which gets called when the mpl process\n",
- " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
- "\n",
- " var id = msg.content.data.id;\n",
- " // Get hold of the div created by the display call when the Comm\n",
- " // socket was opened in Python.\n",
- " var element = $(\"#\" + id);\n",
- " var ws_proxy = comm_websocket_adapter(comm)\n",
- "\n",
- " function ondownload(figure, format) {\n",
- " window.open(figure.imageObj.src);\n",
- " }\n",
- "\n",
- " var fig = new mpl.figure(id, ws_proxy,\n",
- " ondownload,\n",
- " element.get(0));\n",
- "\n",
- " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
- " // web socket which is closed, not our websocket->open comm proxy.\n",
- " ws_proxy.onopen();\n",
- "\n",
- " fig.parent_element = element.get(0);\n",
- " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
- " if (!fig.cell_info) {\n",
- " console.error(\"Failed to find cell for figure\", id, fig);\n",
- " return;\n",
- " }\n",
- "\n",
- " var output_index = fig.cell_info[2]\n",
- " var cell = fig.cell_info[0];\n",
- "\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
- " var width = fig.canvas.width/mpl.ratio\n",
- " fig.root.unbind('remove')\n",
- "\n",
- " // Update the output cell to use the data from the current canvas.\n",
- " fig.push_to_output();\n",
- " var dataURL = fig.canvas.toDataURL();\n",
- " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
- " // the notebook keyboard shortcuts fail.\n",
- " IPython.keyboard_manager.enable()\n",
- " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
- " fig.close_ws(fig, msg);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.close_ws = function(fig, msg){\n",
- " fig.send_message('closing', msg);\n",
- " // fig.ws.close()\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
- " // Turn the data on the canvas into data in the output cell.\n",
- " var width = this.canvas.width/mpl.ratio\n",
- " var dataURL = this.canvas.toDataURL();\n",
- " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Tell IPython that the notebook contents must change.\n",
- " IPython.notebook.set_dirty(true);\n",
- " this.send_message(\"ack\", {});\n",
- " var fig = this;\n",
- " // Wait a second, then push the new image to the DOM so\n",
- " // that it is saved nicely (might be nice to debounce this).\n",
- " setTimeout(function () { fig.push_to_output() }, 1000);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('<div/>')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items){\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) { continue; };\n",
- "\n",
- " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " // Add the status bar.\n",
- " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "\n",
- " // Add the close button to the window.\n",
- " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
- " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
- " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
- " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
- " buttongrp.append(button);\n",
- " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
- " titlebar.prepend(buttongrp);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(el){\n",
- " var fig = this\n",
- " el.on(\"remove\", function(){\n",
- "\tfig.close_ws(fig, {});\n",
- " });\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(el){\n",
- " // this is important to make the div 'focusable\n",
- " el.attr('tabindex', 0)\n",
- " // reach out to IPython and tell the keyboard manager to turn it's self\n",
- " // off when our div gets focus\n",
- "\n",
- " // location in version 3\n",
- " if (IPython.notebook.keyboard_manager) {\n",
- " IPython.notebook.keyboard_manager.register_events(el);\n",
- " }\n",
- " else {\n",
- " // location in version 2\n",
- " IPython.keyboard_manager.register_events(el);\n",
- " }\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " var manager = IPython.notebook.keyboard_manager;\n",
- " if (!manager)\n",
- " manager = IPython.keyboard_manager;\n",
- "\n",
- " // Check for shift+enter\n",
- " if (event.shiftKey && event.which == 13) {\n",
- " this.canvas_div.blur();\n",
- " event.shiftKey = false;\n",
- " // Send a \"J\" for go to next cell\n",
- " event.which = 74;\n",
- " event.keyCode = 74;\n",
- " manager.command_mode();\n",
- " manager.handle_keydown(event);\n",
- " }\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " fig.ondownload(fig, null);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.find_output_cell = function(html_output) {\n",
- " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
- " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
- " // IPython event is triggered only after the cells have been serialised, which for\n",
- " // our purposes (turning an active figure into a static one), is too late.\n",
- " var cells = IPython.notebook.get_cells();\n",
- " var ncells = cells.length;\n",
- " for (var i=0; i<ncells; i++) {\n",
- " var cell = cells[i];\n",
- " if (cell.cell_type === 'code'){\n",
- " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
- " var data = cell.output_area.outputs[j];\n",
- " if (data.data) {\n",
- " // IPython >= 3 moved mimebundle to data attribute of output\n",
- " data = data.data;\n",
- " }\n",
- " if (data['text/html'] == html_output) {\n",
- " return [cell, data, j];\n",
- " }\n",
- " }\n",
- " }\n",
- " }\n",
- "}\n",
- "\n",
- "// Register the function which deals with the matplotlib target/channel.\n",
- "// The kernel may be null if the page has been refreshed.\n",
- "if (IPython.notebook.kernel != null) {\n",
- " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
- "}\n"
- ],
- "text/plain": [
- "<IPython.core.display.Javascript object>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<img src=\"\" width=\"640\">"
- ],
- "text/plain": [
- "<IPython.core.display.HTML object>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.figure()\n",
- "performance.module_eff.plot()\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 140,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/javascript": [
- "/* Put everything inside the global mpl namespace */\n",
- "window.mpl = {};\n",
- "\n",
- "\n",
- "mpl.get_websocket_type = function() {\n",
- " if (typeof(WebSocket) !== 'undefined') {\n",
- " return WebSocket;\n",
- " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
- " return MozWebSocket;\n",
- " } else {\n",
- " alert('Your browser does not have WebSocket support.' +\n",
- " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
- " 'Firefox 4 and 5 are also supported but you ' +\n",
- " 'have to enable WebSockets in about:config.');\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
- " this.id = figure_id;\n",
- "\n",
- " this.ws = websocket;\n",
- "\n",
- " this.supports_binary = (this.ws.binaryType != undefined);\n",
- "\n",
- " if (!this.supports_binary) {\n",
- " var warnings = document.getElementById(\"mpl-warnings\");\n",
- " if (warnings) {\n",
- " warnings.style.display = 'block';\n",
- " warnings.textContent = (\n",
- " \"This browser does not support binary websocket messages. \" +\n",
- " \"Performance may be slow.\");\n",
- " }\n",
- " }\n",
- "\n",
- " this.imageObj = new Image();\n",
- "\n",
- " this.context = undefined;\n",
- " this.message = undefined;\n",
- " this.canvas = undefined;\n",
- " this.rubberband_canvas = undefined;\n",
- " this.rubberband_context = undefined;\n",
- " this.format_dropdown = undefined;\n",
- "\n",
- " this.image_mode = 'full';\n",
- "\n",
- " this.root = $('<div/>');\n",
- " this._root_extra_style(this.root)\n",
- " this.root.attr('style', 'display: inline-block');\n",
- "\n",
- " $(parent_element).append(this.root);\n",
- "\n",
- " this._init_header(this);\n",
- " this._init_canvas(this);\n",
- " this._init_toolbar(this);\n",
- "\n",
- " var fig = this;\n",
- "\n",
- " this.waiting = false;\n",
- "\n",
- " this.ws.onopen = function () {\n",
- " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
- " fig.send_message(\"send_image_mode\", {});\n",
- " if (mpl.ratio != 1) {\n",
- " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
- " }\n",
- " fig.send_message(\"refresh\", {});\n",
- " }\n",
- "\n",
- " this.imageObj.onload = function() {\n",
- " if (fig.image_mode == 'full') {\n",
- " // Full images could contain transparency (where diff images\n",
- " // almost always do), so we need to clear the canvas so that\n",
- " // there is no ghosting.\n",
- " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
- " }\n",
- " fig.context.drawImage(fig.imageObj, 0, 0);\n",
- " };\n",
- "\n",
- " this.imageObj.onunload = function() {\n",
- " fig.ws.close();\n",
- " }\n",
- "\n",
- " this.ws.onmessage = this._make_on_message_function(this);\n",
- "\n",
- " this.ondownload = ondownload;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_header = function() {\n",
- " var titlebar = $(\n",
- " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
- " 'ui-helper-clearfix\"/>');\n",
- " var titletext = $(\n",
- " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
- " 'text-align: center; padding: 3px;\"/>');\n",
- " titlebar.append(titletext)\n",
- " this.root.append(titlebar);\n",
- " this.header = titletext[0];\n",
- "}\n",
- "\n",
- "\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_canvas = function() {\n",
- " var fig = this;\n",
- "\n",
- " var canvas_div = $('<div/>');\n",
- "\n",
- " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
- "\n",
- " function canvas_keyboard_event(event) {\n",
- " return fig.key_event(event, event['data']);\n",
- " }\n",
- "\n",
- " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
- " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
- " this.canvas_div = canvas_div\n",
- " this._canvas_extra_style(canvas_div)\n",
- " this.root.append(canvas_div);\n",
- "\n",
- " var canvas = $('<canvas/>');\n",
- " canvas.addClass('mpl-canvas');\n",
- " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
- "\n",
- " this.canvas = canvas[0];\n",
- " this.context = canvas[0].getContext(\"2d\");\n",
- "\n",
- " var backingStore = this.context.backingStorePixelRatio ||\n",
- "\tthis.context.webkitBackingStorePixelRatio ||\n",
- "\tthis.context.mozBackingStorePixelRatio ||\n",
- "\tthis.context.msBackingStorePixelRatio ||\n",
- "\tthis.context.oBackingStorePixelRatio ||\n",
- "\tthis.context.backingStorePixelRatio || 1;\n",
- "\n",
- " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
- "\n",
- " var rubberband = $('<canvas/>');\n",
- " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
- "\n",
- " var pass_mouse_events = true;\n",
- "\n",
- " canvas_div.resizable({\n",
- " start: function(event, ui) {\n",
- " pass_mouse_events = false;\n",
- " },\n",
- " resize: function(event, ui) {\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " stop: function(event, ui) {\n",
- " pass_mouse_events = true;\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " });\n",
- "\n",
- " function mouse_event_fn(event) {\n",
- " if (pass_mouse_events)\n",
- " return fig.mouse_event(event, event['data']);\n",
- " }\n",
- "\n",
- " rubberband.mousedown('button_press', mouse_event_fn);\n",
- " rubberband.mouseup('button_release', mouse_event_fn);\n",
- " // Throttle sequential mouse events to 1 every 20ms.\n",
- " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
- "\n",
- " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
- " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
- "\n",
- " canvas_div.on(\"wheel\", function (event) {\n",
- " event = event.originalEvent;\n",
- " event['data'] = 'scroll'\n",
- " if (event.deltaY < 0) {\n",
- " event.step = 1;\n",
- " } else {\n",
- " event.step = -1;\n",
- " }\n",
- " mouse_event_fn(event);\n",
- " });\n",
- "\n",
- " canvas_div.append(canvas);\n",
- " canvas_div.append(rubberband);\n",
- "\n",
- " this.rubberband = rubberband;\n",
- " this.rubberband_canvas = rubberband[0];\n",
- " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
- " this.rubberband_context.strokeStyle = \"#000000\";\n",
- "\n",
- " this._resize_canvas = function(width, height) {\n",
- " // Keep the size of the canvas, canvas container, and rubber band\n",
- " // canvas in synch.\n",
- " canvas_div.css('width', width)\n",
- " canvas_div.css('height', height)\n",
- "\n",
- " canvas.attr('width', width * mpl.ratio);\n",
- " canvas.attr('height', height * mpl.ratio);\n",
- " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
- "\n",
- " rubberband.attr('width', width);\n",
- " rubberband.attr('height', height);\n",
- " }\n",
- "\n",
- " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
- " // upon first draw.\n",
- " this._resize_canvas(600, 600);\n",
- "\n",
- " // Disable right mouse context menu.\n",
- " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
- " return false;\n",
- " });\n",
- "\n",
- " function set_focus () {\n",
- " canvas.focus();\n",
- " canvas_div.focus();\n",
- " }\n",
- "\n",
- " window.setTimeout(set_focus, 100);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('<div/>')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items) {\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) {\n",
- " // put a spacer in here.\n",
- " continue;\n",
- " }\n",
- " var button = $('<button/>');\n",
- " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
- " 'ui-button-icon-only');\n",
- " button.attr('role', 'button');\n",
- " button.attr('aria-disabled', 'false');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- "\n",
- " var icon_img = $('<span/>');\n",
- " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
- " icon_img.addClass(image);\n",
- " icon_img.addClass('ui-corner-all');\n",
- "\n",
- " var tooltip_span = $('<span/>');\n",
- " tooltip_span.addClass('ui-button-text');\n",
- " tooltip_span.html(tooltip);\n",
- "\n",
- " button.append(icon_img);\n",
- " button.append(tooltip_span);\n",
- "\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " var fmt_picker_span = $('<span/>');\n",
- "\n",
- " var fmt_picker = $('<select/>');\n",
- " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
- " fmt_picker_span.append(fmt_picker);\n",
- " nav_element.append(fmt_picker_span);\n",
- " this.format_dropdown = fmt_picker[0];\n",
- "\n",
- " for (var ind in mpl.extensions) {\n",
- " var fmt = mpl.extensions[ind];\n",
- " var option = $(\n",
- " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
- " fmt_picker.append(option)\n",
- " }\n",
- "\n",
- " // Add hover states to the ui-buttons\n",
- " $( \".ui-button\" ).hover(\n",
- " function() { $(this).addClass(\"ui-state-hover\");},\n",
- " function() { $(this).removeClass(\"ui-state-hover\");}\n",
- " );\n",
- "\n",
- " var status_bar = $('<span class=\"mpl-message\"/>');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
- " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
- " // which will in turn request a refresh of the image.\n",
- " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_message = function(type, properties) {\n",
- " properties['type'] = type;\n",
- " properties['figure_id'] = this.id;\n",
- " this.ws.send(JSON.stringify(properties));\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_draw_message = function() {\n",
- " if (!this.waiting) {\n",
- " this.waiting = true;\n",
- " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
- " }\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " var format_dropdown = fig.format_dropdown;\n",
- " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
- " fig.ondownload(fig, format);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
- " var size = msg['size'];\n",
- " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
- " fig._resize_canvas(size[0], size[1]);\n",
- " fig.send_message(\"refresh\", {});\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
- " var x0 = msg['x0'] / mpl.ratio;\n",
- " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
- " var x1 = msg['x1'] / mpl.ratio;\n",
- " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
- " x0 = Math.floor(x0) + 0.5;\n",
- " y0 = Math.floor(y0) + 0.5;\n",
- " x1 = Math.floor(x1) + 0.5;\n",
- " y1 = Math.floor(y1) + 0.5;\n",
- " var min_x = Math.min(x0, x1);\n",
- " var min_y = Math.min(y0, y1);\n",
- " var width = Math.abs(x1 - x0);\n",
- " var height = Math.abs(y1 - y0);\n",
- "\n",
- " fig.rubberband_context.clearRect(\n",
- " 0, 0, fig.canvas.width, fig.canvas.height);\n",
- "\n",
- " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
- " // Updates the figure title.\n",
- " fig.header.textContent = msg['label'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
- " var cursor = msg['cursor'];\n",
- " switch(cursor)\n",
- " {\n",
- " case 0:\n",
- " cursor = 'pointer';\n",
- " break;\n",
- " case 1:\n",
- " cursor = 'default';\n",
- " break;\n",
- " case 2:\n",
- " cursor = 'crosshair';\n",
- " break;\n",
- " case 3:\n",
- " cursor = 'move';\n",
- " break;\n",
- " }\n",
- " fig.rubberband_canvas.style.cursor = cursor;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
- " fig.message.textContent = msg['message'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
- " // Request the server to send over a new figure.\n",
- " fig.send_draw_message();\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
- " fig.image_mode = msg['mode'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Called whenever the canvas gets updated.\n",
- " this.send_message(\"ack\", {});\n",
- "}\n",
- "\n",
- "// A function to construct a web socket function for onmessage handling.\n",
- "// Called in the figure constructor.\n",
- "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
- " return function socket_on_message(evt) {\n",
- " if (evt.data instanceof Blob) {\n",
- " /* FIXME: We get \"Resource interpreted as Image but\n",
- " * transferred with MIME type text/plain:\" errors on\n",
- " * Chrome. But how to set the MIME type? It doesn't seem\n",
- " * to be part of the websocket stream */\n",
- " evt.data.type = \"image/png\";\n",
- "\n",
- " /* Free the memory for the previous frames */\n",
- " if (fig.imageObj.src) {\n",
- " (window.URL || window.webkitURL).revokeObjectURL(\n",
- " fig.imageObj.src);\n",
- " }\n",
- "\n",
- " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
- " evt.data);\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
- " fig.imageObj.src = evt.data;\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- "\n",
- " var msg = JSON.parse(evt.data);\n",
- " var msg_type = msg['type'];\n",
- "\n",
- " // Call the \"handle_{type}\" callback, which takes\n",
- " // the figure and JSON message as its only arguments.\n",
- " try {\n",
- " var callback = fig[\"handle_\" + msg_type];\n",
- " } catch (e) {\n",
- " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
- " return;\n",
- " }\n",
- "\n",
- " if (callback) {\n",
- " try {\n",
- " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
- " callback(fig, msg);\n",
- " } catch (e) {\n",
- " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
- " }\n",
- " }\n",
- " };\n",
- "}\n",
- "\n",
- "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
- "mpl.findpos = function(e) {\n",
- " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
- " var targ;\n",
- " if (!e)\n",
- " e = window.event;\n",
- " if (e.target)\n",
- " targ = e.target;\n",
- " else if (e.srcElement)\n",
- " targ = e.srcElement;\n",
- " if (targ.nodeType == 3) // defeat Safari bug\n",
- " targ = targ.parentNode;\n",
- "\n",
- " // jQuery normalizes the pageX and pageY\n",
- " // pageX,Y are the mouse positions relative to the document\n",
- " // offset() returns the position of the element relative to the document\n",
- " var x = e.pageX - $(targ).offset().left;\n",
- " var y = e.pageY - $(targ).offset().top;\n",
- "\n",
- " return {\"x\": x, \"y\": y};\n",
- "};\n",
- "\n",
- "/*\n",
- " * return a copy of an object with only non-object keys\n",
- " * we need this to avoid circular references\n",
- " * http://stackoverflow.com/a/24161582/3208463\n",
- " */\n",
- "function simpleKeys (original) {\n",
- " return Object.keys(original).reduce(function (obj, key) {\n",
- " if (typeof original[key] !== 'object')\n",
- " obj[key] = original[key]\n",
- " return obj;\n",
- " }, {});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.mouse_event = function(event, name) {\n",
- " var canvas_pos = mpl.findpos(event)\n",
- "\n",
- " if (name === 'button_press')\n",
- " {\n",
- " this.canvas.focus();\n",
- " this.canvas_div.focus();\n",
- " }\n",
- "\n",
- " var x = canvas_pos.x * mpl.ratio;\n",
- " var y = canvas_pos.y * mpl.ratio;\n",
- "\n",
- " this.send_message(name, {x: x, y: y, button: event.button,\n",
- " step: event.step,\n",
- " guiEvent: simpleKeys(event)});\n",
- "\n",
- " /* This prevents the web browser from automatically changing to\n",
- " * the text insertion cursor when the button is pressed. We want\n",
- " * to control all of the cursor setting manually through the\n",
- " * 'cursor' event from matplotlib */\n",
- " event.preventDefault();\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " // Handle any extra behaviour associated with a key event\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.key_event = function(event, name) {\n",
- "\n",
- " // Prevent repeat events\n",
- " if (name == 'key_press')\n",
- " {\n",
- " if (event.which === this._key)\n",
- " return;\n",
- " else\n",
- " this._key = event.which;\n",
- " }\n",
- " if (name == 'key_release')\n",
- " this._key = null;\n",
- "\n",
- " var value = '';\n",
- " if (event.ctrlKey && event.which != 17)\n",
- " value += \"ctrl+\";\n",
- " if (event.altKey && event.which != 18)\n",
- " value += \"alt+\";\n",
- " if (event.shiftKey && event.which != 16)\n",
- " value += \"shift+\";\n",
- "\n",
- " value += 'k';\n",
- " value += event.which.toString();\n",
- "\n",
- " this._key_event_extra(event, name);\n",
- "\n",
- " this.send_message(name, {key: value,\n",
- " guiEvent: simpleKeys(event)});\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
- " if (name == 'download') {\n",
- " this.handle_save(this, null);\n",
- " } else {\n",
- " this.send_message(\"toolbar_button\", {name: name});\n",
- " }\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
- " this.message.textContent = tooltip;\n",
- "};\n",
- "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
- "\n",
- "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
- "\n",
- "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
- " // Create a \"websocket\"-like object which calls the given IPython comm\n",
- " // object with the appropriate methods. Currently this is a non binary\n",
- " // socket, so there is still some room for performance tuning.\n",
- " var ws = {};\n",
- "\n",
- " ws.close = function() {\n",
- " comm.close()\n",
- " };\n",
- " ws.send = function(m) {\n",
- " //console.log('sending', m);\n",
- " comm.send(m);\n",
- " };\n",
- " // Register the callback with on_msg.\n",
- " comm.on_msg(function(msg) {\n",
- " //console.log('receiving', msg['content']['data'], msg);\n",
- " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
- " ws.onmessage(msg['content']['data'])\n",
- " });\n",
- " return ws;\n",
- "}\n",
- "\n",
- "mpl.mpl_figure_comm = function(comm, msg) {\n",
- " // This is the function which gets called when the mpl process\n",
- " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
- "\n",
- " var id = msg.content.data.id;\n",
- " // Get hold of the div created by the display call when the Comm\n",
- " // socket was opened in Python.\n",
- " var element = $(\"#\" + id);\n",
- " var ws_proxy = comm_websocket_adapter(comm)\n",
- "\n",
- " function ondownload(figure, format) {\n",
- " window.open(figure.imageObj.src);\n",
- " }\n",
- "\n",
- " var fig = new mpl.figure(id, ws_proxy,\n",
- " ondownload,\n",
- " element.get(0));\n",
- "\n",
- " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
- " // web socket which is closed, not our websocket->open comm proxy.\n",
- " ws_proxy.onopen();\n",
- "\n",
- " fig.parent_element = element.get(0);\n",
- " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
- " if (!fig.cell_info) {\n",
- " console.error(\"Failed to find cell for figure\", id, fig);\n",
- " return;\n",
- " }\n",
- "\n",
- " var output_index = fig.cell_info[2]\n",
- " var cell = fig.cell_info[0];\n",
- "\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
- " var width = fig.canvas.width/mpl.ratio\n",
- " fig.root.unbind('remove')\n",
- "\n",
- " // Update the output cell to use the data from the current canvas.\n",
- " fig.push_to_output();\n",
- " var dataURL = fig.canvas.toDataURL();\n",
- " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
- " // the notebook keyboard shortcuts fail.\n",
- " IPython.keyboard_manager.enable()\n",
- " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
- " fig.close_ws(fig, msg);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.close_ws = function(fig, msg){\n",
- " fig.send_message('closing', msg);\n",
- " // fig.ws.close()\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
- " // Turn the data on the canvas into data in the output cell.\n",
- " var width = this.canvas.width/mpl.ratio\n",
- " var dataURL = this.canvas.toDataURL();\n",
- " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Tell IPython that the notebook contents must change.\n",
- " IPython.notebook.set_dirty(true);\n",
- " this.send_message(\"ack\", {});\n",
- " var fig = this;\n",
- " // Wait a second, then push the new image to the DOM so\n",
- " // that it is saved nicely (might be nice to debounce this).\n",
- " setTimeout(function () { fig.push_to_output() }, 1000);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('<div/>')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items){\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) { continue; };\n",
- "\n",
- " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " // Add the status bar.\n",
- " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "\n",
- " // Add the close button to the window.\n",
- " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
- " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
- " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
- " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
- " buttongrp.append(button);\n",
- " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
- " titlebar.prepend(buttongrp);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(el){\n",
- " var fig = this\n",
- " el.on(\"remove\", function(){\n",
- "\tfig.close_ws(fig, {});\n",
- " });\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(el){\n",
- " // this is important to make the div 'focusable\n",
- " el.attr('tabindex', 0)\n",
- " // reach out to IPython and tell the keyboard manager to turn it's self\n",
- " // off when our div gets focus\n",
- "\n",
- " // location in version 3\n",
- " if (IPython.notebook.keyboard_manager) {\n",
- " IPython.notebook.keyboard_manager.register_events(el);\n",
- " }\n",
- " else {\n",
- " // location in version 2\n",
- " IPython.keyboard_manager.register_events(el);\n",
- " }\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " var manager = IPython.notebook.keyboard_manager;\n",
- " if (!manager)\n",
- " manager = IPython.keyboard_manager;\n",
- "\n",
- " // Check for shift+enter\n",
- " if (event.shiftKey && event.which == 13) {\n",
- " this.canvas_div.blur();\n",
- " event.shiftKey = false;\n",
- " // Send a \"J\" for go to next cell\n",
- " event.which = 74;\n",
- " event.keyCode = 74;\n",
- " manager.command_mode();\n",
- " manager.handle_keydown(event);\n",
- " }\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " fig.ondownload(fig, null);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.find_output_cell = function(html_output) {\n",
- " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
- " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
- " // IPython event is triggered only after the cells have been serialised, which for\n",
- " // our purposes (turning an active figure into a static one), is too late.\n",
- " var cells = IPython.notebook.get_cells();\n",
- " var ncells = cells.length;\n",
- " for (var i=0; i<ncells; i++) {\n",
- " var cell = cells[i];\n",
- " if (cell.cell_type === 'code'){\n",
- " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
- " var data = cell.output_area.outputs[j];\n",
- " if (data.data) {\n",
- " // IPython >= 3 moved mimebundle to data attribute of output\n",
- " data = data.data;\n",
- " }\n",
- " if (data['text/html'] == html_output) {\n",
- " return [cell, data, j];\n",
- " }\n",
- " }\n",
- " }\n",
- " }\n",
- "}\n",
- "\n",
- "// Register the function which deals with the matplotlib target/channel.\n",
- "// The kernel may be null if the page has been refreshed.\n",
- "if (IPython.notebook.kernel != null) {\n",
- " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
- "}\n"
- ],
- "text/plain": [
- "<IPython.core.display.Javascript object>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<img src=\"\" width=\"640\">"
- ],
- "text/plain": [
- "<IPython.core.display.HTML object>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.figure()\n",
- "performance.PF_mean.plot()\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Combine efficiencies with PV potential"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 208,
- "metadata": {},
- "outputs": [],
- "source": [
- "ROOFS='/work/hyenergy/output/solar_potential/geographic_potential/CH_ROOFS_all_replaced.csv'\n",
- "roofs = pd.read_csv(ROOFS, usecols = ['DF_UID', 'XCOORD', 'YCOORD'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 209,
- "metadata": {},
- "outputs": [],
- "source": [
- "roofs['chx'] = util.round_to_interval(roofs['XCOORD'] - 500, 1000) + 500\n",
- "roofs['chy'] = util.round_to_interval(roofs['YCOORD'] - 500, 1000) + 500"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 210,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "<div>\n",
- "<style scoped>\n",
- " .dataframe tbody tr th:only-of-type {\n",
- " vertical-align: middle;\n",
- " }\n",
- "\n",
- " .dataframe tbody tr th {\n",
- " vertical-align: top;\n",
- " }\n",
- "\n",
- " .dataframe thead th {\n",
- " text-align: right;\n",
- " }\n",
- "</style>\n",
- "<table border=\"1\" class=\"dataframe\">\n",
- " <thead>\n",
- " <tr style=\"text-align: right;\">\n",
- " <th></th>\n",
- " <th>DF_UID</th>\n",
- " <th>XCOORD</th>\n",
- " <th>YCOORD</th>\n",
- " <th>chx</th>\n",
- " <th>chy</th>\n",
- " </tr>\n",
- " </thead>\n",
- " <tbody>\n",
- " <tr>\n",
- " <th>0</th>\n",
- " <td>1</td>\n",
- " <td>621674.951286</td>\n",
- " <td>254203.972784</td>\n",
- " <td>621500.0</td>\n",
- " <td>254500.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1</th>\n",
- " <td>2</td>\n",
- " <td>621675.374179</td>\n",
- " <td>254206.313551</td>\n",
- " <td>621500.0</td>\n",
- " <td>254500.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>2</th>\n",
- " <td>3</td>\n",
- " <td>621673.977050</td>\n",
- " <td>254186.956803</td>\n",
- " <td>621500.0</td>\n",
- " <td>254500.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>3</th>\n",
- " <td>4</td>\n",
- " <td>621696.695450</td>\n",
- " <td>254249.767806</td>\n",
- " <td>621500.0</td>\n",
- " <td>254500.0</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>4</th>\n",
- " <td>5</td>\n",
- " <td>621692.928934</td>\n",
- " <td>254250.448974</td>\n",
- " <td>621500.0</td>\n",
- " <td>254500.0</td>\n",
- " </tr>\n",
- " </tbody>\n",
- "</table>\n",
- "</div>"
- ],
- "text/plain": [
- " DF_UID XCOORD YCOORD chx chy\n",
- "0 1 621674.951286 254203.972784 621500.0 254500.0\n",
- "1 2 621675.374179 254206.313551 621500.0 254500.0\n",
- "2 3 621673.977050 254186.956803 621500.0 254500.0\n",
- "3 4 621696.695450 254249.767806 621500.0 254500.0\n",
- "4 5 621692.928934 254250.448974 621500.0 254500.0"
- ]
- },
- "execution_count": 210,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "roofs.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 211,
- "metadata": {},
- "outputs": [],
- "source": [
- "performance = xr.open_dataset('/work/hyenergy/output/solar_potential/technical_potential/pv_efficiencies.nc')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 212,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (G_t: 1003, T_amb: 59)\n",
- "Coordinates:\n",
- " * G_t (G_t) int64 1 2 3 4 5 6 7 ... 997 998 999 1000 1001 1002 1003\n",
- " * T_amb (T_amb) int64 -24 -23 -22 -21 -20 -19 ... 29 30 31 32 33 34\n",
- "Data variables:\n",
- " T_cell (G_t, T_amb) float64 ...\n",
- " module_eff (G_t, T_amb) float64 ...\n",
- " losses (G_t, T_amb) float64 ...\n",
- " inverter_eff (G_t, T_amb) float64 ...\n",
- " PF (G_t, T_amb) float64 ...\n",
- " PF_mean (G_t) float64 ..."
- ]
- },
- "execution_count": 212,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "performance"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 213,
- "metadata": {},
- "outputs": [],
- "source": [
- "T_max_mmd = xr.open_dataset('/work/hyenergy/output/solar_potential/technical_potential/Tmax_surface_mmd.nc')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 214,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (chx: 370, chy: 240, month: 12)\n",
- "Coordinates:\n",
- " * chx (chx) float64 4.745e+05 4.755e+05 4.765e+05 ... 8.425e+05 8.435e+05\n",
- " * chy (chy) float64 6.45e+04 6.55e+04 6.65e+04 ... 3.025e+05 3.035e+05\n",
- " lon (chy, chx) float32 ...\n",
- " lat (chy, chx) float32 ...\n",
- " * month (month) float64 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0\n",
- "Data variables:\n",
- " TmaxD (month, chy, chx) float32 ...\n",
- " stddev (month, chy, chx) float32 ..."
- ]
- },
- "execution_count": 214,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "T_max_mmd"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 215,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (DF_UID: 9639231, timestamp: 146)\n",
- "Coordinates:\n",
- " * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ... 2001-12-15T15:00:00\n",
- " * DF_UID (DF_UID) int64 1 2 3 4 ... 9890021 9890022 9890023\n",
- "Data variables:\n",
- " tilted_irradiance (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " panelled_area (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " tilted_area (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " available_area (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " efficiency float64 ...\n",
- " performance_factor float64 ...\n",
- " pv_potential (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " yearly_kWh_m2 (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " yearly_PV_kWh (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " yearly_PV_all_area (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>"
- ]
- },
- "execution_count": 215,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "PV_hourly"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "##### Treat every timestamp independently"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 217,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Finished iteration 0 in 64.138s\n",
- "Finished iteration 1 in 36.358s\n",
- "Finished iteration 2 in 39.396s\n",
- "Finished iteration 3 in 42.460s\n",
- "Finished iteration 4 in 43.976s\n",
- "Finished iteration 5 in 41.098s\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "KeyboardInterrupt\n",
- "\n"
- ]
- }
- ],
- "source": [
- "for i, t in enumerate(PV_hourly.timestamp):\n",
- " tt = time.time()\n",
- " \n",
- " # get month for maximum temperature\n",
- " month = int(t.dt.month)\n",
- " \n",
- " # get tilted irradiance for given timestamp\n",
- " Gt = PV_hourly.sel(timestamp = t).tilted_irradiance.to_dataframe().reset_index()\n",
- " Gt['G_t'] = np.round(Gt.tilted_irradiance)\n",
- " \n",
- " # get maximum temperature\n",
- " Tmax = T_max_mmd.TmaxD.sel(month = month).to_dataframe().dropna().reset_index().drop(columns = ['lon', 'lat', 'month'])\n",
- " Tmax['T_amb'] = np.round(Tmax['TmaxD'])\n",
- " \n",
- " # get efficiency dataframe\n",
- " eff = performance.to_dataframe().reset_index().drop(columns = ['T_cell', 'losses', 'inverter_eff', 'PF'])\n",
- " \n",
- " # create dataset with all merged information\n",
- " tmp = roofs.merge(Tmax, on = ['chx', 'chy'], how = 'left')\n",
- " tmp = tmp.merge(Gt, on = 'DF_UID', how = 'left')\n",
- " roofs_w_eff = tmp.merge(eff, on = ['T_amb', 'G_t'], how = 'left')\n",
- " \n",
- " # create xarray dataset from the relevant information and save intermediate file\n",
- " eff_xr = roofs_w_eff.set_index(['DF_UID', 'timestamp'])[['TmaxD', 'module_eff', 'PF_mean']].to_xarray()\n",
- " eff_xr.to_netcdf('/scratch/walch/scratch/tmp/eff_model_%d.nc' %i)\n",
- " \n",
- " print('Finished iteration %d in %.3fs' %(i, time.time()-tt))\n",
- " "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "eff = []\n",
- "for i in range(10):\n",
- " eff.append(xr.open_mfdataset('/scratch/walch/scratch/tmp/eff_model_%d*' %i, chunks = {'DF_UID': 100000}))\n",
- " \n",
- "eff_xr = xr.concat(eff, dim = 'timestamp').sortby('timestamp')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "eff_xr.to_netcdf('/scratch/walch/scratch/tmp/efficiencies.nc')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Alternative comparison"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "fp = '/scratch/walch/workspace_tilted_irrad/tilted_irradiance_SVF_nobias.nc'\n",
- "Gt = xr.open_mfdataset(fp, chunks = {'DF_UID':100000})"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [],
- "source": [
- "fp = '/scratch/walch/workspace_tilted_irrad/TmaxD_proj_roofs.nc'\n",
- "TmaxD = xr.open_mfdataset(fp, chunks = {'DF_UID':100000})"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [],
- "source": [
- "efficiency = xr.open_dataset( '/work/hyenergy/output/solar_potential/technical_potential/pv_efficiencies.nc' )"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [],
- "source": [
- "TmaxD['T_amb'] = TmaxD.TmaxD.astype(int)\n",
- "TmaxD['T_amb'] = TmaxD['T_amb'].where((TmaxD.T_amb >= -100) & (TmaxD.T_amb <= 100))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "Gt['G_t'] = Gt.tilted_irradiance.astype(int)\n",
- "Gt['G_t'] = Gt['G_t'].where((Gt.G_t >= 0) & (Gt.G_t <= 5000))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (DF_UID: 9639231, timestamp: 146)\n",
- "Coordinates:\n",
- " * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ... 2001-12-15T15:00:00\n",
- " * DF_UID (DF_UID) int64 1 2 3 4 5 ... 9890020 9890021 9890022 9890023\n",
- "Data variables:\n",
- " TmaxD (DF_UID, timestamp) float32 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " T_amb (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>"
- ]
- },
- "execution_count": 13,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "TmaxD"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (DF_UID: 9639231, timestamp: 146)\n",
- "Coordinates:\n",
- " * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ... 2001-12-15T15:00:00\n",
- " * DF_UID (DF_UID) int64 1 2 3 4 ... 9890021 9890022 9890023\n",
- "Data variables:\n",
- " tilted_irradiance (DF_UID, timestamp) float32 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " yearly_kWh_m2 (DF_UID) float32 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " G_t (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>"
- ]
- },
- "execution_count": 14,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "Gt"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {},
- "outputs": [],
- "source": [
- "eff = efficiency[['module_eff', 'PF_mean']]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 61,
- "metadata": {},
- "outputs": [],
- "source": [
- "eff_df = eff.to_dataframe().reset_index()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 70,
- "metadata": {},
- "outputs": [],
- "source": [
- "ds = xr.merge([Gt.G_t, TmaxD.T_amb])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 72,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "0 100000\n",
- "Finished iteration 0 in 10.608s\n",
- "100000 200000\n",
- "Finished iteration 1 in 10.997s\n",
- "200000 300000\n",
- "Finished iteration 2 in 10.877s\n",
- "300000 400000\n",
- "Finished iteration 3 in 10.967s\n",
- "400000 500000\n",
- "Finished iteration 4 in 10.841s\n",
- "500000 600000\n",
- "Finished iteration 5 in 11.045s\n",
- "600000 700000\n",
- "Finished iteration 6 in 10.490s\n",
- "700000 800000\n",
- "Finished iteration 7 in 10.617s\n",
- "800000 900000\n",
- "Finished iteration 8 in 10.534s\n",
- "900000 1000000\n",
- "Finished iteration 9 in 10.798s\n",
- "1000000 1100000\n",
- "Finished iteration 10 in 10.547s\n",
- "1100000 1200000\n",
- "Finished iteration 11 in 10.651s\n",
- "1200000 1300000\n",
- "Finished iteration 12 in 10.650s\n",
- "1300000 1400000\n",
- "Finished iteration 13 in 9.829s\n",
- "1400000 1500000\n",
- "Finished iteration 14 in 10.808s\n",
- "1500000 1600000\n",
- "Finished iteration 15 in 11.723s\n",
- "1600000 1700000\n",
- "Finished iteration 16 in 11.275s\n",
- "1700000 1800000\n",
- "Finished iteration 17 in 10.944s\n",
- "1800000 1900000\n",
- "Finished iteration 18 in 10.783s\n",
- "1900000 2000000\n",
- "Finished iteration 19 in 10.292s\n",
- "2000000 2100000\n",
- "Finished iteration 20 in 10.528s\n",
- "2100000 2200000\n",
- "Finished iteration 21 in 10.587s\n",
- "2200000 2300000\n",
- "Finished iteration 22 in 10.539s\n",
- "2300000 2400000\n",
- "Finished iteration 23 in 10.767s\n",
- "2400000 2500000\n",
- "Finished iteration 24 in 10.745s\n",
- "2500000 2600000\n",
- "Finished iteration 25 in 10.466s\n",
- "2600000 2700000\n",
- "Finished iteration 26 in 10.717s\n",
- "2700000 2800000\n",
- "Finished iteration 27 in 10.715s\n",
- "2800000 2900000\n",
- "Finished iteration 28 in 10.705s\n",
- "2900000 3000000\n",
- "Finished iteration 29 in 10.976s\n",
- "3000000 3100000\n",
- "Finished iteration 30 in 10.901s\n",
- "3100000 3200000\n",
- "Finished iteration 31 in 10.717s\n",
- "3200000 3300000\n",
- "Finished iteration 32 in 10.600s\n",
- "3300000 3400000\n",
- "Finished iteration 33 in 10.854s\n",
- "3400000 3500000\n",
- "Finished iteration 34 in 10.913s\n",
- "3500000 3600000\n",
- "Finished iteration 35 in 10.595s\n",
- "3600000 3700000\n",
- "Finished iteration 36 in 10.431s\n",
- "3700000 3800000\n",
- "Finished iteration 37 in 10.984s\n",
- "3800000 3900000\n",
- "Finished iteration 38 in 10.560s\n",
- "3900000 4000000\n",
- "Finished iteration 39 in 9.593s\n",
- "4000000 4100000\n",
- "Finished iteration 40 in 10.427s\n",
- "4100000 4200000\n",
- "Finished iteration 41 in 10.631s\n",
- "4200000 4300000\n",
- "Finished iteration 42 in 10.614s\n",
- "4300000 4400000\n",
- "Finished iteration 43 in 10.998s\n",
- "4400000 4500000\n",
- "Finished iteration 44 in 10.801s\n",
- "4500000 4600000\n",
- "Finished iteration 45 in 10.863s\n",
- "4600000 4700000\n",
- "Finished iteration 46 in 10.643s\n",
- "4700000 4800000\n",
- "Finished iteration 47 in 10.755s\n",
- "4800000 4900000\n",
- "Finished iteration 48 in 10.960s\n",
- "4900000 5000000\n",
- "Finished iteration 49 in 10.928s\n",
- "5000000 5100000\n",
- "Finished iteration 50 in 10.724s\n",
- "5100000 5200000\n",
- "Finished iteration 51 in 10.759s\n",
- "5200000 5300000\n",
- "Finished iteration 52 in 10.550s\n",
- "5300000 5400000\n",
- "Finished iteration 53 in 10.672s\n",
- "5400000 5500000\n",
- "Finished iteration 54 in 10.837s\n",
- "5500000 5600000\n",
- "Finished iteration 55 in 10.898s\n",
- "5600000 5700000\n",
- "Finished iteration 56 in 10.411s\n",
- "5700000 5800000\n",
- "Finished iteration 57 in 10.568s\n",
- "5800000 5900000\n",
- "Finished iteration 58 in 10.862s\n",
- "5900000 6000000\n",
- "Finished iteration 59 in 10.993s\n",
- "6000000 6100000\n",
- "Finished iteration 60 in 10.732s\n",
- "6100000 6200000\n",
- "Finished iteration 61 in 10.666s\n",
- "6200000 6300000\n",
- "Finished iteration 62 in 10.549s\n",
- "6300000 6400000\n",
- "Finished iteration 63 in 10.793s\n",
- "6400000 6500000\n",
- "Finished iteration 64 in 10.576s\n",
- "6500000 6600000\n",
- "Finished iteration 65 in 10.548s\n",
- "6600000 6700000\n",
- "Finished iteration 66 in 10.701s\n",
- "6700000 6800000\n",
- "Finished iteration 67 in 10.567s\n",
- "6800000 6900000\n",
- "Finished iteration 68 in 10.522s\n",
- "6900000 7000000\n",
- "Finished iteration 69 in 9.140s\n",
- "7000000 7100000\n",
- "Finished iteration 70 in 10.639s\n",
- "7100000 7200000\n",
- "Finished iteration 71 in 10.752s\n",
- "7200000 7300000\n",
- "Finished iteration 72 in 10.532s\n",
- "7300000 7400000\n",
- "Finished iteration 73 in 10.643s\n",
- "7400000 7500000\n",
- "Finished iteration 74 in 10.785s\n",
- "7500000 7600000\n",
- "Finished iteration 75 in 10.615s\n",
- "7600000 7700000\n",
- "Finished iteration 76 in 10.478s\n",
- "7700000 7800000\n",
- "Finished iteration 77 in 10.528s\n",
- "7800000 7900000\n",
- "Finished iteration 78 in 10.616s\n",
- "7900000 8000000\n",
- "Finished iteration 79 in 10.683s\n",
- "8000000 8100000\n",
- "Finished iteration 80 in 10.802s\n",
- "8100000 8200000\n",
- "Finished iteration 81 in 10.442s\n",
- "8200000 8300000\n",
- "Finished iteration 82 in 10.585s\n",
- "8300000 8400000\n",
- "Finished iteration 83 in 11.041s\n",
- "8400000 8500000\n",
- "Finished iteration 84 in 10.764s\n",
- "8500000 8600000\n",
- "Finished iteration 85 in 10.719s\n",
- "8600000 8700000\n",
- "Finished iteration 86 in 10.528s\n",
- "8700000 8800000\n",
- "Finished iteration 87 in 10.589s\n",
- "8800000 8900000\n",
- "Finished iteration 88 in 10.454s\n",
- "8900000 9000000\n",
- "Finished iteration 89 in 10.628s\n",
- "9000000 9100000\n",
- "Finished iteration 90 in 10.504s\n",
- "9100000 9200000\n",
- "Finished iteration 91 in 10.549s\n",
- "9200000 9300000\n",
- "Finished iteration 92 in 10.363s\n",
- "9300000 9400000\n",
- "Finished iteration 93 in 10.803s\n",
- "9400000 9500000\n",
- "Finished iteration 94 in 10.792s\n",
- "9500000 9600000\n",
- "Finished iteration 95 in 11.086s\n",
- "9600000 9639231\n",
- "Finished iteration 96 in 4.110s\n"
- ]
- }
- ],
- "source": [
- "BATCH_SIZE = 100000\n",
- "N_BATCHES = int(np.ceil(len(Gt.DF_UID)/100000))\n",
- "\n",
- "for i in range(N_BATCHES):\n",
- " tt = time.time()\n",
- " start = i * BATCH_SIZE\n",
- " end = min((i+1) * BATCH_SIZE, len(Gt.DF_UID))\n",
- " print(start, end)\n",
- " \n",
- " curr_ds = ds.isel(DF_UID = range(start, end)).dropna(dim = 'timestamp').compute()\n",
- " df = curr_ds.to_dataframe().reset_index().merge(eff_df, how = 'left', on = ['G_t', 'T_amb'])\n",
- " \n",
- " ds_out = df.set_index(['DF_UID', 'timestamp']).to_xarray()[['module_eff', 'PF_mean']]\n",
- " ds_out.to_netcdf('/scratch/walch/workspace_tilted_irrad/files/eff_v2_%d.nc' %i)\n",
- " print('Finished iteration %d in %.3fs' %(i, time.time()-tt))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "eff_all = xr.open_mfdataset('/scratch/walch/workspace_tilted_irrad/files/eff_v2_*.nc')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [],
- "source": [
- "eff_all = eff_all.astype('float32')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (DF_UID: 9639231, timestamp: 143)\n",
- "Coordinates:\n",
- " * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ... 2001-12-15T15:00:00\n",
- " * DF_UID (DF_UID) int64 1 2 3 4 5 ... 9890020 9890021 9890022 9890023\n",
- "Data variables:\n",
- " module_eff (DF_UID, timestamp) float32 dask.array<shape=(9639231, 143), chunksize=(100000, 143)>\n",
- " PF_mean (DF_UID, timestamp) float32 dask.array<shape=(9639231, 143), chunksize=(100000, 143)>"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "eff_all"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [],
- "source": [
- "eff_all.to_netcdf('/scratch/walch/workspace_tilted_irrad/eff_new_SVF_nobias.nc')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Spielwiese"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Correct original PV pot by corrected efficiencies"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "pv_pot = xr.open_mfdataset('/scratch/walch/workspace_tilted_irrad/pv_potential_w_efficiency_new.nc', \n",
- " chunks = {'DF_UID' : 100000})"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (DF_UID: 9639231, timestamp: 146)\n",
- "Coordinates:\n",
- " * DF_UID (DF_UID) int64 1 2 3 4 ... 9890021 9890022 9890023\n",
- " * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ... 2001-12-15T15:00:00\n",
- "Data variables:\n",
- " TmaxD (DF_UID, timestamp) float32 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " module_eff (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " PF_mean (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " tilted_irradiance (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " pv_potential (DF_UID, timestamp) float64 dask.array<shape=(9639231, 146), chunksize=(100000, 146)>\n",
- " yearly_kWh_m2 (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>\n",
- " yearly_PV_kWh (DF_UID) float64 dask.array<shape=(9639231,), chunksize=(100000,)>"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "pv_pot"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "eff = xr.open_dataset('/scratch/walch/workspace_tilted_irrad/eff_new_SVF_nobias.nc', \n",
- " chunks = {'DF_UID' : 100000})"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (DF_UID: 9639231, timestamp: 143)\n",
- "Coordinates:\n",
- " * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ... 2001-12-15T15:00:00\n",
- " * DF_UID (DF_UID) int64 1 2 3 4 5 ... 9890020 9890021 9890022 9890023\n",
- "Data variables:\n",
- " module_eff (DF_UID, timestamp) float32 dask.array<shape=(9639231, 143), chunksize=(100000, 143)>\n",
- " PF_mean (DF_UID, timestamp) float32 dask.array<shape=(9639231, 143), chunksize=(100000, 143)>"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "eff"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "pv_new = pv_pot.pv_potential / (pv_pot.module_eff * pv_pot.PF_mean) * (eff.module_eff * eff.PF_mean)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {},
- "outputs": [],
- "source": [
- "pv_cmp = xr.merge([pv_new.rename('EPV_new'), pv_pot.pv_potential.rename('EPV_old')])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {},
- "outputs": [],
- "source": [
- "EPV_new_annual = util.get_yearly_sum(pv_cmp, 'EPV_new') / 1000"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/walch/.local/lib/python3.6/site-packages/dask/core.py:137: RuntimeWarning: invalid value encountered in true_divide\n",
- " return func(*args2)\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "<xarray.DataArray ()>\n",
- "array(38528060942.136536)"
- ]
- },
- "execution_count": 25,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "EPV_new_annual.sum().compute()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {},
- "outputs": [],
- "source": [
- "pv_cmp['diff'] = pv_cmp.EPV_new - pv_cmp.EPV_old"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/javascript": [
- "/* Put everything inside the global mpl namespace */\n",
- "window.mpl = {};\n",
- "\n",
- "\n",
- "mpl.get_websocket_type = function() {\n",
- " if (typeof(WebSocket) !== 'undefined') {\n",
- " return WebSocket;\n",
- " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
- " return MozWebSocket;\n",
- " } else {\n",
- " alert('Your browser does not have WebSocket support.' +\n",
- " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
- " 'Firefox 4 and 5 are also supported but you ' +\n",
- " 'have to enable WebSockets in about:config.');\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
- " this.id = figure_id;\n",
- "\n",
- " this.ws = websocket;\n",
- "\n",
- " this.supports_binary = (this.ws.binaryType != undefined);\n",
- "\n",
- " if (!this.supports_binary) {\n",
- " var warnings = document.getElementById(\"mpl-warnings\");\n",
- " if (warnings) {\n",
- " warnings.style.display = 'block';\n",
- " warnings.textContent = (\n",
- " \"This browser does not support binary websocket messages. \" +\n",
- " \"Performance may be slow.\");\n",
- " }\n",
- " }\n",
- "\n",
- " this.imageObj = new Image();\n",
- "\n",
- " this.context = undefined;\n",
- " this.message = undefined;\n",
- " this.canvas = undefined;\n",
- " this.rubberband_canvas = undefined;\n",
- " this.rubberband_context = undefined;\n",
- " this.format_dropdown = undefined;\n",
- "\n",
- " this.image_mode = 'full';\n",
- "\n",
- " this.root = $('<div/>');\n",
- " this._root_extra_style(this.root)\n",
- " this.root.attr('style', 'display: inline-block');\n",
- "\n",
- " $(parent_element).append(this.root);\n",
- "\n",
- " this._init_header(this);\n",
- " this._init_canvas(this);\n",
- " this._init_toolbar(this);\n",
- "\n",
- " var fig = this;\n",
- "\n",
- " this.waiting = false;\n",
- "\n",
- " this.ws.onopen = function () {\n",
- " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
- " fig.send_message(\"send_image_mode\", {});\n",
- " if (mpl.ratio != 1) {\n",
- " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
- " }\n",
- " fig.send_message(\"refresh\", {});\n",
- " }\n",
- "\n",
- " this.imageObj.onload = function() {\n",
- " if (fig.image_mode == 'full') {\n",
- " // Full images could contain transparency (where diff images\n",
- " // almost always do), so we need to clear the canvas so that\n",
- " // there is no ghosting.\n",
- " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
- " }\n",
- " fig.context.drawImage(fig.imageObj, 0, 0);\n",
- " };\n",
- "\n",
- " this.imageObj.onunload = function() {\n",
- " fig.ws.close();\n",
- " }\n",
- "\n",
- " this.ws.onmessage = this._make_on_message_function(this);\n",
- "\n",
- " this.ondownload = ondownload;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_header = function() {\n",
- " var titlebar = $(\n",
- " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
- " 'ui-helper-clearfix\"/>');\n",
- " var titletext = $(\n",
- " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
- " 'text-align: center; padding: 3px;\"/>');\n",
- " titlebar.append(titletext)\n",
- " this.root.append(titlebar);\n",
- " this.header = titletext[0];\n",
- "}\n",
- "\n",
- "\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_canvas = function() {\n",
- " var fig = this;\n",
- "\n",
- " var canvas_div = $('<div/>');\n",
- "\n",
- " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
- "\n",
- " function canvas_keyboard_event(event) {\n",
- " return fig.key_event(event, event['data']);\n",
- " }\n",
- "\n",
- " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
- " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
- " this.canvas_div = canvas_div\n",
- " this._canvas_extra_style(canvas_div)\n",
- " this.root.append(canvas_div);\n",
- "\n",
- " var canvas = $('<canvas/>');\n",
- " canvas.addClass('mpl-canvas');\n",
- " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
- "\n",
- " this.canvas = canvas[0];\n",
- " this.context = canvas[0].getContext(\"2d\");\n",
- "\n",
- " var backingStore = this.context.backingStorePixelRatio ||\n",
- "\tthis.context.webkitBackingStorePixelRatio ||\n",
- "\tthis.context.mozBackingStorePixelRatio ||\n",
- "\tthis.context.msBackingStorePixelRatio ||\n",
- "\tthis.context.oBackingStorePixelRatio ||\n",
- "\tthis.context.backingStorePixelRatio || 1;\n",
- "\n",
- " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
- "\n",
- " var rubberband = $('<canvas/>');\n",
- " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
- "\n",
- " var pass_mouse_events = true;\n",
- "\n",
- " canvas_div.resizable({\n",
- " start: function(event, ui) {\n",
- " pass_mouse_events = false;\n",
- " },\n",
- " resize: function(event, ui) {\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " stop: function(event, ui) {\n",
- " pass_mouse_events = true;\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " });\n",
- "\n",
- " function mouse_event_fn(event) {\n",
- " if (pass_mouse_events)\n",
- " return fig.mouse_event(event, event['data']);\n",
- " }\n",
- "\n",
- " rubberband.mousedown('button_press', mouse_event_fn);\n",
- " rubberband.mouseup('button_release', mouse_event_fn);\n",
- " // Throttle sequential mouse events to 1 every 20ms.\n",
- " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
- "\n",
- " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
- " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
- "\n",
- " canvas_div.on(\"wheel\", function (event) {\n",
- " event = event.originalEvent;\n",
- " event['data'] = 'scroll'\n",
- " if (event.deltaY < 0) {\n",
- " event.step = 1;\n",
- " } else {\n",
- " event.step = -1;\n",
- " }\n",
- " mouse_event_fn(event);\n",
- " });\n",
- "\n",
- " canvas_div.append(canvas);\n",
- " canvas_div.append(rubberband);\n",
- "\n",
- " this.rubberband = rubberband;\n",
- " this.rubberband_canvas = rubberband[0];\n",
- " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
- " this.rubberband_context.strokeStyle = \"#000000\";\n",
- "\n",
- " this._resize_canvas = function(width, height) {\n",
- " // Keep the size of the canvas, canvas container, and rubber band\n",
- " // canvas in synch.\n",
- " canvas_div.css('width', width)\n",
- " canvas_div.css('height', height)\n",
- "\n",
- " canvas.attr('width', width * mpl.ratio);\n",
- " canvas.attr('height', height * mpl.ratio);\n",
- " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
- "\n",
- " rubberband.attr('width', width);\n",
- " rubberband.attr('height', height);\n",
- " }\n",
- "\n",
- " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
- " // upon first draw.\n",
- " this._resize_canvas(600, 600);\n",
- "\n",
- " // Disable right mouse context menu.\n",
- " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
- " return false;\n",
- " });\n",
- "\n",
- " function set_focus () {\n",
- " canvas.focus();\n",
- " canvas_div.focus();\n",
- " }\n",
- "\n",
- " window.setTimeout(set_focus, 100);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('<div/>')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items) {\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) {\n",
- " // put a spacer in here.\n",
- " continue;\n",
- " }\n",
- " var button = $('<button/>');\n",
- " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
- " 'ui-button-icon-only');\n",
- " button.attr('role', 'button');\n",
- " button.attr('aria-disabled', 'false');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- "\n",
- " var icon_img = $('<span/>');\n",
- " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
- " icon_img.addClass(image);\n",
- " icon_img.addClass('ui-corner-all');\n",
- "\n",
- " var tooltip_span = $('<span/>');\n",
- " tooltip_span.addClass('ui-button-text');\n",
- " tooltip_span.html(tooltip);\n",
- "\n",
- " button.append(icon_img);\n",
- " button.append(tooltip_span);\n",
- "\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " var fmt_picker_span = $('<span/>');\n",
- "\n",
- " var fmt_picker = $('<select/>');\n",
- " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
- " fmt_picker_span.append(fmt_picker);\n",
- " nav_element.append(fmt_picker_span);\n",
- " this.format_dropdown = fmt_picker[0];\n",
- "\n",
- " for (var ind in mpl.extensions) {\n",
- " var fmt = mpl.extensions[ind];\n",
- " var option = $(\n",
- " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
- " fmt_picker.append(option)\n",
- " }\n",
- "\n",
- " // Add hover states to the ui-buttons\n",
- " $( \".ui-button\" ).hover(\n",
- " function() { $(this).addClass(\"ui-state-hover\");},\n",
- " function() { $(this).removeClass(\"ui-state-hover\");}\n",
- " );\n",
- "\n",
- " var status_bar = $('<span class=\"mpl-message\"/>');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
- " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
- " // which will in turn request a refresh of the image.\n",
- " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_message = function(type, properties) {\n",
- " properties['type'] = type;\n",
- " properties['figure_id'] = this.id;\n",
- " this.ws.send(JSON.stringify(properties));\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_draw_message = function() {\n",
- " if (!this.waiting) {\n",
- " this.waiting = true;\n",
- " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
- " }\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " var format_dropdown = fig.format_dropdown;\n",
- " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
- " fig.ondownload(fig, format);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
- " var size = msg['size'];\n",
- " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
- " fig._resize_canvas(size[0], size[1]);\n",
- " fig.send_message(\"refresh\", {});\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
- " var x0 = msg['x0'] / mpl.ratio;\n",
- " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
- " var x1 = msg['x1'] / mpl.ratio;\n",
- " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
- " x0 = Math.floor(x0) + 0.5;\n",
- " y0 = Math.floor(y0) + 0.5;\n",
- " x1 = Math.floor(x1) + 0.5;\n",
- " y1 = Math.floor(y1) + 0.5;\n",
- " var min_x = Math.min(x0, x1);\n",
- " var min_y = Math.min(y0, y1);\n",
- " var width = Math.abs(x1 - x0);\n",
- " var height = Math.abs(y1 - y0);\n",
- "\n",
- " fig.rubberband_context.clearRect(\n",
- " 0, 0, fig.canvas.width, fig.canvas.height);\n",
- "\n",
- " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
- " // Updates the figure title.\n",
- " fig.header.textContent = msg['label'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
- " var cursor = msg['cursor'];\n",
- " switch(cursor)\n",
- " {\n",
- " case 0:\n",
- " cursor = 'pointer';\n",
- " break;\n",
- " case 1:\n",
- " cursor = 'default';\n",
- " break;\n",
- " case 2:\n",
- " cursor = 'crosshair';\n",
- " break;\n",
- " case 3:\n",
- " cursor = 'move';\n",
- " break;\n",
- " }\n",
- " fig.rubberband_canvas.style.cursor = cursor;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
- " fig.message.textContent = msg['message'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
- " // Request the server to send over a new figure.\n",
- " fig.send_draw_message();\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
- " fig.image_mode = msg['mode'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Called whenever the canvas gets updated.\n",
- " this.send_message(\"ack\", {});\n",
- "}\n",
- "\n",
- "// A function to construct a web socket function for onmessage handling.\n",
- "// Called in the figure constructor.\n",
- "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
- " return function socket_on_message(evt) {\n",
- " if (evt.data instanceof Blob) {\n",
- " /* FIXME: We get \"Resource interpreted as Image but\n",
- " * transferred with MIME type text/plain:\" errors on\n",
- " * Chrome. But how to set the MIME type? It doesn't seem\n",
- " * to be part of the websocket stream */\n",
- " evt.data.type = \"image/png\";\n",
- "\n",
- " /* Free the memory for the previous frames */\n",
- " if (fig.imageObj.src) {\n",
- " (window.URL || window.webkitURL).revokeObjectURL(\n",
- " fig.imageObj.src);\n",
- " }\n",
- "\n",
- " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
- " evt.data);\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
- " fig.imageObj.src = evt.data;\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- "\n",
- " var msg = JSON.parse(evt.data);\n",
- " var msg_type = msg['type'];\n",
- "\n",
- " // Call the \"handle_{type}\" callback, which takes\n",
- " // the figure and JSON message as its only arguments.\n",
- " try {\n",
- " var callback = fig[\"handle_\" + msg_type];\n",
- " } catch (e) {\n",
- " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
- " return;\n",
- " }\n",
- "\n",
- " if (callback) {\n",
- " try {\n",
- " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
- " callback(fig, msg);\n",
- " } catch (e) {\n",
- " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
- " }\n",
- " }\n",
- " };\n",
- "}\n",
- "\n",
- "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
- "mpl.findpos = function(e) {\n",
- " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
- " var targ;\n",
- " if (!e)\n",
- " e = window.event;\n",
- " if (e.target)\n",
- " targ = e.target;\n",
- " else if (e.srcElement)\n",
- " targ = e.srcElement;\n",
- " if (targ.nodeType == 3) // defeat Safari bug\n",
- " targ = targ.parentNode;\n",
- "\n",
- " // jQuery normalizes the pageX and pageY\n",
- " // pageX,Y are the mouse positions relative to the document\n",
- " // offset() returns the position of the element relative to the document\n",
- " var x = e.pageX - $(targ).offset().left;\n",
- " var y = e.pageY - $(targ).offset().top;\n",
- "\n",
- " return {\"x\": x, \"y\": y};\n",
- "};\n",
- "\n",
- "/*\n",
- " * return a copy of an object with only non-object keys\n",
- " * we need this to avoid circular references\n",
- " * http://stackoverflow.com/a/24161582/3208463\n",
- " */\n",
- "function simpleKeys (original) {\n",
- " return Object.keys(original).reduce(function (obj, key) {\n",
- " if (typeof original[key] !== 'object')\n",
- " obj[key] = original[key]\n",
- " return obj;\n",
- " }, {});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.mouse_event = function(event, name) {\n",
- " var canvas_pos = mpl.findpos(event)\n",
- "\n",
- " if (name === 'button_press')\n",
- " {\n",
- " this.canvas.focus();\n",
- " this.canvas_div.focus();\n",
- " }\n",
- "\n",
- " var x = canvas_pos.x * mpl.ratio;\n",
- " var y = canvas_pos.y * mpl.ratio;\n",
- "\n",
- " this.send_message(name, {x: x, y: y, button: event.button,\n",
- " step: event.step,\n",
- " guiEvent: simpleKeys(event)});\n",
- "\n",
- " /* This prevents the web browser from automatically changing to\n",
- " * the text insertion cursor when the button is pressed. We want\n",
- " * to control all of the cursor setting manually through the\n",
- " * 'cursor' event from matplotlib */\n",
- " event.preventDefault();\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " // Handle any extra behaviour associated with a key event\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.key_event = function(event, name) {\n",
- "\n",
- " // Prevent repeat events\n",
- " if (name == 'key_press')\n",
- " {\n",
- " if (event.which === this._key)\n",
- " return;\n",
- " else\n",
- " this._key = event.which;\n",
- " }\n",
- " if (name == 'key_release')\n",
- " this._key = null;\n",
- "\n",
- " var value = '';\n",
- " if (event.ctrlKey && event.which != 17)\n",
- " value += \"ctrl+\";\n",
- " if (event.altKey && event.which != 18)\n",
- " value += \"alt+\";\n",
- " if (event.shiftKey && event.which != 16)\n",
- " value += \"shift+\";\n",
- "\n",
- " value += 'k';\n",
- " value += event.which.toString();\n",
- "\n",
- " this._key_event_extra(event, name);\n",
- "\n",
- " this.send_message(name, {key: value,\n",
- " guiEvent: simpleKeys(event)});\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
- " if (name == 'download') {\n",
- " this.handle_save(this, null);\n",
- " } else {\n",
- " this.send_message(\"toolbar_button\", {name: name});\n",
- " }\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
- " this.message.textContent = tooltip;\n",
- "};\n",
- "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
- "\n",
- "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
- "\n",
- "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
- " // Create a \"websocket\"-like object which calls the given IPython comm\n",
- " // object with the appropriate methods. Currently this is a non binary\n",
- " // socket, so there is still some room for performance tuning.\n",
- " var ws = {};\n",
- "\n",
- " ws.close = function() {\n",
- " comm.close()\n",
- " };\n",
- " ws.send = function(m) {\n",
- " //console.log('sending', m);\n",
- " comm.send(m);\n",
- " };\n",
- " // Register the callback with on_msg.\n",
- " comm.on_msg(function(msg) {\n",
- " //console.log('receiving', msg['content']['data'], msg);\n",
- " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
- " ws.onmessage(msg['content']['data'])\n",
- " });\n",
- " return ws;\n",
- "}\n",
- "\n",
- "mpl.mpl_figure_comm = function(comm, msg) {\n",
- " // This is the function which gets called when the mpl process\n",
- " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
- "\n",
- " var id = msg.content.data.id;\n",
- " // Get hold of the div created by the display call when the Comm\n",
- " // socket was opened in Python.\n",
- " var element = $(\"#\" + id);\n",
- " var ws_proxy = comm_websocket_adapter(comm)\n",
- "\n",
- " function ondownload(figure, format) {\n",
- " window.open(figure.imageObj.src);\n",
- " }\n",
- "\n",
- " var fig = new mpl.figure(id, ws_proxy,\n",
- " ondownload,\n",
- " element.get(0));\n",
- "\n",
- " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
- " // web socket which is closed, not our websocket->open comm proxy.\n",
- " ws_proxy.onopen();\n",
- "\n",
- " fig.parent_element = element.get(0);\n",
- " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
- " if (!fig.cell_info) {\n",
- " console.error(\"Failed to find cell for figure\", id, fig);\n",
- " return;\n",
- " }\n",
- "\n",
- " var output_index = fig.cell_info[2]\n",
- " var cell = fig.cell_info[0];\n",
- "\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
- " var width = fig.canvas.width/mpl.ratio\n",
- " fig.root.unbind('remove')\n",
- "\n",
- " // Update the output cell to use the data from the current canvas.\n",
- " fig.push_to_output();\n",
- " var dataURL = fig.canvas.toDataURL();\n",
- " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
- " // the notebook keyboard shortcuts fail.\n",
- " IPython.keyboard_manager.enable()\n",
- " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
- " fig.close_ws(fig, msg);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.close_ws = function(fig, msg){\n",
- " fig.send_message('closing', msg);\n",
- " // fig.ws.close()\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
- " // Turn the data on the canvas into data in the output cell.\n",
- " var width = this.canvas.width/mpl.ratio\n",
- " var dataURL = this.canvas.toDataURL();\n",
- " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Tell IPython that the notebook contents must change.\n",
- " IPython.notebook.set_dirty(true);\n",
- " this.send_message(\"ack\", {});\n",
- " var fig = this;\n",
- " // Wait a second, then push the new image to the DOM so\n",
- " // that it is saved nicely (might be nice to debounce this).\n",
- " setTimeout(function () { fig.push_to_output() }, 1000);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('<div/>')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items){\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) { continue; };\n",
- "\n",
- " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " // Add the status bar.\n",
- " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "\n",
- " // Add the close button to the window.\n",
- " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
- " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
- " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
- " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
- " buttongrp.append(button);\n",
- " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
- " titlebar.prepend(buttongrp);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(el){\n",
- " var fig = this\n",
- " el.on(\"remove\", function(){\n",
- "\tfig.close_ws(fig, {});\n",
- " });\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(el){\n",
- " // this is important to make the div 'focusable\n",
- " el.attr('tabindex', 0)\n",
- " // reach out to IPython and tell the keyboard manager to turn it's self\n",
- " // off when our div gets focus\n",
- "\n",
- " // location in version 3\n",
- " if (IPython.notebook.keyboard_manager) {\n",
- " IPython.notebook.keyboard_manager.register_events(el);\n",
- " }\n",
- " else {\n",
- " // location in version 2\n",
- " IPython.keyboard_manager.register_events(el);\n",
- " }\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " var manager = IPython.notebook.keyboard_manager;\n",
- " if (!manager)\n",
- " manager = IPython.keyboard_manager;\n",
- "\n",
- " // Check for shift+enter\n",
- " if (event.shiftKey && event.which == 13) {\n",
- " this.canvas_div.blur();\n",
- " event.shiftKey = false;\n",
- " // Send a \"J\" for go to next cell\n",
- " event.which = 74;\n",
- " event.keyCode = 74;\n",
- " manager.command_mode();\n",
- " manager.handle_keydown(event);\n",
- " }\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " fig.ondownload(fig, null);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.find_output_cell = function(html_output) {\n",
- " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
- " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
- " // IPython event is triggered only after the cells have been serialised, which for\n",
- " // our purposes (turning an active figure into a static one), is too late.\n",
- " var cells = IPython.notebook.get_cells();\n",
- " var ncells = cells.length;\n",
- " for (var i=0; i<ncells; i++) {\n",
- " var cell = cells[i];\n",
- " if (cell.cell_type === 'code'){\n",
- " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
- " var data = cell.output_area.outputs[j];\n",
- " if (data.data) {\n",
- " // IPython >= 3 moved mimebundle to data attribute of output\n",
- " data = data.data;\n",
- " }\n",
- " if (data['text/html'] == html_output) {\n",
- " return [cell, data, j];\n",
- " }\n",
- " }\n",
- " }\n",
- " }\n",
- "}\n",
- "\n",
- "// Register the function which deals with the matplotlib target/channel.\n",
- "// The kernel may be null if the page has been refreshed.\n",
- "if (IPython.notebook.kernel != null) {\n",
- " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
- "}\n"
- ],
- "text/plain": [
- "<IPython.core.display.Javascript object>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<img src=\"\" width=\"640\">"
- ],
- "text/plain": [
- "<IPython.core.display.HTML object>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "[<matplotlib.lines.Line2D at 0x7f7f20287198>]"
- ]
- },
- "execution_count": 22,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "DF_UID = 123005\n",
- "plt.plot(pv_cmp.isel(DF_UID = DF_UID)['diff'].values)\n",
- "plt.plot(pv_cmp.isel(DF_UID = DF_UID)['EPV_new'].values)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {},
- "outputs": [],
- "source": [
- "pv_out = xr.merge([pv_new.rename('pv_potential'), EPV_new_annual.rename('yearly_PV_kWh')])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {},
- "outputs": [],
- "source": [
- "pv_out = pv_out.astype('float32')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (DF_UID: 9639231, timestamp: 143)\n",
- "Coordinates:\n",
- " * DF_UID (DF_UID) int64 1 2 3 4 5 ... 9890020 9890021 9890022 9890023\n",
- " * timestamp (timestamp) datetime64[ns] 2001-01-15T08:00:00 ... 2001-12-15T15:00:00\n",
- "Data variables:\n",
- " pv_potential (DF_UID, timestamp) float32 dask.array<shape=(9639231, 143), chunksize=(100000, 143)>\n",
- " yearly_PV_kWh (DF_UID) float32 dask.array<shape=(9639231,), chunksize=(100000,)>"
- ]
- },
- "execution_count": 29,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "pv_out"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {},
- "outputs": [],
- "source": [
- "pv_out.to_netcdf('/scratch/walch/workspace_tilted_irrad/pv_potential_SVF_eff_nobias.nc')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "scrolled": false
- },
- "outputs": [],
- "source": [
- "pv_pot = xr.open_mfdataset('/scratch/walch/workspace_tilted_irrad/pv_potential_SVF_eff_nobias.nc')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/javascript": [
- "/* Put everything inside the global mpl namespace */\n",
- "window.mpl = {};\n",
- "\n",
- "\n",
- "mpl.get_websocket_type = function() {\n",
- " if (typeof(WebSocket) !== 'undefined') {\n",
- " return WebSocket;\n",
- " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
- " return MozWebSocket;\n",
- " } else {\n",
- " alert('Your browser does not have WebSocket support.' +\n",
- " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
- " 'Firefox 4 and 5 are also supported but you ' +\n",
- " 'have to enable WebSockets in about:config.');\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
- " this.id = figure_id;\n",
- "\n",
- " this.ws = websocket;\n",
- "\n",
- " this.supports_binary = (this.ws.binaryType != undefined);\n",
- "\n",
- " if (!this.supports_binary) {\n",
- " var warnings = document.getElementById(\"mpl-warnings\");\n",
- " if (warnings) {\n",
- " warnings.style.display = 'block';\n",
- " warnings.textContent = (\n",
- " \"This browser does not support binary websocket messages. \" +\n",
- " \"Performance may be slow.\");\n",
- " }\n",
- " }\n",
- "\n",
- " this.imageObj = new Image();\n",
- "\n",
- " this.context = undefined;\n",
- " this.message = undefined;\n",
- " this.canvas = undefined;\n",
- " this.rubberband_canvas = undefined;\n",
- " this.rubberband_context = undefined;\n",
- " this.format_dropdown = undefined;\n",
- "\n",
- " this.image_mode = 'full';\n",
- "\n",
- " this.root = $('<div/>');\n",
- " this._root_extra_style(this.root)\n",
- " this.root.attr('style', 'display: inline-block');\n",
- "\n",
- " $(parent_element).append(this.root);\n",
- "\n",
- " this._init_header(this);\n",
- " this._init_canvas(this);\n",
- " this._init_toolbar(this);\n",
- "\n",
- " var fig = this;\n",
- "\n",
- " this.waiting = false;\n",
- "\n",
- " this.ws.onopen = function () {\n",
- " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
- " fig.send_message(\"send_image_mode\", {});\n",
- " if (mpl.ratio != 1) {\n",
- " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
- " }\n",
- " fig.send_message(\"refresh\", {});\n",
- " }\n",
- "\n",
- " this.imageObj.onload = function() {\n",
- " if (fig.image_mode == 'full') {\n",
- " // Full images could contain transparency (where diff images\n",
- " // almost always do), so we need to clear the canvas so that\n",
- " // there is no ghosting.\n",
- " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
- " }\n",
- " fig.context.drawImage(fig.imageObj, 0, 0);\n",
- " };\n",
- "\n",
- " this.imageObj.onunload = function() {\n",
- " fig.ws.close();\n",
- " }\n",
- "\n",
- " this.ws.onmessage = this._make_on_message_function(this);\n",
- "\n",
- " this.ondownload = ondownload;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_header = function() {\n",
- " var titlebar = $(\n",
- " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
- " 'ui-helper-clearfix\"/>');\n",
- " var titletext = $(\n",
- " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
- " 'text-align: center; padding: 3px;\"/>');\n",
- " titlebar.append(titletext)\n",
- " this.root.append(titlebar);\n",
- " this.header = titletext[0];\n",
- "}\n",
- "\n",
- "\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_canvas = function() {\n",
- " var fig = this;\n",
- "\n",
- " var canvas_div = $('<div/>');\n",
- "\n",
- " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
- "\n",
- " function canvas_keyboard_event(event) {\n",
- " return fig.key_event(event, event['data']);\n",
- " }\n",
- "\n",
- " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
- " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
- " this.canvas_div = canvas_div\n",
- " this._canvas_extra_style(canvas_div)\n",
- " this.root.append(canvas_div);\n",
- "\n",
- " var canvas = $('<canvas/>');\n",
- " canvas.addClass('mpl-canvas');\n",
- " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
- "\n",
- " this.canvas = canvas[0];\n",
- " this.context = canvas[0].getContext(\"2d\");\n",
- "\n",
- " var backingStore = this.context.backingStorePixelRatio ||\n",
- "\tthis.context.webkitBackingStorePixelRatio ||\n",
- "\tthis.context.mozBackingStorePixelRatio ||\n",
- "\tthis.context.msBackingStorePixelRatio ||\n",
- "\tthis.context.oBackingStorePixelRatio ||\n",
- "\tthis.context.backingStorePixelRatio || 1;\n",
- "\n",
- " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
- "\n",
- " var rubberband = $('<canvas/>');\n",
- " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
- "\n",
- " var pass_mouse_events = true;\n",
- "\n",
- " canvas_div.resizable({\n",
- " start: function(event, ui) {\n",
- " pass_mouse_events = false;\n",
- " },\n",
- " resize: function(event, ui) {\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " stop: function(event, ui) {\n",
- " pass_mouse_events = true;\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " });\n",
- "\n",
- " function mouse_event_fn(event) {\n",
- " if (pass_mouse_events)\n",
- " return fig.mouse_event(event, event['data']);\n",
- " }\n",
- "\n",
- " rubberband.mousedown('button_press', mouse_event_fn);\n",
- " rubberband.mouseup('button_release', mouse_event_fn);\n",
- " // Throttle sequential mouse events to 1 every 20ms.\n",
- " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
- "\n",
- " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
- " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
- "\n",
- " canvas_div.on(\"wheel\", function (event) {\n",
- " event = event.originalEvent;\n",
- " event['data'] = 'scroll'\n",
- " if (event.deltaY < 0) {\n",
- " event.step = 1;\n",
- " } else {\n",
- " event.step = -1;\n",
- " }\n",
- " mouse_event_fn(event);\n",
- " });\n",
- "\n",
- " canvas_div.append(canvas);\n",
- " canvas_div.append(rubberband);\n",
- "\n",
- " this.rubberband = rubberband;\n",
- " this.rubberband_canvas = rubberband[0];\n",
- " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
- " this.rubberband_context.strokeStyle = \"#000000\";\n",
- "\n",
- " this._resize_canvas = function(width, height) {\n",
- " // Keep the size of the canvas, canvas container, and rubber band\n",
- " // canvas in synch.\n",
- " canvas_div.css('width', width)\n",
- " canvas_div.css('height', height)\n",
- "\n",
- " canvas.attr('width', width * mpl.ratio);\n",
- " canvas.attr('height', height * mpl.ratio);\n",
- " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
- "\n",
- " rubberband.attr('width', width);\n",
- " rubberband.attr('height', height);\n",
- " }\n",
- "\n",
- " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
- " // upon first draw.\n",
- " this._resize_canvas(600, 600);\n",
- "\n",
- " // Disable right mouse context menu.\n",
- " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
- " return false;\n",
- " });\n",
- "\n",
- " function set_focus () {\n",
- " canvas.focus();\n",
- " canvas_div.focus();\n",
- " }\n",
- "\n",
- " window.setTimeout(set_focus, 100);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('<div/>')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items) {\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) {\n",
- " // put a spacer in here.\n",
- " continue;\n",
- " }\n",
- " var button = $('<button/>');\n",
- " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
- " 'ui-button-icon-only');\n",
- " button.attr('role', 'button');\n",
- " button.attr('aria-disabled', 'false');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- "\n",
- " var icon_img = $('<span/>');\n",
- " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
- " icon_img.addClass(image);\n",
- " icon_img.addClass('ui-corner-all');\n",
- "\n",
- " var tooltip_span = $('<span/>');\n",
- " tooltip_span.addClass('ui-button-text');\n",
- " tooltip_span.html(tooltip);\n",
- "\n",
- " button.append(icon_img);\n",
- " button.append(tooltip_span);\n",
- "\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " var fmt_picker_span = $('<span/>');\n",
- "\n",
- " var fmt_picker = $('<select/>');\n",
- " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
- " fmt_picker_span.append(fmt_picker);\n",
- " nav_element.append(fmt_picker_span);\n",
- " this.format_dropdown = fmt_picker[0];\n",
- "\n",
- " for (var ind in mpl.extensions) {\n",
- " var fmt = mpl.extensions[ind];\n",
- " var option = $(\n",
- " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
- " fmt_picker.append(option)\n",
- " }\n",
- "\n",
- " // Add hover states to the ui-buttons\n",
- " $( \".ui-button\" ).hover(\n",
- " function() { $(this).addClass(\"ui-state-hover\");},\n",
- " function() { $(this).removeClass(\"ui-state-hover\");}\n",
- " );\n",
- "\n",
- " var status_bar = $('<span class=\"mpl-message\"/>');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
- " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
- " // which will in turn request a refresh of the image.\n",
- " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_message = function(type, properties) {\n",
- " properties['type'] = type;\n",
- " properties['figure_id'] = this.id;\n",
- " this.ws.send(JSON.stringify(properties));\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_draw_message = function() {\n",
- " if (!this.waiting) {\n",
- " this.waiting = true;\n",
- " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
- " }\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " var format_dropdown = fig.format_dropdown;\n",
- " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
- " fig.ondownload(fig, format);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
- " var size = msg['size'];\n",
- " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
- " fig._resize_canvas(size[0], size[1]);\n",
- " fig.send_message(\"refresh\", {});\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
- " var x0 = msg['x0'] / mpl.ratio;\n",
- " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
- " var x1 = msg['x1'] / mpl.ratio;\n",
- " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
- " x0 = Math.floor(x0) + 0.5;\n",
- " y0 = Math.floor(y0) + 0.5;\n",
- " x1 = Math.floor(x1) + 0.5;\n",
- " y1 = Math.floor(y1) + 0.5;\n",
- " var min_x = Math.min(x0, x1);\n",
- " var min_y = Math.min(y0, y1);\n",
- " var width = Math.abs(x1 - x0);\n",
- " var height = Math.abs(y1 - y0);\n",
- "\n",
- " fig.rubberband_context.clearRect(\n",
- " 0, 0, fig.canvas.width, fig.canvas.height);\n",
- "\n",
- " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
- " // Updates the figure title.\n",
- " fig.header.textContent = msg['label'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
- " var cursor = msg['cursor'];\n",
- " switch(cursor)\n",
- " {\n",
- " case 0:\n",
- " cursor = 'pointer';\n",
- " break;\n",
- " case 1:\n",
- " cursor = 'default';\n",
- " break;\n",
- " case 2:\n",
- " cursor = 'crosshair';\n",
- " break;\n",
- " case 3:\n",
- " cursor = 'move';\n",
- " break;\n",
- " }\n",
- " fig.rubberband_canvas.style.cursor = cursor;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
- " fig.message.textContent = msg['message'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
- " // Request the server to send over a new figure.\n",
- " fig.send_draw_message();\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
- " fig.image_mode = msg['mode'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Called whenever the canvas gets updated.\n",
- " this.send_message(\"ack\", {});\n",
- "}\n",
- "\n",
- "// A function to construct a web socket function for onmessage handling.\n",
- "// Called in the figure constructor.\n",
- "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
- " return function socket_on_message(evt) {\n",
- " if (evt.data instanceof Blob) {\n",
- " /* FIXME: We get \"Resource interpreted as Image but\n",
- " * transferred with MIME type text/plain:\" errors on\n",
- " * Chrome. But how to set the MIME type? It doesn't seem\n",
- " * to be part of the websocket stream */\n",
- " evt.data.type = \"image/png\";\n",
- "\n",
- " /* Free the memory for the previous frames */\n",
- " if (fig.imageObj.src) {\n",
- " (window.URL || window.webkitURL).revokeObjectURL(\n",
- " fig.imageObj.src);\n",
- " }\n",
- "\n",
- " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
- " evt.data);\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
- " fig.imageObj.src = evt.data;\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- "\n",
- " var msg = JSON.parse(evt.data);\n",
- " var msg_type = msg['type'];\n",
- "\n",
- " // Call the \"handle_{type}\" callback, which takes\n",
- " // the figure and JSON message as its only arguments.\n",
- " try {\n",
- " var callback = fig[\"handle_\" + msg_type];\n",
- " } catch (e) {\n",
- " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
- " return;\n",
- " }\n",
- "\n",
- " if (callback) {\n",
- " try {\n",
- " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
- " callback(fig, msg);\n",
- " } catch (e) {\n",
- " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
- " }\n",
- " }\n",
- " };\n",
- "}\n",
- "\n",
- "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
- "mpl.findpos = function(e) {\n",
- " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
- " var targ;\n",
- " if (!e)\n",
- " e = window.event;\n",
- " if (e.target)\n",
- " targ = e.target;\n",
- " else if (e.srcElement)\n",
- " targ = e.srcElement;\n",
- " if (targ.nodeType == 3) // defeat Safari bug\n",
- " targ = targ.parentNode;\n",
- "\n",
- " // jQuery normalizes the pageX and pageY\n",
- " // pageX,Y are the mouse positions relative to the document\n",
- " // offset() returns the position of the element relative to the document\n",
- " var x = e.pageX - $(targ).offset().left;\n",
- " var y = e.pageY - $(targ).offset().top;\n",
- "\n",
- " return {\"x\": x, \"y\": y};\n",
- "};\n",
- "\n",
- "/*\n",
- " * return a copy of an object with only non-object keys\n",
- " * we need this to avoid circular references\n",
- " * http://stackoverflow.com/a/24161582/3208463\n",
- " */\n",
- "function simpleKeys (original) {\n",
- " return Object.keys(original).reduce(function (obj, key) {\n",
- " if (typeof original[key] !== 'object')\n",
- " obj[key] = original[key]\n",
- " return obj;\n",
- " }, {});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.mouse_event = function(event, name) {\n",
- " var canvas_pos = mpl.findpos(event)\n",
- "\n",
- " if (name === 'button_press')\n",
- " {\n",
- " this.canvas.focus();\n",
- " this.canvas_div.focus();\n",
- " }\n",
- "\n",
- " var x = canvas_pos.x * mpl.ratio;\n",
- " var y = canvas_pos.y * mpl.ratio;\n",
- "\n",
- " this.send_message(name, {x: x, y: y, button: event.button,\n",
- " step: event.step,\n",
- " guiEvent: simpleKeys(event)});\n",
- "\n",
- " /* This prevents the web browser from automatically changing to\n",
- " * the text insertion cursor when the button is pressed. We want\n",
- " * to control all of the cursor setting manually through the\n",
- " * 'cursor' event from matplotlib */\n",
- " event.preventDefault();\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " // Handle any extra behaviour associated with a key event\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.key_event = function(event, name) {\n",
- "\n",
- " // Prevent repeat events\n",
- " if (name == 'key_press')\n",
- " {\n",
- " if (event.which === this._key)\n",
- " return;\n",
- " else\n",
- " this._key = event.which;\n",
- " }\n",
- " if (name == 'key_release')\n",
- " this._key = null;\n",
- "\n",
- " var value = '';\n",
- " if (event.ctrlKey && event.which != 17)\n",
- " value += \"ctrl+\";\n",
- " if (event.altKey && event.which != 18)\n",
- " value += \"alt+\";\n",
- " if (event.shiftKey && event.which != 16)\n",
- " value += \"shift+\";\n",
- "\n",
- " value += 'k';\n",
- " value += event.which.toString();\n",
- "\n",
- " this._key_event_extra(event, name);\n",
- "\n",
- " this.send_message(name, {key: value,\n",
- " guiEvent: simpleKeys(event)});\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
- " if (name == 'download') {\n",
- " this.handle_save(this, null);\n",
- " } else {\n",
- " this.send_message(\"toolbar_button\", {name: name});\n",
- " }\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
- " this.message.textContent = tooltip;\n",
- "};\n",
- "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
- "\n",
- "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
- "\n",
- "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
- " // Create a \"websocket\"-like object which calls the given IPython comm\n",
- " // object with the appropriate methods. Currently this is a non binary\n",
- " // socket, so there is still some room for performance tuning.\n",
- " var ws = {};\n",
- "\n",
- " ws.close = function() {\n",
- " comm.close()\n",
- " };\n",
- " ws.send = function(m) {\n",
- " //console.log('sending', m);\n",
- " comm.send(m);\n",
- " };\n",
- " // Register the callback with on_msg.\n",
- " comm.on_msg(function(msg) {\n",
- " //console.log('receiving', msg['content']['data'], msg);\n",
- " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
- " ws.onmessage(msg['content']['data'])\n",
- " });\n",
- " return ws;\n",
- "}\n",
- "\n",
- "mpl.mpl_figure_comm = function(comm, msg) {\n",
- " // This is the function which gets called when the mpl process\n",
- " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
- "\n",
- " var id = msg.content.data.id;\n",
- " // Get hold of the div created by the display call when the Comm\n",
- " // socket was opened in Python.\n",
- " var element = $(\"#\" + id);\n",
- " var ws_proxy = comm_websocket_adapter(comm)\n",
- "\n",
- " function ondownload(figure, format) {\n",
- " window.open(figure.imageObj.src);\n",
- " }\n",
- "\n",
- " var fig = new mpl.figure(id, ws_proxy,\n",
- " ondownload,\n",
- " element.get(0));\n",
- "\n",
- " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
- " // web socket which is closed, not our websocket->open comm proxy.\n",
- " ws_proxy.onopen();\n",
- "\n",
- " fig.parent_element = element.get(0);\n",
- " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
- " if (!fig.cell_info) {\n",
- " console.error(\"Failed to find cell for figure\", id, fig);\n",
- " return;\n",
- " }\n",
- "\n",
- " var output_index = fig.cell_info[2]\n",
- " var cell = fig.cell_info[0];\n",
- "\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
- " var width = fig.canvas.width/mpl.ratio\n",
- " fig.root.unbind('remove')\n",
- "\n",
- " // Update the output cell to use the data from the current canvas.\n",
- " fig.push_to_output();\n",
- " var dataURL = fig.canvas.toDataURL();\n",
- " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
- " // the notebook keyboard shortcuts fail.\n",
- " IPython.keyboard_manager.enable()\n",
- " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
- " fig.close_ws(fig, msg);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.close_ws = function(fig, msg){\n",
- " fig.send_message('closing', msg);\n",
- " // fig.ws.close()\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
- " // Turn the data on the canvas into data in the output cell.\n",
- " var width = this.canvas.width/mpl.ratio\n",
- " var dataURL = this.canvas.toDataURL();\n",
- " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Tell IPython that the notebook contents must change.\n",
- " IPython.notebook.set_dirty(true);\n",
- " this.send_message(\"ack\", {});\n",
- " var fig = this;\n",
- " // Wait a second, then push the new image to the DOM so\n",
- " // that it is saved nicely (might be nice to debounce this).\n",
- " setTimeout(function () { fig.push_to_output() }, 1000);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('<div/>')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items){\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) { continue; };\n",
- "\n",
- " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " // Add the status bar.\n",
- " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "\n",
- " // Add the close button to the window.\n",
- " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
- " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
- " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
- " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
- " buttongrp.append(button);\n",
- " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
- " titlebar.prepend(buttongrp);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(el){\n",
- " var fig = this\n",
- " el.on(\"remove\", function(){\n",
- "\tfig.close_ws(fig, {});\n",
- " });\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(el){\n",
- " // this is important to make the div 'focusable\n",
- " el.attr('tabindex', 0)\n",
- " // reach out to IPython and tell the keyboard manager to turn it's self\n",
- " // off when our div gets focus\n",
- "\n",
- " // location in version 3\n",
- " if (IPython.notebook.keyboard_manager) {\n",
- " IPython.notebook.keyboard_manager.register_events(el);\n",
- " }\n",
- " else {\n",
- " // location in version 2\n",
- " IPython.keyboard_manager.register_events(el);\n",
- " }\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " var manager = IPython.notebook.keyboard_manager;\n",
- " if (!manager)\n",
- " manager = IPython.keyboard_manager;\n",
- "\n",
- " // Check for shift+enter\n",
- " if (event.shiftKey && event.which == 13) {\n",
- " this.canvas_div.blur();\n",
- " event.shiftKey = false;\n",
- " // Send a \"J\" for go to next cell\n",
- " event.which = 74;\n",
- " event.keyCode = 74;\n",
- " manager.command_mode();\n",
- " manager.handle_keydown(event);\n",
- " }\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " fig.ondownload(fig, null);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.find_output_cell = function(html_output) {\n",
- " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
- " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
- " // IPython event is triggered only after the cells have been serialised, which for\n",
- " // our purposes (turning an active figure into a static one), is too late.\n",
- " var cells = IPython.notebook.get_cells();\n",
- " var ncells = cells.length;\n",
- " for (var i=0; i<ncells; i++) {\n",
- " var cell = cells[i];\n",
- " if (cell.cell_type === 'code'){\n",
- " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
- " var data = cell.output_area.outputs[j];\n",
- " if (data.data) {\n",
- " // IPython >= 3 moved mimebundle to data attribute of output\n",
- " data = data.data;\n",
- " }\n",
- " if (data['text/html'] == html_output) {\n",
- " return [cell, data, j];\n",
- " }\n",
- " }\n",
- " }\n",
- " }\n",
- "}\n",
- "\n",
- "// Register the function which deals with the matplotlib target/channel.\n",
- "// The kernel may be null if the page has been refreshed.\n",
- "if (IPython.notebook.kernel != null) {\n",
- " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
- "}\n"
- ],
- "text/plain": [
- "<IPython.core.display.Javascript object>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<img src=\"\" width=\"640\">"
- ],
- "text/plain": [
- "<IPython.core.display.HTML object>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.figure()\n",
- "plt.plot(pv_pot.isel(DF_UID = 22249).pv_potential.values)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.4"
+ "version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Shading/partly_shaded_viz.ipynb b/Shading/partly_shaded_viz.ipynb
deleted file mode 100644
index a743f96..0000000
--- a/Shading/partly_shaded_viz.ipynb
+++ /dev/null
@@ -1,61 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "import pandas as pd\n",
- "import xarray as xr\n",
- "\n",
- "from partly_shading_conversion import combine_partly_shading_from_file\n",
- "\n",
- "%matplotlib notebook\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "import sys\n",
- "import os"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "path = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/shading_stats'\n",
- "data = xr.open_mfdataset( os.path.join( path, 'CH_partly_shading_replaced_debiased.nc' ) )"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.1"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/Tilted_irradiance/.ipynb_checkpoints/skyview_factor-checkpoint.ipynb b/Tilted_irradiance/.ipynb_checkpoints/skyview_factor-checkpoint.ipynb
index 0db6b11..18d9da6 100644
--- a/Tilted_irradiance/.ipynb_checkpoints/skyview_factor-checkpoint.ipynb
+++ b/Tilted_irradiance/.ipynb_checkpoints/skyview_factor-checkpoint.ipynb
@@ -1,6699 +1,9762 @@
{
"cells": [
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 1,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/walch/miniconda3/envs/py3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
+ " from ._conv import register_converters as _register_converters\n"
+ ]
+ }
+ ],
"source": [
"import pandas as pd\n",
"import xarray as xr\n",
"import numpy as np\n",
"from pvlib.tools import cosd\n",
"import scipy.stats as stats\n",
"\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt\n",
"\n",
+ "import calendar\n",
+ "\n",
"import os\n",
"import time\n",
"import util"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"path = '/work/hyenergy/output/solar_potential/geographic_potential/tilted_irradiance/'\n",
"skyview_stats = pd.read_csv( os.path.join(path, 'skyview_stats.csv') ) # from 2m DOM\n",
"merged_stats = pd.read_csv( os.path.join(path, 'skyview_merged_stats.csv') )"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>zone</th>\n",
" <th>label</th>\n",
" <th>non_null_cells</th>\n",
" <th>null_cells</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>range</th>\n",
" <th>mean</th>\n",
" <th>mean_of_abs</th>\n",
" <th>stddev</th>\n",
" <th>variance</th>\n",
" <th>coeff_var</th>\n",
" <th>sum</th>\n",
" <th>sum_abs</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4879560</td>\n",
" <td>NaN</td>\n",
" <td>20</td>\n",
" <td>0</td>\n",
" <td>0.448777</td>\n",
" <td>0.579490</td>\n",
" <td>0.130713</td>\n",
" <td>0.537930</td>\n",
" <td>0.537930</td>\n",
" <td>0.035747</td>\n",
" <td>0.001278</td>\n",
" <td>6.645317</td>\n",
" <td>10.758608</td>\n",
" <td>10.758608</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4879561</td>\n",
" <td>NaN</td>\n",
" <td>9</td>\n",
" <td>0</td>\n",
" <td>0.437539</td>\n",
" <td>0.626010</td>\n",
" <td>0.188472</td>\n",
" <td>0.543964</td>\n",
" <td>0.543964</td>\n",
" <td>0.061913</td>\n",
" <td>0.003833</td>\n",
" <td>11.381847</td>\n",
" <td>4.895678</td>\n",
" <td>4.895678</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4879562</td>\n",
" <td>NaN</td>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>0.525769</td>\n",
" <td>0.631051</td>\n",
" <td>0.105282</td>\n",
" <td>0.601935</td>\n",
" <td>0.601935</td>\n",
" <td>0.031992</td>\n",
" <td>0.001024</td>\n",
" <td>5.314931</td>\n",
" <td>9.029022</td>\n",
" <td>9.029022</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4879563</td>\n",
" <td>NaN</td>\n",
" <td>6</td>\n",
" <td>0</td>\n",
" <td>0.502072</td>\n",
" <td>0.614747</td>\n",
" <td>0.112675</td>\n",
" <td>0.568163</td>\n",
" <td>0.568163</td>\n",
" <td>0.041745</td>\n",
" <td>0.001743</td>\n",
" <td>7.347364</td>\n",
" <td>3.408977</td>\n",
" <td>3.408977</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4879564</td>\n",
" <td>NaN</td>\n",
" <td>9</td>\n",
" <td>0</td>\n",
" <td>0.430417</td>\n",
" <td>0.596541</td>\n",
" <td>0.166124</td>\n",
" <td>0.508238</td>\n",
" <td>0.508238</td>\n",
" <td>0.052079</td>\n",
" <td>0.002712</td>\n",
" <td>10.247045</td>\n",
" <td>4.574139</td>\n",
" <td>4.574139</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" zone label non_null_cells null_cells min max range \\\n",
"0 4879560 NaN 20 0 0.448777 0.579490 0.130713 \n",
"1 4879561 NaN 9 0 0.437539 0.626010 0.188472 \n",
"2 4879562 NaN 15 0 0.525769 0.631051 0.105282 \n",
"3 4879563 NaN 6 0 0.502072 0.614747 0.112675 \n",
"4 4879564 NaN 9 0 0.430417 0.596541 0.166124 \n",
"\n",
" mean mean_of_abs stddev variance coeff_var sum sum_abs \n",
"0 0.537930 0.537930 0.035747 0.001278 6.645317 10.758608 10.758608 \n",
"1 0.543964 0.543964 0.061913 0.003833 11.381847 4.895678 4.895678 \n",
"2 0.601935 0.601935 0.031992 0.001024 5.314931 9.029022 9.029022 \n",
"3 0.568163 0.568163 0.041745 0.001743 7.347364 3.408977 3.408977 \n",
"4 0.508238 0.508238 0.052079 0.002712 10.247045 4.574139 4.574139 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"skyview_stats.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"212059"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(skyview_stats)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"zone 5.004933e+06\n",
"label NaN\n",
"non_null_cells 1.998777e+01\n",
"null_cells 0.000000e+00\n",
"min 6.067868e-01\n",
"max 8.168479e-01\n",
"range 2.100611e-01\n",
"mean 7.272358e-01\n",
"mean_of_abs 7.272358e-01\n",
"stddev 6.349468e-02\n",
"variance 5.760109e-03\n",
"coeff_var 9.160844e+00\n",
"sum 1.530654e+01\n",
"sum_abs 1.530654e+01\n",
"dtype: float64"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"skyview_stats.mean()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>zone</th>\n",
" <th>label</th>\n",
" <th>non_null_cells</th>\n",
" <th>null_cells</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>range</th>\n",
" <th>mean</th>\n",
" <th>mean_of_abs</th>\n",
" <th>stddev</th>\n",
" <th>variance</th>\n",
" <th>coeff_var</th>\n",
" <th>sum</th>\n",
" <th>sum_abs</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4817081</td>\n",
" <td>NaN</td>\n",
" <td>406</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>406.0</td>\n",
" <td>406.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4817082</td>\n",
" <td>NaN</td>\n",
" <td>432</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>432.0</td>\n",
" <td>432.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4817083</td>\n",
" <td>NaN</td>\n",
" <td>423</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>423.0</td>\n",
" <td>423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4817084</td>\n",
" <td>NaN</td>\n",
" <td>419</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>419.0</td>\n",
" <td>419.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4817085</td>\n",
" <td>NaN</td>\n",
" <td>535</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>535.0</td>\n",
" <td>535.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" zone label non_null_cells null_cells min max range mean \\\n",
"0 4817081 NaN 406 0 1.0 1.0 0.0 1.0 \n",
"1 4817082 NaN 432 0 1.0 1.0 0.0 1.0 \n",
"2 4817083 NaN 423 0 1.0 1.0 0.0 1.0 \n",
"3 4817084 NaN 419 0 1.0 1.0 0.0 1.0 \n",
"4 4817085 NaN 535 0 1.0 1.0 0.0 1.0 \n",
"\n",
" mean_of_abs stddev variance coeff_var sum sum_abs \n",
"0 1.0 0.0 0.0 0.0 406.0 406.0 \n",
"1 1.0 0.0 0.0 0.0 432.0 432.0 \n",
"2 1.0 0.0 0.0 0.0 423.0 423.0 \n",
"3 1.0 0.0 0.0 0.0 419.0 419.0 \n",
"4 1.0 0.0 0.0 0.0 535.0 535.0 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_stats.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"244075"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(merged_stats)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"zone 4.998131e+06\n",
"label NaN\n",
"non_null_cells 2.903269e+02\n",
"null_cells 0.000000e+00\n",
"min 3.634644e-01\n",
"max 8.380713e-01\n",
"range 4.746069e-01\n",
"mean 6.776022e-01\n",
"mean_of_abs 6.776022e-01\n",
"stddev 8.572729e-02\n",
"variance 1.065515e-02\n",
"coeff_var 1.509738e+01\n",
"sum 2.070582e+02\n",
"sum_abs 2.070582e+02\n",
"dtype: float64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_stats.mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert skyview stats to suitable dataframe"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"skyview_stats.rename(columns = {'zone' : 'DF_UID', 'mean' : 'SVF_2m', 'stddev' : 'std_2m'}, inplace = True)\n",
"skyview_2m = skyview_stats.set_index('DF_UID')[['SVF_2m', 'std_2m']]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"merged_stats.rename(columns = {'zone' : 'DF_UID', 'mean' : 'SVF_50cm', 'stddev' : 'std_50cm'}, inplace = True)\n",
"skyview_50cm = merged_stats.set_index('DF_UID')[['SVF_50cm', 'std_50cm']]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"skyview = skyview_2m.merge(skyview_50cm, left_index = True, right_index = True, how = 'inner')"
]
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SVF_2m</th>\n",
" <th>std_2m</th>\n",
" <th>SVF_50cm</th>\n",
" <th>std_50cm</th>\n",
- " <th>bias</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
- " <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>4879560</th>\n",
" <td>0.537930</td>\n",
" <td>0.035747</td>\n",
" <td>0.497254</td>\n",
" <td>0.051997</td>\n",
- " <td>-0.040677</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879561</th>\n",
" <td>0.543964</td>\n",
" <td>0.061913</td>\n",
" <td>0.474188</td>\n",
" <td>0.106268</td>\n",
- " <td>-0.069776</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879562</th>\n",
" <td>0.601935</td>\n",
" <td>0.031992</td>\n",
" <td>0.546454</td>\n",
" <td>0.051656</td>\n",
- " <td>-0.055481</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879563</th>\n",
" <td>0.568163</td>\n",
" <td>0.041745</td>\n",
" <td>0.509543</td>\n",
" <td>0.042314</td>\n",
- " <td>-0.058620</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879564</th>\n",
" <td>0.508238</td>\n",
" <td>0.052079</td>\n",
" <td>0.429219</td>\n",
" <td>0.077267</td>\n",
- " <td>-0.079019</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
- " SVF_2m std_2m SVF_50cm std_50cm bias\n",
- "DF_UID \n",
- "4879560 0.537930 0.035747 0.497254 0.051997 -0.040677\n",
- "4879561 0.543964 0.061913 0.474188 0.106268 -0.069776\n",
- "4879562 0.601935 0.031992 0.546454 0.051656 -0.055481\n",
- "4879563 0.568163 0.041745 0.509543 0.042314 -0.058620\n",
- "4879564 0.508238 0.052079 0.429219 0.077267 -0.079019"
+ " SVF_2m std_2m SVF_50cm std_50cm\n",
+ "DF_UID \n",
+ "4879560 0.537930 0.035747 0.497254 0.051997\n",
+ "4879561 0.543964 0.061913 0.474188 0.106268\n",
+ "4879562 0.601935 0.031992 0.546454 0.051656\n",
+ "4879563 0.568163 0.041745 0.509543 0.042314\n",
+ "4879564 0.508238 0.052079 0.429219 0.077267"
]
},
- "execution_count": 14,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"skyview.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute bias"
]
},
{
"cell_type": "code",
- "execution_count": 82,
+ "execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"skyview['bias'] = skyview.SVF_2m - skyview.SVF_50cm"
]
},
{
"cell_type": "code",
- "execution_count": 83,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean bias of SVF: 7.16 percent\n",
"Std deviation of SVF: 12.09 percent\n"
]
}
],
"source": [
"print('Mean bias of SVF: %.2f percent' %(skyview['bias'].mean() * 100))\n",
"print('Std deviation of SVF: %.2f percent' %(skyview['bias'].std() * 100))"
]
},
{
"cell_type": "code",
- "execution_count": 85,
+ "execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
- "[<matplotlib.lines.Line2D at 0x7f728bd9ac18>]"
+ "[<matplotlib.lines.Line2D at 0x7f34c51cce48>]"
]
},
- "execution_count": 85,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plt.figure()\n",
"skyview.bias.hist(bins = 100, density = True)\n",
"x = np.linspace(-0.5, 0.5, 100)\n",
"plt.plot(x, stats.norm.pdf(x, skyview['bias'].mean(), skyview['bias'].std()))"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# save mean and std deviation of random variable \"SVF bias\"\n",
+ "df=pd.DataFrame(data = [skyview['bias'].mean(), skyview['bias'].std()], columns = ['SVF'], index = ['mean', 'std']).T\n",
+ "df.to_csv('/work/hyenergy/output/solar_potential/uncertainty/SVF_RV_mean_std.csv')"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load shading data"
]
},
{
"cell_type": "code",
- "execution_count": 70,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"path = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/shading_stats'\n",
"shade_bias = pd.read_csv( os.path.join(path, 'GVA_bias_2m-50cm.csv') )"
]
},
{
"cell_type": "code",
- "execution_count": 71,
+ "execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>non_null_cells</th>\n",
" <th>n_cells</th>\n",
" <th>fully_shaded_ratio</th>\n",
" <th>mean_12_13h</th>\n",
" <th>mean_1_16h</th>\n",
" <th>mean_11_10h</th>\n",
" <th>mean_7_15h</th>\n",
" <th>mean_6_18h</th>\n",
" <th>mean_6_10h</th>\n",
" <th>...</th>\n",
" <th>mean_11_12h</th>\n",
" <th>mean_9_11h</th>\n",
" <th>mean_5_6h</th>\n",
" <th>mean_8_16h</th>\n",
" <th>mean_9_9h</th>\n",
" <th>mean_2_16h</th>\n",
" <th>mean_5_10h</th>\n",
" <th>mean_4_8h</th>\n",
" <th>mean_8_12h</th>\n",
" <th>mean_12_12h</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4817081</td>\n",
" <td>-378</td>\n",
" <td>-378</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4817082</td>\n",
" <td>-406</td>\n",
" <td>-406</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.076923</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4817083</td>\n",
" <td>-398</td>\n",
" <td>-398</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.960000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.56</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4817084</td>\n",
" <td>-394</td>\n",
" <td>-394</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.88</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4817085</td>\n",
" <td>-501</td>\n",
" <td>-501</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.882353</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.205882</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 150 columns</p>\n",
"</div>"
],
"text/plain": [
" DF_UID non_null_cells n_cells fully_shaded_ratio mean_12_13h \\\n",
"0 4817081 -378 -378 0.0 0.0 \n",
"1 4817082 -406 -406 0.0 0.0 \n",
"2 4817083 -398 -398 0.0 0.0 \n",
"3 4817084 -394 -394 0.0 0.0 \n",
"4 4817085 -501 -501 0.0 0.0 \n",
"\n",
" mean_1_16h mean_11_10h mean_7_15h mean_6_18h mean_6_10h ... \\\n",
"0 -1.000000 0.0 0.0 0.000000 0.0 ... \n",
"1 -1.000000 0.0 0.0 -0.076923 0.0 ... \n",
"2 -0.960000 0.0 0.0 0.000000 0.0 ... \n",
"3 -1.000000 0.0 0.0 0.000000 0.0 ... \n",
"4 -0.882353 0.0 0.0 0.000000 0.0 ... \n",
"\n",
" mean_11_12h mean_9_11h mean_5_6h mean_8_16h mean_9_9h mean_2_16h \\\n",
"0 0.0 0.0 0.000000 0.0 0.0 0.00 \n",
"1 0.0 0.0 0.000000 0.0 0.0 0.00 \n",
"2 0.0 0.0 0.000000 0.0 0.0 -0.56 \n",
"3 0.0 0.0 0.000000 0.0 0.0 -0.88 \n",
"4 0.0 0.0 -0.205882 0.0 0.0 0.00 \n",
"\n",
" mean_5_10h mean_4_8h mean_8_12h mean_12_12h \n",
"0 0.0 0.0 0.0 0.0 \n",
"1 0.0 0.0 0.0 0.0 \n",
"2 0.0 0.0 0.0 0.0 \n",
"3 0.0 0.0 0.0 0.0 \n",
"4 0.0 0.0 0.0 0.0 \n",
"\n",
"[5 rows x 150 columns]"
]
},
- "execution_count": 71,
+ "execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"shade_bias.head()"
]
},
{
"cell_type": "code",
- "execution_count": 72,
+ "execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"shade_bias_mean = shade_bias.mean()\n",
"shade_bias_std = shade_bias.std()"
]
},
{
"cell_type": "code",
- "execution_count": 73,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"rename_dict = {}\n",
"Ssh = pd.DataFrame(data = 0, columns = ['mean', 'std'], index = range(288))\n",
"\n",
"for col in shade_bias_mean.index:\n",
" name = col.split('_')\n",
" if name[0] == 'mean':\n",
" hour_idx = (int(name[1]) - 1) * 24 + int(name[2][:-1])\n",
" Ssh.loc[hour_idx,:] = [shade_bias_mean[col], shade_bias_std[col]]\n",
" rename_dict[col] = hour_idx\n",
"# shade_bias_mean\n",
- "Ssh.sort_index(inplace = True)"
+ "Ssh.sort_index(inplace = True)\n",
+ "Ssh.index.rename('hour_idx', inplace = True)"
]
},
{
"cell_type": "code",
- "execution_count": 104,
+ "execution_count": 6,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"shade_bias_hourly = shade_bias.set_index('DF_UID').rename(columns = rename_dict).iloc[:,4:].sort_index(axis = 1)\n",
"shade_bias_hourly['Csh'] = - shade_bias.fully_shaded_ratio.values # negative value to obtain bias for (1-Csh)"
]
},
{
"cell_type": "code",
- "execution_count": 75,
+ "execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"mean 0.027160\n",
"std 0.247525\n",
"dtype: float64"
]
},
- "execution_count": 75,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ssh[Ssh['std'] > 0].mean()"
]
},
{
"cell_type": "code",
- "execution_count": 86,
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"1200\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "<matplotlib.axes._subplots.AxesSubplot at 0x7f728c157eb8>"
- ]
- },
- "execution_count": 86,
- "metadata": {},
- "output_type": "execute_result"
}
],
"source": [
- "plt.figure()\n",
- "Ssh['mean'].plot()\n",
- "Ssh['std'].plot()"
+ "plt_arr = Ssh[Ssh['std'] > 0]['std']\n",
+ "bias_arr = Ssh[Ssh['std'] > 0]['mean']\n",
+ "\n",
+ "# plt_arr[plt_arr == 0] = np.nan\n",
+ "\n",
+ "plt.figure(figsize = (12, 3))\n",
+ "ax = plt.subplot()\n",
+ "\n",
+ "# Ssh['mean'].plot()\n",
+ "plt_arr.plot(marker = 'x', markersize = 3, c = 'darkblue', label = '$\\sigma_{Ssh}$')\n",
+ "bias_arr.plot(marker = 'x', markersize = 3, c = 'orange', label = 'bias$_{Ssh}$')\n",
+ "\n",
+ "ax.set_xticks(list(range(12, 24*12, 24)))\n",
+ "ax.set_xticklabels(calendar.month_abbr[1:])\n",
+ "ax.set_ylabel('Fraction of roof surface')\n",
+ "ax.set_xlabel('')\n",
+ "ax.set_xlim((0, 12*24))\n",
+ "ax.yaxis.grid(linestyle = '--')\n",
+ "\n",
+ "plt.legend()\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n",
+ "# plt.savefig('Ssh_temporal_var.png', dpi = 300)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# save to file\n",
+ "Ssh.to_csv('/work/hyenergy/output/solar_potential/uncertainty/Ssh_RV_mean_std.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Merge shading data and SVF data to compute correlation"
]
},
{
"cell_type": "code",
- "execution_count": 105,
+ "execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>8</th>\n",
" <th>9</th>\n",
" <th>10</th>\n",
" <th>11</th>\n",
" <th>12</th>\n",
" <th>13</th>\n",
" <th>14</th>\n",
" <th>15</th>\n",
" <th>16</th>\n",
" <th>31</th>\n",
" <th>...</th>\n",
" <th>254</th>\n",
" <th>255</th>\n",
" <th>272</th>\n",
" <th>273</th>\n",
" <th>274</th>\n",
" <th>275</th>\n",
" <th>276</th>\n",
" <th>278</th>\n",
" <th>279</th>\n",
" <th>Csh</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>4817081</th>\n",
" <td>-0.357143</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>-1.000000</td>\n",
" <td>-1.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>-0.464286</td>\n",
" <td>-0.035714</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.678571</td>\n",
" <td>-0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4817082</th>\n",
" <td>-0.076923</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.076923</td>\n",
" <td>-1.000000</td>\n",
" <td>-1.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>-0.615385</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-1.000000</td>\n",
" <td>-0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4817083</th>\n",
" <td>-0.120000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.800000</td>\n",
" <td>-0.960000</td>\n",
" <td>-1.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>-0.200000</td>\n",
" <td>-0.480000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.680000</td>\n",
" <td>-0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4817084</th>\n",
" <td>-0.120000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.400000</td>\n",
" <td>-1.000000</td>\n",
" <td>-1.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>-0.320000</td>\n",
" <td>-0.320000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.480000</td>\n",
" <td>-0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4817085</th>\n",
" <td>-1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>-0.882353</td>\n",
" <td>-1.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>-0.970588</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.735294</td>\n",
" <td>-0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 146 columns</p>\n",
"</div>"
],
"text/plain": [
" 8 9 10 11 12 13 14 15 16 31 ... \\\n",
"DF_UID ... \n",
"4817081 -0.357143 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 -1.000000 -1.0 ... \n",
"4817082 -0.076923 0.0 0.0 0.0 0.0 0.0 0.0 -0.076923 -1.000000 -1.0 ... \n",
"4817083 -0.120000 0.0 0.0 0.0 0.0 0.0 0.0 -0.800000 -0.960000 -1.0 ... \n",
"4817084 -0.120000 0.0 0.0 0.0 0.0 0.0 0.0 -0.400000 -1.000000 -1.0 ... \n",
"4817085 -1.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 -0.882353 -1.0 ... \n",
"\n",
" 254 255 272 273 274 275 276 278 279 Csh \n",
"DF_UID \n",
"4817081 0.0 -0.464286 -0.035714 0.0 0.0 0.0 0.0 0.0 -0.678571 -0.0 \n",
"4817082 0.0 -0.615385 0.000000 0.0 0.0 0.0 0.0 0.0 -1.000000 -0.0 \n",
"4817083 0.0 -0.200000 -0.480000 0.0 0.0 0.0 0.0 0.0 -0.680000 -0.0 \n",
"4817084 0.0 -0.320000 -0.320000 0.0 0.0 0.0 0.0 0.0 -0.480000 -0.0 \n",
"4817085 0.0 0.000000 -0.970588 0.0 0.0 0.0 0.0 0.0 -0.735294 -0.0 \n",
"\n",
"[5 rows x 146 columns]"
]
},
- "execution_count": 105,
+ "execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"shade_bias_hourly.head()"
]
},
{
"cell_type": "code",
- "execution_count": 106,
+ "execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"merged_df = shade_bias_hourly.merge(skyview[['bias']], how = 'inner', left_index = True, right_index = True)\n",
"merged_df.rename(columns = {'bias' : 'SVF'}, inplace = True)"
]
},
{
"cell_type": "code",
- "execution_count": 107,
+ "execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>8</th>\n",
" <th>9</th>\n",
" <th>10</th>\n",
" <th>11</th>\n",
" <th>12</th>\n",
" <th>13</th>\n",
" <th>14</th>\n",
" <th>15</th>\n",
" <th>16</th>\n",
" <th>31</th>\n",
" <th>...</th>\n",
" <th>255</th>\n",
" <th>272</th>\n",
" <th>273</th>\n",
" <th>274</th>\n",
" <th>275</th>\n",
" <th>276</th>\n",
" <th>278</th>\n",
" <th>279</th>\n",
" <th>Csh</th>\n",
" <th>SVF</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>4879560</th>\n",
" <td>0.000000</td>\n",
" <td>-0.186667</td>\n",
" <td>-0.1</td>\n",
" <td>0.31</td>\n",
" <td>0.15</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>-0.050000</td>\n",
" <td>-0.186667</td>\n",
" <td>-0.046667</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.016393</td>\n",
" <td>0.040677</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879561</th>\n",
" <td>0.473913</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.065217</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.256854</td>\n",
" <td>0.069776</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879562</th>\n",
" <td>0.235238</td>\n",
" <td>0.352698</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.537460</td>\n",
" <td>0.352698</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.036494</td>\n",
" <td>0.055481</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879563</th>\n",
" <td>0.000000</td>\n",
" <td>0.333333</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.061224</td>\n",
" <td>0.333333</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.010000</td>\n",
" <td>0.058620</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879564</th>\n",
" <td>0.000000</td>\n",
" <td>0.200000</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.200000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.372457</td>\n",
" <td>0.079019</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 147 columns</p>\n",
"</div>"
],
"text/plain": [
" 8 9 10 11 12 13 14 15 16 31 \\\n",
"DF_UID \n",
"4879560 0.000000 -0.186667 -0.1 0.31 0.15 0.0 0.0 0.0 0.0 0.0 \n",
"4879561 0.473913 0.000000 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0 \n",
"4879562 0.235238 0.352698 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0 \n",
"4879563 0.000000 0.333333 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0 \n",
"4879564 0.000000 0.200000 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0 \n",
"\n",
" ... 255 272 273 274 275 276 278 279 \\\n",
"DF_UID ... \n",
"4879560 ... 0.0 -0.050000 -0.186667 -0.046667 0.0 0.0 0.0 0.0 \n",
"4879561 ... 0.0 0.065217 0.000000 0.000000 0.0 0.0 0.0 0.0 \n",
"4879562 ... 0.0 0.537460 0.352698 0.000000 0.0 0.0 0.0 0.0 \n",
"4879563 ... 0.0 0.061224 0.333333 0.000000 0.0 0.0 0.0 0.0 \n",
"4879564 ... 0.0 0.000000 0.200000 0.000000 0.0 0.0 0.0 0.0 \n",
"\n",
" Csh SVF \n",
"DF_UID \n",
"4879560 0.016393 0.040677 \n",
"4879561 0.256854 0.069776 \n",
"4879562 -0.036494 0.055481 \n",
"4879563 0.010000 0.058620 \n",
"4879564 0.372457 0.079019 \n",
"\n",
"[5 rows x 147 columns]"
]
},
- "execution_count": 107,
+ "execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_df.head()"
]
},
{
"cell_type": "code",
- "execution_count": 137,
+ "execution_count": 52,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
- "<matplotlib.axes._subplots.AxesSubplot at 0x7f728bc8b048>"
+ "<matplotlib.axes._subplots.AxesSubplot at 0x7f99396da668>"
]
},
- "execution_count": 137,
+ "execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_df.plot(x=10, y='SVF', style='o', markersize = 1)"
]
},
{
"cell_type": "code",
- "execution_count": 125,
+ "execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"corr = merged_df.corr()\n",
"cov = merged_df.cov()"
]
},
{
"cell_type": "code",
- "execution_count": 143,
+ "execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"corr_w_SVF = pd.concat([corr.loc[:, 'SVF'].rename('corr'), cov.loc[:, 'SVF'].rename('cov')], axis = 1)\n",
"corr_w_Csh = pd.concat([corr.loc[:, 'Csh'].rename('corr'), cov.loc[:, 'Csh'].rename('cov')], axis = 1)"
]
},
{
"cell_type": "code",
- "execution_count": 138,
+ "execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
- "<matplotlib.axes._subplots.AxesSubplot at 0x7f728bc0b710>"
+ "<matplotlib.axes._subplots.AxesSubplot at 0x7f9939725128>"
]
},
- "execution_count": 138,
+ "execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plt.figure()\n",
"corr_w_SVF['corr'][:-2].plot()"
]
},
{
"cell_type": "code",
- "execution_count": 139,
+ "execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"corr 0.356733\n",
"cov 0.010845\n",
"dtype: float64"
]
},
- "execution_count": 139,
+ "execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"corr_w_SVF.mean()"
]
},
{
"cell_type": "code",
- "execution_count": 144,
+ "execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"corr 0.125164\n",
"cov 0.005559\n",
"dtype: float64"
]
},
- "execution_count": 144,
+ "execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"corr_w_Csh.mean()"
]
},
{
"cell_type": "code",
- "execution_count": 142,
+ "execution_count": 58,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"correlation between SVF and C_sh: 0.564\n",
"covariance between SVF and C_sh: 0.014\n"
]
}
],
"source": [
"print('correlation between SVF and C_sh: %.3f' %corr.loc['Csh', 'SVF'])\n",
"print('covariance between SVF and C_sh: %.3f' %cov.loc[ 'Csh', 'SVF'])"
]
},
{
"cell_type": "code",
- "execution_count": 150,
+ "execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"corr_save = pd.concat([corr_w_SVF.rename(columns = {'corr' : 'corr_SVF', 'cov' : 'cov_SVF'}), \n",
- " corr_w_Csh.rename(columns = {'corr' : 'corr_Csh', 'cov' : 'cov_Csh'})], axis = 1)"
+ " corr_w_Csh.rename(columns = {'corr' : 'corr_Csh', 'cov' : 'cov_Csh'})], axis = 1)\n",
+ "corr_save.index.rename('hour_idx', inplace = True)"
]
},
{
"cell_type": "code",
- "execution_count": 152,
+ "execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"corr_save.to_csv('/work/hyenergy/output/solar_potential/uncertainty/covariance_DSM.csv')"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Attach rooftop data"
]
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"ROOFS='/work/hyenergy/output/solar_potential/geographic_potential/CH_ROOFS_all_replaced.csv'\n",
"roofs = pd.read_csv(ROOFS, usecols = ['DF_UID', 'NEIGUNG', 'AUSRICHTUNG', 'FLAECHE'])"
]
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
"SVF = skyview.merge(roofs, left_index = True, right_on = 'DF_UID', how = 'left')"
]
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"SVF['AREA'] = util.round_to_interval(SVF['FLAECHE'], 10)"
]
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"SVF['bias'] = SVF.SVF_2m - SVF.SVF_50cm"
]
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"SVF_2m 7.272423e-01\n",
"std_2m 6.351421e-02\n",
"SVF_50cm 6.556163e-01\n",
"std_50cm 9.321401e-02\n",
+ "bias 7.162608e-02\n",
"DF_UID 5.004925e+06\n",
"FLAECHE 8.545578e+01\n",
"NEIGUNG 2.264418e+01\n",
"AUSRICHTUNG -2.870675e+00\n",
- "AREA 8.545396e+01\n",
- "bias 7.162608e-02\n",
+ "AREA 8.539042e+01\n",
"dtype: float64"
]
},
- "execution_count": 28,
+ "execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF.mean()"
]
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SVF_2m</th>\n",
" <th>std_2m</th>\n",
" <th>SVF_50cm</th>\n",
" <th>std_50cm</th>\n",
+ " <th>bias</th>\n",
" <th>DF_UID</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>AREA</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>4708076</th>\n",
" <td>0.537930</td>\n",
" <td>0.035747</td>\n",
" <td>0.497254</td>\n",
" <td>0.051997</td>\n",
+ " <td>0.040677</td>\n",
" <td>4879560</td>\n",
" <td>78.139731</td>\n",
" <td>9</td>\n",
" <td>-143.0</td>\n",
- " <td>78.0</td>\n",
+ " <td>80.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4708077</th>\n",
" <td>0.543964</td>\n",
" <td>0.061913</td>\n",
" <td>0.474188</td>\n",
" <td>0.106268</td>\n",
+ " <td>0.069776</td>\n",
" <td>4879561</td>\n",
" <td>46.507495</td>\n",
" <td>34</td>\n",
" <td>39.0</td>\n",
- " <td>47.0</td>\n",
+ " <td>50.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4708078</th>\n",
" <td>0.601935</td>\n",
" <td>0.031992</td>\n",
" <td>0.546454</td>\n",
" <td>0.051656</td>\n",
+ " <td>0.055481</td>\n",
" <td>4879562</td>\n",
" <td>65.822671</td>\n",
" <td>28</td>\n",
" <td>-141.0</td>\n",
- " <td>66.0</td>\n",
+ " <td>70.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4708079</th>\n",
" <td>0.568163</td>\n",
" <td>0.041745</td>\n",
" <td>0.509543</td>\n",
" <td>0.042314</td>\n",
+ " <td>0.058620</td>\n",
" <td>4879563</td>\n",
" <td>33.159751</td>\n",
" <td>41</td>\n",
" <td>-51.0</td>\n",
- " <td>33.0</td>\n",
+ " <td>30.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4708080</th>\n",
" <td>0.508238</td>\n",
" <td>0.052079</td>\n",
" <td>0.429219</td>\n",
" <td>0.077267</td>\n",
+ " <td>0.079019</td>\n",
" <td>4879564</td>\n",
" <td>35.956510</td>\n",
" <td>11</td>\n",
" <td>-51.0</td>\n",
- " <td>36.0</td>\n",
+ " <td>40.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
- " SVF_2m std_2m SVF_50cm std_50cm DF_UID FLAECHE NEIGUNG \\\n",
- "4708076 0.537930 0.035747 0.497254 0.051997 4879560 78.139731 9 \n",
- "4708077 0.543964 0.061913 0.474188 0.106268 4879561 46.507495 34 \n",
- "4708078 0.601935 0.031992 0.546454 0.051656 4879562 65.822671 28 \n",
- "4708079 0.568163 0.041745 0.509543 0.042314 4879563 33.159751 41 \n",
- "4708080 0.508238 0.052079 0.429219 0.077267 4879564 35.956510 11 \n",
- "\n",
- " AUSRICHTUNG AREA \n",
- "4708076 -143.0 78.0 \n",
- "4708077 39.0 47.0 \n",
- "4708078 -141.0 66.0 \n",
- "4708079 -51.0 33.0 \n",
- "4708080 -51.0 36.0 "
+ " SVF_2m std_2m SVF_50cm std_50cm bias DF_UID FLAECHE \\\n",
+ "4708076 0.537930 0.035747 0.497254 0.051997 0.040677 4879560 78.139731 \n",
+ "4708077 0.543964 0.061913 0.474188 0.106268 0.069776 4879561 46.507495 \n",
+ "4708078 0.601935 0.031992 0.546454 0.051656 0.055481 4879562 65.822671 \n",
+ "4708079 0.568163 0.041745 0.509543 0.042314 0.058620 4879563 33.159751 \n",
+ "4708080 0.508238 0.052079 0.429219 0.077267 0.079019 4879564 35.956510 \n",
+ "\n",
+ " NEIGUNG AUSRICHTUNG AREA \n",
+ "4708076 9 -143.0 80.0 \n",
+ "4708077 34 39.0 50.0 \n",
+ "4708078 28 -141.0 70.0 \n",
+ "4708079 41 -51.0 30.0 \n",
+ "4708080 11 -51.0 40.0 "
]
},
- "execution_count": 22,
+ "execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF.head()"
]
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (AUSRICHTUNG: 361, NEIGUNG: 70)\n",
"Coordinates:\n",
" * NEIGUNG (NEIGUNG) int64 0 1 2 3 4 5 6 7 8 ... 62 63 64 65 66 67 68 69\n",
" * AUSRICHTUNG (AUSRICHTUNG) float64 -180.0 -179.0 -178.0 ... 179.0 180.0\n",
"Data variables:\n",
" SVF_2m (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" std_2m (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" SVF_50cm (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" std_50cm (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
+ " bias (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" DF_UID (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" FLAECHE (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" AREA (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan"
]
},
- "execution_count": 26,
+ "execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"svf_aspect_tilt = SVF.groupby(['NEIGUNG', 'AUSRICHTUNG']).mean().to_xarray()\n",
"svf_aspect_tilt"
]
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "<matplotlib.collections.QuadMesh at 0x7f9938d8e2e8>"
+ ]
+ },
+ "execution_count": 68,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "svf_aspect_tilt.SVF_50cm.plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
"metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "<xarray.Dataset>\n",
+ "Dimensions: (AREA: 454, AUSRICHTUNG: 361)\n",
+ "Coordinates:\n",
+ " * AUSRICHTUNG (AUSRICHTUNG) float64 -180.0 -179.0 -178.0 ... 179.0 180.0\n",
+ " * AREA (AREA) float64 0.0 10.0 20.0 ... 2.164e+04 2.325e+04 2.351e+04\n",
+ "Data variables:\n",
+ " SVF_2m (AUSRICHTUNG, AREA) float64 0.7526 0.6545 0.6434 ... nan nan\n",
+ " std_2m (AUSRICHTUNG, AREA) float64 0.03314 0.05123 0.04813 ... nan nan\n",
+ " SVF_50cm (AUSRICHTUNG, AREA) float64 0.7312 0.5687 0.6316 ... nan nan\n",
+ " std_50cm (AUSRICHTUNG, AREA) float64 0.0656 0.09705 0.07214 ... nan nan\n",
+ " bias (AUSRICHTUNG, AREA) float64 0.02135 0.08577 0.01173 ... nan nan\n",
+ " DF_UID (AUSRICHTUNG, AREA) float64 4.976e+06 4.975e+06 ... nan nan\n",
+ " FLAECHE (AUSRICHTUNG, AREA) float64 2.913 10.42 20.29 ... nan nan nan\n",
+ " NEIGUNG (AUSRICHTUNG, AREA) float64 24.37 24.93 27.84 ... nan nan nan"
+ ]
+ },
+ "execution_count": 69,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "svf_aspect_area = SVF.groupby(['AUSRICHTUNG', 'AREA']).mean().to_xarray()\n",
+ "svf_aspect_area"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {
+ "scrolled": false
+ },
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
- "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
- "<matplotlib.collections.QuadMesh at 0x7f3ce75ad208>"
+ "(1, 23640.0)"
]
},
- "execution_count": 30,
+ "execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "svf_aspect_tilt.SVF_50cm.plot()"
+ "plt.figure()\n",
+ "svf_aspect_area.SVF_50cm.T.plot()\n",
+ "plt.yscale('log')\n",
+ "plt.ylim(bottom = 1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Verify batch computation for CH"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "path = '/scratch/walch/grassgis/scripts/executables/workspace_skyview/files'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "files = []\n",
+ "for i in range(64):\n",
+ " try:\n",
+ " files.append( pd.read_csv( os.path.join(path, 'skyview_CH_%d_stats.csv' %i )))\n",
+ " except:\n",
+ " print('Skipping %d' %i)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Merging of files**\n",
+ "1. Append all files to one long file (need columns *non_null_cells* and *sum*)\n",
+ "2. Groupby zone and perform sum-operation\n",
+ "3. Compute mean as *sum*/*non_null_cells*\n",
+ "4. Rename \"zone\" to \"DF_UID\" and \"mean\" to \"SVF\"\n",
+ "5. Load roofs to obtain full list of DF_UIDs\n",
+ "6. Refill missing values with the national mean\n",
+ "7. Debias bysubtracting the bias"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 1.\n",
+ "df = pd.concat(files, axis = 0)\n",
+ "df_sel = df[['zone', 'sum', 'non_null_cells']].rename(columns = {'zone' : 'DF_UID'})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_sel['non_null_cells'] = df_sel.non_null_cells.astype(int)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 2. to 4.\n",
+ "df_merged = df_sel.groupby('DF_UID').sum()\n",
+ "df_merged['SVF'] = df_merged['sum']/df_merged['non_null_cells']\n",
+ "SVF = df_merged[['SVF']]"
]
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
- "data": {
- "text/plain": [
- "<xarray.Dataset>\n",
- "Dimensions: (AREA: 454, AUSRICHTUNG: 361)\n",
- "Coordinates:\n",
- " * AUSRICHTUNG (AUSRICHTUNG) float64 -180.0 -179.0 -178.0 ... 179.0 180.0\n",
- " * AREA (AREA) float64 0.0 10.0 20.0 ... 2.164e+04 2.325e+04 2.351e+04\n",
- "Data variables:\n",
- " SVF_2m (AUSRICHTUNG, AREA) float64 0.7526 0.6545 0.6434 ... nan nan\n",
- " std_2m (AUSRICHTUNG, AREA) float64 0.03314 0.05123 0.04813 ... nan nan\n",
- " SVF_50cm (AUSRICHTUNG, AREA) float64 0.7312 0.5687 0.6316 ... nan nan\n",
- " std_50cm (AUSRICHTUNG, AREA) float64 0.0656 0.09705 0.07214 ... nan nan\n",
- " DF_UID (AUSRICHTUNG, AREA) float64 4.976e+06 4.975e+06 ... nan nan\n",
- " FLAECHE (AUSRICHTUNG, AREA) float64 2.913 10.42 20.29 ... nan nan nan\n",
- " NEIGUNG (AUSRICHTUNG, AREA) float64 24.37 24.93 27.84 ... nan nan nan\n",
- " bias (AUSRICHTUNG, AREA) float64 0.02135 0.08577 0.01173 ... nan nan"
- ]
- },
- "execution_count": 34,
- "metadata": {},
- "output_type": "execute_result"
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/walch/miniconda3/envs/py3/lib/python3.6/site-packages/numpy/lib/arraysetops.py:463: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
+ " mask |= (ar1 == a)\n"
+ ]
}
],
"source": [
- "svf_aspect_area = SVF.groupby(['AUSRICHTUNG', 'AREA']).mean().to_xarray()\n",
- "svf_aspect_area"
+ "# 5.\n",
+ "ROOFS='/work/hyenergy/output/solar_potential/geographic_potential/CH_ROOFS_all_replaced.csv'\n",
+ "roofs = pd.read_csv(ROOFS, usecols = ['DF_UID', 'FLAECHE', 'NEIGUNG', 'AUSRICHTUNG'], index_col = 0)"
]
},
{
"cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "scrolled": false
- },
- "outputs": [
- {
- "data": {
- "application/javascript": [
- "/* Put everything inside the global mpl namespace */\n",
- "window.mpl = {};\n",
- "\n",
- "\n",
- "mpl.get_websocket_type = function() {\n",
- " if (typeof(WebSocket) !== 'undefined') {\n",
- " return WebSocket;\n",
- " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
- " return MozWebSocket;\n",
- " } else {\n",
- " alert('Your browser does not have WebSocket support.' +\n",
- " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
- " 'Firefox 4 and 5 are also supported but you ' +\n",
- " 'have to enable WebSockets in about:config.');\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
- " this.id = figure_id;\n",
- "\n",
- " this.ws = websocket;\n",
- "\n",
- " this.supports_binary = (this.ws.binaryType != undefined);\n",
- "\n",
- " if (!this.supports_binary) {\n",
- " var warnings = document.getElementById(\"mpl-warnings\");\n",
- " if (warnings) {\n",
- " warnings.style.display = 'block';\n",
- " warnings.textContent = (\n",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 6. \n",
+ "SVF_filled = roofs.merge(SVF, left_index = True, right_index = True, how = 'left').fillna(SVF.SVF.mean())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SVF_filled['SVF_unbiased'] = np.minimum(np.maximum(SVF_filled.SVF - skyview['bias'].mean(), 0), 1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SVF_filled.drop(columns = ['FLAECHE', 'NEIGUNG', 'AUSRICHTUNG'], inplace = True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SVF_filled.to_csv('/work/hyenergy/output/solar_potential/geographic_potential/tilted_irradiance/SVF_CH_replaced.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Plot SVF against roof characteristics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SVF = pd.read_csv('/work/hyenergy/output/solar_potential/geographic_potential/tilted_irradiance/SVF_CH_replaced.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SVF_merged = roofs.merge(SVF, left_index = True, right_on = 'DF_UID', how = 'left')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# ADJUST FOR FLAT ROOFS\n",
+ "FLAT = -5.1\n",
+ "SVF_merged['tilt'] = SVF_merged.NEIGUNG\n",
+ "SVF_merged.loc[SVF_merged.NEIGUNG == 0, 'tilt'] = FLAT # NEEDED FOR PLOTTING"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SVF_merged['area_log'] = np.log10(SVF_merged.FLAECHE)\n",
+ "SVF_merged['area_log_round'] = util.round_to_interval(SVF_merged.area_log, 0.2)\n",
+ "SVF_merged['area_log_round'] = np.minimum(np.maximum(SVF_merged.area_log_round, 0.7), 3.2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ASP_ROUND = 10\n",
+ "TILT_ROUND = 10\n",
+ "SVF_merged['NEIGUNG_round'] = util.round_to_interval(SVF_merged.NEIGUNG, 5)\n",
+ "SVF_merged['tilt_round'] = util.round_to_interval(SVF_merged.tilt, TILT_ROUND)\n",
+ "SVF_merged['aspect_round'] = util.round_to_interval(SVF_merged.AUSRICHTUNG, ASP_ROUND)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "\n",
+ "mpl.get_websocket_type = function() {\n",
+ " if (typeof(WebSocket) !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert('Your browser does not have WebSocket support.' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.');\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = (this.ws.binaryType != undefined);\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById(\"mpl-warnings\");\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent = (\n",
+ " \"This browser does not support binary websocket messages. \" +\n",
+ " \"Performance may be slow.\");\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = $('<div/>');\n",
+ " this._root_extra_style(this.root)\n",
+ " this.root.attr('style', 'display: inline-block');\n",
+ "\n",
+ " $(parent_element).append(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+ " fig.send_message(\"send_image_mode\", {});\n",
+ " if (mpl.ratio != 1) {\n",
+ " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+ " }\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " }\n",
+ "\n",
+ " this.imageObj.onload = function() {\n",
+ " if (fig.image_mode == 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function() {\n",
+ " fig.ws.close();\n",
+ " }\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function() {\n",
+ " var titlebar = $(\n",
+ " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+ " 'ui-helper-clearfix\"/>');\n",
+ " var titletext = $(\n",
+ " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+ " 'text-align: center; padding: 3px;\"/>');\n",
+ " titlebar.append(titletext)\n",
+ " this.root.append(titlebar);\n",
+ " this.header = titletext[0];\n",
+ "}\n",
+ "\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = $('<div/>');\n",
+ "\n",
+ " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+ "\n",
+ " function canvas_keyboard_event(event) {\n",
+ " return fig.key_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+ " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+ " this.canvas_div = canvas_div\n",
+ " this._canvas_extra_style(canvas_div)\n",
+ " this.root.append(canvas_div);\n",
+ "\n",
+ " var canvas = $('<canvas/>');\n",
+ " canvas.addClass('mpl-canvas');\n",
+ " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+ "\n",
+ " this.canvas = canvas[0];\n",
+ " this.context = canvas[0].getContext(\"2d\");\n",
+ "\n",
+ " var backingStore = this.context.backingStorePixelRatio ||\n",
+ "\tthis.context.webkitBackingStorePixelRatio ||\n",
+ "\tthis.context.mozBackingStorePixelRatio ||\n",
+ "\tthis.context.msBackingStorePixelRatio ||\n",
+ "\tthis.context.oBackingStorePixelRatio ||\n",
+ "\tthis.context.backingStorePixelRatio || 1;\n",
+ "\n",
+ " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband = $('<canvas/>');\n",
+ " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+ "\n",
+ " var pass_mouse_events = true;\n",
+ "\n",
+ " canvas_div.resizable({\n",
+ " start: function(event, ui) {\n",
+ " pass_mouse_events = false;\n",
+ " },\n",
+ " resize: function(event, ui) {\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " stop: function(event, ui) {\n",
+ " pass_mouse_events = true;\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " });\n",
+ "\n",
+ " function mouse_event_fn(event) {\n",
+ " if (pass_mouse_events)\n",
+ " return fig.mouse_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " rubberband.mousedown('button_press', mouse_event_fn);\n",
+ " rubberband.mouseup('button_release', mouse_event_fn);\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+ "\n",
+ " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+ " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+ "\n",
+ " canvas_div.on(\"wheel\", function (event) {\n",
+ " event = event.originalEvent;\n",
+ " event['data'] = 'scroll'\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " mouse_event_fn(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.append(canvas);\n",
+ " canvas_div.append(rubberband);\n",
+ "\n",
+ " this.rubberband = rubberband;\n",
+ " this.rubberband_canvas = rubberband[0];\n",
+ " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+ " this.rubberband_context.strokeStyle = \"#000000\";\n",
+ "\n",
+ " this._resize_canvas = function(width, height) {\n",
+ " // Keep the size of the canvas, canvas container, and rubber band\n",
+ " // canvas in synch.\n",
+ " canvas_div.css('width', width)\n",
+ " canvas_div.css('height', height)\n",
+ "\n",
+ " canvas.attr('width', width * mpl.ratio);\n",
+ " canvas.attr('height', height * mpl.ratio);\n",
+ " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+ "\n",
+ " rubberband.attr('width', width);\n",
+ " rubberband.attr('height', height);\n",
+ " }\n",
+ "\n",
+ " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+ " // upon first draw.\n",
+ " this._resize_canvas(600, 600);\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus () {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " // put a spacer in here.\n",
+ " continue;\n",
+ " }\n",
+ " var button = $('<button/>');\n",
+ " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+ " 'ui-button-icon-only');\n",
+ " button.attr('role', 'button');\n",
+ " button.attr('aria-disabled', 'false');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ "\n",
+ " var icon_img = $('<span/>');\n",
+ " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+ " icon_img.addClass(image);\n",
+ " icon_img.addClass('ui-corner-all');\n",
+ "\n",
+ " var tooltip_span = $('<span/>');\n",
+ " tooltip_span.addClass('ui-button-text');\n",
+ " tooltip_span.html(tooltip);\n",
+ "\n",
+ " button.append(icon_img);\n",
+ " button.append(tooltip_span);\n",
+ "\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker_span = $('<span/>');\n",
+ "\n",
+ " var fmt_picker = $('<select/>');\n",
+ " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+ " fmt_picker_span.append(fmt_picker);\n",
+ " nav_element.append(fmt_picker_span);\n",
+ " this.format_dropdown = fmt_picker[0];\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = $(\n",
+ " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+ " fmt_picker.append(option)\n",
+ " }\n",
+ "\n",
+ " // Add hover states to the ui-buttons\n",
+ " $( \".ui-button\" ).hover(\n",
+ " function() { $(this).addClass(\"ui-state-hover\");},\n",
+ " function() { $(this).removeClass(\"ui-state-hover\");}\n",
+ " );\n",
+ "\n",
+ " var status_bar = $('<span class=\"mpl-message\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function(type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function() {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1]);\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+ " var x0 = msg['x0'] / mpl.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+ " var x1 = msg['x1'] / mpl.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0, 0, fig.canvas.width, fig.canvas.height);\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch(cursor)\n",
+ " {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message(\"ack\", {});\n",
+ "}\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = \"image/png\";\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data);\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig[\"handle_\" + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function(e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e)\n",
+ " e = window.event;\n",
+ " if (e.target)\n",
+ " targ = e.target;\n",
+ " else if (e.srcElement)\n",
+ " targ = e.srcElement;\n",
+ " if (targ.nodeType == 3) // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ "\n",
+ " // jQuery normalizes the pageX and pageY\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " // offset() returns the position of the element relative to the document\n",
+ " var x = e.pageX - $(targ).offset().left;\n",
+ " var y = e.pageY - $(targ).offset().top;\n",
+ "\n",
+ " return {\"x\": x, \"y\": y};\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys (original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object')\n",
+ " obj[key] = original[key]\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+ " var canvas_pos = mpl.findpos(event)\n",
+ "\n",
+ " if (name === 'button_press')\n",
+ " {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * mpl.ratio;\n",
+ " var y = canvas_pos.y * mpl.ratio;\n",
+ "\n",
+ " this.send_message(name, {x: x, y: y, button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function(event, name) {\n",
+ "\n",
+ " // Prevent repeat events\n",
+ " if (name == 'key_press')\n",
+ " {\n",
+ " if (event.which === this._key)\n",
+ " return;\n",
+ " else\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " if (name == 'key_release')\n",
+ " this._key = null;\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which != 17)\n",
+ " value += \"ctrl+\";\n",
+ " if (event.altKey && event.which != 18)\n",
+ " value += \"alt+\";\n",
+ " if (event.shiftKey && event.which != 16)\n",
+ " value += \"shift+\";\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, {key: value,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+ " if (name == 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message(\"toolbar_button\", {name: name});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function() {\n",
+ " comm.close()\n",
+ " };\n",
+ " ws.send = function(m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function(msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data'])\n",
+ " });\n",
+ " return ws;\n",
+ "}\n",
+ "\n",
+ "mpl.mpl_figure_comm = function(comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = $(\"#\" + id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm)\n",
+ "\n",
+ " function ondownload(figure, format) {\n",
+ " window.open(figure.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy,\n",
+ " ondownload,\n",
+ " element.get(0));\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element.get(0);\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error(\"Failed to find cell for figure\", id, fig);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var output_index = fig.cell_info[2]\n",
+ " var cell = fig.cell_info[0];\n",
+ "\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+ " var width = fig.canvas.width/mpl.ratio\n",
+ " fig.root.unbind('remove')\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable()\n",
+ " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+ " fig.close_ws(fig, msg);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width/mpl.ratio\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message(\"ack\", {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () { fig.push_to_output() }, 1000);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items){\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) { continue; };\n",
+ "\n",
+ " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+ " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+ " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+ " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+ " buttongrp.append(button);\n",
+ " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+ " titlebar.prepend(buttongrp);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(el){\n",
+ " var fig = this\n",
+ " el.on(\"remove\", function(){\n",
+ "\tfig.close_ws(fig, {});\n",
+ " });\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+ " // this is important to make the div 'focusable\n",
+ " el.attr('tabindex', 0)\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " }\n",
+ " else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager)\n",
+ " manager = IPython.keyboard_manager;\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which == 13) {\n",
+ " this.canvas_div.blur();\n",
+ " event.shiftKey = false;\n",
+ " // Send a \"J\" for go to next cell\n",
+ " event.which = 74;\n",
+ " event.keyCode = 74;\n",
+ " manager.command_mode();\n",
+ " manager.handle_keydown(event);\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.find_output_cell = function(html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i=0; i<ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code'){\n",
+ " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] == html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel != null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "SVF_grouped = SVF_merged.groupby(['tilt_round', 'aspect_round']).mean()\n",
+ "plot_var = SVF_grouped['SVF_unbiased']\n",
+ "plot_array = plot_var.to_xarray()\n",
+ "\n",
+ "plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
+ "\n",
+ "\n",
+ "# prepare data\n",
+ "data = plot_array.values\n",
+ "# theta = np.append(plot_array.aspect_round * np.pi / 180, 2*np.pi) + (0.5 * ASP_ROUND * np.pi / 180)\n",
+ "theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
+ "tilts = plot_array.tilt_round\n",
+ "\n",
+ "X, Y = np.meshgrid( theta, tilts )\n",
+ "\n",
+ "# SET PROPERTIES\n",
+ "VMIN = None\n",
+ "VMAX = None\n",
+ " \n",
+ "plt.figure()\n",
+ "ax = plt.subplot(projection='polar')\n",
+ "ax.set_theta_zero_location('S')\n",
+ "ax.set_theta_direction(-1)\n",
+ "\n",
+ "plt.pcolor(X, Y, data, vmin = VMIN, vmax = VMAX)\n",
+ "cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
+ "# cb.set_label('Uncertainty for (1 - $C_{sh}$)')\n",
+ "\n",
+ "# FORMATTING\n",
+ "xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
+ "yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
+ "ax.set_xticklabels( xticks )\n",
+ "ax.set_yticklabels( yticks )\n",
+ "ax.text(60,80, 'Tilt angle')\n",
+ "ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n",
+ "# plt.savefig('Shade_slope_azimuth_unc.png', dpi = 300)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "\n",
+ "mpl.get_websocket_type = function() {\n",
+ " if (typeof(WebSocket) !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert('Your browser does not have WebSocket support.' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.');\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = (this.ws.binaryType != undefined);\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById(\"mpl-warnings\");\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent = (\n",
+ " \"This browser does not support binary websocket messages. \" +\n",
+ " \"Performance may be slow.\");\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = $('<div/>');\n",
+ " this._root_extra_style(this.root)\n",
+ " this.root.attr('style', 'display: inline-block');\n",
+ "\n",
+ " $(parent_element).append(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+ " fig.send_message(\"send_image_mode\", {});\n",
+ " if (mpl.ratio != 1) {\n",
+ " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+ " }\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " }\n",
+ "\n",
+ " this.imageObj.onload = function() {\n",
+ " if (fig.image_mode == 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function() {\n",
+ " fig.ws.close();\n",
+ " }\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function() {\n",
+ " var titlebar = $(\n",
+ " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+ " 'ui-helper-clearfix\"/>');\n",
+ " var titletext = $(\n",
+ " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+ " 'text-align: center; padding: 3px;\"/>');\n",
+ " titlebar.append(titletext)\n",
+ " this.root.append(titlebar);\n",
+ " this.header = titletext[0];\n",
+ "}\n",
+ "\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = $('<div/>');\n",
+ "\n",
+ " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+ "\n",
+ " function canvas_keyboard_event(event) {\n",
+ " return fig.key_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+ " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+ " this.canvas_div = canvas_div\n",
+ " this._canvas_extra_style(canvas_div)\n",
+ " this.root.append(canvas_div);\n",
+ "\n",
+ " var canvas = $('<canvas/>');\n",
+ " canvas.addClass('mpl-canvas');\n",
+ " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+ "\n",
+ " this.canvas = canvas[0];\n",
+ " this.context = canvas[0].getContext(\"2d\");\n",
+ "\n",
+ " var backingStore = this.context.backingStorePixelRatio ||\n",
+ "\tthis.context.webkitBackingStorePixelRatio ||\n",
+ "\tthis.context.mozBackingStorePixelRatio ||\n",
+ "\tthis.context.msBackingStorePixelRatio ||\n",
+ "\tthis.context.oBackingStorePixelRatio ||\n",
+ "\tthis.context.backingStorePixelRatio || 1;\n",
+ "\n",
+ " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband = $('<canvas/>');\n",
+ " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+ "\n",
+ " var pass_mouse_events = true;\n",
+ "\n",
+ " canvas_div.resizable({\n",
+ " start: function(event, ui) {\n",
+ " pass_mouse_events = false;\n",
+ " },\n",
+ " resize: function(event, ui) {\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " stop: function(event, ui) {\n",
+ " pass_mouse_events = true;\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " });\n",
+ "\n",
+ " function mouse_event_fn(event) {\n",
+ " if (pass_mouse_events)\n",
+ " return fig.mouse_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " rubberband.mousedown('button_press', mouse_event_fn);\n",
+ " rubberband.mouseup('button_release', mouse_event_fn);\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+ "\n",
+ " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+ " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+ "\n",
+ " canvas_div.on(\"wheel\", function (event) {\n",
+ " event = event.originalEvent;\n",
+ " event['data'] = 'scroll'\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " mouse_event_fn(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.append(canvas);\n",
+ " canvas_div.append(rubberband);\n",
+ "\n",
+ " this.rubberband = rubberband;\n",
+ " this.rubberband_canvas = rubberband[0];\n",
+ " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+ " this.rubberband_context.strokeStyle = \"#000000\";\n",
+ "\n",
+ " this._resize_canvas = function(width, height) {\n",
+ " // Keep the size of the canvas, canvas container, and rubber band\n",
+ " // canvas in synch.\n",
+ " canvas_div.css('width', width)\n",
+ " canvas_div.css('height', height)\n",
+ "\n",
+ " canvas.attr('width', width * mpl.ratio);\n",
+ " canvas.attr('height', height * mpl.ratio);\n",
+ " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+ "\n",
+ " rubberband.attr('width', width);\n",
+ " rubberband.attr('height', height);\n",
+ " }\n",
+ "\n",
+ " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+ " // upon first draw.\n",
+ " this._resize_canvas(600, 600);\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus () {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " // put a spacer in here.\n",
+ " continue;\n",
+ " }\n",
+ " var button = $('<button/>');\n",
+ " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+ " 'ui-button-icon-only');\n",
+ " button.attr('role', 'button');\n",
+ " button.attr('aria-disabled', 'false');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ "\n",
+ " var icon_img = $('<span/>');\n",
+ " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+ " icon_img.addClass(image);\n",
+ " icon_img.addClass('ui-corner-all');\n",
+ "\n",
+ " var tooltip_span = $('<span/>');\n",
+ " tooltip_span.addClass('ui-button-text');\n",
+ " tooltip_span.html(tooltip);\n",
+ "\n",
+ " button.append(icon_img);\n",
+ " button.append(tooltip_span);\n",
+ "\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker_span = $('<span/>');\n",
+ "\n",
+ " var fmt_picker = $('<select/>');\n",
+ " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+ " fmt_picker_span.append(fmt_picker);\n",
+ " nav_element.append(fmt_picker_span);\n",
+ " this.format_dropdown = fmt_picker[0];\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = $(\n",
+ " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+ " fmt_picker.append(option)\n",
+ " }\n",
+ "\n",
+ " // Add hover states to the ui-buttons\n",
+ " $( \".ui-button\" ).hover(\n",
+ " function() { $(this).addClass(\"ui-state-hover\");},\n",
+ " function() { $(this).removeClass(\"ui-state-hover\");}\n",
+ " );\n",
+ "\n",
+ " var status_bar = $('<span class=\"mpl-message\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function(type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function() {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1]);\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+ " var x0 = msg['x0'] / mpl.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+ " var x1 = msg['x1'] / mpl.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0, 0, fig.canvas.width, fig.canvas.height);\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch(cursor)\n",
+ " {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message(\"ack\", {});\n",
+ "}\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = \"image/png\";\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data);\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig[\"handle_\" + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function(e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e)\n",
+ " e = window.event;\n",
+ " if (e.target)\n",
+ " targ = e.target;\n",
+ " else if (e.srcElement)\n",
+ " targ = e.srcElement;\n",
+ " if (targ.nodeType == 3) // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ "\n",
+ " // jQuery normalizes the pageX and pageY\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " // offset() returns the position of the element relative to the document\n",
+ " var x = e.pageX - $(targ).offset().left;\n",
+ " var y = e.pageY - $(targ).offset().top;\n",
+ "\n",
+ " return {\"x\": x, \"y\": y};\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys (original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object')\n",
+ " obj[key] = original[key]\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+ " var canvas_pos = mpl.findpos(event)\n",
+ "\n",
+ " if (name === 'button_press')\n",
+ " {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * mpl.ratio;\n",
+ " var y = canvas_pos.y * mpl.ratio;\n",
+ "\n",
+ " this.send_message(name, {x: x, y: y, button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function(event, name) {\n",
+ "\n",
+ " // Prevent repeat events\n",
+ " if (name == 'key_press')\n",
+ " {\n",
+ " if (event.which === this._key)\n",
+ " return;\n",
+ " else\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " if (name == 'key_release')\n",
+ " this._key = null;\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which != 17)\n",
+ " value += \"ctrl+\";\n",
+ " if (event.altKey && event.which != 18)\n",
+ " value += \"alt+\";\n",
+ " if (event.shiftKey && event.which != 16)\n",
+ " value += \"shift+\";\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, {key: value,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+ " if (name == 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message(\"toolbar_button\", {name: name});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function() {\n",
+ " comm.close()\n",
+ " };\n",
+ " ws.send = function(m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function(msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data'])\n",
+ " });\n",
+ " return ws;\n",
+ "}\n",
+ "\n",
+ "mpl.mpl_figure_comm = function(comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = $(\"#\" + id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm)\n",
+ "\n",
+ " function ondownload(figure, format) {\n",
+ " window.open(figure.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy,\n",
+ " ondownload,\n",
+ " element.get(0));\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element.get(0);\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error(\"Failed to find cell for figure\", id, fig);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var output_index = fig.cell_info[2]\n",
+ " var cell = fig.cell_info[0];\n",
+ "\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+ " var width = fig.canvas.width/mpl.ratio\n",
+ " fig.root.unbind('remove')\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable()\n",
+ " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+ " fig.close_ws(fig, msg);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width/mpl.ratio\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message(\"ack\", {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () { fig.push_to_output() }, 1000);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items){\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) { continue; };\n",
+ "\n",
+ " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+ " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+ " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+ " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+ " buttongrp.append(button);\n",
+ " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+ " titlebar.prepend(buttongrp);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(el){\n",
+ " var fig = this\n",
+ " el.on(\"remove\", function(){\n",
+ "\tfig.close_ws(fig, {});\n",
+ " });\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+ " // this is important to make the div 'focusable\n",
+ " el.attr('tabindex', 0)\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " }\n",
+ " else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager)\n",
+ " manager = IPython.keyboard_manager;\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which == 13) {\n",
+ " this.canvas_div.blur();\n",
+ " event.shiftKey = false;\n",
+ " // Send a \"J\" for go to next cell\n",
+ " event.which = 74;\n",
+ " event.keyCode = 74;\n",
+ " manager.command_mode();\n",
+ " manager.handle_keydown(event);\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.find_output_cell = function(html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i=0; i<ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code'){\n",
+ " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] == html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel != null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "SVF_grouped = SVF_merged.groupby(['area_log_round', 'NEIGUNG_round']).mean()\n",
+ "arr = SVF_grouped['SVF_unbiased'].to_xarray()\n",
+ "arr.coords['area_log_round'] = 10**(arr.area_log_round)\n",
+ "\n",
+ "# PV_array.attrs['long_name'] = 'Uncertainty for $C_{pv}$'\n",
+ "\n",
+ "plt.figure()\n",
+ "ax = plt.subplot()\n",
+ "\n",
+ "arr.plot()\n",
+ "ax.set_yscale('log')\n",
+ "plt.xlabel('Roof tilt (in degree)')\n",
+ "plt.ylabel('Roof area (in $m^2$)')\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "# plt.savefig('panelled_area_unc.png', dpi = 300)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "DF_UID 1.000000\n",
+ "SVF 0.000057\n",
+ "SVF_unbiased 0.000000\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 57,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "SVF.min()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "DF_UID 9.890023e+06\n",
+ "SVF 1.000000e+00\n",
+ "SVF_unbiased 9.283739e-01\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 58,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "SVF.max()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "DF_UID 4.977728e+06\n",
+ "SVF 7.625916e-01\n",
+ "SVF_unbiased 6.909656e-01\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 59,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "SVF.mean()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Spielwiese"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 95,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "roof_SVF = skyview.merge(roofs, left_index = True, right_index = True, how = 'left')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>SVF_2m</th>\n",
+ " <th>std_2m</th>\n",
+ " <th>SVF_50cm</th>\n",
+ " <th>std_50cm</th>\n",
+ " <th>bias</th>\n",
+ " <th>FLAECHE</th>\n",
+ " <th>NEIGUNG</th>\n",
+ " <th>AUSRICHTUNG</th>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>DF_UID</th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " <th></th>\n",
+ " </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
+ " <tr>\n",
+ " <th>4879560</th>\n",
+ " <td>0.537930</td>\n",
+ " <td>0.035747</td>\n",
+ " <td>0.497254</td>\n",
+ " <td>0.051997</td>\n",
+ " <td>0.040677</td>\n",
+ " <td>78.139731</td>\n",
+ " <td>9</td>\n",
+ " <td>-143.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>4879561</th>\n",
+ " <td>0.543964</td>\n",
+ " <td>0.061913</td>\n",
+ " <td>0.474188</td>\n",
+ " <td>0.106268</td>\n",
+ " <td>0.069776</td>\n",
+ " <td>46.507495</td>\n",
+ " <td>34</td>\n",
+ " <td>39.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>4879562</th>\n",
+ " <td>0.601935</td>\n",
+ " <td>0.031992</td>\n",
+ " <td>0.546454</td>\n",
+ " <td>0.051656</td>\n",
+ " <td>0.055481</td>\n",
+ " <td>65.822671</td>\n",
+ " <td>28</td>\n",
+ " <td>-141.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>4879563</th>\n",
+ " <td>0.568163</td>\n",
+ " <td>0.041745</td>\n",
+ " <td>0.509543</td>\n",
+ " <td>0.042314</td>\n",
+ " <td>0.058620</td>\n",
+ " <td>33.159751</td>\n",
+ " <td>41</td>\n",
+ " <td>-51.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>4879564</th>\n",
+ " <td>0.508238</td>\n",
+ " <td>0.052079</td>\n",
+ " <td>0.429219</td>\n",
+ " <td>0.077267</td>\n",
+ " <td>0.079019</td>\n",
+ " <td>35.956510</td>\n",
+ " <td>11</td>\n",
+ " <td>-51.0</td>\n",
+ " </tr>\n",
+ " </tbody>\n",
+ "</table>\n",
+ "</div>"
+ ],
+ "text/plain": [
+ " SVF_2m std_2m SVF_50cm std_50cm bias FLAECHE NEIGUNG \\\n",
+ "DF_UID \n",
+ "4879560 0.537930 0.035747 0.497254 0.051997 0.040677 78.139731 9 \n",
+ "4879561 0.543964 0.061913 0.474188 0.106268 0.069776 46.507495 34 \n",
+ "4879562 0.601935 0.031992 0.546454 0.051656 0.055481 65.822671 28 \n",
+ "4879563 0.568163 0.041745 0.509543 0.042314 0.058620 33.159751 41 \n",
+ "4879564 0.508238 0.052079 0.429219 0.077267 0.079019 35.956510 11 \n",
+ "\n",
+ " AUSRICHTUNG \n",
+ "DF_UID \n",
+ "4879560 -143.0 \n",
+ "4879561 39.0 \n",
+ "4879562 -141.0 \n",
+ "4879563 -51.0 \n",
+ "4879564 -51.0 "
+ ]
+ },
+ "execution_count": 85,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "roof_SVF.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 94,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "\n",
+ "mpl.get_websocket_type = function() {\n",
+ " if (typeof(WebSocket) !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert('Your browser does not have WebSocket support.' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.');\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = (this.ws.binaryType != undefined);\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById(\"mpl-warnings\");\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent = (\n",
+ " \"This browser does not support binary websocket messages. \" +\n",
+ " \"Performance may be slow.\");\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = $('<div/>');\n",
+ " this._root_extra_style(this.root)\n",
+ " this.root.attr('style', 'display: inline-block');\n",
+ "\n",
+ " $(parent_element).append(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+ " fig.send_message(\"send_image_mode\", {});\n",
+ " if (mpl.ratio != 1) {\n",
+ " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+ " }\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " }\n",
+ "\n",
+ " this.imageObj.onload = function() {\n",
+ " if (fig.image_mode == 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function() {\n",
+ " fig.ws.close();\n",
+ " }\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function() {\n",
+ " var titlebar = $(\n",
+ " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+ " 'ui-helper-clearfix\"/>');\n",
+ " var titletext = $(\n",
+ " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+ " 'text-align: center; padding: 3px;\"/>');\n",
+ " titlebar.append(titletext)\n",
+ " this.root.append(titlebar);\n",
+ " this.header = titletext[0];\n",
+ "}\n",
+ "\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = $('<div/>');\n",
+ "\n",
+ " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+ "\n",
+ " function canvas_keyboard_event(event) {\n",
+ " return fig.key_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+ " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+ " this.canvas_div = canvas_div\n",
+ " this._canvas_extra_style(canvas_div)\n",
+ " this.root.append(canvas_div);\n",
+ "\n",
+ " var canvas = $('<canvas/>');\n",
+ " canvas.addClass('mpl-canvas');\n",
+ " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+ "\n",
+ " this.canvas = canvas[0];\n",
+ " this.context = canvas[0].getContext(\"2d\");\n",
+ "\n",
+ " var backingStore = this.context.backingStorePixelRatio ||\n",
+ "\tthis.context.webkitBackingStorePixelRatio ||\n",
+ "\tthis.context.mozBackingStorePixelRatio ||\n",
+ "\tthis.context.msBackingStorePixelRatio ||\n",
+ "\tthis.context.oBackingStorePixelRatio ||\n",
+ "\tthis.context.backingStorePixelRatio || 1;\n",
+ "\n",
+ " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband = $('<canvas/>');\n",
+ " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+ "\n",
+ " var pass_mouse_events = true;\n",
+ "\n",
+ " canvas_div.resizable({\n",
+ " start: function(event, ui) {\n",
+ " pass_mouse_events = false;\n",
+ " },\n",
+ " resize: function(event, ui) {\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " stop: function(event, ui) {\n",
+ " pass_mouse_events = true;\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " });\n",
+ "\n",
+ " function mouse_event_fn(event) {\n",
+ " if (pass_mouse_events)\n",
+ " return fig.mouse_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " rubberband.mousedown('button_press', mouse_event_fn);\n",
+ " rubberband.mouseup('button_release', mouse_event_fn);\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+ "\n",
+ " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+ " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+ "\n",
+ " canvas_div.on(\"wheel\", function (event) {\n",
+ " event = event.originalEvent;\n",
+ " event['data'] = 'scroll'\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " mouse_event_fn(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.append(canvas);\n",
+ " canvas_div.append(rubberband);\n",
+ "\n",
+ " this.rubberband = rubberband;\n",
+ " this.rubberband_canvas = rubberband[0];\n",
+ " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+ " this.rubberband_context.strokeStyle = \"#000000\";\n",
+ "\n",
+ " this._resize_canvas = function(width, height) {\n",
+ " // Keep the size of the canvas, canvas container, and rubber band\n",
+ " // canvas in synch.\n",
+ " canvas_div.css('width', width)\n",
+ " canvas_div.css('height', height)\n",
+ "\n",
+ " canvas.attr('width', width * mpl.ratio);\n",
+ " canvas.attr('height', height * mpl.ratio);\n",
+ " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+ "\n",
+ " rubberband.attr('width', width);\n",
+ " rubberband.attr('height', height);\n",
+ " }\n",
+ "\n",
+ " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+ " // upon first draw.\n",
+ " this._resize_canvas(600, 600);\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus () {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " // put a spacer in here.\n",
+ " continue;\n",
+ " }\n",
+ " var button = $('<button/>');\n",
+ " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+ " 'ui-button-icon-only');\n",
+ " button.attr('role', 'button');\n",
+ " button.attr('aria-disabled', 'false');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ "\n",
+ " var icon_img = $('<span/>');\n",
+ " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+ " icon_img.addClass(image);\n",
+ " icon_img.addClass('ui-corner-all');\n",
+ "\n",
+ " var tooltip_span = $('<span/>');\n",
+ " tooltip_span.addClass('ui-button-text');\n",
+ " tooltip_span.html(tooltip);\n",
+ "\n",
+ " button.append(icon_img);\n",
+ " button.append(tooltip_span);\n",
+ "\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker_span = $('<span/>');\n",
+ "\n",
+ " var fmt_picker = $('<select/>');\n",
+ " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+ " fmt_picker_span.append(fmt_picker);\n",
+ " nav_element.append(fmt_picker_span);\n",
+ " this.format_dropdown = fmt_picker[0];\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = $(\n",
+ " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+ " fmt_picker.append(option)\n",
+ " }\n",
+ "\n",
+ " // Add hover states to the ui-buttons\n",
+ " $( \".ui-button\" ).hover(\n",
+ " function() { $(this).addClass(\"ui-state-hover\");},\n",
+ " function() { $(this).removeClass(\"ui-state-hover\");}\n",
+ " );\n",
+ "\n",
+ " var status_bar = $('<span class=\"mpl-message\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function(type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function() {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1]);\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+ " var x0 = msg['x0'] / mpl.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+ " var x1 = msg['x1'] / mpl.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0, 0, fig.canvas.width, fig.canvas.height);\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch(cursor)\n",
+ " {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message(\"ack\", {});\n",
+ "}\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = \"image/png\";\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data);\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig[\"handle_\" + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function(e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e)\n",
+ " e = window.event;\n",
+ " if (e.target)\n",
+ " targ = e.target;\n",
+ " else if (e.srcElement)\n",
+ " targ = e.srcElement;\n",
+ " if (targ.nodeType == 3) // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ "\n",
+ " // jQuery normalizes the pageX and pageY\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " // offset() returns the position of the element relative to the document\n",
+ " var x = e.pageX - $(targ).offset().left;\n",
+ " var y = e.pageY - $(targ).offset().top;\n",
+ "\n",
+ " return {\"x\": x, \"y\": y};\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys (original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object')\n",
+ " obj[key] = original[key]\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+ " var canvas_pos = mpl.findpos(event)\n",
+ "\n",
+ " if (name === 'button_press')\n",
+ " {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * mpl.ratio;\n",
+ " var y = canvas_pos.y * mpl.ratio;\n",
+ "\n",
+ " this.send_message(name, {x: x, y: y, button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function(event, name) {\n",
+ "\n",
+ " // Prevent repeat events\n",
+ " if (name == 'key_press')\n",
+ " {\n",
+ " if (event.which === this._key)\n",
+ " return;\n",
+ " else\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " if (name == 'key_release')\n",
+ " this._key = null;\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which != 17)\n",
+ " value += \"ctrl+\";\n",
+ " if (event.altKey && event.which != 18)\n",
+ " value += \"alt+\";\n",
+ " if (event.shiftKey && event.which != 16)\n",
+ " value += \"shift+\";\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, {key: value,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+ " if (name == 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message(\"toolbar_button\", {name: name});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function() {\n",
+ " comm.close()\n",
+ " };\n",
+ " ws.send = function(m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function(msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data'])\n",
+ " });\n",
+ " return ws;\n",
+ "}\n",
+ "\n",
+ "mpl.mpl_figure_comm = function(comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = $(\"#\" + id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm)\n",
+ "\n",
+ " function ondownload(figure, format) {\n",
+ " window.open(figure.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy,\n",
+ " ondownload,\n",
+ " element.get(0));\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element.get(0);\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error(\"Failed to find cell for figure\", id, fig);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var output_index = fig.cell_info[2]\n",
+ " var cell = fig.cell_info[0];\n",
+ "\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+ " var width = fig.canvas.width/mpl.ratio\n",
+ " fig.root.unbind('remove')\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable()\n",
+ " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+ " fig.close_ws(fig, msg);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width/mpl.ratio\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message(\"ack\", {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () { fig.push_to_output() }, 1000);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items){\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) { continue; };\n",
+ "\n",
+ " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+ " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+ " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+ " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+ " buttongrp.append(button);\n",
+ " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+ " titlebar.prepend(buttongrp);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(el){\n",
+ " var fig = this\n",
+ " el.on(\"remove\", function(){\n",
+ "\tfig.close_ws(fig, {});\n",
+ " });\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+ " // this is important to make the div 'focusable\n",
+ " el.attr('tabindex', 0)\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " }\n",
+ " else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager)\n",
+ " manager = IPython.keyboard_manager;\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which == 13) {\n",
+ " this.canvas_div.blur();\n",
+ " event.shiftKey = false;\n",
+ " // Send a \"J\" for go to next cell\n",
+ " event.which = 74;\n",
+ " event.keyCode = 74;\n",
+ " manager.command_mode();\n",
+ " manager.handle_keydown(event);\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.find_output_cell = function(html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i=0; i<ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code'){\n",
+ " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] == html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel != null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sample = roof_SVF.sample(10000)\n",
+ "\n",
+ "plt.figure()\n",
+ "plt.scatter(sample.FLAECHE.values, sample.bias.values, s = 1)\n",
+ "plt.xscale('log')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 98,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "roof_shade = shade_bias[['DF_UID','fully_shaded_ratio']].merge(roofs, left_on = 'DF_UID', \n",
+ " right_index = True, how = 'left')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 99,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>DF_UID</th>\n",
+ " <th>fully_shaded_ratio</th>\n",
+ " <th>FLAECHE</th>\n",
+ " <th>NEIGUNG</th>\n",
+ " <th>AUSRICHTUNG</th>\n",
+ " </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
+ " <tr>\n",
+ " <th>0</th>\n",
+ " <td>4817081</td>\n",
+ " <td>0.0</td>\n",
+ " <td>111.982302</td>\n",
+ " <td>26</td>\n",
+ " <td>-79.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1</th>\n",
+ " <td>4817082</td>\n",
+ " <td>0.0</td>\n",
+ " <td>121.121191</td>\n",
+ " <td>27</td>\n",
+ " <td>101.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2</th>\n",
+ " <td>4817083</td>\n",
+ " <td>0.0</td>\n",
+ " <td>117.993684</td>\n",
+ " <td>26</td>\n",
+ " <td>-79.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>3</th>\n",
+ " <td>4817084</td>\n",
+ " <td>0.0</td>\n",
+ " <td>117.579904</td>\n",
+ " <td>27</td>\n",
+ " <td>101.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>4</th>\n",
+ " <td>4817085</td>\n",
+ " <td>0.0</td>\n",
+ " <td>155.862755</td>\n",
+ " <td>30</td>\n",
+ " <td>101.0</td>\n",
+ " </tr>\n",
+ " </tbody>\n",
+ "</table>\n",
+ "</div>"
+ ],
+ "text/plain": [
+ " DF_UID fully_shaded_ratio FLAECHE NEIGUNG AUSRICHTUNG\n",
+ "0 4817081 0.0 111.982302 26 -79.0\n",
+ "1 4817082 0.0 121.121191 27 101.0\n",
+ "2 4817083 0.0 117.993684 26 -79.0\n",
+ "3 4817084 0.0 117.579904 27 101.0\n",
+ "4 4817085 0.0 155.862755 30 101.0"
+ ]
+ },
+ "execution_count": 99,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "roof_shade.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 104,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "\n",
+ "mpl.get_websocket_type = function() {\n",
+ " if (typeof(WebSocket) !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert('Your browser does not have WebSocket support.' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.');\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = (this.ws.binaryType != undefined);\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById(\"mpl-warnings\");\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
- "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "(1, 23640.0)"
- ]
- },
- "execution_count": 42,
- "metadata": {},
- "output_type": "execute_result"
}
],
"source": [
+ "sample = roof_shade.sample(10000)\n",
+ "\n",
"plt.figure()\n",
- "svf_aspect_area.SVF_50cm.T.plot()\n",
- "plt.yscale('log')\n",
- "plt.ylim(bottom = 1)"
+ "plt.scatter(sample.NEIGUNG.values, sample.fully_shaded_ratio.values, s = 1)\n",
+ "# plt.xscale('log')\n",
+ "plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Tilted_irradiance/Ssh_sigma_zenith.pdf b/Tilted_irradiance/Ssh_sigma_zenith.pdf
new file mode 100644
index 0000000..4c0a11b
Binary files /dev/null and b/Tilted_irradiance/Ssh_sigma_zenith.pdf differ
diff --git a/Tilted_irradiance/skyview_compare.ipynb b/Tilted_irradiance/skyview_compare.ipynb
index 273ca7c..a4d9aea 100644
--- a/Tilted_irradiance/skyview_compare.ipynb
+++ b/Tilted_irradiance/skyview_compare.ipynb
@@ -1,4982 +1,4984 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/walch/miniconda3/envs/py3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" from ._conv import register_converters as _register_converters\n"
]
}
],
"source": [
"import pandas as pd\n",
"import xarray as xr\n",
"import numpy as np\n",
"from pvlib.tools import cosd\n",
"import scipy.stats as stats\n",
"\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import calendar\n",
"\n",
"import os\n",
"import time\n",
"import util"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Compare 50cm vs 2m DOM"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"path = '/work/hyenergy/output/solar_potential/geographic_potential/tilted_irradiance/'\n",
"skyview_stats_2m = pd.read_csv( os.path.join(path, 'skyview_stats_GVA_2m.csv') ) # from 2m DOM\n",
"skyview_stats_50cm = pd.read_csv( os.path.join(path, 'skyview_stats_GVA_50cm.csv') )"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"fp = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/PRED_available_area_unc_filled.csv'\n",
"ROOFS = pd.read_csv( fp, usecols = ['DF_UID', 'available_area'] )"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"suitable_roofs = ROOFS[ROOFS.available_area > 8].set_index('DF_UID')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"skyview_CH = pd.read_csv( os.path.join(path, 'SVF_CH_replaced.csv') )"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# take out those roofs which are not represented in the discretization of the roof surfaces\n",
"path = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/shading_stats/CH_LV03'\n",
"roof_mask = pd.read_csv( os.path.join(path, 'CH_shading_all.csv'), usecols = ['DF_UID', 'non_null_cells'] )"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"skyview_CH = skyview_CH.merge( roof_mask, how = 'inner', on = 'DF_UID' ).set_index('DF_UID')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SVF</th>\n",
" <th>SVF_unbiased</th>\n",
" <th>non_null_cells</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.780161</td>\n",
" <td>0.708535</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.751102</td>\n",
" <td>0.679476</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.656382</td>\n",
" <td>0.584756</td>\n",
" <td>15</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.790284</td>\n",
" <td>0.718658</td>\n",
" <td>9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>0.672486</td>\n",
" <td>0.600860</td>\n",
" <td>5</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" SVF SVF_unbiased non_null_cells\n",
"DF_UID \n",
"1 0.780161 0.708535 2\n",
"2 0.751102 0.679476 4\n",
"3 0.656382 0.584756 15\n",
"4 0.790284 0.718658 9\n",
"5 0.672486 0.600860 5"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"skyview_CH.head()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8589502"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(skyview_CH)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"skyview_2m = skyview_stats_2m[['zone', 'mean', 'non_null_cells']].rename( {'zone' : 'DF_UID', \n",
" 'mean' : 'SVF_2m',\n",
" 'non_null_cells' : 'cells_2m'}, axis = 1)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"skyview_50cm = skyview_stats_50cm[['zone', 'mean', 'non_null_cells']].rename( {'zone' : 'DF_UID', \n",
" 'mean' : 'SVF_50cm',\n",
" 'non_null_cells' : 'cells_50cm'}, \n",
" axis = 1)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"skyview_GVA = skyview_2m.merge( skyview_50cm, on = 'DF_UID', how = 'inner' ).set_index('DF_UID')"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"skyview_GVA['bias'] = skyview_GVA.SVF_2m - skyview_GVA.SVF_50cm\n",
"skyview_GVA['corrected'] = skyview_GVA.SVF_2m - skyview_GVA['bias'].mean()\n",
"skyview_GVA['uncertainty'] = skyview_GVA['bias'].std()\n",
"\n",
"skyview_GVA['vmax'] = skyview_GVA['corrected'] + skyview_GVA['uncertainty']\n",
"skyview_GVA['vmin'] = skyview_GVA['corrected'] - skyview_GVA['uncertainty']"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"skyview_GVA = skyview_GVA.merge( skyview_CH, left_index = True, right_index = True, how = 'inner')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"SVF_2m 0.735122\n",
"cells_2m 20.379479\n",
"SVF_50cm 0.661445\n",
"cells_50cm 325.516613\n",
"bias 0.073677\n",
"corrected 0.663496\n",
"uncertainty 0.120941\n",
"vmax 0.784437\n",
"vmin 0.542555\n",
"SVF 0.735153\n",
"SVF_unbiased 0.663527\n",
"non_null_cells 18.980333\n",
"dtype: float64"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"skyview_GVA.mean()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"206433"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(skyview_GVA)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"skyview_GVA = skyview_GVA.merge(suitable_roofs, left_index = True, right_index = True, how = 'inner')"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "skyview_GVA.to_csv('/scratch/walch/svf_biases.csv')"
+ ]
+ },
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"skyview_CH = skyview_CH.merge(suitable_roofs, left_index = True, right_index = True, how = 'inner')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Text(0.5,0,'Bias')"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"NBINS = 100\n",
"RANGE = (-0.5, 0.5)\n",
"\n",
"x = np.linspace(RANGE[0], RANGE[1], NBINS)\n",
"\n",
"plt.figure()\n",
"hist_bias = plt.hist( skyview_GVA.bias, density = True, bins = NBINS, range = RANGE, alpha = 0.7, edgecolor = 'C0' )\n",
"plt.plot(x, stats.norm.pdf(x, skyview_GVA.bias.mean(), skyview_GVA.bias.std()), c = 'C1')\n",
"\n",
"plt.xlabel('Bias')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"hist_2m, bins, patches = plt.hist( skyview_GVA.SVF_2m, bins = 50, range = (0, 1), density = True)\n",
"hist_50cm, bins, patches = plt.hist( skyview_GVA.SVF_50cm, bins = 50, range = (0, 1), density = True)\n",
"hist_corr, bins, patches = plt.hist( skyview_GVA.corrected, bins = 50, range = (0, 1), density = True)\n",
"hist_max, bins, patches = plt.hist( skyview_GVA.vmax, bins = 50, range = (0, 1), density = True)\n",
"hist_min, bins, patches = plt.hist( skyview_GVA.vmin, bins = 50, range = (0, 1), density = True)\n",
"\n",
"hist_CH, bins, patches = plt.hist( skyview_CH.SVF, bins = 50, range = (0, 1), density = True)\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"50.0"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hist_CH.sum()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x_vals = (bins[1:] + bins[:-1]) / 2\n",
"\n",
"plt.figure()\n",
"plt.hist(skyview_GVA.SVF_50cm, bins = 50, range = (0, 1), edgecolor = 'C0', facecolor = 'C0', alpha = 0.5, \n",
" label = '50cm resolution (GVA)', density = True)\n",
"plt.plot(x_vals, hist_2m, color = 'C0', lw = 1.5, marker = '.',\n",
" label = '2m resolution (GVA)')\n",
"plt.plot(x_vals, hist_CH, color = 'C1', lw = 1.5, marker = '.',\n",
" label = '2m resolution (CH)')\n",
"plt.hist(skyview_CH.SVF_unbiased, bins = 50, range = (0, 1), alpha = 0.4, edgecolor = 'C1', facecolor = 'C1', \n",
" label = 'Bias-corrected (CH)', density = True)\n",
"\n",
"\n",
"plt.xlabel('Sky view factor (SVF)')\n",
"plt.ylabel('Relative frequency')\n",
"plt.title('Histograms for bias correction of SVF ($A_{PV} > 8m^2$)')\n",
"plt.legend()\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('SVF_bias_corr_avail.pdf')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Compute errors for SVF correction"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SVF_2m</th>\n",
" <th>cells_2m</th>\n",
" <th>SVF_50cm</th>\n",
" <th>cells_50cm</th>\n",
" <th>bias</th>\n",
" <th>corrected</th>\n",
" <th>uncertainty</th>\n",
" <th>vmax</th>\n",
" <th>vmin</th>\n",
" <th>SVF</th>\n",
" <th>SVF_unbiased</th>\n",
" <th>non_null_cells</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>4879560</th>\n",
" <td>0.537930</td>\n",
" <td>20</td>\n",
" <td>0.497254</td>\n",
" <td>305</td>\n",
" <td>0.040677</td>\n",
" <td>0.466304</td>\n",
" <td>0.120941</td>\n",
" <td>0.587245</td>\n",
" <td>0.345363</td>\n",
" <td>0.537930</td>\n",
" <td>0.466304</td>\n",
" <td>20</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879561</th>\n",
" <td>0.543964</td>\n",
" <td>9</td>\n",
" <td>0.474188</td>\n",
" <td>154</td>\n",
" <td>0.069776</td>\n",
" <td>0.472338</td>\n",
" <td>0.120941</td>\n",
" <td>0.593279</td>\n",
" <td>0.351397</td>\n",
" <td>0.543964</td>\n",
" <td>0.472338</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879562</th>\n",
" <td>0.601935</td>\n",
" <td>15</td>\n",
" <td>0.546454</td>\n",
" <td>232</td>\n",
" <td>0.055481</td>\n",
" <td>0.530309</td>\n",
" <td>0.120941</td>\n",
" <td>0.651250</td>\n",
" <td>0.409368</td>\n",
" <td>0.601935</td>\n",
" <td>0.530309</td>\n",
" <td>14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879563</th>\n",
" <td>0.568163</td>\n",
" <td>6</td>\n",
" <td>0.509543</td>\n",
" <td>100</td>\n",
" <td>0.058620</td>\n",
" <td>0.496537</td>\n",
" <td>0.120941</td>\n",
" <td>0.617478</td>\n",
" <td>0.375596</td>\n",
" <td>0.568163</td>\n",
" <td>0.496537</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879564</th>\n",
" <td>0.508238</td>\n",
" <td>9</td>\n",
" <td>0.429219</td>\n",
" <td>142</td>\n",
" <td>0.079019</td>\n",
" <td>0.436612</td>\n",
" <td>0.120941</td>\n",
" <td>0.557553</td>\n",
" <td>0.315671</td>\n",
" <td>0.508238</td>\n",
" <td>0.436612</td>\n",
" <td>5</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" SVF_2m cells_2m SVF_50cm cells_50cm bias corrected \\\n",
"DF_UID \n",
"4879560 0.537930 20 0.497254 305 0.040677 0.466304 \n",
"4879561 0.543964 9 0.474188 154 0.069776 0.472338 \n",
"4879562 0.601935 15 0.546454 232 0.055481 0.530309 \n",
"4879563 0.568163 6 0.509543 100 0.058620 0.496537 \n",
"4879564 0.508238 9 0.429219 142 0.079019 0.436612 \n",
"\n",
" uncertainty vmax vmin SVF SVF_unbiased \\\n",
"DF_UID \n",
"4879560 0.120941 0.587245 0.345363 0.537930 0.466304 \n",
"4879561 0.120941 0.593279 0.351397 0.543964 0.472338 \n",
"4879562 0.120941 0.651250 0.409368 0.601935 0.530309 \n",
"4879563 0.120941 0.617478 0.375596 0.568163 0.496537 \n",
"4879564 0.120941 0.557553 0.315671 0.508238 0.436612 \n",
"\n",
" non_null_cells \n",
"DF_UID \n",
"4879560 20 \n",
"4879561 5 \n",
"4879562 14 \n",
"4879563 3 \n",
"4879564 5 "
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"skyview_GVA.head()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import mean_squared_error as mse\n",
"from sklearn.metrics import mean_absolute_error as mae\n",
"from sklearn.metrics import r2_score as r2"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"# ERROR MEASUREMENTS\n",
"error = {\n",
" 'MSE' : lambda y, t: mse(t,y),\n",
" 'RMSE': lambda y, t: np.sqrt(mse(t,y)),\n",
" 'MAE' : lambda y, t: mae(t,y),\n",
" 'MBE' : lambda y, t: np.mean(t - y),\n",
" 'R2' : lambda y, t: r2(t,y)\n",
"}\n",
"\n",
"def get_errors(true, pred, label = ''):\n",
" # create a pandas series with errors and print them\n",
" err_series = pd.Series(data = np.zeros(len(error)), index = error.keys())\n",
" for key, val in error.items():\n",
" print('%s %s: %f' %(label, key, val(pred, true)))\n",
" err_series[ key ] = val(pred, true)\n",
" \n",
" return err_series"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Baseline MSE: 0.019558\n",
"Baseline RMSE: 0.139848\n",
"Baseline MAE: 0.111971\n",
"Baseline MBE: -0.073677\n",
"Baseline R2: 0.245192\n"
]
}
],
"source": [
"_=get_errors(skyview_GVA.SVF_50cm, skyview_GVA.SVF_2m, 'Baseline')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MBE+ MSE: 0.014133\n",
"MBE+ RMSE: 0.118884\n",
"MBE+ MAE: 0.080840\n",
"MBE+ MBE: -0.002051\n",
"MBE+ R2: 0.454532\n"
]
}
],
"source": [
"_=get_errors(skyview_GVA.SVF_50cm, skyview_GVA.corrected, 'MBE+')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Compare different number of azimuth bins"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"path = '/scratch/walch/grassgis/scripts/executables/workspace_skyview'\n",
"skyview_stats_8 = pd.read_csv( os.path.join(path, 'skyview_8_stats.csv') )\n",
"skyview_stats_16 = pd.read_csv( os.path.join(path, 'skyview_16_stats.csv') )\n",
"skyview_stats_64 = pd.read_csv( os.path.join(path, 'skyview_64_stats.csv') )\n",
"skyview_stats_128 = pd.read_csv( os.path.join(path, 'skyview_128_stats.csv') )"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"skyview_8 = skyview_stats_8[['zone', 'mean']].rename( {'zone' : 'DF_UID', 'mean' : '8'}, \n",
" axis = 1)\n",
"skyview_16 = skyview_stats_16[['zone', 'mean']].rename( {'zone' : 'DF_UID', 'mean' : '16'}, \n",
" axis = 1)\n",
"\n",
"skyview_64 = skyview_stats_64[['zone', 'mean']].rename( {'zone' : 'DF_UID', 'mean' : '64'}, \n",
" axis = 1)\n",
"skyview_128 = skyview_stats_128[['zone', 'mean']].rename( {'zone' : 'DF_UID', 'mean' : '128'}, \n",
" axis = 1)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"skyview_32 = skyview_stats_2m[['zone', 'mean']].rename( {'zone' : 'DF_UID', 'mean' : '32'}, \n",
" axis = 1)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"SVF_dirs = skyview_8.merge( skyview_16, on = 'DF_UID', how = 'inner' )\n",
"SVF_dirs = SVF_dirs.merge( skyview_32, on = 'DF_UID', how = 'inner' ).set_index('DF_UID')\n",
"SVF_dirs = SVF_dirs.merge( skyview_64, on = 'DF_UID', how = 'inner' ).set_index('DF_UID')\n",
"SVF_dirs = SVF_dirs.merge( skyview_128, on = 'DF_UID', how = 'inner' ).set_index('DF_UID')"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8 0.733922\n",
"16 0.725343\n",
"32 0.726699\n",
"64 0.724732\n",
"128 0.725023\n",
"dtype: float64"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF_dirs.mean()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8 0.130039\n",
"16 0.131159\n",
"32 0.131273\n",
"64 0.131644\n",
"128 0.131637\n",
"dtype: float64"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF_dirs.std()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.hist(SVF_dirs['8'], bins = 50, range = (0, 1), alpha = 0.3, \n",
" label = '8 bins', density = True)\n",
"plt.hist(SVF_dirs['16'], bins = 50, range = (0, 1), alpha = 0.3, \n",
" label = '16 bins', density = True)\n",
"plt.hist(SVF_dirs['32'], bins = 50, range = (0, 1), alpha = 0.3,\n",
" label = '32 bins', density = True)\n",
"plt.hist(SVF_dirs['64'], bins = 50, range = (0, 1), alpha = 0.3,\n",
" label = '64 bins', density = True)\n",
"plt.hist(SVF_dirs['128'], bins = 50, range = (0, 1), alpha = 0.3,\n",
" label = '128 bins', density = True)\n",
"\n",
"plt.xlabel('Sky view factor (SVF)')\n",
"plt.ylabel('Relative frequency')\n",
"\n",
"plt.legend()\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"SVF_delta = SVF_dirs.sub(SVF_dirs['32'], axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8 0.007223\n",
"16 -0.001357\n",
"32 0.000000\n",
"64 -0.001967\n",
"128 -0.001676\n",
"dtype: float64"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF_delta.mean()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.hist(SVF_delta['8'], bins = 100, range = (-0.1, 0.1), alpha = 0.3, \n",
" label = '8 bins', density = True)\n",
"plt.hist(SVF_delta['16'], bins = 100, range = (-0.1, 0.1), alpha = 0.3, \n",
" label = '16 bins', density = True)\n",
"#plt.hist(SVF_dirs['32'], bins = 50, range = (0, 1), alpha = 0.3,\n",
"# label = '32 bins', density = True)\n",
"plt.hist(SVF_delta['64'], bins = 100, range = (-0.1, 0.1), alpha = 0.3, \n",
" label = '64 bins', density = True)\n",
"plt.hist(SVF_delta['128'], bins = 100, range = (-0.1, 0.1), alpha = 0.3, \n",
" label = '128 bins', density = True)\n",
"\n",
"plt.xlabel('$\\Delta$ SVF')\n",
"plt.ylabel('Relative frequency')\n",
"\n",
"plt.legend()\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"SVF_dirs_summary = pd.DataFrame(SVF_dirs.mean()).rename({0 : 'SVF_mean'}, axis = 1)\n",
"SVF_dirs_summary['SVF_std'] = SVF_dirs.std()\n",
"\n",
"# SVF_dirs_summary.index = SVF_dirs_summary.index.astype(int)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SVF_mean</th>\n",
" <th>SVF_std</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>0.733922</td>\n",
" <td>0.130039</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>0.725343</td>\n",
" <td>0.131159</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>0.726699</td>\n",
" <td>0.131273</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td>0.724732</td>\n",
" <td>0.131644</td>\n",
" </tr>\n",
" <tr>\n",
" <th>128</th>\n",
" <td>0.725023</td>\n",
" <td>0.131637</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" SVF_mean SVF_std\n",
"8 0.733922 0.130039\n",
"16 0.725343 0.131159\n",
"32 0.726699 0.131273\n",
"64 0.724732 0.131644\n",
"128 0.725023 0.131637"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF_dirs_summary"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"SVF_dirs.boxplot()\n",
"plt.xlabel('Number of aspect bins')\n",
"plt.ylabel('Sky view factor (SVF)')\n",
"plt.title('Distribution of SVF per number of aspect bins')\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('SVF_boxplot_bins.pdf')"
]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Tilted_irradiance/skyview_factor.ipynb b/Tilted_irradiance/skyview_factor.ipynb
index 8d28612..22b11ca 100644
--- a/Tilted_irradiance/skyview_factor.ipynb
+++ b/Tilted_irradiance/skyview_factor.ipynb
@@ -1,9746 +1,12576 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/walch/miniconda3/envs/py3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
+ " from ._conv import register_converters as _register_converters\n"
+ ]
+ }
+ ],
"source": [
"import pandas as pd\n",
"import xarray as xr\n",
"import numpy as np\n",
"from pvlib.tools import cosd\n",
"import scipy.stats as stats\n",
"\n",
+ "import pvlib.solarposition as pvlib\n",
+ "\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import calendar\n",
"\n",
"import os\n",
"import time\n",
"import util"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"path = '/work/hyenergy/output/solar_potential/geographic_potential/tilted_irradiance/'\n",
"skyview_stats = pd.read_csv( os.path.join(path, 'skyview_stats.csv') ) # from 2m DOM\n",
"merged_stats = pd.read_csv( os.path.join(path, 'skyview_merged_stats.csv') )"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>zone</th>\n",
" <th>label</th>\n",
" <th>non_null_cells</th>\n",
" <th>null_cells</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>range</th>\n",
" <th>mean</th>\n",
" <th>mean_of_abs</th>\n",
" <th>stddev</th>\n",
" <th>variance</th>\n",
" <th>coeff_var</th>\n",
" <th>sum</th>\n",
" <th>sum_abs</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4879560</td>\n",
" <td>NaN</td>\n",
" <td>20</td>\n",
" <td>0</td>\n",
" <td>0.448777</td>\n",
" <td>0.579490</td>\n",
" <td>0.130713</td>\n",
" <td>0.537930</td>\n",
" <td>0.537930</td>\n",
" <td>0.035747</td>\n",
" <td>0.001278</td>\n",
" <td>6.645317</td>\n",
" <td>10.758608</td>\n",
" <td>10.758608</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4879561</td>\n",
" <td>NaN</td>\n",
" <td>9</td>\n",
" <td>0</td>\n",
" <td>0.437539</td>\n",
" <td>0.626010</td>\n",
" <td>0.188472</td>\n",
" <td>0.543964</td>\n",
" <td>0.543964</td>\n",
" <td>0.061913</td>\n",
" <td>0.003833</td>\n",
" <td>11.381847</td>\n",
" <td>4.895678</td>\n",
" <td>4.895678</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4879562</td>\n",
" <td>NaN</td>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>0.525769</td>\n",
" <td>0.631051</td>\n",
" <td>0.105282</td>\n",
" <td>0.601935</td>\n",
" <td>0.601935</td>\n",
" <td>0.031992</td>\n",
" <td>0.001024</td>\n",
" <td>5.314931</td>\n",
" <td>9.029022</td>\n",
" <td>9.029022</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4879563</td>\n",
" <td>NaN</td>\n",
" <td>6</td>\n",
" <td>0</td>\n",
" <td>0.502072</td>\n",
" <td>0.614747</td>\n",
" <td>0.112675</td>\n",
" <td>0.568163</td>\n",
" <td>0.568163</td>\n",
" <td>0.041745</td>\n",
" <td>0.001743</td>\n",
" <td>7.347364</td>\n",
" <td>3.408977</td>\n",
" <td>3.408977</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4879564</td>\n",
" <td>NaN</td>\n",
" <td>9</td>\n",
" <td>0</td>\n",
" <td>0.430417</td>\n",
" <td>0.596541</td>\n",
" <td>0.166124</td>\n",
" <td>0.508238</td>\n",
" <td>0.508238</td>\n",
" <td>0.052079</td>\n",
" <td>0.002712</td>\n",
" <td>10.247045</td>\n",
" <td>4.574139</td>\n",
" <td>4.574139</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" zone label non_null_cells null_cells min max range \\\n",
"0 4879560 NaN 20 0 0.448777 0.579490 0.130713 \n",
"1 4879561 NaN 9 0 0.437539 0.626010 0.188472 \n",
"2 4879562 NaN 15 0 0.525769 0.631051 0.105282 \n",
"3 4879563 NaN 6 0 0.502072 0.614747 0.112675 \n",
"4 4879564 NaN 9 0 0.430417 0.596541 0.166124 \n",
"\n",
" mean mean_of_abs stddev variance coeff_var sum sum_abs \n",
"0 0.537930 0.537930 0.035747 0.001278 6.645317 10.758608 10.758608 \n",
"1 0.543964 0.543964 0.061913 0.003833 11.381847 4.895678 4.895678 \n",
"2 0.601935 0.601935 0.031992 0.001024 5.314931 9.029022 9.029022 \n",
"3 0.568163 0.568163 0.041745 0.001743 7.347364 3.408977 3.408977 \n",
"4 0.508238 0.508238 0.052079 0.002712 10.247045 4.574139 4.574139 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"skyview_stats.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"212059"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(skyview_stats)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"zone 5.004933e+06\n",
"label NaN\n",
"non_null_cells 1.998777e+01\n",
"null_cells 0.000000e+00\n",
"min 6.067868e-01\n",
"max 8.168479e-01\n",
"range 2.100611e-01\n",
"mean 7.272358e-01\n",
"mean_of_abs 7.272358e-01\n",
"stddev 6.349468e-02\n",
"variance 5.760109e-03\n",
"coeff_var 9.160844e+00\n",
"sum 1.530654e+01\n",
"sum_abs 1.530654e+01\n",
"dtype: float64"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"skyview_stats.mean()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>zone</th>\n",
" <th>label</th>\n",
" <th>non_null_cells</th>\n",
" <th>null_cells</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>range</th>\n",
" <th>mean</th>\n",
" <th>mean_of_abs</th>\n",
" <th>stddev</th>\n",
" <th>variance</th>\n",
" <th>coeff_var</th>\n",
" <th>sum</th>\n",
" <th>sum_abs</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4817081</td>\n",
" <td>NaN</td>\n",
" <td>406</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>406.0</td>\n",
" <td>406.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4817082</td>\n",
" <td>NaN</td>\n",
" <td>432</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>432.0</td>\n",
" <td>432.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4817083</td>\n",
" <td>NaN</td>\n",
" <td>423</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>423.0</td>\n",
" <td>423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4817084</td>\n",
" <td>NaN</td>\n",
" <td>419</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>419.0</td>\n",
" <td>419.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4817085</td>\n",
" <td>NaN</td>\n",
" <td>535</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>535.0</td>\n",
" <td>535.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" zone label non_null_cells null_cells min max range mean \\\n",
"0 4817081 NaN 406 0 1.0 1.0 0.0 1.0 \n",
"1 4817082 NaN 432 0 1.0 1.0 0.0 1.0 \n",
"2 4817083 NaN 423 0 1.0 1.0 0.0 1.0 \n",
"3 4817084 NaN 419 0 1.0 1.0 0.0 1.0 \n",
"4 4817085 NaN 535 0 1.0 1.0 0.0 1.0 \n",
"\n",
" mean_of_abs stddev variance coeff_var sum sum_abs \n",
"0 1.0 0.0 0.0 0.0 406.0 406.0 \n",
"1 1.0 0.0 0.0 0.0 432.0 432.0 \n",
"2 1.0 0.0 0.0 0.0 423.0 423.0 \n",
"3 1.0 0.0 0.0 0.0 419.0 419.0 \n",
"4 1.0 0.0 0.0 0.0 535.0 535.0 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_stats.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"244075"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(merged_stats)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"zone 4.998131e+06\n",
"label NaN\n",
"non_null_cells 2.903269e+02\n",
"null_cells 0.000000e+00\n",
"min 3.634644e-01\n",
"max 8.380713e-01\n",
"range 4.746069e-01\n",
"mean 6.776022e-01\n",
"mean_of_abs 6.776022e-01\n",
"stddev 8.572729e-02\n",
"variance 1.065515e-02\n",
"coeff_var 1.509738e+01\n",
"sum 2.070582e+02\n",
"sum_abs 2.070582e+02\n",
"dtype: float64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_stats.mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert skyview stats to suitable dataframe"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"skyview_stats.rename(columns = {'zone' : 'DF_UID', 'mean' : 'SVF_2m', 'stddev' : 'std_2m'}, inplace = True)\n",
"skyview_2m = skyview_stats.set_index('DF_UID')[['SVF_2m', 'std_2m']]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"merged_stats.rename(columns = {'zone' : 'DF_UID', 'mean' : 'SVF_50cm', 'stddev' : 'std_50cm'}, inplace = True)\n",
"skyview_50cm = merged_stats.set_index('DF_UID')[['SVF_50cm', 'std_50cm']]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"skyview = skyview_2m.merge(skyview_50cm, left_index = True, right_index = True, how = 'inner')"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SVF_2m</th>\n",
" <th>std_2m</th>\n",
" <th>SVF_50cm</th>\n",
" <th>std_50cm</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>4879560</th>\n",
" <td>0.537930</td>\n",
" <td>0.035747</td>\n",
" <td>0.497254</td>\n",
" <td>0.051997</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879561</th>\n",
" <td>0.543964</td>\n",
" <td>0.061913</td>\n",
" <td>0.474188</td>\n",
" <td>0.106268</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879562</th>\n",
" <td>0.601935</td>\n",
" <td>0.031992</td>\n",
" <td>0.546454</td>\n",
" <td>0.051656</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879563</th>\n",
" <td>0.568163</td>\n",
" <td>0.041745</td>\n",
" <td>0.509543</td>\n",
" <td>0.042314</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879564</th>\n",
" <td>0.508238</td>\n",
" <td>0.052079</td>\n",
" <td>0.429219</td>\n",
" <td>0.077267</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" SVF_2m std_2m SVF_50cm std_50cm\n",
"DF_UID \n",
"4879560 0.537930 0.035747 0.497254 0.051997\n",
"4879561 0.543964 0.061913 0.474188 0.106268\n",
"4879562 0.601935 0.031992 0.546454 0.051656\n",
"4879563 0.568163 0.041745 0.509543 0.042314\n",
"4879564 0.508238 0.052079 0.429219 0.077267"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"skyview.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute bias"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"skyview['bias'] = skyview.SVF_2m - skyview.SVF_50cm"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean bias of SVF: 7.16 percent\n",
"Std deviation of SVF: 12.09 percent\n"
]
}
],
"source": [
"print('Mean bias of SVF: %.2f percent' %(skyview['bias'].mean() * 100))\n",
"print('Std deviation of SVF: %.2f percent' %(skyview['bias'].std() * 100))"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7f34c51cce48>]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plt.figure()\n",
"skyview.bias.hist(bins = 100, density = True)\n",
"x = np.linspace(-0.5, 0.5, 100)\n",
"plt.plot(x, stats.norm.pdf(x, skyview['bias'].mean(), skyview['bias'].std()))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# save mean and std deviation of random variable \"SVF bias\"\n",
"df=pd.DataFrame(data = [skyview['bias'].mean(), skyview['bias'].std()], columns = ['SVF'], index = ['mean', 'std']).T\n",
"df.to_csv('/work/hyenergy/output/solar_potential/uncertainty/SVF_RV_mean_std.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load shading data"
]
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"path = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/shading_stats'\n",
"shade_bias = pd.read_csv( os.path.join(path, 'GVA_bias_2m-50cm.csv') )"
]
},
{
"cell_type": "code",
- "execution_count": 18,
- "metadata": {},
+ "execution_count": 3,
+ "metadata": {
+ "scrolled": true
+ },
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>non_null_cells</th>\n",
" <th>n_cells</th>\n",
" <th>fully_shaded_ratio</th>\n",
" <th>mean_12_13h</th>\n",
" <th>mean_1_16h</th>\n",
" <th>mean_11_10h</th>\n",
" <th>mean_7_15h</th>\n",
" <th>mean_6_18h</th>\n",
" <th>mean_6_10h</th>\n",
" <th>...</th>\n",
" <th>mean_11_12h</th>\n",
" <th>mean_9_11h</th>\n",
" <th>mean_5_6h</th>\n",
" <th>mean_8_16h</th>\n",
" <th>mean_9_9h</th>\n",
" <th>mean_2_16h</th>\n",
" <th>mean_5_10h</th>\n",
" <th>mean_4_8h</th>\n",
" <th>mean_8_12h</th>\n",
" <th>mean_12_12h</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4817081</td>\n",
" <td>-378</td>\n",
" <td>-378</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4817082</td>\n",
" <td>-406</td>\n",
" <td>-406</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.076923</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4817083</td>\n",
" <td>-398</td>\n",
" <td>-398</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.960000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.56</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4817084</td>\n",
" <td>-394</td>\n",
" <td>-394</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.88</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4817085</td>\n",
" <td>-501</td>\n",
" <td>-501</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.882353</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.205882</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 150 columns</p>\n",
"</div>"
],
"text/plain": [
" DF_UID non_null_cells n_cells fully_shaded_ratio mean_12_13h \\\n",
"0 4817081 -378 -378 0.0 0.0 \n",
"1 4817082 -406 -406 0.0 0.0 \n",
"2 4817083 -398 -398 0.0 0.0 \n",
"3 4817084 -394 -394 0.0 0.0 \n",
"4 4817085 -501 -501 0.0 0.0 \n",
"\n",
" mean_1_16h mean_11_10h mean_7_15h mean_6_18h mean_6_10h ... \\\n",
"0 -1.000000 0.0 0.0 0.000000 0.0 ... \n",
"1 -1.000000 0.0 0.0 -0.076923 0.0 ... \n",
"2 -0.960000 0.0 0.0 0.000000 0.0 ... \n",
"3 -1.000000 0.0 0.0 0.000000 0.0 ... \n",
"4 -0.882353 0.0 0.0 0.000000 0.0 ... \n",
"\n",
" mean_11_12h mean_9_11h mean_5_6h mean_8_16h mean_9_9h mean_2_16h \\\n",
"0 0.0 0.0 0.000000 0.0 0.0 0.00 \n",
"1 0.0 0.0 0.000000 0.0 0.0 0.00 \n",
"2 0.0 0.0 0.000000 0.0 0.0 -0.56 \n",
"3 0.0 0.0 0.000000 0.0 0.0 -0.88 \n",
"4 0.0 0.0 -0.205882 0.0 0.0 0.00 \n",
"\n",
" mean_5_10h mean_4_8h mean_8_12h mean_12_12h \n",
"0 0.0 0.0 0.0 0.0 \n",
"1 0.0 0.0 0.0 0.0 \n",
"2 0.0 0.0 0.0 0.0 \n",
"3 0.0 0.0 0.0 0.0 \n",
"4 0.0 0.0 0.0 0.0 \n",
"\n",
"[5 rows x 150 columns]"
]
},
- "execution_count": 18,
+ "execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"shade_bias.head()"
]
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"shade_bias_mean = shade_bias.mean()\n",
"shade_bias_std = shade_bias.std()"
]
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"rename_dict = {}\n",
"Ssh = pd.DataFrame(data = 0, columns = ['mean', 'std'], index = range(288))\n",
"\n",
"for col in shade_bias_mean.index:\n",
" name = col.split('_')\n",
" if name[0] == 'mean':\n",
" hour_idx = (int(name[1]) - 1) * 24 + int(name[2][:-1])\n",
" Ssh.loc[hour_idx,:] = [shade_bias_mean[col], shade_bias_std[col]]\n",
" rename_dict[col] = hour_idx\n",
"# shade_bias_mean\n",
"Ssh.sort_index(inplace = True)\n",
"Ssh.index.rename('hour_idx', inplace = True)"
]
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 6,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"shade_bias_hourly = shade_bias.set_index('DF_UID').rename(columns = rename_dict).iloc[:,4:].sort_index(axis = 1)\n",
"shade_bias_hourly['Csh'] = - shade_bias.fully_shaded_ratio.values # negative value to obtain bias for (1-Csh)"
]
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"mean 0.027160\n",
"std 0.247525\n",
"dtype: float64"
]
},
- "execution_count": 22,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ssh[Ssh['std'] > 0].mean()"
]
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 8,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"1200\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt_arr = Ssh[Ssh['std'] > 0]['std']\n",
"bias_arr = Ssh[Ssh['std'] > 0]['mean']\n",
"\n",
"# plt_arr[plt_arr == 0] = np.nan\n",
"\n",
"plt.figure(figsize = (12, 3))\n",
"ax = plt.subplot()\n",
"\n",
"# Ssh['mean'].plot()\n",
"plt_arr.plot(marker = 'x', markersize = 3, c = 'darkblue', label = '$\\sigma_{Ssh}$')\n",
"bias_arr.plot(marker = 'x', markersize = 3, c = 'orange', label = 'bias$_{Ssh}$')\n",
"\n",
"ax.set_xticks(list(range(12, 24*12, 24)))\n",
"ax.set_xticklabels(calendar.month_abbr[1:])\n",
"ax.set_ylabel('Fraction of roof surface')\n",
"ax.set_xlabel('')\n",
"ax.set_xlim((0, 12*24))\n",
"ax.yaxis.grid(linestyle = '--')\n",
"\n",
"plt.legend()\n",
"plt.tight_layout()\n",
"plt.show()\n",
- "plt.savefig('Ssh_temporal_var.png', dpi = 300)"
+ "# plt.savefig('Ssh_temporal_var.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"# save to file\n",
"Ssh.to_csv('/work/hyenergy/output/solar_potential/uncertainty/Ssh_RV_mean_std.csv')"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# COMPARE WITH SUN ZENITH"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "timestamps = pd.to_datetime( [('2001-%02d-15 %02d:00' %(np.floor(idx/24)+1, idx%24)) for idx in plt_arr.index] )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "solpos = pvlib.get_solarposition( timestamps, latitude = 46.948, longitude = 7.447 )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "solpos_plot = pd.Series(solpos.apparent_zenith.values, index = plt_arr.index)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "\n",
+ "mpl.get_websocket_type = function() {\n",
+ " if (typeof(WebSocket) !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert('Your browser does not have WebSocket support.' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.');\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = (this.ws.binaryType != undefined);\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById(\"mpl-warnings\");\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent = (\n",
+ " \"This browser does not support binary websocket messages. \" +\n",
+ " \"Performance may be slow.\");\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = $('<div/>');\n",
+ " this._root_extra_style(this.root)\n",
+ " this.root.attr('style', 'display: inline-block');\n",
+ "\n",
+ " $(parent_element).append(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+ " fig.send_message(\"send_image_mode\", {});\n",
+ " if (mpl.ratio != 1) {\n",
+ " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+ " }\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " }\n",
+ "\n",
+ " this.imageObj.onload = function() {\n",
+ " if (fig.image_mode == 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function() {\n",
+ " fig.ws.close();\n",
+ " }\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function() {\n",
+ " var titlebar = $(\n",
+ " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+ " 'ui-helper-clearfix\"/>');\n",
+ " var titletext = $(\n",
+ " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+ " 'text-align: center; padding: 3px;\"/>');\n",
+ " titlebar.append(titletext)\n",
+ " this.root.append(titlebar);\n",
+ " this.header = titletext[0];\n",
+ "}\n",
+ "\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = $('<div/>');\n",
+ "\n",
+ " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+ "\n",
+ " function canvas_keyboard_event(event) {\n",
+ " return fig.key_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+ " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+ " this.canvas_div = canvas_div\n",
+ " this._canvas_extra_style(canvas_div)\n",
+ " this.root.append(canvas_div);\n",
+ "\n",
+ " var canvas = $('<canvas/>');\n",
+ " canvas.addClass('mpl-canvas');\n",
+ " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+ "\n",
+ " this.canvas = canvas[0];\n",
+ " this.context = canvas[0].getContext(\"2d\");\n",
+ "\n",
+ " var backingStore = this.context.backingStorePixelRatio ||\n",
+ "\tthis.context.webkitBackingStorePixelRatio ||\n",
+ "\tthis.context.mozBackingStorePixelRatio ||\n",
+ "\tthis.context.msBackingStorePixelRatio ||\n",
+ "\tthis.context.oBackingStorePixelRatio ||\n",
+ "\tthis.context.backingStorePixelRatio || 1;\n",
+ "\n",
+ " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband = $('<canvas/>');\n",
+ " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+ "\n",
+ " var pass_mouse_events = true;\n",
+ "\n",
+ " canvas_div.resizable({\n",
+ " start: function(event, ui) {\n",
+ " pass_mouse_events = false;\n",
+ " },\n",
+ " resize: function(event, ui) {\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " stop: function(event, ui) {\n",
+ " pass_mouse_events = true;\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " });\n",
+ "\n",
+ " function mouse_event_fn(event) {\n",
+ " if (pass_mouse_events)\n",
+ " return fig.mouse_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " rubberband.mousedown('button_press', mouse_event_fn);\n",
+ " rubberband.mouseup('button_release', mouse_event_fn);\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+ "\n",
+ " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+ " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+ "\n",
+ " canvas_div.on(\"wheel\", function (event) {\n",
+ " event = event.originalEvent;\n",
+ " event['data'] = 'scroll'\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " mouse_event_fn(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.append(canvas);\n",
+ " canvas_div.append(rubberband);\n",
+ "\n",
+ " this.rubberband = rubberband;\n",
+ " this.rubberband_canvas = rubberband[0];\n",
+ " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+ " this.rubberband_context.strokeStyle = \"#000000\";\n",
+ "\n",
+ " this._resize_canvas = function(width, height) {\n",
+ " // Keep the size of the canvas, canvas container, and rubber band\n",
+ " // canvas in synch.\n",
+ " canvas_div.css('width', width)\n",
+ " canvas_div.css('height', height)\n",
+ "\n",
+ " canvas.attr('width', width * mpl.ratio);\n",
+ " canvas.attr('height', height * mpl.ratio);\n",
+ " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+ "\n",
+ " rubberband.attr('width', width);\n",
+ " rubberband.attr('height', height);\n",
+ " }\n",
+ "\n",
+ " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+ " // upon first draw.\n",
+ " this._resize_canvas(600, 600);\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus () {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " // put a spacer in here.\n",
+ " continue;\n",
+ " }\n",
+ " var button = $('<button/>');\n",
+ " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+ " 'ui-button-icon-only');\n",
+ " button.attr('role', 'button');\n",
+ " button.attr('aria-disabled', 'false');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ "\n",
+ " var icon_img = $('<span/>');\n",
+ " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+ " icon_img.addClass(image);\n",
+ " icon_img.addClass('ui-corner-all');\n",
+ "\n",
+ " var tooltip_span = $('<span/>');\n",
+ " tooltip_span.addClass('ui-button-text');\n",
+ " tooltip_span.html(tooltip);\n",
+ "\n",
+ " button.append(icon_img);\n",
+ " button.append(tooltip_span);\n",
+ "\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker_span = $('<span/>');\n",
+ "\n",
+ " var fmt_picker = $('<select/>');\n",
+ " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+ " fmt_picker_span.append(fmt_picker);\n",
+ " nav_element.append(fmt_picker_span);\n",
+ " this.format_dropdown = fmt_picker[0];\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = $(\n",
+ " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+ " fmt_picker.append(option)\n",
+ " }\n",
+ "\n",
+ " // Add hover states to the ui-buttons\n",
+ " $( \".ui-button\" ).hover(\n",
+ " function() { $(this).addClass(\"ui-state-hover\");},\n",
+ " function() { $(this).removeClass(\"ui-state-hover\");}\n",
+ " );\n",
+ "\n",
+ " var status_bar = $('<span class=\"mpl-message\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function(type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function() {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1]);\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+ " var x0 = msg['x0'] / mpl.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+ " var x1 = msg['x1'] / mpl.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0, 0, fig.canvas.width, fig.canvas.height);\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch(cursor)\n",
+ " {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message(\"ack\", {});\n",
+ "}\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = \"image/png\";\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data);\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig[\"handle_\" + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function(e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e)\n",
+ " e = window.event;\n",
+ " if (e.target)\n",
+ " targ = e.target;\n",
+ " else if (e.srcElement)\n",
+ " targ = e.srcElement;\n",
+ " if (targ.nodeType == 3) // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ "\n",
+ " // jQuery normalizes the pageX and pageY\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " // offset() returns the position of the element relative to the document\n",
+ " var x = e.pageX - $(targ).offset().left;\n",
+ " var y = e.pageY - $(targ).offset().top;\n",
+ "\n",
+ " return {\"x\": x, \"y\": y};\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys (original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object')\n",
+ " obj[key] = original[key]\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+ " var canvas_pos = mpl.findpos(event)\n",
+ "\n",
+ " if (name === 'button_press')\n",
+ " {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * mpl.ratio;\n",
+ " var y = canvas_pos.y * mpl.ratio;\n",
+ "\n",
+ " this.send_message(name, {x: x, y: y, button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function(event, name) {\n",
+ "\n",
+ " // Prevent repeat events\n",
+ " if (name == 'key_press')\n",
+ " {\n",
+ " if (event.which === this._key)\n",
+ " return;\n",
+ " else\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " if (name == 'key_release')\n",
+ " this._key = null;\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which != 17)\n",
+ " value += \"ctrl+\";\n",
+ " if (event.altKey && event.which != 18)\n",
+ " value += \"alt+\";\n",
+ " if (event.shiftKey && event.which != 16)\n",
+ " value += \"shift+\";\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, {key: value,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+ " if (name == 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message(\"toolbar_button\", {name: name});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function() {\n",
+ " comm.close()\n",
+ " };\n",
+ " ws.send = function(m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function(msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data'])\n",
+ " });\n",
+ " return ws;\n",
+ "}\n",
+ "\n",
+ "mpl.mpl_figure_comm = function(comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = $(\"#\" + id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm)\n",
+ "\n",
+ " function ondownload(figure, format) {\n",
+ " window.open(figure.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy,\n",
+ " ondownload,\n",
+ " element.get(0));\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element.get(0);\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error(\"Failed to find cell for figure\", id, fig);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var output_index = fig.cell_info[2]\n",
+ " var cell = fig.cell_info[0];\n",
+ "\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+ " var width = fig.canvas.width/mpl.ratio\n",
+ " fig.root.unbind('remove')\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable()\n",
+ " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+ " fig.close_ws(fig, msg);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width/mpl.ratio\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message(\"ack\", {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () { fig.push_to_output() }, 1000);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items){\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) { continue; };\n",
+ "\n",
+ " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+ " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+ " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+ " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+ " buttongrp.append(button);\n",
+ " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+ " titlebar.prepend(buttongrp);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(el){\n",
+ " var fig = this\n",
+ " el.on(\"remove\", function(){\n",
+ "\tfig.close_ws(fig, {});\n",
+ " });\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+ " // this is important to make the div 'focusable\n",
+ " el.attr('tabindex', 0)\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " }\n",
+ " else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager)\n",
+ " manager = IPython.keyboard_manager;\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which == 13) {\n",
+ " this.canvas_div.blur();\n",
+ " event.shiftKey = false;\n",
+ " // Send a \"J\" for go to next cell\n",
+ " event.which = 74;\n",
+ " event.keyCode = 74;\n",
+ " manager.command_mode();\n",
+ " manager.handle_keydown(event);\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.find_output_cell = function(html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i=0; i<ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code'){\n",
+ " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] == html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel != null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"1200\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize = (12, 3))\n",
+ "ax = plt.subplot()\n",
+ "\n",
+ "# Ssh['mean'].plot()\n",
+ "plt_arr.plot(ax = ax, marker = 'x', markersize = 3, c = 'darkblue', label = '$\\sigma_{Ssh}$')\n",
+ "ax.plot([0, 287], [-1, -1], marker = 'x', markersize = 3, c = 'orange', label = 'Solar zenith' ) # dummy for legend\n",
+ "# bias_arr.plot(marker = 'x', markersize = 3, c = 'orange', label = 'bias$_{Ssh}$')\n",
+ "\n",
+ "ax.set_xticks(list(range(12, 24*12, 24)))\n",
+ "ax.set_xticklabels(calendar.month_abbr[1:])\n",
+ "ax.set_ylabel('$\\sigma_{Ssh}$ (fraction of roof surface)')\n",
+ "ax.set_xlabel('')\n",
+ "ax.set_xlim((0, 12*24))\n",
+ "ax.set_ylim((0, 0.4))\n",
+ "ax.yaxis.grid(linestyle = '--')\n",
+ "ax.legend()\n",
+ "\n",
+ "ax2 = ax.twinx()\n",
+ "ax.set_zorder(10)\n",
+ "ax.patch.set_visible(False)\n",
+ "\n",
+ "solpos_plot.plot(ax = ax2, marker = 'x', markersize = 3, c = 'orange', label = 'Solar zenith')\n",
+ "ax2.set_ylabel('Solar zenith angle (degrees)')\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n",
+ "plt.savefig('Ssh_sigma_zenith.pdf')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# COMPARE WITH MEAN Ssh"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "path = '/work/hyenergy/output/solar_potential/geographic_potential/available_area/shading_stats'\n",
+ "shade = pd.read_csv( os.path.join(path, 'GVA_shading.csv') )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>DF_UID</th>\n",
+ " <th>non_null_cells</th>\n",
+ " <th>n_cells</th>\n",
+ " <th>fully_shaded_ratio</th>\n",
+ " <th>mean_12_13h</th>\n",
+ " <th>mean_1_16h</th>\n",
+ " <th>mean_11_10h</th>\n",
+ " <th>mean_7_15h</th>\n",
+ " <th>mean_6_18h</th>\n",
+ " <th>mean_6_10h</th>\n",
+ " <th>...</th>\n",
+ " <th>mean_11_12h</th>\n",
+ " <th>mean_9_11h</th>\n",
+ " <th>mean_5_6h</th>\n",
+ " <th>mean_8_16h</th>\n",
+ " <th>mean_9_9h</th>\n",
+ " <th>mean_2_16h</th>\n",
+ " <th>mean_5_10h</th>\n",
+ " <th>mean_4_8h</th>\n",
+ " <th>mean_8_12h</th>\n",
+ " <th>mean_12_12h</th>\n",
+ " </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
+ " <tr>\n",
+ " <th>0</th>\n",
+ " <td>4817081</td>\n",
+ " <td>406</td>\n",
+ " <td>406</td>\n",
+ " <td>0.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>...</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1</th>\n",
+ " <td>4817082</td>\n",
+ " <td>432</td>\n",
+ " <td>432</td>\n",
+ " <td>0.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>...</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2</th>\n",
+ " <td>4817083</td>\n",
+ " <td>423</td>\n",
+ " <td>423</td>\n",
+ " <td>0.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>...</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>3</th>\n",
+ " <td>4817084</td>\n",
+ " <td>419</td>\n",
+ " <td>419</td>\n",
+ " <td>0.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>...</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>4</th>\n",
+ " <td>4817085</td>\n",
+ " <td>535</td>\n",
+ " <td>535</td>\n",
+ " <td>0.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>...</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " <td>1.0</td>\n",
+ " </tr>\n",
+ " </tbody>\n",
+ "</table>\n",
+ "<p>5 rows × 150 columns</p>\n",
+ "</div>"
+ ],
+ "text/plain": [
+ " DF_UID non_null_cells n_cells fully_shaded_ratio mean_12_13h \\\n",
+ "0 4817081 406 406 0.0 1.0 \n",
+ "1 4817082 432 432 0.0 1.0 \n",
+ "2 4817083 423 423 0.0 1.0 \n",
+ "3 4817084 419 419 0.0 1.0 \n",
+ "4 4817085 535 535 0.0 1.0 \n",
+ "\n",
+ " mean_1_16h mean_11_10h mean_7_15h mean_6_18h mean_6_10h ... \\\n",
+ "0 1.0 1.0 1.0 1.0 1.0 ... \n",
+ "1 1.0 1.0 1.0 1.0 1.0 ... \n",
+ "2 1.0 1.0 1.0 1.0 1.0 ... \n",
+ "3 1.0 1.0 1.0 1.0 1.0 ... \n",
+ "4 1.0 1.0 1.0 1.0 1.0 ... \n",
+ "\n",
+ " mean_11_12h mean_9_11h mean_5_6h mean_8_16h mean_9_9h mean_2_16h \\\n",
+ "0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "1 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "2 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "3 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "4 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "\n",
+ " mean_5_10h mean_4_8h mean_8_12h mean_12_12h \n",
+ "0 1.0 1.0 1.0 1.0 \n",
+ "1 1.0 1.0 1.0 1.0 \n",
+ "2 1.0 1.0 1.0 1.0 \n",
+ "3 1.0 1.0 1.0 1.0 \n",
+ "4 1.0 1.0 1.0 1.0 \n",
+ "\n",
+ "[5 rows x 150 columns]"
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "shade.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "shade_mean = shade.mean()\n",
+ "shade_std = shade.std()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "rename_dict = {}\n",
+ "Ssh_50cm = pd.DataFrame(data = 0, columns = ['mean', 'std'], index = range(288))\n",
+ "\n",
+ "for col in shade_mean.index:\n",
+ " name = col.split('_')\n",
+ " if name[0] == 'mean':\n",
+ " hour_idx = (int(name[1]) - 1) * 24 + int(name[2][:-1])\n",
+ " Ssh_50cm.loc[hour_idx,:] = [shade_mean[col], shade_std[col]]\n",
+ " rename_dict[col] = hour_idx\n",
+ "# shade_bias_mean\n",
+ "Ssh_50cm.sort_index(inplace = True)\n",
+ "Ssh_50cm.index.rename('hour_idx', inplace = True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "shade_hourly = shade.set_index('DF_UID').rename(columns = rename_dict).iloc[:,4:].sort_index(axis = 1)\n",
+ "shade_hourly['Csh'] = - shade.fully_shaded_ratio.values # negative value to obtain bias for (1-Csh)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "mean 0.693302\n",
+ "std 0.288245\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 63,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Ssh_50cm[Ssh_50cm['std'] > 0].mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "\n",
+ "mpl.get_websocket_type = function() {\n",
+ " if (typeof(WebSocket) !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert('Your browser does not have WebSocket support.' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.');\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = (this.ws.binaryType != undefined);\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById(\"mpl-warnings\");\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent = (\n",
+ " \"This browser does not support binary websocket messages. \" +\n",
+ " \"Performance may be slow.\");\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = $('<div/>');\n",
+ " this._root_extra_style(this.root)\n",
+ " this.root.attr('style', 'display: inline-block');\n",
+ "\n",
+ " $(parent_element).append(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+ " fig.send_message(\"send_image_mode\", {});\n",
+ " if (mpl.ratio != 1) {\n",
+ " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+ " }\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " }\n",
+ "\n",
+ " this.imageObj.onload = function() {\n",
+ " if (fig.image_mode == 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function() {\n",
+ " fig.ws.close();\n",
+ " }\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function() {\n",
+ " var titlebar = $(\n",
+ " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+ " 'ui-helper-clearfix\"/>');\n",
+ " var titletext = $(\n",
+ " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+ " 'text-align: center; padding: 3px;\"/>');\n",
+ " titlebar.append(titletext)\n",
+ " this.root.append(titlebar);\n",
+ " this.header = titletext[0];\n",
+ "}\n",
+ "\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = $('<div/>');\n",
+ "\n",
+ " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+ "\n",
+ " function canvas_keyboard_event(event) {\n",
+ " return fig.key_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+ " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+ " this.canvas_div = canvas_div\n",
+ " this._canvas_extra_style(canvas_div)\n",
+ " this.root.append(canvas_div);\n",
+ "\n",
+ " var canvas = $('<canvas/>');\n",
+ " canvas.addClass('mpl-canvas');\n",
+ " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+ "\n",
+ " this.canvas = canvas[0];\n",
+ " this.context = canvas[0].getContext(\"2d\");\n",
+ "\n",
+ " var backingStore = this.context.backingStorePixelRatio ||\n",
+ "\tthis.context.webkitBackingStorePixelRatio ||\n",
+ "\tthis.context.mozBackingStorePixelRatio ||\n",
+ "\tthis.context.msBackingStorePixelRatio ||\n",
+ "\tthis.context.oBackingStorePixelRatio ||\n",
+ "\tthis.context.backingStorePixelRatio || 1;\n",
+ "\n",
+ " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband = $('<canvas/>');\n",
+ " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+ "\n",
+ " var pass_mouse_events = true;\n",
+ "\n",
+ " canvas_div.resizable({\n",
+ " start: function(event, ui) {\n",
+ " pass_mouse_events = false;\n",
+ " },\n",
+ " resize: function(event, ui) {\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " stop: function(event, ui) {\n",
+ " pass_mouse_events = true;\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " });\n",
+ "\n",
+ " function mouse_event_fn(event) {\n",
+ " if (pass_mouse_events)\n",
+ " return fig.mouse_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " rubberband.mousedown('button_press', mouse_event_fn);\n",
+ " rubberband.mouseup('button_release', mouse_event_fn);\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+ "\n",
+ " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+ " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+ "\n",
+ " canvas_div.on(\"wheel\", function (event) {\n",
+ " event = event.originalEvent;\n",
+ " event['data'] = 'scroll'\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " mouse_event_fn(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.append(canvas);\n",
+ " canvas_div.append(rubberband);\n",
+ "\n",
+ " this.rubberband = rubberband;\n",
+ " this.rubberband_canvas = rubberband[0];\n",
+ " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+ " this.rubberband_context.strokeStyle = \"#000000\";\n",
+ "\n",
+ " this._resize_canvas = function(width, height) {\n",
+ " // Keep the size of the canvas, canvas container, and rubber band\n",
+ " // canvas in synch.\n",
+ " canvas_div.css('width', width)\n",
+ " canvas_div.css('height', height)\n",
+ "\n",
+ " canvas.attr('width', width * mpl.ratio);\n",
+ " canvas.attr('height', height * mpl.ratio);\n",
+ " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+ "\n",
+ " rubberband.attr('width', width);\n",
+ " rubberband.attr('height', height);\n",
+ " }\n",
+ "\n",
+ " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+ " // upon first draw.\n",
+ " this._resize_canvas(600, 600);\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus () {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " // put a spacer in here.\n",
+ " continue;\n",
+ " }\n",
+ " var button = $('<button/>');\n",
+ " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+ " 'ui-button-icon-only');\n",
+ " button.attr('role', 'button');\n",
+ " button.attr('aria-disabled', 'false');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ "\n",
+ " var icon_img = $('<span/>');\n",
+ " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+ " icon_img.addClass(image);\n",
+ " icon_img.addClass('ui-corner-all');\n",
+ "\n",
+ " var tooltip_span = $('<span/>');\n",
+ " tooltip_span.addClass('ui-button-text');\n",
+ " tooltip_span.html(tooltip);\n",
+ "\n",
+ " button.append(icon_img);\n",
+ " button.append(tooltip_span);\n",
+ "\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker_span = $('<span/>');\n",
+ "\n",
+ " var fmt_picker = $('<select/>');\n",
+ " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+ " fmt_picker_span.append(fmt_picker);\n",
+ " nav_element.append(fmt_picker_span);\n",
+ " this.format_dropdown = fmt_picker[0];\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = $(\n",
+ " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+ " fmt_picker.append(option)\n",
+ " }\n",
+ "\n",
+ " // Add hover states to the ui-buttons\n",
+ " $( \".ui-button\" ).hover(\n",
+ " function() { $(this).addClass(\"ui-state-hover\");},\n",
+ " function() { $(this).removeClass(\"ui-state-hover\");}\n",
+ " );\n",
+ "\n",
+ " var status_bar = $('<span class=\"mpl-message\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function(type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function() {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1]);\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+ " var x0 = msg['x0'] / mpl.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+ " var x1 = msg['x1'] / mpl.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0, 0, fig.canvas.width, fig.canvas.height);\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch(cursor)\n",
+ " {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message(\"ack\", {});\n",
+ "}\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = \"image/png\";\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data);\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig[\"handle_\" + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function(e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e)\n",
+ " e = window.event;\n",
+ " if (e.target)\n",
+ " targ = e.target;\n",
+ " else if (e.srcElement)\n",
+ " targ = e.srcElement;\n",
+ " if (targ.nodeType == 3) // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ "\n",
+ " // jQuery normalizes the pageX and pageY\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " // offset() returns the position of the element relative to the document\n",
+ " var x = e.pageX - $(targ).offset().left;\n",
+ " var y = e.pageY - $(targ).offset().top;\n",
+ "\n",
+ " return {\"x\": x, \"y\": y};\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys (original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object')\n",
+ " obj[key] = original[key]\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+ " var canvas_pos = mpl.findpos(event)\n",
+ "\n",
+ " if (name === 'button_press')\n",
+ " {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * mpl.ratio;\n",
+ " var y = canvas_pos.y * mpl.ratio;\n",
+ "\n",
+ " this.send_message(name, {x: x, y: y, button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function(event, name) {\n",
+ "\n",
+ " // Prevent repeat events\n",
+ " if (name == 'key_press')\n",
+ " {\n",
+ " if (event.which === this._key)\n",
+ " return;\n",
+ " else\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " if (name == 'key_release')\n",
+ " this._key = null;\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which != 17)\n",
+ " value += \"ctrl+\";\n",
+ " if (event.altKey && event.which != 18)\n",
+ " value += \"alt+\";\n",
+ " if (event.shiftKey && event.which != 16)\n",
+ " value += \"shift+\";\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, {key: value,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+ " if (name == 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message(\"toolbar_button\", {name: name});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function() {\n",
+ " comm.close()\n",
+ " };\n",
+ " ws.send = function(m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function(msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data'])\n",
+ " });\n",
+ " return ws;\n",
+ "}\n",
+ "\n",
+ "mpl.mpl_figure_comm = function(comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = $(\"#\" + id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm)\n",
+ "\n",
+ " function ondownload(figure, format) {\n",
+ " window.open(figure.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy,\n",
+ " ondownload,\n",
+ " element.get(0));\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element.get(0);\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error(\"Failed to find cell for figure\", id, fig);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var output_index = fig.cell_info[2]\n",
+ " var cell = fig.cell_info[0];\n",
+ "\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+ " var width = fig.canvas.width/mpl.ratio\n",
+ " fig.root.unbind('remove')\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable()\n",
+ " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+ " fig.close_ws(fig, msg);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width/mpl.ratio\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message(\"ack\", {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () { fig.push_to_output() }, 1000);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items){\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) { continue; };\n",
+ "\n",
+ " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+ " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+ " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+ " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+ " buttongrp.append(button);\n",
+ " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+ " titlebar.prepend(buttongrp);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(el){\n",
+ " var fig = this\n",
+ " el.on(\"remove\", function(){\n",
+ "\tfig.close_ws(fig, {});\n",
+ " });\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+ " // this is important to make the div 'focusable\n",
+ " el.attr('tabindex', 0)\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " }\n",
+ " else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager)\n",
+ " manager = IPython.keyboard_manager;\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which == 13) {\n",
+ " this.canvas_div.blur();\n",
+ " event.shiftKey = false;\n",
+ " // Send a \"J\" for go to next cell\n",
+ " event.which = 74;\n",
+ " event.keyCode = 74;\n",
+ " manager.command_mode();\n",
+ " manager.handle_keydown(event);\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.find_output_cell = function(html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i=0; i<ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code'){\n",
+ " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] == html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel != null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"1200\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "unc_arr = Ssh[Ssh['std'] > 0]['std']\n",
+ "Ssh_arr = (1 - Ssh_50cm[Ssh_50cm['std'] > 0]['mean'])\n",
+ "\n",
+ "plt.figure(figsize = (12, 3))\n",
+ "ax2 = plt.subplot()\n",
+ "\n",
+ "Ssh_arr.plot(ax = ax2, marker = 'x', markersize = 3, c = 'orange', label = '$S_{sh}$')\n",
+ "ax2.set_ylabel('Partly shaded fraction $S_{sh}$')\n",
+ "ax2.yaxis.grid(linestyle = '--')\n",
+ "\n",
+ "ax = ax2.twinx()\n",
+ "#ax.set_zorder(10)\n",
+ "#ax.patch.set_visible(False)\n",
+ "\n",
+ "# Ssh['mean'].plot()\n",
+ "unc_arr.plot(ax = ax, marker = 'x', markersize = 3, c = 'darkblue', label = '$\\sigma_{Ssh}$')\n",
+ "ax.plot([0, 287], [-1, -1], marker = 'x', markersize = 3, c = 'orange', label = '$S_{sh}$' ) # dummy for legend\n",
+ "# bias_arr.plot(marker = 'x', markersize = 3, c = 'orange', label = 'bias$_{Ssh}$')\n",
+ "\n",
+ "ax.set_xticks(list(range(12, 24*12, 24)))\n",
+ "ax.set_xticklabels(calendar.month_abbr[1:])\n",
+ "ax.set_ylabel('Uncertainty $\\sigma_{Ssh}$')\n",
+ "ax.set_xlabel('')\n",
+ "ax.set_xlim((0, 12*24))\n",
+ "ax.set_ylim((0, 0.4))\n",
+ "ax.legend()\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n",
+ "# plt.savefig('Ssh_sigma_zenith.pdf')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "\n",
+ "mpl.get_websocket_type = function() {\n",
+ " if (typeof(WebSocket) !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert('Your browser does not have WebSocket support.' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.');\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = (this.ws.binaryType != undefined);\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById(\"mpl-warnings\");\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent = (\n",
+ " \"This browser does not support binary websocket messages. \" +\n",
+ " \"Performance may be slow.\");\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = $('<div/>');\n",
+ " this._root_extra_style(this.root)\n",
+ " this.root.attr('style', 'display: inline-block');\n",
+ "\n",
+ " $(parent_element).append(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+ " fig.send_message(\"send_image_mode\", {});\n",
+ " if (mpl.ratio != 1) {\n",
+ " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+ " }\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " }\n",
+ "\n",
+ " this.imageObj.onload = function() {\n",
+ " if (fig.image_mode == 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function() {\n",
+ " fig.ws.close();\n",
+ " }\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function() {\n",
+ " var titlebar = $(\n",
+ " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+ " 'ui-helper-clearfix\"/>');\n",
+ " var titletext = $(\n",
+ " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+ " 'text-align: center; padding: 3px;\"/>');\n",
+ " titlebar.append(titletext)\n",
+ " this.root.append(titlebar);\n",
+ " this.header = titletext[0];\n",
+ "}\n",
+ "\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = $('<div/>');\n",
+ "\n",
+ " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+ "\n",
+ " function canvas_keyboard_event(event) {\n",
+ " return fig.key_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+ " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+ " this.canvas_div = canvas_div\n",
+ " this._canvas_extra_style(canvas_div)\n",
+ " this.root.append(canvas_div);\n",
+ "\n",
+ " var canvas = $('<canvas/>');\n",
+ " canvas.addClass('mpl-canvas');\n",
+ " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+ "\n",
+ " this.canvas = canvas[0];\n",
+ " this.context = canvas[0].getContext(\"2d\");\n",
+ "\n",
+ " var backingStore = this.context.backingStorePixelRatio ||\n",
+ "\tthis.context.webkitBackingStorePixelRatio ||\n",
+ "\tthis.context.mozBackingStorePixelRatio ||\n",
+ "\tthis.context.msBackingStorePixelRatio ||\n",
+ "\tthis.context.oBackingStorePixelRatio ||\n",
+ "\tthis.context.backingStorePixelRatio || 1;\n",
+ "\n",
+ " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband = $('<canvas/>');\n",
+ " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+ "\n",
+ " var pass_mouse_events = true;\n",
+ "\n",
+ " canvas_div.resizable({\n",
+ " start: function(event, ui) {\n",
+ " pass_mouse_events = false;\n",
+ " },\n",
+ " resize: function(event, ui) {\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " stop: function(event, ui) {\n",
+ " pass_mouse_events = true;\n",
+ " fig.request_resize(ui.size.width, ui.size.height);\n",
+ " },\n",
+ " });\n",
+ "\n",
+ " function mouse_event_fn(event) {\n",
+ " if (pass_mouse_events)\n",
+ " return fig.mouse_event(event, event['data']);\n",
+ " }\n",
+ "\n",
+ " rubberband.mousedown('button_press', mouse_event_fn);\n",
+ " rubberband.mouseup('button_release', mouse_event_fn);\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+ "\n",
+ " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+ " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+ "\n",
+ " canvas_div.on(\"wheel\", function (event) {\n",
+ " event = event.originalEvent;\n",
+ " event['data'] = 'scroll'\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " mouse_event_fn(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.append(canvas);\n",
+ " canvas_div.append(rubberband);\n",
+ "\n",
+ " this.rubberband = rubberband;\n",
+ " this.rubberband_canvas = rubberband[0];\n",
+ " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+ " this.rubberband_context.strokeStyle = \"#000000\";\n",
+ "\n",
+ " this._resize_canvas = function(width, height) {\n",
+ " // Keep the size of the canvas, canvas container, and rubber band\n",
+ " // canvas in synch.\n",
+ " canvas_div.css('width', width)\n",
+ " canvas_div.css('height', height)\n",
+ "\n",
+ " canvas.attr('width', width * mpl.ratio);\n",
+ " canvas.attr('height', height * mpl.ratio);\n",
+ " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+ "\n",
+ " rubberband.attr('width', width);\n",
+ " rubberband.attr('height', height);\n",
+ " }\n",
+ "\n",
+ " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+ " // upon first draw.\n",
+ " this._resize_canvas(600, 600);\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus () {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " // put a spacer in here.\n",
+ " continue;\n",
+ " }\n",
+ " var button = $('<button/>');\n",
+ " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+ " 'ui-button-icon-only');\n",
+ " button.attr('role', 'button');\n",
+ " button.attr('aria-disabled', 'false');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ "\n",
+ " var icon_img = $('<span/>');\n",
+ " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+ " icon_img.addClass(image);\n",
+ " icon_img.addClass('ui-corner-all');\n",
+ "\n",
+ " var tooltip_span = $('<span/>');\n",
+ " tooltip_span.addClass('ui-button-text');\n",
+ " tooltip_span.html(tooltip);\n",
+ "\n",
+ " button.append(icon_img);\n",
+ " button.append(tooltip_span);\n",
+ "\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker_span = $('<span/>');\n",
+ "\n",
+ " var fmt_picker = $('<select/>');\n",
+ " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+ " fmt_picker_span.append(fmt_picker);\n",
+ " nav_element.append(fmt_picker_span);\n",
+ " this.format_dropdown = fmt_picker[0];\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = $(\n",
+ " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+ " fmt_picker.append(option)\n",
+ " }\n",
+ "\n",
+ " // Add hover states to the ui-buttons\n",
+ " $( \".ui-button\" ).hover(\n",
+ " function() { $(this).addClass(\"ui-state-hover\");},\n",
+ " function() { $(this).removeClass(\"ui-state-hover\");}\n",
+ " );\n",
+ "\n",
+ " var status_bar = $('<span class=\"mpl-message\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function(type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function() {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1]);\n",
+ " fig.send_message(\"refresh\", {});\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+ " var x0 = msg['x0'] / mpl.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+ " var x1 = msg['x1'] / mpl.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0, 0, fig.canvas.width, fig.canvas.height);\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch(cursor)\n",
+ " {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message(\"ack\", {});\n",
+ "}\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = \"image/png\";\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data);\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig[\"handle_\" + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "}\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function(e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e)\n",
+ " e = window.event;\n",
+ " if (e.target)\n",
+ " targ = e.target;\n",
+ " else if (e.srcElement)\n",
+ " targ = e.srcElement;\n",
+ " if (targ.nodeType == 3) // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ "\n",
+ " // jQuery normalizes the pageX and pageY\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " // offset() returns the position of the element relative to the document\n",
+ " var x = e.pageX - $(targ).offset().left;\n",
+ " var y = e.pageY - $(targ).offset().top;\n",
+ "\n",
+ " return {\"x\": x, \"y\": y};\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys (original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object')\n",
+ " obj[key] = original[key]\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+ " var canvas_pos = mpl.findpos(event)\n",
+ "\n",
+ " if (name === 'button_press')\n",
+ " {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * mpl.ratio;\n",
+ " var y = canvas_pos.y * mpl.ratio;\n",
+ "\n",
+ " this.send_message(name, {x: x, y: y, button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function(event, name) {\n",
+ "\n",
+ " // Prevent repeat events\n",
+ " if (name == 'key_press')\n",
+ " {\n",
+ " if (event.which === this._key)\n",
+ " return;\n",
+ " else\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " if (name == 'key_release')\n",
+ " this._key = null;\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which != 17)\n",
+ " value += \"ctrl+\";\n",
+ " if (event.altKey && event.which != 18)\n",
+ " value += \"alt+\";\n",
+ " if (event.shiftKey && event.which != 16)\n",
+ " value += \"shift+\";\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, {key: value,\n",
+ " guiEvent: simpleKeys(event)});\n",
+ " return false;\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+ " if (name == 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message(\"toolbar_button\", {name: name});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function() {\n",
+ " comm.close()\n",
+ " };\n",
+ " ws.send = function(m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function(msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data'])\n",
+ " });\n",
+ " return ws;\n",
+ "}\n",
+ "\n",
+ "mpl.mpl_figure_comm = function(comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = $(\"#\" + id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm)\n",
+ "\n",
+ " function ondownload(figure, format) {\n",
+ " window.open(figure.imageObj.src);\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy,\n",
+ " ondownload,\n",
+ " element.get(0));\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element.get(0);\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error(\"Failed to find cell for figure\", id, fig);\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var output_index = fig.cell_info[2]\n",
+ " var cell = fig.cell_info[0];\n",
+ "\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+ " var width = fig.canvas.width/mpl.ratio\n",
+ " fig.root.unbind('remove')\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable()\n",
+ " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+ " fig.close_ws(fig, msg);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width/mpl.ratio\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function() {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message(\"ack\", {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () { fig.push_to_output() }, 1000);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function() {\n",
+ " var fig = this;\n",
+ "\n",
+ " var nav_element = $('<div/>')\n",
+ " nav_element.attr('style', 'width: 100%');\n",
+ " this.root.append(nav_element);\n",
+ "\n",
+ " // Define a callback function for later on.\n",
+ " function toolbar_event(event) {\n",
+ " return fig.toolbar_button_onclick(event['data']);\n",
+ " }\n",
+ " function toolbar_mouse_event(event) {\n",
+ " return fig.toolbar_button_onmouseover(event['data']);\n",
+ " }\n",
+ "\n",
+ " for(var toolbar_ind in mpl.toolbar_items){\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) { continue; };\n",
+ "\n",
+ " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+ " button.click(method_name, toolbar_event);\n",
+ " button.mouseover(tooltip, toolbar_mouse_event);\n",
+ " nav_element.append(button);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+ " nav_element.append(status_bar);\n",
+ " this.message = status_bar[0];\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+ " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+ " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+ " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+ " buttongrp.append(button);\n",
+ " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+ " titlebar.prepend(buttongrp);\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function(el){\n",
+ " var fig = this\n",
+ " el.on(\"remove\", function(){\n",
+ "\tfig.close_ws(fig, {});\n",
+ " });\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+ " // this is important to make the div 'focusable\n",
+ " el.attr('tabindex', 0)\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " }\n",
+ " else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager)\n",
+ " manager = IPython.keyboard_manager;\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which == 13) {\n",
+ " this.canvas_div.blur();\n",
+ " event.shiftKey = false;\n",
+ " // Send a \"J\" for go to next cell\n",
+ " event.which = 74;\n",
+ " event.keyCode = 74;\n",
+ " manager.command_mode();\n",
+ " manager.handle_keydown(event);\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "}\n",
+ "\n",
+ "\n",
+ "mpl.find_output_cell = function(html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i=0; i<ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code'){\n",
+ " for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] == html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel != null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"1200\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt_arr = Ssh[Ssh['std'] > 0]['std']\n",
+ "bias_arr = (1 - Ssh_50cm[Ssh_50cm['std'] > 0]['mean'])\n",
+ "\n",
+ "# plt_arr[plt_arr == 0] = np.nan\n",
+ "\n",
+ "plt.figure(figsize = (12, 3))\n",
+ "ax = plt.subplot()\n",
+ "\n",
+ "# Ssh['mean'].plot()\n",
+ "plt_arr.plot(marker = 'x', markersize = 3, c = 'darkblue', label = '$\\sigma_{Ssh}$')\n",
+ "bias_arr.plot(marker = 'x', markersize = 3, c = 'orange', label = '$S_{sh}$')\n",
+ "\n",
+ "ax.set_xticks(list(range(12, 24*12, 24)))\n",
+ "ax.set_xticklabels(calendar.month_abbr[1:])\n",
+ "ax.set_ylabel('Fraction of roof surface')\n",
+ "ax.set_xlabel('')\n",
+ "ax.set_xlim((0, 12*24))\n",
+ "ax.yaxis.grid(linestyle = '--')\n",
+ "\n",
+ "plt.legend()\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Merge shading data and SVF data to compute correlation"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>8</th>\n",
" <th>9</th>\n",
" <th>10</th>\n",
" <th>11</th>\n",
" <th>12</th>\n",
" <th>13</th>\n",
" <th>14</th>\n",
" <th>15</th>\n",
" <th>16</th>\n",
" <th>31</th>\n",
" <th>...</th>\n",
" <th>254</th>\n",
" <th>255</th>\n",
" <th>272</th>\n",
" <th>273</th>\n",
" <th>274</th>\n",
" <th>275</th>\n",
" <th>276</th>\n",
" <th>278</th>\n",
" <th>279</th>\n",
" <th>Csh</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>4817081</th>\n",
" <td>-0.357143</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>-1.000000</td>\n",
" <td>-1.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>-0.464286</td>\n",
" <td>-0.035714</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.678571</td>\n",
" <td>-0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4817082</th>\n",
" <td>-0.076923</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.076923</td>\n",
" <td>-1.000000</td>\n",
" <td>-1.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>-0.615385</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-1.000000</td>\n",
" <td>-0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4817083</th>\n",
" <td>-0.120000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.800000</td>\n",
" <td>-0.960000</td>\n",
" <td>-1.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>-0.200000</td>\n",
" <td>-0.480000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.680000</td>\n",
" <td>-0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4817084</th>\n",
" <td>-0.120000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.400000</td>\n",
" <td>-1.000000</td>\n",
" <td>-1.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>-0.320000</td>\n",
" <td>-0.320000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.480000</td>\n",
" <td>-0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4817085</th>\n",
" <td>-1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>-0.882353</td>\n",
" <td>-1.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>-0.970588</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.735294</td>\n",
" <td>-0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 146 columns</p>\n",
"</div>"
],
"text/plain": [
" 8 9 10 11 12 13 14 15 16 31 ... \\\n",
"DF_UID ... \n",
"4817081 -0.357143 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 -1.000000 -1.0 ... \n",
"4817082 -0.076923 0.0 0.0 0.0 0.0 0.0 0.0 -0.076923 -1.000000 -1.0 ... \n",
"4817083 -0.120000 0.0 0.0 0.0 0.0 0.0 0.0 -0.800000 -0.960000 -1.0 ... \n",
"4817084 -0.120000 0.0 0.0 0.0 0.0 0.0 0.0 -0.400000 -1.000000 -1.0 ... \n",
"4817085 -1.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 -0.882353 -1.0 ... \n",
"\n",
" 254 255 272 273 274 275 276 278 279 Csh \n",
"DF_UID \n",
"4817081 0.0 -0.464286 -0.035714 0.0 0.0 0.0 0.0 0.0 -0.678571 -0.0 \n",
"4817082 0.0 -0.615385 0.000000 0.0 0.0 0.0 0.0 0.0 -1.000000 -0.0 \n",
"4817083 0.0 -0.200000 -0.480000 0.0 0.0 0.0 0.0 0.0 -0.680000 -0.0 \n",
"4817084 0.0 -0.320000 -0.320000 0.0 0.0 0.0 0.0 0.0 -0.480000 -0.0 \n",
"4817085 0.0 0.000000 -0.970588 0.0 0.0 0.0 0.0 0.0 -0.735294 -0.0 \n",
"\n",
"[5 rows x 146 columns]"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"shade_bias_hourly.head()"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"merged_df = shade_bias_hourly.merge(skyview[['bias']], how = 'inner', left_index = True, right_index = True)\n",
"merged_df.rename(columns = {'bias' : 'SVF'}, inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>8</th>\n",
" <th>9</th>\n",
" <th>10</th>\n",
" <th>11</th>\n",
" <th>12</th>\n",
" <th>13</th>\n",
" <th>14</th>\n",
" <th>15</th>\n",
" <th>16</th>\n",
" <th>31</th>\n",
" <th>...</th>\n",
" <th>255</th>\n",
" <th>272</th>\n",
" <th>273</th>\n",
" <th>274</th>\n",
" <th>275</th>\n",
" <th>276</th>\n",
" <th>278</th>\n",
" <th>279</th>\n",
" <th>Csh</th>\n",
" <th>SVF</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>4879560</th>\n",
" <td>0.000000</td>\n",
" <td>-0.186667</td>\n",
" <td>-0.1</td>\n",
" <td>0.31</td>\n",
" <td>0.15</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>-0.050000</td>\n",
" <td>-0.186667</td>\n",
" <td>-0.046667</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.016393</td>\n",
" <td>0.040677</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879561</th>\n",
" <td>0.473913</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.065217</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.256854</td>\n",
" <td>0.069776</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879562</th>\n",
" <td>0.235238</td>\n",
" <td>0.352698</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.537460</td>\n",
" <td>0.352698</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.036494</td>\n",
" <td>0.055481</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879563</th>\n",
" <td>0.000000</td>\n",
" <td>0.333333</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.061224</td>\n",
" <td>0.333333</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.010000</td>\n",
" <td>0.058620</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879564</th>\n",
" <td>0.000000</td>\n",
" <td>0.200000</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.200000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.372457</td>\n",
" <td>0.079019</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 147 columns</p>\n",
"</div>"
],
"text/plain": [
" 8 9 10 11 12 13 14 15 16 31 \\\n",
"DF_UID \n",
"4879560 0.000000 -0.186667 -0.1 0.31 0.15 0.0 0.0 0.0 0.0 0.0 \n",
"4879561 0.473913 0.000000 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0 \n",
"4879562 0.235238 0.352698 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0 \n",
"4879563 0.000000 0.333333 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0 \n",
"4879564 0.000000 0.200000 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0 \n",
"\n",
" ... 255 272 273 274 275 276 278 279 \\\n",
"DF_UID ... \n",
"4879560 ... 0.0 -0.050000 -0.186667 -0.046667 0.0 0.0 0.0 0.0 \n",
"4879561 ... 0.0 0.065217 0.000000 0.000000 0.0 0.0 0.0 0.0 \n",
"4879562 ... 0.0 0.537460 0.352698 0.000000 0.0 0.0 0.0 0.0 \n",
"4879563 ... 0.0 0.061224 0.333333 0.000000 0.0 0.0 0.0 0.0 \n",
"4879564 ... 0.0 0.000000 0.200000 0.000000 0.0 0.0 0.0 0.0 \n",
"\n",
" Csh SVF \n",
"DF_UID \n",
"4879560 0.016393 0.040677 \n",
"4879561 0.256854 0.069776 \n",
"4879562 -0.036494 0.055481 \n",
"4879563 0.010000 0.058620 \n",
"4879564 0.372457 0.079019 \n",
"\n",
"[5 rows x 147 columns]"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f99396da668>"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_df.plot(x=10, y='SVF', style='o', markersize = 1)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"corr = merged_df.corr()\n",
"cov = merged_df.cov()"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"corr_w_SVF = pd.concat([corr.loc[:, 'SVF'].rename('corr'), cov.loc[:, 'SVF'].rename('cov')], axis = 1)\n",
"corr_w_Csh = pd.concat([corr.loc[:, 'Csh'].rename('corr'), cov.loc[:, 'Csh'].rename('cov')], axis = 1)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f9939725128>"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plt.figure()\n",
"corr_w_SVF['corr'][:-2].plot()"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"corr 0.356733\n",
"cov 0.010845\n",
"dtype: float64"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"corr_w_SVF.mean()"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"corr 0.125164\n",
"cov 0.005559\n",
"dtype: float64"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"corr_w_Csh.mean()"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"correlation between SVF and C_sh: 0.564\n",
"covariance between SVF and C_sh: 0.014\n"
]
}
],
"source": [
"print('correlation between SVF and C_sh: %.3f' %corr.loc['Csh', 'SVF'])\n",
"print('covariance between SVF and C_sh: %.3f' %cov.loc[ 'Csh', 'SVF'])"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"corr_save = pd.concat([corr_w_SVF.rename(columns = {'corr' : 'corr_SVF', 'cov' : 'cov_SVF'}), \n",
" corr_w_Csh.rename(columns = {'corr' : 'corr_Csh', 'cov' : 'cov_Csh'})], axis = 1)\n",
"corr_save.index.rename('hour_idx', inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"corr_save.to_csv('/work/hyenergy/output/solar_potential/uncertainty/covariance_DSM.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Attach rooftop data"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"ROOFS='/work/hyenergy/output/solar_potential/geographic_potential/CH_ROOFS_all_replaced.csv'\n",
"roofs = pd.read_csv(ROOFS, usecols = ['DF_UID', 'NEIGUNG', 'AUSRICHTUNG', 'FLAECHE'])"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
"SVF = skyview.merge(roofs, left_index = True, right_on = 'DF_UID', how = 'left')"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"SVF['AREA'] = util.round_to_interval(SVF['FLAECHE'], 10)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"SVF['bias'] = SVF.SVF_2m - SVF.SVF_50cm"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"SVF_2m 7.272423e-01\n",
"std_2m 6.351421e-02\n",
"SVF_50cm 6.556163e-01\n",
"std_50cm 9.321401e-02\n",
"bias 7.162608e-02\n",
"DF_UID 5.004925e+06\n",
"FLAECHE 8.545578e+01\n",
"NEIGUNG 2.264418e+01\n",
"AUSRICHTUNG -2.870675e+00\n",
"AREA 8.539042e+01\n",
"dtype: float64"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF.mean()"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SVF_2m</th>\n",
" <th>std_2m</th>\n",
" <th>SVF_50cm</th>\n",
" <th>std_50cm</th>\n",
" <th>bias</th>\n",
" <th>DF_UID</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>AREA</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>4708076</th>\n",
" <td>0.537930</td>\n",
" <td>0.035747</td>\n",
" <td>0.497254</td>\n",
" <td>0.051997</td>\n",
" <td>0.040677</td>\n",
" <td>4879560</td>\n",
" <td>78.139731</td>\n",
" <td>9</td>\n",
" <td>-143.0</td>\n",
" <td>80.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4708077</th>\n",
" <td>0.543964</td>\n",
" <td>0.061913</td>\n",
" <td>0.474188</td>\n",
" <td>0.106268</td>\n",
" <td>0.069776</td>\n",
" <td>4879561</td>\n",
" <td>46.507495</td>\n",
" <td>34</td>\n",
" <td>39.0</td>\n",
" <td>50.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4708078</th>\n",
" <td>0.601935</td>\n",
" <td>0.031992</td>\n",
" <td>0.546454</td>\n",
" <td>0.051656</td>\n",
" <td>0.055481</td>\n",
" <td>4879562</td>\n",
" <td>65.822671</td>\n",
" <td>28</td>\n",
" <td>-141.0</td>\n",
" <td>70.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4708079</th>\n",
" <td>0.568163</td>\n",
" <td>0.041745</td>\n",
" <td>0.509543</td>\n",
" <td>0.042314</td>\n",
" <td>0.058620</td>\n",
" <td>4879563</td>\n",
" <td>33.159751</td>\n",
" <td>41</td>\n",
" <td>-51.0</td>\n",
" <td>30.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4708080</th>\n",
" <td>0.508238</td>\n",
" <td>0.052079</td>\n",
" <td>0.429219</td>\n",
" <td>0.077267</td>\n",
" <td>0.079019</td>\n",
" <td>4879564</td>\n",
" <td>35.956510</td>\n",
" <td>11</td>\n",
" <td>-51.0</td>\n",
" <td>40.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" SVF_2m std_2m SVF_50cm std_50cm bias DF_UID FLAECHE \\\n",
"4708076 0.537930 0.035747 0.497254 0.051997 0.040677 4879560 78.139731 \n",
"4708077 0.543964 0.061913 0.474188 0.106268 0.069776 4879561 46.507495 \n",
"4708078 0.601935 0.031992 0.546454 0.051656 0.055481 4879562 65.822671 \n",
"4708079 0.568163 0.041745 0.509543 0.042314 0.058620 4879563 33.159751 \n",
"4708080 0.508238 0.052079 0.429219 0.077267 0.079019 4879564 35.956510 \n",
"\n",
" NEIGUNG AUSRICHTUNG AREA \n",
"4708076 9 -143.0 80.0 \n",
"4708077 34 39.0 50.0 \n",
"4708078 28 -141.0 70.0 \n",
"4708079 41 -51.0 30.0 \n",
"4708080 11 -51.0 40.0 "
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF.head()"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (AUSRICHTUNG: 361, NEIGUNG: 70)\n",
"Coordinates:\n",
" * NEIGUNG (NEIGUNG) int64 0 1 2 3 4 5 6 7 8 ... 62 63 64 65 66 67 68 69\n",
" * AUSRICHTUNG (AUSRICHTUNG) float64 -180.0 -179.0 -178.0 ... 179.0 180.0\n",
"Data variables:\n",
" SVF_2m (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" std_2m (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" SVF_50cm (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" std_50cm (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" bias (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" DF_UID (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" FLAECHE (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan\n",
" AREA (NEIGUNG, AUSRICHTUNG) float64 nan nan nan nan ... nan nan nan"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"svf_aspect_tilt = SVF.groupby(['NEIGUNG', 'AUSRICHTUNG']).mean().to_xarray()\n",
"svf_aspect_tilt"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.QuadMesh at 0x7f9938d8e2e8>"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"svf_aspect_tilt.SVF_50cm.plot()"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (AREA: 454, AUSRICHTUNG: 361)\n",
"Coordinates:\n",
" * AUSRICHTUNG (AUSRICHTUNG) float64 -180.0 -179.0 -178.0 ... 179.0 180.0\n",
" * AREA (AREA) float64 0.0 10.0 20.0 ... 2.164e+04 2.325e+04 2.351e+04\n",
"Data variables:\n",
" SVF_2m (AUSRICHTUNG, AREA) float64 0.7526 0.6545 0.6434 ... nan nan\n",
" std_2m (AUSRICHTUNG, AREA) float64 0.03314 0.05123 0.04813 ... nan nan\n",
" SVF_50cm (AUSRICHTUNG, AREA) float64 0.7312 0.5687 0.6316 ... nan nan\n",
" std_50cm (AUSRICHTUNG, AREA) float64 0.0656 0.09705 0.07214 ... nan nan\n",
" bias (AUSRICHTUNG, AREA) float64 0.02135 0.08577 0.01173 ... nan nan\n",
" DF_UID (AUSRICHTUNG, AREA) float64 4.976e+06 4.975e+06 ... nan nan\n",
" FLAECHE (AUSRICHTUNG, AREA) float64 2.913 10.42 20.29 ... nan nan nan\n",
" NEIGUNG (AUSRICHTUNG, AREA) float64 24.37 24.93 27.84 ... nan nan nan"
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"svf_aspect_area = SVF.groupby(['AUSRICHTUNG', 'AREA']).mean().to_xarray()\n",
"svf_aspect_area"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(1, 23640.0)"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plt.figure()\n",
"svf_aspect_area.SVF_50cm.T.plot()\n",
"plt.yscale('log')\n",
"plt.ylim(bottom = 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Verify batch computation for CH"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"path = '/scratch/walch/grassgis/scripts/executables/workspace_skyview/files'"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"files = []\n",
"for i in range(64):\n",
" try:\n",
" files.append( pd.read_csv( os.path.join(path, 'skyview_CH_%d_stats.csv' %i )))\n",
" except:\n",
" print('Skipping %d' %i)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Merging of files**\n",
"1. Append all files to one long file (need columns *non_null_cells* and *sum*)\n",
"2. Groupby zone and perform sum-operation\n",
"3. Compute mean as *sum*/*non_null_cells*\n",
"4. Rename \"zone\" to \"DF_UID\" and \"mean\" to \"SVF\"\n",
"5. Load roofs to obtain full list of DF_UIDs\n",
"6. Refill missing values with the national mean\n",
"7. Debias bysubtracting the bias"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# 1.\n",
"df = pd.concat(files, axis = 0)\n",
"df_sel = df[['zone', 'sum', 'non_null_cells']].rename(columns = {'zone' : 'DF_UID'})"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"df_sel['non_null_cells'] = df_sel.non_null_cells.astype(int)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# 2. to 4.\n",
"df_merged = df_sel.groupby('DF_UID').sum()\n",
"df_merged['SVF'] = df_merged['sum']/df_merged['non_null_cells']\n",
"SVF = df_merged[['SVF']]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/walch/miniconda3/envs/py3/lib/python3.6/site-packages/numpy/lib/arraysetops.py:463: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
" mask |= (ar1 == a)\n"
]
}
],
"source": [
"# 5.\n",
"ROOFS='/work/hyenergy/output/solar_potential/geographic_potential/CH_ROOFS_all_replaced.csv'\n",
"roofs = pd.read_csv(ROOFS, usecols = ['DF_UID', 'FLAECHE', 'NEIGUNG', 'AUSRICHTUNG'], index_col = 0)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"# 6. \n",
"SVF_filled = roofs.merge(SVF, left_index = True, right_index = True, how = 'left').fillna(SVF.SVF.mean())"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"SVF_filled['SVF_unbiased'] = np.minimum(np.maximum(SVF_filled.SVF - skyview['bias'].mean(), 0), 1)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"SVF_filled.drop(columns = ['FLAECHE', 'NEIGUNG', 'AUSRICHTUNG'], inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"SVF_filled.to_csv('/work/hyenergy/output/solar_potential/geographic_potential/tilted_irradiance/SVF_CH_replaced.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot SVF against roof characteristics"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"SVF = pd.read_csv('/work/hyenergy/output/solar_potential/geographic_potential/tilted_irradiance/SVF_CH_replaced.csv')"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"SVF_merged = roofs.merge(SVF, left_index = True, right_on = 'DF_UID', how = 'left')"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"# ADJUST FOR FLAT ROOFS\n",
"FLAT = -5.1\n",
"SVF_merged['tilt'] = SVF_merged.NEIGUNG\n",
"SVF_merged.loc[SVF_merged.NEIGUNG == 0, 'tilt'] = FLAT # NEEDED FOR PLOTTING"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"SVF_merged['area_log'] = np.log10(SVF_merged.FLAECHE)\n",
"SVF_merged['area_log_round'] = util.round_to_interval(SVF_merged.area_log, 0.2)\n",
"SVF_merged['area_log_round'] = np.minimum(np.maximum(SVF_merged.area_log_round, 0.7), 3.2)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"ASP_ROUND = 10\n",
"TILT_ROUND = 10\n",
"SVF_merged['NEIGUNG_round'] = util.round_to_interval(SVF_merged.NEIGUNG, 5)\n",
"SVF_merged['tilt_round'] = util.round_to_interval(SVF_merged.tilt, TILT_ROUND)\n",
"SVF_merged['aspect_round'] = util.round_to_interval(SVF_merged.AUSRICHTUNG, ASP_ROUND)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"SVF_grouped = SVF_merged.groupby(['tilt_round', 'aspect_round']).mean()\n",
"plot_var = SVF_grouped['SVF_unbiased']\n",
"plot_array = plot_var.to_xarray()\n",
"\n",
"plot_array['tilt_round' == FLAT] = plot_array['tilt_round' == FLAT].mean()\n",
"\n",
"\n",
"# prepare data\n",
"data = plot_array.values\n",
"# theta = np.append(plot_array.aspect_round * np.pi / 180, 2*np.pi) + (0.5 * ASP_ROUND * np.pi / 180)\n",
"theta = plot_array.aspect_round * np.pi / 180 - (0.5 * ASP_ROUND * np.pi / 180)\n",
"tilts = plot_array.tilt_round\n",
"\n",
"X, Y = np.meshgrid( theta, tilts )\n",
"\n",
"# SET PROPERTIES\n",
"VMIN = None\n",
"VMAX = None\n",
" \n",
"plt.figure()\n",
"ax = plt.subplot(projection='polar')\n",
"ax.set_theta_zero_location('S')\n",
"ax.set_theta_direction(-1)\n",
"\n",
"plt.pcolor(X, Y, data, vmin = VMIN, vmax = VMAX)\n",
"cb = plt.colorbar() # extend = get_cbar_extent( data, VMIN, VMAX )\n",
"# cb.set_label('Uncertainty for (1 - $C_{sh}$)')\n",
"\n",
"# FORMATTING\n",
"xticks = ['S', 'SW', 'W', 'NW', 'N', 'NE', 'E', 'SE']\n",
"yticks = [str(int(tilt)) + '°' for tilt in ax.get_yticks()]\n",
"ax.set_xticklabels( xticks )\n",
"ax.set_yticklabels( yticks )\n",
"ax.text(60,80, 'Tilt angle')\n",
"ax.set_rlabel_position(200) # get radial labels away from plotted line\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"# plt.savefig('Shade_slope_azimuth_unc.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"SVF_grouped = SVF_merged.groupby(['area_log_round', 'NEIGUNG_round']).mean()\n",
"arr = SVF_grouped['SVF_unbiased'].to_xarray()\n",
"arr.coords['area_log_round'] = 10**(arr.area_log_round)\n",
"\n",
"# PV_array.attrs['long_name'] = 'Uncertainty for $C_{pv}$'\n",
"\n",
"plt.figure()\n",
"ax = plt.subplot()\n",
"\n",
"arr.plot()\n",
"ax.set_yscale('log')\n",
"plt.xlabel('Roof tilt (in degree)')\n",
"plt.ylabel('Roof area (in $m^2$)')\n",
"\n",
"plt.tight_layout()\n",
"# plt.savefig('panelled_area_unc.png', dpi = 300)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DF_UID 1.000000\n",
"SVF 0.000057\n",
"SVF_unbiased 0.000000\n",
"dtype: float64"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF.min()"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DF_UID 9.890023e+06\n",
"SVF 1.000000e+00\n",
"SVF_unbiased 9.283739e-01\n",
"dtype: float64"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF.max()"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DF_UID 4.977728e+06\n",
"SVF 7.625916e-01\n",
"SVF_unbiased 6.909656e-01\n",
"dtype: float64"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SVF.mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Spielwiese"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": [
"roof_SVF = skyview.merge(roofs, left_index = True, right_index = True, how = 'left')"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SVF_2m</th>\n",
" <th>std_2m</th>\n",
" <th>SVF_50cm</th>\n",
" <th>std_50cm</th>\n",
" <th>bias</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" </tr>\n",
" <tr>\n",
" <th>DF_UID</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>4879560</th>\n",
" <td>0.537930</td>\n",
" <td>0.035747</td>\n",
" <td>0.497254</td>\n",
" <td>0.051997</td>\n",
" <td>0.040677</td>\n",
" <td>78.139731</td>\n",
" <td>9</td>\n",
" <td>-143.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879561</th>\n",
" <td>0.543964</td>\n",
" <td>0.061913</td>\n",
" <td>0.474188</td>\n",
" <td>0.106268</td>\n",
" <td>0.069776</td>\n",
" <td>46.507495</td>\n",
" <td>34</td>\n",
" <td>39.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879562</th>\n",
" <td>0.601935</td>\n",
" <td>0.031992</td>\n",
" <td>0.546454</td>\n",
" <td>0.051656</td>\n",
" <td>0.055481</td>\n",
" <td>65.822671</td>\n",
" <td>28</td>\n",
" <td>-141.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879563</th>\n",
" <td>0.568163</td>\n",
" <td>0.041745</td>\n",
" <td>0.509543</td>\n",
" <td>0.042314</td>\n",
" <td>0.058620</td>\n",
" <td>33.159751</td>\n",
" <td>41</td>\n",
" <td>-51.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4879564</th>\n",
" <td>0.508238</td>\n",
" <td>0.052079</td>\n",
" <td>0.429219</td>\n",
" <td>0.077267</td>\n",
" <td>0.079019</td>\n",
" <td>35.956510</td>\n",
" <td>11</td>\n",
" <td>-51.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" SVF_2m std_2m SVF_50cm std_50cm bias FLAECHE NEIGUNG \\\n",
"DF_UID \n",
"4879560 0.537930 0.035747 0.497254 0.051997 0.040677 78.139731 9 \n",
"4879561 0.543964 0.061913 0.474188 0.106268 0.069776 46.507495 34 \n",
"4879562 0.601935 0.031992 0.546454 0.051656 0.055481 65.822671 28 \n",
"4879563 0.568163 0.041745 0.509543 0.042314 0.058620 33.159751 41 \n",
"4879564 0.508238 0.052079 0.429219 0.077267 0.079019 35.956510 11 \n",
"\n",
" AUSRICHTUNG \n",
"DF_UID \n",
"4879560 -143.0 \n",
"4879561 39.0 \n",
"4879562 -141.0 \n",
"4879563 -51.0 \n",
"4879564 -51.0 "
]
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"roof_SVF.head()"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sample = roof_SVF.sample(10000)\n",
"\n",
"plt.figure()\n",
"plt.scatter(sample.FLAECHE.values, sample.bias.values, s = 1)\n",
"plt.xscale('log')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [],
"source": [
"roof_shade = shade_bias[['DF_UID','fully_shaded_ratio']].merge(roofs, left_on = 'DF_UID', \n",
" right_index = True, how = 'left')"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>fully_shaded_ratio</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4817081</td>\n",
" <td>0.0</td>\n",
" <td>111.982302</td>\n",
" <td>26</td>\n",
" <td>-79.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4817082</td>\n",
" <td>0.0</td>\n",
" <td>121.121191</td>\n",
" <td>27</td>\n",
" <td>101.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4817083</td>\n",
" <td>0.0</td>\n",
" <td>117.993684</td>\n",
" <td>26</td>\n",
" <td>-79.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4817084</td>\n",
" <td>0.0</td>\n",
" <td>117.579904</td>\n",
" <td>27</td>\n",
" <td>101.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4817085</td>\n",
" <td>0.0</td>\n",
" <td>155.862755</td>\n",
" <td>30</td>\n",
" <td>101.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" DF_UID fully_shaded_ratio FLAECHE NEIGUNG AUSRICHTUNG\n",
"0 4817081 0.0 111.982302 26 -79.0\n",
"1 4817082 0.0 121.121191 27 101.0\n",
"2 4817083 0.0 117.993684 26 -79.0\n",
"3 4817084 0.0 117.579904 27 101.0\n",
"4 4817085 0.0 155.862755 30 101.0"
]
},
"execution_count": 99,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"roof_shade.head()"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sample = roof_shade.sample(10000)\n",
"\n",
"plt.figure()\n",
"plt.scatter(sample.NEIGUNG.values, sample.fully_shaded_ratio.values, s = 1)\n",
"# plt.xscale('log')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Visualisation/HIST_CH_slope_area.pdf b/Visualisation/HIST_CH_slope_area.pdf
new file mode 100644
index 0000000..8107e88
Binary files /dev/null and b/Visualisation/HIST_CH_slope_area.pdf differ
diff --git a/Visualisation/HIST_CH_slope_azimuth.pdf b/Visualisation/HIST_CH_slope_azimuth.pdf
new file mode 100644
index 0000000..7d5a714
Binary files /dev/null and b/Visualisation/HIST_CH_slope_azimuth.pdf differ
diff --git a/Visualisation/HIST_GVA_slope_area.pdf b/Visualisation/HIST_GVA_slope_area.pdf
new file mode 100644
index 0000000..f55eaf4
Binary files /dev/null and b/Visualisation/HIST_GVA_slope_area.pdf differ
diff --git a/Visualisation/HIST_GVA_slope_azimuth.pdf b/Visualisation/HIST_GVA_slope_azimuth.pdf
new file mode 100644
index 0000000..133d667
Binary files /dev/null and b/Visualisation/HIST_GVA_slope_azimuth.pdf differ
diff --git a/Visualisation/SVF_bias_slope_area.pdf b/Visualisation/SVF_bias_slope_area.pdf
new file mode 100644
index 0000000..3087cf9
Binary files /dev/null and b/Visualisation/SVF_bias_slope_area.pdf differ
diff --git a/Visualisation/SVF_bias_slope_azimuth.pdf b/Visualisation/SVF_bias_slope_azimuth.pdf
new file mode 100644
index 0000000..a6c7c73
Binary files /dev/null and b/Visualisation/SVF_bias_slope_azimuth.pdf differ
diff --git a/Visualisation/SVF_slope_area.pdf b/Visualisation/SVF_slope_area.pdf
new file mode 100644
index 0000000..e334d59
Binary files /dev/null and b/Visualisation/SVF_slope_area.pdf differ
diff --git a/Visualisation/SVF_slope_azimuth.pdf b/Visualisation/SVF_slope_azimuth.pdf
new file mode 100644
index 0000000..05940c3
Binary files /dev/null and b/Visualisation/SVF_slope_azimuth.pdf differ

Event Timeline