Page MenuHomec4science

No OneTemporary

File Metadata

Created
Mon, Apr 28, 03:03
This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/Available_area/ML_available_area.ipynb b/Available_area/ML_available_area.ipynb
index a6510b5..b540c6e 100644
--- a/Available_area/ML_available_area.ipynb
+++ b/Available_area/ML_available_area.ipynb
@@ -1,9592 +1,9592 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" from ._conv import register_converters as _register_converters\n"
]
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import xarray as xr\n",
"import os\n",
"\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from sklearn.metrics import mean_squared_error as mse\n",
"from sklearn.metrics import mean_absolute_error as mae\n",
"from sklearn.model_selection import cross_val_predict\n",
"import scipy.spatial as spatial\n",
"\n",
"from pvlib.solarposition import get_solarposition\n",
"\n",
"import util\n",
"import matplotlib\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load training data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"fp = '/Users/alinawalch/Documents/EPFL/data/rooftops/TRN_available_area_data_all.csv'\n",
"learning_table = pd.read_csv(fp)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DF_UID', 'FLAECHE', 'NEIGUNG', 'AUSRICHTUNG', 'XCOORD', 'YCOORD',\n",
" 'Shape_Length', 'Shape_Area', 'GWR_EGID', 'GBAUP', 'GKAT', 'GAREA',\n",
" 'GASTW', 'GKODX', 'GKODY', 'Shape_Ratio', 'n_neighbors_100',\n",
" 'Estim_build_area', 'n_corners', 'panel_tilt', 'best_align',\n",
" 'panelled_area_ratio_ftr', 'shaded_area_ratio_ftr',\n",
" 'shaded_area_ratio_tgt', 'tilt_cat', 'orientation_cat',\n",
" 'available_area_ratio', 'panelled_area_ratio_tgt'],\n",
" dtype='object')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"learning_table.columns"
]
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"154824"
]
},
- "execution_count": 22,
+ "execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(learning_table)"
]
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"equal_area = learning_table[np.round(learning_table.panelled_area_ratio_ftr,4) == np.round(learning_table.panelled_area_ratio_tgt,4)]"
]
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"121737"
]
},
- "execution_count": 25,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(equal_area)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create table with features and labels\n",
"Possible features for available area are:\n",
"##### Roof data\n",
"- Slope (NEIGUNG)\n",
"- Aspect (AUSRICHTUNG)\n",
"- Roof area (FLAECHE)\n",
"- Roof perimeter (Shape_Length)\n",
"- Roof shape ratio (Shape_Ratio, i.e. Shape_Length / FLAECHE)\n",
"- Roof vertices (n_corners)\n",
"- Panel tilt (different for flat roofs, panel_tilt)\n",
"- ? panel alignment ?\n",
"\n",
"##### Building data\n",
"- Number of floors (GASTW)\n",
"- Period of construction (GBAUP)\n",
"- Building area (GAREA)\n",
"- Building category (GKAT)\n",
"- Number of neighbors (n_neighbors_100, 100m radius)\n",
"\n",
"##### Approximate ratios\n",
"- Approximate shaded area ratio (shaded_area_ratio_ftr, based on 2m res. DOM)\n",
"- Approximate panelled area ratio (panelled_area_ratio_ftr, based on roofs without superstructures)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Machine Learning"
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"label_name = ['shaded_area_ratio_tgt', 'panelled_area_ratio_tgt']\n",
"identifier = 'DF_UID'\n",
"\n",
"# choose from: \n",
"# -'shaded_area_ratio_ftr', 'panelled_area_ratio_ftr' (approximate ratios)\n",
"# -'NEIGUNG', 'AUSRICHTUNG', 'FLAECHE', 'Shape_Length', 'Shape_Ratio', 'n_corners', 'panel_tilt' (rooftop info)\n",
"# -'GASTW', 'GBAUP', 'GKAT', 'GAREA', 'n_neighbors_100' (GWR info)\n",
"\n",
"all_features = ['shaded_area_ratio_ftr', 'panelled_area_ratio_ftr', \n",
" 'NEIGUNG', 'AUSRICHTUNG', 'FLAECHE', 'Shape_Length', 'Shape_Ratio', 'n_corners', 'panel_tilt',\n",
" 'GASTW', 'GBAUP', 'GKAT', 'GAREA', 'n_neighbors_100']\n",
"\n",
"feature_names = all_features"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Baseline MSE: 0.022830\n",
"Baseline MSE (shading): 0.054517\n",
"Baseline MSE (panelling): 0.012738\n"
]
}
],
"source": [
"# Baseline mse:\n",
"av_area_ratio_ftr = (1 - learning_table.shaded_area_ratio_ftr) * learning_table.panelled_area_ratio_ftr\n",
"print( 'Baseline MSE: %f' %mse(av_area_ratio_ftr, learning_table[ 'available_area_ratio' ]))\n",
"print( 'Baseline MSE (shading): %f' %mse(learning_table.shaded_area_ratio_ftr, learning_table[ 'shaded_area_ratio_tgt' ]))\n",
"print( 'Baseline MSE (panelling): %f' %mse(learning_table.panelled_area_ratio_ftr, learning_table[ 'panelled_area_ratio_tgt' ]))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Baseline RMSE: 0.151095\n",
"Baseline RMSE (shading): 0.233488\n",
"Baseline RMSE (panelling): 0.112861\n"
]
}
],
"source": [
"print( 'Baseline RMSE: %f' %np.sqrt(mse(av_area_ratio_ftr, learning_table[ 'available_area_ratio' ])))\n",
"print( 'Baseline RMSE (shading): %f' %np.sqrt(mse(learning_table.shaded_area_ratio_ftr, learning_table[ 'shaded_area_ratio_tgt' ])))\n",
"print( 'Baseline RMSE (panelling): %f' %np.sqrt(mse(learning_table.panelled_area_ratio_ftr, learning_table[ 'panelled_area_ratio_tgt' ])))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Baseline MAE: 0.090179\n",
"Baseline MAE (shading): 0.132462\n",
"Baseline MAE (panelling): 0.041571\n"
]
}
],
"source": [
"print('Baseline MAE: %f' %mae(av_area_ratio_ftr, learning_table[ 'available_area_ratio' ]))\n",
"print('Baseline MAE (shading): %f' %mae(learning_table.shaded_area_ratio_ftr, learning_table.shaded_area_ratio_tgt))\n",
"print('Baseline MAE (panelling): %f' %mae(learning_table.panelled_area_ratio_ftr, learning_table.panelled_area_ratio_tgt))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Baseline MBE: 0.078318\n",
"Baseline MBE (shading): -0.103875\n",
"Baseline MBE (panelling): 0.041277\n"
]
}
],
"source": [
"print('Baseline MBE: %f' %np.mean(av_area_ratio_ftr - learning_table[ 'available_area_ratio' ]))\n",
"print('Baseline MBE (shading): %f' %np.mean(learning_table.shaded_area_ratio_ftr - learning_table.shaded_area_ratio_tgt))\n",
"print('Baseline MBE (panelling): %f' %np.mean(learning_table.panelled_area_ratio_ftr - learning_table.panelled_area_ratio_tgt))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tests:\n",
"- 14 features in total\n",
"- Total options of combinations: 14 CHOOSE K"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"n_features = len(feature_names)\n",
"max_trials = 20\n",
"#. for i in range(len(feature_names)):\n",
"i=0\n",
"n_permutations = comb(n_features, i) "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"tr_ratio = 0.8\n",
"ind = np.random.permutation(len(learning_table))\n",
"tr_ind = int( tr_ratio * len(learning_table) )\n",
"\n",
"training = learning_table.loc[ ind[ : tr_ind ] , :]\n",
"validation = learning_table.loc[ ind[ tr_ind : ] , :]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>XCOORD</th>\n",
" <th>YCOORD</th>\n",
" <th>Shape_Length</th>\n",
" <th>Shape_Area</th>\n",
" <th>GWR_EGID</th>\n",
" <th>GBAUP</th>\n",
" <th>...</th>\n",
" <th>n_corners</th>\n",
" <th>panel_tilt</th>\n",
" <th>best_align</th>\n",
" <th>panelled_area_ratio_ftr</th>\n",
" <th>shaded_area_ratio_ftr</th>\n",
" <th>shaded_area_ratio_tgt</th>\n",
" <th>tilt_cat</th>\n",
" <th>orientation_cat</th>\n",
" <th>available_area_ratio</th>\n",
" <th>panelled_area_ratio_tgt</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4817410.0</td>\n",
" <td>71.487047</td>\n",
" <td>10.0</td>\n",
" <td>127.0</td>\n",
" <td>503491.325015</td>\n",
" <td>134197.490397</td>\n",
" <td>33.936595</td>\n",
" <td>70.390620</td>\n",
" <td>295070969.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>10</td>\n",
" <td>vertical</td>\n",
" <td>0.805740</td>\n",
" <td>0.117647</td>\n",
" <td>0.166667</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.671450</td>\n",
" <td>0.805740</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4817425.0</td>\n",
" <td>36.859836</td>\n",
" <td>37.0</td>\n",
" <td>33.0</td>\n",
" <td>503503.812619</td>\n",
" <td>134131.833522</td>\n",
" <td>28.208608</td>\n",
" <td>29.339500</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>37</td>\n",
" <td>equal</td>\n",
" <td>0.390669</td>\n",
" <td>0.000000</td>\n",
" <td>0.386555</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.106513</td>\n",
" <td>0.173631</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4817426.0</td>\n",
" <td>51.333864</td>\n",
" <td>31.0</td>\n",
" <td>-57.0</td>\n",
" <td>503509.783165</td>\n",
" <td>134135.282805</td>\n",
" <td>40.053428</td>\n",
" <td>44.043504</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>7</td>\n",
" <td>31</td>\n",
" <td>horizontal</td>\n",
" <td>0.155843</td>\n",
" <td>0.000000</td>\n",
" <td>0.119318</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.137248</td>\n",
" <td>0.155843</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4817427.0</td>\n",
" <td>36.861447</td>\n",
" <td>37.0</td>\n",
" <td>-147.0</td>\n",
" <td>503510.594159</td>\n",
" <td>134142.188986</td>\n",
" <td>28.210273</td>\n",
" <td>29.341346</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>37</td>\n",
" <td>horizontal</td>\n",
" <td>0.390652</td>\n",
" <td>0.166667</td>\n",
" <td>0.322034</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.147138</td>\n",
" <td>0.217029</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4817428.0</td>\n",
" <td>81.256555</td>\n",
" <td>28.0</td>\n",
" <td>123.0</td>\n",
" <td>503504.226918</td>\n",
" <td>134138.960671</td>\n",
" <td>37.840077</td>\n",
" <td>71.574129</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>28</td>\n",
" <td>vertical</td>\n",
" <td>0.708866</td>\n",
" <td>0.333333</td>\n",
" <td>0.077193</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.654146</td>\n",
" <td>0.708866</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>4817429.0</td>\n",
" <td>11.397236</td>\n",
" <td>27.0</td>\n",
" <td>-144.0</td>\n",
" <td>503512.070989</td>\n",
" <td>134135.795686</td>\n",
" <td>15.417311</td>\n",
" <td>10.154872</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>3</td>\n",
" <td>27</td>\n",
" <td>equal</td>\n",
" <td>0.140385</td>\n",
" <td>0.000000</td>\n",
" <td>0.075000</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.129856</td>\n",
" <td>0.140385</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>4817431.0</td>\n",
" <td>174.501987</td>\n",
" <td>31.0</td>\n",
" <td>-147.0</td>\n",
" <td>503503.978942</td>\n",
" <td>134181.171146</td>\n",
" <td>59.815925</td>\n",
" <td>149.165008</td>\n",
" <td>1004088.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>31</td>\n",
" <td>vertical</td>\n",
" <td>0.806868</td>\n",
" <td>0.135135</td>\n",
" <td>0.020101</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.790649</td>\n",
" <td>0.806868</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>4817432.0</td>\n",
" <td>174.108293</td>\n",
" <td>31.0</td>\n",
" <td>33.0</td>\n",
" <td>503500.517066</td>\n",
" <td>134175.889168</td>\n",
" <td>59.775896</td>\n",
" <td>148.702405</td>\n",
" <td>1004088.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>31</td>\n",
" <td>vertical</td>\n",
" <td>0.808692</td>\n",
" <td>0.131579</td>\n",
" <td>0.161345</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.678214</td>\n",
" <td>0.808692</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>4817433.0</td>\n",
" <td>69.216255</td>\n",
" <td>26.0</td>\n",
" <td>33.0</td>\n",
" <td>503510.917446</td>\n",
" <td>134191.713704</td>\n",
" <td>45.633223</td>\n",
" <td>61.997846</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>26</td>\n",
" <td>horizontal</td>\n",
" <td>0.508551</td>\n",
" <td>0.000000</td>\n",
" <td>0.060241</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.260681</td>\n",
" <td>0.277391</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>4817434.0</td>\n",
" <td>26.716480</td>\n",
" <td>31.0</td>\n",
" <td>-147.0</td>\n",
" <td>503517.020358</td>\n",
" <td>134191.118711</td>\n",
" <td>23.687927</td>\n",
" <td>22.959133</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>31</td>\n",
" <td>horizontal</td>\n",
" <td>0.479105</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.479105</td>\n",
" <td>0.479105</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>4817435.0</td>\n",
" <td>26.018729</td>\n",
" <td>31.0</td>\n",
" <td>-147.0</td>\n",
" <td>503507.806109</td>\n",
" <td>134197.114437</td>\n",
" <td>23.199036</td>\n",
" <td>22.360589</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>31</td>\n",
" <td>horizontal</td>\n",
" <td>0.491953</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.491953</td>\n",
" <td>0.491953</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>4817436.0</td>\n",
" <td>13.309012</td>\n",
" <td>33.0</td>\n",
" <td>123.0</td>\n",
" <td>503512.471353</td>\n",
" <td>134196.622116</td>\n",
" <td>15.096068</td>\n",
" <td>11.164928</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>33</td>\n",
" <td>equal</td>\n",
" <td>0.240439</td>\n",
" <td>0.000000</td>\n",
" <td>0.266667</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.176322</td>\n",
" <td>0.240439</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>4817437.0</td>\n",
" <td>13.503089</td>\n",
" <td>32.0</td>\n",
" <td>-57.0</td>\n",
" <td>503514.586126</td>\n",
" <td>134195.245953</td>\n",
" <td>15.198331</td>\n",
" <td>11.396747</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>32</td>\n",
" <td>vertical</td>\n",
" <td>0.236983</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.236983</td>\n",
" <td>0.236983</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>4817438.0</td>\n",
" <td>130.038144</td>\n",
" <td>26.0</td>\n",
" <td>-144.0</td>\n",
" <td>503951.193324</td>\n",
" <td>134195.306644</td>\n",
" <td>64.584475</td>\n",
" <td>117.365353</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>26</td>\n",
" <td>vertical</td>\n",
" <td>0.664420</td>\n",
" <td>0.900000</td>\n",
" <td>0.785106</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.142780</td>\n",
" <td>0.664420</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>4817439.0</td>\n",
" <td>126.475108</td>\n",
" <td>26.0</td>\n",
" <td>36.0</td>\n",
" <td>503948.788882</td>\n",
" <td>134191.981218</td>\n",
" <td>64.301850</td>\n",
" <td>113.406403</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>26</td>\n",
" <td>vertical</td>\n",
" <td>0.683138</td>\n",
" <td>0.214286</td>\n",
" <td>0.556291</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.303114</td>\n",
" <td>0.683138</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>4817440.0</td>\n",
" <td>47.540096</td>\n",
" <td>37.0</td>\n",
" <td>-144.0</td>\n",
" <td>503996.949571</td>\n",
" <td>134161.244934</td>\n",
" <td>27.081498</td>\n",
" <td>37.981483</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>37</td>\n",
" <td>horizontal</td>\n",
" <td>0.673116</td>\n",
" <td>0.800000</td>\n",
" <td>0.973510</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.017831</td>\n",
" <td>0.673116</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>4817441.0</td>\n",
" <td>35.497241</td>\n",
" <td>32.0</td>\n",
" <td>36.0</td>\n",
" <td>503994.863047</td>\n",
" <td>134158.375583</td>\n",
" <td>25.402378</td>\n",
" <td>29.945648</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>32</td>\n",
" <td>horizontal</td>\n",
" <td>0.450739</td>\n",
" <td>0.142857</td>\n",
" <td>0.725000</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.123953</td>\n",
" <td>0.450739</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>4817442.0</td>\n",
" <td>49.847956</td>\n",
" <td>38.0</td>\n",
" <td>36.0</td>\n",
" <td>504003.468131</td>\n",
" <td>134152.306087</td>\n",
" <td>29.835723</td>\n",
" <td>39.429900</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>38</td>\n",
" <td>vertical</td>\n",
" <td>0.641952</td>\n",
" <td>0.900000</td>\n",
" <td>0.961538</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.024690</td>\n",
" <td>0.641952</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>4817448.0</td>\n",
" <td>34.963254</td>\n",
" <td>28.0</td>\n",
" <td>-145.0</td>\n",
" <td>503922.898105</td>\n",
" <td>134216.939359</td>\n",
" <td>29.062031</td>\n",
" <td>30.741322</td>\n",
" <td>1004089.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>28</td>\n",
" <td>horizontal</td>\n",
" <td>0.457623</td>\n",
" <td>0.125000</td>\n",
" <td>0.975610</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.011162</td>\n",
" <td>0.457623</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>4817449.0</td>\n",
" <td>19.979434</td>\n",
" <td>7.0</td>\n",
" <td>35.0</td>\n",
" <td>503916.075512</td>\n",
" <td>134213.701005</td>\n",
" <td>17.895750</td>\n",
" <td>19.831984</td>\n",
" <td>1004089.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>7</td>\n",
" <td>vertical</td>\n",
" <td>0.640659</td>\n",
" <td>0.666667</td>\n",
" <td>0.925000</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.048049</td>\n",
" <td>0.640659</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>4817450.0</td>\n",
" <td>21.119847</td>\n",
" <td>18.0</td>\n",
" <td>-144.0</td>\n",
" <td>503936.461763</td>\n",
" <td>134203.761986</td>\n",
" <td>18.414721</td>\n",
" <td>20.066844</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>18</td>\n",
" <td>horizontal</td>\n",
" <td>0.454549</td>\n",
" <td>0.000000</td>\n",
" <td>0.506173</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.224469</td>\n",
" <td>0.454549</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>4817451.0</td>\n",
" <td>21.374411</td>\n",
" <td>19.0</td>\n",
" <td>36.0</td>\n",
" <td>503934.470464</td>\n",
" <td>134200.829905</td>\n",
" <td>19.727025</td>\n",
" <td>20.261942</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>19</td>\n",
" <td>horizontal</td>\n",
" <td>0.449135</td>\n",
" <td>0.000000</td>\n",
" <td>0.543210</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.205161</td>\n",
" <td>0.449135</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>4817452.0</td>\n",
" <td>68.854261</td>\n",
" <td>35.0</td>\n",
" <td>-140.0</td>\n",
" <td>504222.101990</td>\n",
" <td>134017.187739</td>\n",
" <td>31.767443</td>\n",
" <td>56.268749</td>\n",
" <td>1004049.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>35</td>\n",
" <td>horizontal</td>\n",
" <td>0.697125</td>\n",
" <td>0.142857</td>\n",
" <td>0.053333</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.659945</td>\n",
" <td>0.697125</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>4817453.0</td>\n",
" <td>52.296595</td>\n",
" <td>34.0</td>\n",
" <td>40.0</td>\n",
" <td>504219.058562</td>\n",
" <td>134013.574920</td>\n",
" <td>29.327904</td>\n",
" <td>43.406040</td>\n",
" <td>1004049.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>34</td>\n",
" <td>horizontal</td>\n",
" <td>0.734273</td>\n",
" <td>0.100000</td>\n",
" <td>0.034682</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.649740</td>\n",
" <td>0.673084</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>4817458.0</td>\n",
" <td>258.858167</td>\n",
" <td>34.0</td>\n",
" <td>127.0</td>\n",
" <td>504246.524168</td>\n",
" <td>134078.107216</td>\n",
" <td>66.270016</td>\n",
" <td>215.837030</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>34</td>\n",
" <td>vertical</td>\n",
" <td>0.834434</td>\n",
" <td>0.109091</td>\n",
" <td>0.030093</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.809324</td>\n",
" <td>0.834434</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>4817459.0</td>\n",
" <td>260.507359</td>\n",
" <td>30.0</td>\n",
" <td>-49.0</td>\n",
" <td>504253.910958</td>\n",
" <td>134072.701545</td>\n",
" <td>66.856008</td>\n",
" <td>225.390527</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>30</td>\n",
" <td>vertical</td>\n",
" <td>0.767733</td>\n",
" <td>0.035714</td>\n",
" <td>0.008869</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.760923</td>\n",
" <td>0.767733</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>4817460.0</td>\n",
" <td>33.455253</td>\n",
" <td>24.0</td>\n",
" <td>-142.0</td>\n",
" <td>504252.873380</td>\n",
" <td>134059.252231</td>\n",
" <td>24.705455</td>\n",
" <td>30.633213</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>24</td>\n",
" <td>vertical</td>\n",
" <td>0.478251</td>\n",
" <td>0.000000</td>\n",
" <td>0.008130</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.474363</td>\n",
" <td>0.478251</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>4817461.0</td>\n",
" <td>45.821417</td>\n",
" <td>22.0</td>\n",
" <td>32.0</td>\n",
" <td>504249.859870</td>\n",
" <td>134055.974734</td>\n",
" <td>27.196876</td>\n",
" <td>42.462233</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>22</td>\n",
" <td>horizontal</td>\n",
" <td>0.593609</td>\n",
" <td>0.000000</td>\n",
" <td>0.005952</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.590075</td>\n",
" <td>0.593609</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>4817463.0</td>\n",
" <td>82.400929</td>\n",
" <td>33.0</td>\n",
" <td>-50.0</td>\n",
" <td>504157.851075</td>\n",
" <td>134078.914455</td>\n",
" <td>32.942705</td>\n",
" <td>69.128758</td>\n",
" <td>1004073.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>33</td>\n",
" <td>horizontal</td>\n",
" <td>0.621352</td>\n",
" <td>0.000000</td>\n",
" <td>0.003610</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.619109</td>\n",
" <td>0.621352</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>4817464.0</td>\n",
" <td>78.771912</td>\n",
" <td>31.0</td>\n",
" <td>130.0</td>\n",
" <td>504150.396646</td>\n",
" <td>134085.492644</td>\n",
" <td>32.609685</td>\n",
" <td>67.373176</td>\n",
" <td>1004073.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>31</td>\n",
" <td>vertical</td>\n",
" <td>0.710913</td>\n",
" <td>0.000000</td>\n",
" <td>0.092937</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.368482</td>\n",
" <td>0.406236</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154794</th>\n",
" <td>5124495.0</td>\n",
" <td>27.490066</td>\n",
" <td>21.0</td>\n",
" <td>116.0</td>\n",
" <td>512507.153297</td>\n",
" <td>121868.767886</td>\n",
" <td>24.997104</td>\n",
" <td>25.656416</td>\n",
" <td>295081617.0</td>\n",
" <td>8017.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>21</td>\n",
" <td>horizontal</td>\n",
" <td>0.582028</td>\n",
" <td>0.000000</td>\n",
" <td>0.009434</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.576538</td>\n",
" <td>0.582028</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154795</th>\n",
" <td>5124496.0</td>\n",
" <td>33.733199</td>\n",
" <td>11.0</td>\n",
" <td>30.0</td>\n",
" <td>512653.714458</td>\n",
" <td>121846.443211</td>\n",
" <td>27.509294</td>\n",
" <td>33.153466</td>\n",
" <td>1018650.0</td>\n",
" <td>8015.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>11</td>\n",
" <td>horizontal</td>\n",
" <td>0.569172</td>\n",
" <td>0.000000</td>\n",
" <td>0.015152</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.560548</td>\n",
" <td>0.569172</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154796</th>\n",
" <td>5124497.0</td>\n",
" <td>139.413591</td>\n",
" <td>30.0</td>\n",
" <td>-60.0</td>\n",
" <td>512727.853591</td>\n",
" <td>121799.313992</td>\n",
" <td>54.005430</td>\n",
" <td>120.493402</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>9</td>\n",
" <td>30</td>\n",
" <td>horizontal</td>\n",
" <td>0.677122</td>\n",
" <td>0.000000</td>\n",
" <td>0.004149</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.674312</td>\n",
" <td>0.677122</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154797</th>\n",
" <td>5124498.0</td>\n",
" <td>137.530298</td>\n",
" <td>30.0</td>\n",
" <td>120.0</td>\n",
" <td>512722.012941</td>\n",
" <td>121802.781737</td>\n",
" <td>53.905711</td>\n",
" <td>119.641777</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>9</td>\n",
" <td>30</td>\n",
" <td>horizontal</td>\n",
" <td>0.639859</td>\n",
" <td>0.064516</td>\n",
" <td>0.041841</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.613087</td>\n",
" <td>0.639859</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154798</th>\n",
" <td>5124499.0</td>\n",
" <td>92.630815</td>\n",
" <td>7.0</td>\n",
" <td>-150.0</td>\n",
" <td>512731.300787</td>\n",
" <td>121811.881398</td>\n",
" <td>47.143675</td>\n",
" <td>91.927158</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>8</td>\n",
" <td>7</td>\n",
" <td>equal</td>\n",
" <td>0.656369</td>\n",
" <td>0.045455</td>\n",
" <td>0.147541</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.559528</td>\n",
" <td>0.656369</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154799</th>\n",
" <td>5124500.0</td>\n",
" <td>44.081253</td>\n",
" <td>7.0</td>\n",
" <td>-148.0</td>\n",
" <td>512734.614676</td>\n",
" <td>121817.612632</td>\n",
" <td>28.618486</td>\n",
" <td>43.718502</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>7</td>\n",
" <td>vertical</td>\n",
" <td>0.653339</td>\n",
" <td>0.000000</td>\n",
" <td>0.022857</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.638405</td>\n",
" <td>0.653339</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154800</th>\n",
" <td>5124502.0</td>\n",
" <td>14.119724</td>\n",
" <td>11.0</td>\n",
" <td>-147.0</td>\n",
" <td>512729.165421</td>\n",
" <td>121822.382400</td>\n",
" <td>16.789635</td>\n",
" <td>13.863595</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>11</td>\n",
" <td>horizontal</td>\n",
" <td>0.453267</td>\n",
" <td>0.000000</td>\n",
" <td>0.071429</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.420890</td>\n",
" <td>0.453267</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154801</th>\n",
" <td>5124503.0</td>\n",
" <td>36.753693</td>\n",
" <td>21.0</td>\n",
" <td>122.0</td>\n",
" <td>512683.971180</td>\n",
" <td>121769.079140</td>\n",
" <td>23.556753</td>\n",
" <td>34.231614</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>21</td>\n",
" <td>equal</td>\n",
" <td>0.522396</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.522396</td>\n",
" <td>0.522396</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154802</th>\n",
" <td>5124505.0</td>\n",
" <td>36.179539</td>\n",
" <td>19.0</td>\n",
" <td>-58.0</td>\n",
" <td>512689.565868</td>\n",
" <td>121765.612262</td>\n",
" <td>23.566963</td>\n",
" <td>34.201265</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>19</td>\n",
" <td>equal</td>\n",
" <td>0.530687</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.530687</td>\n",
" <td>0.530687</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154803</th>\n",
" <td>5124506.0</td>\n",
" <td>57.609988</td>\n",
" <td>17.0</td>\n",
" <td>-57.0</td>\n",
" <td>512685.874412</td>\n",
" <td>121760.247993</td>\n",
" <td>37.797327</td>\n",
" <td>55.148314</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>8</td>\n",
" <td>17</td>\n",
" <td>vertical</td>\n",
" <td>0.694324</td>\n",
" <td>0.000000</td>\n",
" <td>0.105023</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.621404</td>\n",
" <td>0.694324</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154804</th>\n",
" <td>5124507.0</td>\n",
" <td>57.882063</td>\n",
" <td>22.0</td>\n",
" <td>122.0</td>\n",
" <td>512679.975021</td>\n",
" <td>121763.783138</td>\n",
" <td>29.386703</td>\n",
" <td>53.499302</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>22</td>\n",
" <td>vertical</td>\n",
" <td>0.773988</td>\n",
" <td>0.076923</td>\n",
" <td>0.186916</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.629317</td>\n",
" <td>0.773988</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154805</th>\n",
" <td>5124508.0</td>\n",
" <td>35.898733</td>\n",
" <td>22.0</td>\n",
" <td>-153.0</td>\n",
" <td>512676.571716</td>\n",
" <td>121745.126015</td>\n",
" <td>30.833490</td>\n",
" <td>33.393443</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>7</td>\n",
" <td>22</td>\n",
" <td>horizontal</td>\n",
" <td>0.356559</td>\n",
" <td>0.000000</td>\n",
" <td>0.014493</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.351391</td>\n",
" <td>0.356559</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154806</th>\n",
" <td>5124509.0</td>\n",
" <td>88.059840</td>\n",
" <td>20.0</td>\n",
" <td>27.0</td>\n",
" <td>512674.020870</td>\n",
" <td>121740.921893</td>\n",
" <td>39.260540</td>\n",
" <td>82.722458</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>8</td>\n",
" <td>20</td>\n",
" <td>horizontal</td>\n",
" <td>0.744948</td>\n",
" <td>0.052632</td>\n",
" <td>0.015291</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.733557</td>\n",
" <td>0.744948</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154807</th>\n",
" <td>5124510.0</td>\n",
" <td>234.137426</td>\n",
" <td>15.0</td>\n",
" <td>-139.0</td>\n",
" <td>512576.260995</td>\n",
" <td>121776.663075</td>\n",
" <td>66.560300</td>\n",
" <td>226.093454</td>\n",
" <td>1018659.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>15</td>\n",
" <td>horizontal</td>\n",
" <td>0.861033</td>\n",
" <td>0.000000</td>\n",
" <td>0.002212</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.859128</td>\n",
" <td>0.861033</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154808</th>\n",
" <td>5124511.0</td>\n",
" <td>232.447102</td>\n",
" <td>16.0</td>\n",
" <td>41.0</td>\n",
" <td>512570.079754</td>\n",
" <td>121769.520367</td>\n",
" <td>66.292584</td>\n",
" <td>222.913017</td>\n",
" <td>1018659.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>16</td>\n",
" <td>horizontal</td>\n",
" <td>0.867294</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.867294</td>\n",
" <td>0.867294</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154809</th>\n",
" <td>5124512.0</td>\n",
" <td>131.925651</td>\n",
" <td>29.0</td>\n",
" <td>121.0</td>\n",
" <td>512861.419320</td>\n",
" <td>121844.774678</td>\n",
" <td>55.702429</td>\n",
" <td>114.847781</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>29</td>\n",
" <td>vertical</td>\n",
" <td>0.800451</td>\n",
" <td>0.033333</td>\n",
" <td>0.087146</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.675339</td>\n",
" <td>0.739811</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154810</th>\n",
" <td>5124513.0</td>\n",
" <td>137.339196</td>\n",
" <td>28.0</td>\n",
" <td>-59.0</td>\n",
" <td>512865.854189</td>\n",
" <td>121842.120366</td>\n",
" <td>56.243851</td>\n",
" <td>121.027343</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>28</td>\n",
" <td>vertical</td>\n",
" <td>0.768899</td>\n",
" <td>0.000000</td>\n",
" <td>0.004124</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.765728</td>\n",
" <td>0.768899</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154811</th>\n",
" <td>5124514.0</td>\n",
" <td>21.008432</td>\n",
" <td>23.0</td>\n",
" <td>-150.0</td>\n",
" <td>512862.686744</td>\n",
" <td>121857.263294</td>\n",
" <td>23.119281</td>\n",
" <td>19.328343</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>23</td>\n",
" <td>vertical</td>\n",
" <td>0.380799</td>\n",
" <td>0.000000</td>\n",
" <td>0.129870</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.331345</td>\n",
" <td>0.380799</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154812</th>\n",
" <td>5124515.0</td>\n",
" <td>21.541363</td>\n",
" <td>19.0</td>\n",
" <td>30.0</td>\n",
" <td>512860.734800</td>\n",
" <td>121855.152708</td>\n",
" <td>19.585625</td>\n",
" <td>20.336518</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>19</td>\n",
" <td>equal</td>\n",
" <td>0.445654</td>\n",
" <td>0.000000</td>\n",
" <td>0.123457</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.390635</td>\n",
" <td>0.445654</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154813</th>\n",
" <td>5124516.0</td>\n",
" <td>33.342276</td>\n",
" <td>17.0</td>\n",
" <td>-58.0</td>\n",
" <td>512857.342542</td>\n",
" <td>121829.041410</td>\n",
" <td>24.377198</td>\n",
" <td>31.954253</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>17</td>\n",
" <td>vertical</td>\n",
" <td>0.671820</td>\n",
" <td>0.125000</td>\n",
" <td>0.570312</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.288673</td>\n",
" <td>0.671820</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154814</th>\n",
" <td>5124517.0</td>\n",
" <td>43.358052</td>\n",
" <td>13.0</td>\n",
" <td>122.0</td>\n",
" <td>512853.537208</td>\n",
" <td>121831.368979</td>\n",
" <td>26.787103</td>\n",
" <td>42.321731</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>13</td>\n",
" <td>horizontal</td>\n",
" <td>0.590432</td>\n",
" <td>0.000000</td>\n",
" <td>0.470588</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.312582</td>\n",
" <td>0.590432</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154815</th>\n",
" <td>5124518.0</td>\n",
" <td>34.768271</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>512851.492252</td>\n",
" <td>121838.457750</td>\n",
" <td>29.085365</td>\n",
" <td>34.768271</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>30</td>\n",
" <td>vertical</td>\n",
" <td>0.119561</td>\n",
" <td>0.111111</td>\n",
" <td>0.231884</td>\n",
" <td>flat</td>\n",
" <td>S</td>\n",
" <td>0.091837</td>\n",
" <td>0.119561</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154816</th>\n",
" <td>5124519.0</td>\n",
" <td>32.262272</td>\n",
" <td>7.0</td>\n",
" <td>-62.0</td>\n",
" <td>512889.292856</td>\n",
" <td>121962.982921</td>\n",
" <td>22.665441</td>\n",
" <td>32.006156</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>7</td>\n",
" <td>vertical</td>\n",
" <td>0.595122</td>\n",
" <td>0.000000</td>\n",
" <td>0.375000</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.371951</td>\n",
" <td>0.595122</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154817</th>\n",
" <td>5124520.0</td>\n",
" <td>14.249623</td>\n",
" <td>25.0</td>\n",
" <td>118.0</td>\n",
" <td>512885.599017</td>\n",
" <td>121964.977036</td>\n",
" <td>15.514710</td>\n",
" <td>12.886922</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>25</td>\n",
" <td>vertical</td>\n",
" <td>0.449135</td>\n",
" <td>0.500000</td>\n",
" <td>0.250000</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.336851</td>\n",
" <td>0.449135</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154818</th>\n",
" <td>5124523.0</td>\n",
" <td>202.860586</td>\n",
" <td>26.0</td>\n",
" <td>-65.0</td>\n",
" <td>512907.355343</td>\n",
" <td>121907.640275</td>\n",
" <td>69.264065</td>\n",
" <td>181.708205</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>26</td>\n",
" <td>vertical</td>\n",
" <td>0.836042</td>\n",
" <td>0.022222</td>\n",
" <td>0.042582</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.800441</td>\n",
" <td>0.836042</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154819</th>\n",
" <td>5124524.0</td>\n",
" <td>221.668609</td>\n",
" <td>25.0</td>\n",
" <td>115.0</td>\n",
" <td>512901.324171</td>\n",
" <td>121910.827716</td>\n",
" <td>72.136766</td>\n",
" <td>201.586966</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>25</td>\n",
" <td>horizontal</td>\n",
" <td>0.692926</td>\n",
" <td>0.102041</td>\n",
" <td>0.042131</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.663732</td>\n",
" <td>0.692926</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154820</th>\n",
" <td>5124525.0</td>\n",
" <td>126.405824</td>\n",
" <td>22.0</td>\n",
" <td>118.0</td>\n",
" <td>512801.107921</td>\n",
" <td>121763.322478</td>\n",
" <td>43.276794</td>\n",
" <td>116.796274</td>\n",
" <td>1018651.0</td>\n",
" <td>8013.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>22</td>\n",
" <td>equal</td>\n",
" <td>0.759459</td>\n",
" <td>0.035714</td>\n",
" <td>0.012876</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.749680</td>\n",
" <td>0.759459</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154821</th>\n",
" <td>5124526.0</td>\n",
" <td>126.408740</td>\n",
" <td>22.0</td>\n",
" <td>-62.0</td>\n",
" <td>512810.176759</td>\n",
" <td>121758.418405</td>\n",
" <td>43.277184</td>\n",
" <td>116.797944</td>\n",
" <td>1018651.0</td>\n",
" <td>8013.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>22</td>\n",
" <td>equal</td>\n",
" <td>0.759441</td>\n",
" <td>0.000000</td>\n",
" <td>0.040598</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.728609</td>\n",
" <td>0.759441</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154822</th>\n",
" <td>5124527.0</td>\n",
" <td>17.738624</td>\n",
" <td>32.0</td>\n",
" <td>-67.0</td>\n",
" <td>512895.656423</td>\n",
" <td>121945.700714</td>\n",
" <td>16.399780</td>\n",
" <td>14.964642</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>32</td>\n",
" <td>equal</td>\n",
" <td>0.360795</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.360795</td>\n",
" <td>0.360795</td>\n",
" </tr>\n",
" <tr>\n",
" <th>154823</th>\n",
" <td>5124528.0</td>\n",
" <td>17.671450</td>\n",
" <td>33.0</td>\n",
" <td>113.0</td>\n",
" <td>512893.143353</td>\n",
" <td>121946.778198</td>\n",
" <td>16.370630</td>\n",
" <td>14.885036</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>33</td>\n",
" <td>equal</td>\n",
" <td>0.362166</td>\n",
" <td>0.000000</td>\n",
" <td>0.016393</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.356229</td>\n",
" <td>0.362166</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>154824 rows × 28 columns</p>\n",
"</div>"
],
"text/plain": [
" DF_UID FLAECHE NEIGUNG AUSRICHTUNG XCOORD \\\n",
"0 4817410.0 71.487047 10.0 127.0 503491.325015 \n",
"1 4817425.0 36.859836 37.0 33.0 503503.812619 \n",
"2 4817426.0 51.333864 31.0 -57.0 503509.783165 \n",
"3 4817427.0 36.861447 37.0 -147.0 503510.594159 \n",
"4 4817428.0 81.256555 28.0 123.0 503504.226918 \n",
"5 4817429.0 11.397236 27.0 -144.0 503512.070989 \n",
"6 4817431.0 174.501987 31.0 -147.0 503503.978942 \n",
"7 4817432.0 174.108293 31.0 33.0 503500.517066 \n",
"8 4817433.0 69.216255 26.0 33.0 503510.917446 \n",
"9 4817434.0 26.716480 31.0 -147.0 503517.020358 \n",
"10 4817435.0 26.018729 31.0 -147.0 503507.806109 \n",
"11 4817436.0 13.309012 33.0 123.0 503512.471353 \n",
"12 4817437.0 13.503089 32.0 -57.0 503514.586126 \n",
"13 4817438.0 130.038144 26.0 -144.0 503951.193324 \n",
"14 4817439.0 126.475108 26.0 36.0 503948.788882 \n",
"15 4817440.0 47.540096 37.0 -144.0 503996.949571 \n",
"16 4817441.0 35.497241 32.0 36.0 503994.863047 \n",
"17 4817442.0 49.847956 38.0 36.0 504003.468131 \n",
"18 4817448.0 34.963254 28.0 -145.0 503922.898105 \n",
"19 4817449.0 19.979434 7.0 35.0 503916.075512 \n",
"20 4817450.0 21.119847 18.0 -144.0 503936.461763 \n",
"21 4817451.0 21.374411 19.0 36.0 503934.470464 \n",
"22 4817452.0 68.854261 35.0 -140.0 504222.101990 \n",
"23 4817453.0 52.296595 34.0 40.0 504219.058562 \n",
"24 4817458.0 258.858167 34.0 127.0 504246.524168 \n",
"25 4817459.0 260.507359 30.0 -49.0 504253.910958 \n",
"26 4817460.0 33.455253 24.0 -142.0 504252.873380 \n",
"27 4817461.0 45.821417 22.0 32.0 504249.859870 \n",
"28 4817463.0 82.400929 33.0 -50.0 504157.851075 \n",
"29 4817464.0 78.771912 31.0 130.0 504150.396646 \n",
"... ... ... ... ... ... \n",
"154794 5124495.0 27.490066 21.0 116.0 512507.153297 \n",
"154795 5124496.0 33.733199 11.0 30.0 512653.714458 \n",
"154796 5124497.0 139.413591 30.0 -60.0 512727.853591 \n",
"154797 5124498.0 137.530298 30.0 120.0 512722.012941 \n",
"154798 5124499.0 92.630815 7.0 -150.0 512731.300787 \n",
"154799 5124500.0 44.081253 7.0 -148.0 512734.614676 \n",
"154800 5124502.0 14.119724 11.0 -147.0 512729.165421 \n",
"154801 5124503.0 36.753693 21.0 122.0 512683.971180 \n",
"154802 5124505.0 36.179539 19.0 -58.0 512689.565868 \n",
"154803 5124506.0 57.609988 17.0 -57.0 512685.874412 \n",
"154804 5124507.0 57.882063 22.0 122.0 512679.975021 \n",
"154805 5124508.0 35.898733 22.0 -153.0 512676.571716 \n",
"154806 5124509.0 88.059840 20.0 27.0 512674.020870 \n",
"154807 5124510.0 234.137426 15.0 -139.0 512576.260995 \n",
"154808 5124511.0 232.447102 16.0 41.0 512570.079754 \n",
"154809 5124512.0 131.925651 29.0 121.0 512861.419320 \n",
"154810 5124513.0 137.339196 28.0 -59.0 512865.854189 \n",
"154811 5124514.0 21.008432 23.0 -150.0 512862.686744 \n",
"154812 5124515.0 21.541363 19.0 30.0 512860.734800 \n",
"154813 5124516.0 33.342276 17.0 -58.0 512857.342542 \n",
"154814 5124517.0 43.358052 13.0 122.0 512853.537208 \n",
"154815 5124518.0 34.768271 0.0 0.0 512851.492252 \n",
"154816 5124519.0 32.262272 7.0 -62.0 512889.292856 \n",
"154817 5124520.0 14.249623 25.0 118.0 512885.599017 \n",
"154818 5124523.0 202.860586 26.0 -65.0 512907.355343 \n",
"154819 5124524.0 221.668609 25.0 115.0 512901.324171 \n",
"154820 5124525.0 126.405824 22.0 118.0 512801.107921 \n",
"154821 5124526.0 126.408740 22.0 -62.0 512810.176759 \n",
"154822 5124527.0 17.738624 32.0 -67.0 512895.656423 \n",
"154823 5124528.0 17.671450 33.0 113.0 512893.143353 \n",
"\n",
" YCOORD Shape_Length Shape_Area GWR_EGID GBAUP \\\n",
"0 134197.490397 33.936595 70.390620 295070969.0 8011.0 \n",
"1 134131.833522 28.208608 29.339500 1004090.0 8012.0 \n",
"2 134135.282805 40.053428 44.043504 1004090.0 8012.0 \n",
"3 134142.188986 28.210273 29.341346 1004090.0 8012.0 \n",
"4 134138.960671 37.840077 71.574129 1004090.0 8012.0 \n",
"5 134135.795686 15.417311 10.154872 1004090.0 8012.0 \n",
"6 134181.171146 59.815925 149.165008 1004088.0 8011.0 \n",
"7 134175.889168 59.775896 148.702405 1004088.0 8011.0 \n",
"8 134191.713704 45.633223 61.997846 295084893.0 8011.0 \n",
"9 134191.118711 23.687927 22.959133 295084893.0 8011.0 \n",
"10 134197.114437 23.199036 22.360589 295084893.0 8011.0 \n",
"11 134196.622116 15.096068 11.164928 295084893.0 8011.0 \n",
"12 134195.245953 15.198331 11.396747 295084893.0 8011.0 \n",
"13 134195.306644 64.584475 117.365353 295084994.0 8014.0 \n",
"14 134191.981218 64.301850 113.406403 295084994.0 8014.0 \n",
"15 134161.244934 27.081498 37.981483 1004076.0 8012.0 \n",
"16 134158.375583 25.402378 29.945648 1004076.0 8012.0 \n",
"17 134152.306087 29.835723 39.429900 1004076.0 8012.0 \n",
"18 134216.939359 29.062031 30.741322 1004089.0 8012.0 \n",
"19 134213.701005 17.895750 19.831984 1004089.0 8012.0 \n",
"20 134203.761986 18.414721 20.066844 295084994.0 8014.0 \n",
"21 134200.829905 19.727025 20.261942 295084994.0 8014.0 \n",
"22 134017.187739 31.767443 56.268749 1004049.0 8011.0 \n",
"23 134013.574920 29.327904 43.406040 1004049.0 8011.0 \n",
"24 134078.107216 66.270016 215.837030 1004035.0 8011.0 \n",
"25 134072.701545 66.856008 225.390527 1004035.0 8011.0 \n",
"26 134059.252231 24.705455 30.633213 1004035.0 8011.0 \n",
"27 134055.974734 27.196876 42.462233 1004035.0 8011.0 \n",
"28 134078.914455 32.942705 69.128758 1004073.0 8011.0 \n",
"29 134085.492644 32.609685 67.373176 1004073.0 8011.0 \n",
"... ... ... ... ... ... \n",
"154794 121868.767886 24.997104 25.656416 295081617.0 8017.0 \n",
"154795 121846.443211 27.509294 33.153466 1018650.0 8015.0 \n",
"154796 121799.313992 54.005430 120.493402 1018653.0 8012.0 \n",
"154797 121802.781737 53.905711 119.641777 1018653.0 8012.0 \n",
"154798 121811.881398 47.143675 91.927158 1018653.0 8012.0 \n",
"154799 121817.612632 28.618486 43.718502 1018653.0 8012.0 \n",
"154800 121822.382400 16.789635 13.863595 1018653.0 8012.0 \n",
"154801 121769.079140 23.556753 34.231614 2040405.0 8012.0 \n",
"154802 121765.612262 23.566963 34.201265 2040405.0 8012.0 \n",
"154803 121760.247993 37.797327 55.148314 2040405.0 8012.0 \n",
"154804 121763.783138 29.386703 53.499302 2040405.0 8012.0 \n",
"154805 121745.126015 30.833490 33.393443 2040405.0 8012.0 \n",
"154806 121740.921893 39.260540 82.722458 2040405.0 8012.0 \n",
"154807 121776.663075 66.560300 226.093454 1018659.0 8011.0 \n",
"154808 121769.520367 66.292584 222.913017 1018659.0 8011.0 \n",
"154809 121844.774678 55.702429 114.847781 1018654.0 8011.0 \n",
"154810 121842.120366 56.243851 121.027343 1018654.0 8011.0 \n",
"154811 121857.263294 23.119281 19.328343 1018654.0 8011.0 \n",
"154812 121855.152708 19.585625 20.336518 1018654.0 8011.0 \n",
"154813 121829.041410 24.377198 31.954253 1018654.0 8011.0 \n",
"154814 121831.368979 26.787103 42.321731 1018654.0 8011.0 \n",
"154815 121838.457750 29.085365 34.768271 1018654.0 8011.0 \n",
"154816 121962.982921 22.665441 32.006156 1018655.0 8014.0 \n",
"154817 121964.977036 15.514710 12.886922 1018655.0 8014.0 \n",
"154818 121907.640275 69.264065 181.708205 1018655.0 8014.0 \n",
"154819 121910.827716 72.136766 201.586966 1018655.0 8014.0 \n",
"154820 121763.322478 43.276794 116.796274 1018651.0 8013.0 \n",
"154821 121758.418405 43.277184 116.797944 1018651.0 8013.0 \n",
"154822 121945.700714 16.399780 14.964642 1018655.0 8014.0 \n",
"154823 121946.778198 16.370630 14.885036 1018655.0 8014.0 \n",
"\n",
" ... n_corners panel_tilt best_align \\\n",
"0 ... 4 10 vertical \n",
"1 ... 4 37 equal \n",
"2 ... 7 31 horizontal \n",
"3 ... 4 37 horizontal \n",
"4 ... 4 28 vertical \n",
"5 ... 3 27 equal \n",
"6 ... 4 31 vertical \n",
"7 ... 4 31 vertical \n",
"8 ... 5 26 horizontal \n",
"9 ... 5 31 horizontal \n",
"10 ... 5 31 horizontal \n",
"11 ... 6 33 equal \n",
"12 ... 5 32 vertical \n",
"13 ... 4 26 vertical \n",
"14 ... 4 26 vertical \n",
"15 ... 5 37 horizontal \n",
"16 ... 4 32 horizontal \n",
"17 ... 4 38 vertical \n",
"18 ... 4 28 horizontal \n",
"19 ... 4 7 vertical \n",
"20 ... 5 18 horizontal \n",
"21 ... 6 19 horizontal \n",
"22 ... 5 35 horizontal \n",
"23 ... 5 34 horizontal \n",
"24 ... 4 34 vertical \n",
"25 ... 5 30 vertical \n",
"26 ... 6 24 vertical \n",
"27 ... 4 22 horizontal \n",
"28 ... 6 33 horizontal \n",
"29 ... 5 31 vertical \n",
"... ... ... ... ... \n",
"154794 ... 5 21 horizontal \n",
"154795 ... 4 11 horizontal \n",
"154796 ... 9 30 horizontal \n",
"154797 ... 9 30 horizontal \n",
"154798 ... 8 7 equal \n",
"154799 ... 4 7 vertical \n",
"154800 ... 6 11 horizontal \n",
"154801 ... 5 21 equal \n",
"154802 ... 4 19 equal \n",
"154803 ... 8 17 vertical \n",
"154804 ... 5 22 vertical \n",
"154805 ... 7 22 horizontal \n",
"154806 ... 8 20 horizontal \n",
"154807 ... 4 15 horizontal \n",
"154808 ... 4 16 horizontal \n",
"154809 ... 5 29 vertical \n",
"154810 ... 4 28 vertical \n",
"154811 ... 6 23 vertical \n",
"154812 ... 4 19 equal \n",
"154813 ... 4 17 vertical \n",
"154814 ... 4 13 horizontal \n",
"154815 ... 6 30 vertical \n",
"154816 ... 5 7 vertical \n",
"154817 ... 5 25 vertical \n",
"154818 ... 4 26 vertical \n",
"154819 ... 6 25 horizontal \n",
"154820 ... 4 22 equal \n",
"154821 ... 4 22 equal \n",
"154822 ... 4 32 equal \n",
"154823 ... 4 33 equal \n",
"\n",
" panelled_area_ratio_ftr shaded_area_ratio_ftr shaded_area_ratio_tgt \\\n",
"0 0.805740 0.117647 0.166667 \n",
"1 0.390669 0.000000 0.386555 \n",
"2 0.155843 0.000000 0.119318 \n",
"3 0.390652 0.166667 0.322034 \n",
"4 0.708866 0.333333 0.077193 \n",
"5 0.140385 0.000000 0.075000 \n",
"6 0.806868 0.135135 0.020101 \n",
"7 0.808692 0.131579 0.161345 \n",
"8 0.508551 0.000000 0.060241 \n",
"9 0.479105 0.000000 0.000000 \n",
"10 0.491953 0.000000 0.000000 \n",
"11 0.240439 0.000000 0.266667 \n",
"12 0.236983 0.000000 0.000000 \n",
"13 0.664420 0.900000 0.785106 \n",
"14 0.683138 0.214286 0.556291 \n",
"15 0.673116 0.800000 0.973510 \n",
"16 0.450739 0.142857 0.725000 \n",
"17 0.641952 0.900000 0.961538 \n",
"18 0.457623 0.125000 0.975610 \n",
"19 0.640659 0.666667 0.925000 \n",
"20 0.454549 0.000000 0.506173 \n",
"21 0.449135 0.000000 0.543210 \n",
"22 0.697125 0.142857 0.053333 \n",
"23 0.734273 0.100000 0.034682 \n",
"24 0.834434 0.109091 0.030093 \n",
"25 0.767733 0.035714 0.008869 \n",
"26 0.478251 0.000000 0.008130 \n",
"27 0.593609 0.000000 0.005952 \n",
"28 0.621352 0.000000 0.003610 \n",
"29 0.710913 0.000000 0.092937 \n",
"... ... ... ... \n",
"154794 0.582028 0.000000 0.009434 \n",
"154795 0.569172 0.000000 0.015152 \n",
"154796 0.677122 0.000000 0.004149 \n",
"154797 0.639859 0.064516 0.041841 \n",
"154798 0.656369 0.045455 0.147541 \n",
"154799 0.653339 0.000000 0.022857 \n",
"154800 0.453267 0.000000 0.071429 \n",
"154801 0.522396 0.000000 0.000000 \n",
"154802 0.530687 0.000000 0.000000 \n",
"154803 0.694324 0.000000 0.105023 \n",
"154804 0.773988 0.076923 0.186916 \n",
"154805 0.356559 0.000000 0.014493 \n",
"154806 0.744948 0.052632 0.015291 \n",
"154807 0.861033 0.000000 0.002212 \n",
"154808 0.867294 0.000000 0.000000 \n",
"154809 0.800451 0.033333 0.087146 \n",
"154810 0.768899 0.000000 0.004124 \n",
"154811 0.380799 0.000000 0.129870 \n",
"154812 0.445654 0.000000 0.123457 \n",
"154813 0.671820 0.125000 0.570312 \n",
"154814 0.590432 0.000000 0.470588 \n",
"154815 0.119561 0.111111 0.231884 \n",
"154816 0.595122 0.000000 0.375000 \n",
"154817 0.449135 0.500000 0.250000 \n",
"154818 0.836042 0.022222 0.042582 \n",
"154819 0.692926 0.102041 0.042131 \n",
"154820 0.759459 0.035714 0.012876 \n",
"154821 0.759441 0.000000 0.040598 \n",
"154822 0.360795 0.000000 0.000000 \n",
"154823 0.362166 0.000000 0.016393 \n",
"\n",
" tilt_cat orientation_cat available_area_ratio \\\n",
"0 shallow_tilt N 0.671450 \n",
"1 medium_tilt SW 0.106513 \n",
"2 medium_tilt SE 0.137248 \n",
"3 medium_tilt N 0.147138 \n",
"4 medium_tilt N 0.654146 \n",
"5 medium_tilt N 0.129856 \n",
"6 medium_tilt N 0.790649 \n",
"7 medium_tilt SW 0.678214 \n",
"8 medium_tilt SW 0.260681 \n",
"9 medium_tilt N 0.479105 \n",
"10 medium_tilt N 0.491953 \n",
"11 medium_tilt N 0.176322 \n",
"12 medium_tilt SE 0.236983 \n",
"13 medium_tilt N 0.142780 \n",
"14 medium_tilt SW 0.303114 \n",
"15 medium_tilt N 0.017831 \n",
"16 medium_tilt SW 0.123953 \n",
"17 medium_tilt SW 0.024690 \n",
"18 medium_tilt N 0.011162 \n",
"19 shallow_tilt SW 0.048049 \n",
"20 shallow_tilt N 0.224469 \n",
"21 shallow_tilt SW 0.205161 \n",
"22 medium_tilt N 0.659945 \n",
"23 medium_tilt SW 0.649740 \n",
"24 medium_tilt N 0.809324 \n",
"25 medium_tilt SE 0.760923 \n",
"26 medium_tilt N 0.474363 \n",
"27 medium_tilt SW 0.590075 \n",
"28 medium_tilt SE 0.619109 \n",
"29 medium_tilt N 0.368482 \n",
"... ... ... ... \n",
"154794 medium_tilt N 0.576538 \n",
"154795 shallow_tilt SW 0.560548 \n",
"154796 medium_tilt SE 0.674312 \n",
"154797 medium_tilt N 0.613087 \n",
"154798 shallow_tilt N 0.559528 \n",
"154799 shallow_tilt N 0.638405 \n",
"154800 shallow_tilt N 0.420890 \n",
"154801 medium_tilt N 0.522396 \n",
"154802 shallow_tilt SE 0.530687 \n",
"154803 shallow_tilt SE 0.621404 \n",
"154804 medium_tilt N 0.629317 \n",
"154805 medium_tilt N 0.351391 \n",
"154806 medium_tilt SW 0.733557 \n",
"154807 shallow_tilt N 0.859128 \n",
"154808 shallow_tilt SW 0.867294 \n",
"154809 medium_tilt N 0.675339 \n",
"154810 medium_tilt SE 0.765728 \n",
"154811 medium_tilt N 0.331345 \n",
"154812 shallow_tilt SW 0.390635 \n",
"154813 shallow_tilt SE 0.288673 \n",
"154814 shallow_tilt N 0.312582 \n",
"154815 flat S 0.091837 \n",
"154816 shallow_tilt SE 0.371951 \n",
"154817 medium_tilt N 0.336851 \n",
"154818 medium_tilt SE 0.800441 \n",
"154819 medium_tilt N 0.663732 \n",
"154820 medium_tilt N 0.749680 \n",
"154821 medium_tilt SE 0.728609 \n",
"154822 medium_tilt SE 0.360795 \n",
"154823 medium_tilt N 0.356229 \n",
"\n",
" panelled_area_ratio_tgt \n",
"0 0.805740 \n",
"1 0.173631 \n",
"2 0.155843 \n",
"3 0.217029 \n",
"4 0.708866 \n",
"5 0.140385 \n",
"6 0.806868 \n",
"7 0.808692 \n",
"8 0.277391 \n",
"9 0.479105 \n",
"10 0.491953 \n",
"11 0.240439 \n",
"12 0.236983 \n",
"13 0.664420 \n",
"14 0.683138 \n",
"15 0.673116 \n",
"16 0.450739 \n",
"17 0.641952 \n",
"18 0.457623 \n",
"19 0.640659 \n",
"20 0.454549 \n",
"21 0.449135 \n",
"22 0.697125 \n",
"23 0.673084 \n",
"24 0.834434 \n",
"25 0.767733 \n",
"26 0.478251 \n",
"27 0.593609 \n",
"28 0.621352 \n",
"29 0.406236 \n",
"... ... \n",
"154794 0.582028 \n",
"154795 0.569172 \n",
"154796 0.677122 \n",
"154797 0.639859 \n",
"154798 0.656369 \n",
"154799 0.653339 \n",
"154800 0.453267 \n",
"154801 0.522396 \n",
"154802 0.530687 \n",
"154803 0.694324 \n",
"154804 0.773988 \n",
"154805 0.356559 \n",
"154806 0.744948 \n",
"154807 0.861033 \n",
"154808 0.867294 \n",
"154809 0.739811 \n",
"154810 0.768899 \n",
"154811 0.380799 \n",
"154812 0.445654 \n",
"154813 0.671820 \n",
"154814 0.590432 \n",
"154815 0.119561 \n",
"154816 0.595122 \n",
"154817 0.449135 \n",
"154818 0.836042 \n",
"154819 0.692926 \n",
"154820 0.759459 \n",
"154821 0.759441 \n",
"154822 0.360795 \n",
"154823 0.362166 \n",
"\n",
"[154824 rows x 28 columns]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"learning_table"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MBE Approximation"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"MBE_shading = np.mean(training.shaded_area_ratio_tgt - training.shaded_area_ratio_ftr)\n",
"MBE_panels = np.mean(training.panelled_area_ratio_tgt - training.panelled_area_ratio_ftr)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"shading_pred = np.maximum( np.minimum( validation.shaded_area_ratio_ftr + MBE_shading , 1), 0)\n",
"panels_pred = np.maximum( np.minimum( validation.panelled_area_ratio_ftr.values + MBE_panels, 1), 0)\n",
"av_area_pred = (1 - shading_pred) * panels_pred"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MSE (shading): 0.043389\n",
"Validation MSE (panelling): 0.011387\n",
"Validation MSE (combined): 0.016567\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation MSE (shading): %f' %mse( shading_pred , validation.shaded_area_ratio_tgt ))\n",
"print( 'Validation MSE (panelling): %f' %mse( panels_pred , validation.panelled_area_ratio_tgt ))\n",
"print( 'Validation MSE (combined): %f' %mse( av_area_pred , validation.available_area_ratio ))"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation RMSE (shading): 0.208299\n",
"Validation RMSE (panelling): 0.106709\n",
"Validation RMSE (combined): 0.128714\n"
]
}
],
"source": [
"print( 'Validation RMSE (shading): %f' %np.sqrt( mse( shading_pred , validation.shaded_area_ratio_tgt )))\n",
"print( 'Validation RMSE (panelling): %f' %np.sqrt( mse( panels_pred , validation.panelled_area_ratio_tgt )))\n",
"print( 'Validation RMSE (combined): %f' %np.sqrt( mse( av_area_pred , validation.available_area_ratio )))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MAE (shading): 0.142402\n",
"Validation MAE (panelling): 0.067125\n",
"Validation MAE (combined): 0.098143\n"
]
}
],
"source": [
"print( 'Validation MAE (shading): %f' %mae( shading_pred , validation.shaded_area_ratio_tgt ))\n",
"print( 'Validation MAE (panelling): %f' %mae( panels_pred , validation.panelled_area_ratio_tgt ))\n",
"print( 'Validation MAE (combined): %f' %mae( av_area_pred , validation.available_area_ratio ))"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MBE (shading): -0.001925\n",
"Validation MBE (panelling): 0.001191\n",
"Validation MBE (combined): -0.006433\n"
]
}
],
"source": [
"print( 'Validation MBE (shading): %f' %np.mean( shading_pred - validation.shaded_area_ratio_tgt ))\n",
"print( 'Validation MBE (panelling): %f' %np.mean( panels_pred - validation.panelled_area_ratio_tgt ))\n",
"print( 'Validation MBE (combined): %f' %np.mean( av_area_pred - validation.available_area_ratio ))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Random Forest"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"n_est = 200\n",
"# tree_depth = 10\n",
"\n",
"x = training.loc[ : , feature_names ]\n",
"t = training.loc[ : , label_name ]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU time: 354.36 seconds\n",
"Wall clock time: 94.32 seconds\n"
]
}
],
"source": [
"RF = RandomForestRegressor(n_estimators = n_est, criterion = 'mse', n_jobs = -1)\n",
"\n",
"tt = util.Timer()\n",
"RF.fit(x,t)\n",
"tt.stop()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training MSE: 0.002798\n"
]
}
],
"source": [
"y = RF.predict(x)\n",
"print( 'Training MSE: %f' %mse(y,t))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MSE: 0.020185\n"
]
}
],
"source": [
"x_val = validation.loc[ : , feature_names ]\n",
"t_val = validation.loc[ : , label_name]\n",
"\n",
"y_val = RF.predict(x_val)\n",
"print( 'Validation MSE: %f' %mse(y_val,t_val))"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation RMSE: 0.142075\n",
"Validation MAE: 0.087015\n",
"Validation MBE: 0.001355\n"
]
}
],
"source": [
"# FOR A SINGLE TARGET (available_area_ratio)\n",
"print( 'Validation RMSE: %f' %np.sqrt(mse(y_val,t_val)))\n",
"print( 'Validation MAE: %f' %mae(y_val,t_val))\n",
"print( 'Validation MBE: %f' %np.mean( y_val - t_val.values))"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MSE (shading): 0.031665\n",
"Validation MSE (panelling): 0.008705\n",
"Validation MSE (combined): 0.012994\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation MSE (shading): %f' %mse(y_val[:,0],t_val.iloc[:,0]))\n",
"print( 'Validation MSE (panelling): %f' %mse(y_val[:,1],t_val.iloc[:,1]))\n",
"print( 'Validation MSE (combined): %f' %mse((1 - y_val[:,0]) * y_val[:,1],( 1 - t_val.iloc[:,0]) * t_val.iloc[:,1]))"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation RMSE (shading): 0.177948\n",
"Validation RMSE (panelling): 0.093302\n",
"Validation RMSE (combined): 0.113991\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation RMSE (shading): %f' %np.sqrt(mse(y_val[:,0],t_val.iloc[:,0])))\n",
"print( 'Validation RMSE (panelling): %f' %np.sqrt(mse(y_val[:,1],t_val.iloc[:,1])))\n",
"print( 'Validation RMSE (combined): %f' %np.sqrt(mse((1 - y_val[:,0]) * y_val[:,1],( 1 - t_val.iloc[:,0]) * t_val.iloc[:,1])))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MAE (shading): 0.118576\n",
"Validation MAE (panelling): 0.055455\n",
"Validation MAE (combined): 0.082580\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation MAE (shading): %f' %mae(y_val[:,0],t_val.iloc[:,0]))\n",
"print( 'Validation MAE (panelling): %f' %mae(y_val[:,1],t_val.iloc[:,1]))\n",
"print( 'Validation MAE (combined): %f' %mae((1 - y_val[:,0]) * y_val[:,1],( 1 - t_val.iloc[:,0]) * t_val.iloc[:,1]))"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MBE (shading): 0.005875\n",
"Validation MBE (panelling): -0.002592\n",
"Validation MBE (combined): -0.005540\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation MBE (shading): %f' %np.mean(y_val[:,0]-t_val.iloc[:,0]))\n",
"print( 'Validation MBE (panelling): %f' %np.mean(y_val[:,1]-t_val.iloc[:,1]))\n",
"print( 'Validation MBE (combined): %f' %np.mean((1 - y_val[:,0]) * y_val[:,1]-( 1 - t_val.iloc[:,0]) * t_val.iloc[:,1]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feature importance (all features)"
]
},
{
"cell_type": "code",
"execution_count": 171,
"metadata": {},
"outputs": [],
"source": [
"n_features = len(x.columns)\n",
"importance = np.mean([tree.feature_importances_ for tree in RF.estimators_],axis=0)\n",
"std = np.std([tree.feature_importances_ for tree in RF.estimators_],axis=0)\n",
"ind = np.argsort(importance)[-n_features:]"
]
},
{
"cell_type": "code",
"execution_count": 172,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.20015829 0.41930545 0.02777562 0.05334828 0.03734801 0.04529424\n",
" 0.04283491 0.01341948 0.0254214 0.01620846 0.03105053 0.01006987\n",
" 0.04333051 0.03443496]\n",
"[0.00249603 0.0019589 0.00209606 0.00147573 0.00216068 0.00234554\n",
" 0.00184351 0.00064939 0.00200405 0.00068381 0.00102614 0.00057901\n",
" 0.00125957 0.00099208]\n",
"[11 7 9 8 2 10 13 4 6 12 5 3 0 1]\n"
]
}
],
"source": [
"print(importance)\n",
"print(std)\n",
"print(ind)"
]
},
{
"cell_type": "code",
"execution_count": 173,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['shaded_area_ratio_ftr', 'panelled_area_ratio_ftr', 'NEIGUNG',\n",
" 'AUSRICHTUNG', 'FLAECHE', 'Shape_Length', 'Shape_Ratio', 'n_corners',\n",
" 'panel_tilt', 'GASTW', 'GBAUP', 'GKAT', 'GAREA', 'n_neighbors_100'],\n",
" dtype='object')\n"
]
}
],
"source": [
"# rename features for plotting:\n",
"print(x.columns)\n",
"feature_names = x.columns # np.asarray(['ratio_2m', 'n_shaded', 'n_unshaded', 'n_cells', 'roof_tilt', 'roof_orientation', 'roof_area', 'roof_perim', 'roof_shape_idx', 'building_levels', 'building_period', 'building_category', 'building_area', 'neighbor_count'])"
]
},
{
"cell_type": "code",
"execution_count": 174,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"ax = plt.axes()\n",
"plt.title(\"Feature Importances for Random Forest (%d trees)\\n Validation MSE: %f\" %(n_est, mse(y_val,t_val)))\n",
"plt.barh(range(n_features),importance[ind],\n",
" color=\"r\", xerr=std[ind], alpha=0.4, align=\"center\")\n",
"plt.yticks(range(n_features), feature_names[ind])\n",
"plt.ylim([-1, len(ind)])\n",
"plt.show()\n",
"\n",
"# pos : [left, bottom, width, height]\n",
"ax.set_position( [0.23, 0.11, 0.7, 0.77] )\n",
"plt.savefig('Feature_importances.png', dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# raw data\n",
"plt.figure()\n",
"bins=25\n",
"plt.hist(av_area_ratio_ftr, range=(0,1), bins=bins, facecolor='w',edgecolor='r', alpha=0.5, density=True, label = 'Approx. ratio')\n",
"plt.hist(learning_table.available_area_ratio, range=(0,1), bins=bins, density=True, facecolor='g', alpha=0.2, edgecolor='g', label = '\"Ground truth\"')\n",
"plt.hist(y_val, bins=bins, range=(0,1), density=True, facecolor='b', alpha=0.2, edgecolor='b', label = 'RF - validation')\n",
"plt.legend()\n",
"plt.title('Distribution of available area ratio')\n",
"plt.show()\n",
"plt.savefig('availabe_area_hist.png', dpi=300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cross-validation (alternative to fitting and prediction):"
]
},
{
"cell_type": "code",
"execution_count": 163,
"metadata": {},
"outputs": [],
"source": [
"x_crossval = learning_table.loc[ ind , feature_names ]\n",
"t_crossval = learning_table.loc[ ind , label_name ]"
]
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU time: 1.59 seconds\n",
"Wall clock time: 1390.94 seconds\n"
]
}
],
"source": [
"tt = util.Timer()\n",
"RF_crossval = RandomForestRegressor(n_estimators = n_est, n_jobs = -1)\n",
" \n",
"y_crossval = cross_val_predict(RF_crossval, x_crossval, t_crossval, cv=5, n_jobs=-1)\n",
"mse_crossval = mse(y_crossval, t_crossval)\n",
"\n",
"tt.stop()"
]
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.0190154455691502"
]
},
"execution_count": 165,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mse_crossval"
]
},
{
"cell_type": "code",
"execution_count": 166,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MSE (shading): 0.031725\n",
"Validation MSE (panelling): 0.006306\n",
"Validation MSE (combined): 0.011516\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation MSE (shading): %f' %mse(y_crossval[:,0],t_crossval.iloc[:,0]))\n",
"print( 'Validation MSE (panelling): %f' %mse(y_crossval[:,1],t_crossval.iloc[:,1]))\n",
"print( 'Validation MSE (combined): %f' %mse((1 - y_crossval[:,0]) * y_crossval[:,1],( 1 - t_crossval.iloc[:,0]) * t_crossval.iloc[:,1]))"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation RMSE (shading): 0.178115\n",
"Validation RMSE (panelling): 0.079411\n",
"Validation RMSE (combined): 0.107312\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation RMSE (shading): %f' %np.sqrt(mse(y_crossval[:,0],t_crossval.iloc[:,0])))\n",
"print( 'Validation RMSE (panelling): %f' %np.sqrt(mse(y_crossval[:,1],t_crossval.iloc[:,1])))\n",
"print( 'Validation RMSE (combined): %f' %np.sqrt(mse((1 - y_crossval[:,0]) * y_crossval[:,1],( 1 - t_crossval.iloc[:,0]) * t_crossval.iloc[:,1])))"
]
},
{
"cell_type": "code",
"execution_count": 168,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MAE (shading): 0.118970\n",
"Validation MAE (panelling): 0.046132\n",
"Validation MAE (combined): 0.077618\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation MAE (shading): %f' %mae(y_crossval[:,0],t_crossval.iloc[:,0]))\n",
"print( 'Validation MAE (panelling): %f' %mae(y_crossval[:,1],t_crossval.iloc[:,1]))\n",
"print( 'Validation MAE (combined): %f' %mae((1 - y_crossval[:,0]) * y_crossval[:,1],( 1 - t_crossval.iloc[:,0]) * t_crossval.iloc[:,1]))"
]
},
{
"cell_type": "code",
"execution_count": 169,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MBE (shading): 0.006775\n",
"Validation MBE (panelling): -0.002807\n",
"Validation MBE (combined): -0.005909\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation MBE (shading): %f' %np.mean(y_crossval[:,0]-t_crossval.iloc[:,0]))\n",
"print( 'Validation MBE (panelling): %f' %np.mean(y_crossval[:,1]-t_crossval.iloc[:,1]))\n",
"print( 'Validation MBE (combined): %f' %np.mean((1 - y_crossval[:,0]) * y_crossval[:,1]-( 1 - t_crossval.iloc[:,0]) * t_crossval.iloc[:,1]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Validation with leaving features out"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"shuffle = np.random.permutation(len(learning_table))\n",
"shuffled_table = learning_table.loc[ shuffle , :]"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
"fixed_features = ['fully_shaded_ratio_2m', 'NEIGUNG', 'perim_ratio', 'AUSRICHTUN']\n",
"maybe_features = ['GAREA', 'SHAPE_Leng','GBAUP', 'GASTW'] # TAKEN OUT FLAECHE (lowest marginal improvement)\n",
"test_features = np.hstack([fixed_features, maybe_features])\n",
"\n",
"T = shuffled_table.loc[ : , label_name ]"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Leaving out GAREA: 0.026506\n",
"Leaving out SHAPE_Leng: 0.026597\n",
"Leaving out GBAUP: 0.026666\n",
"Leaving out GASTW: 0.026386\n"
]
}
],
"source": [
"MSE_leaveout = np.zeros(len(maybe_features))\n",
"n_est = 500\n",
"tree_depth = 100\n",
"\n",
"for drop_feature in maybe_features:\n",
" # leave one test feature out\n",
" X = shuffled_table.loc[ : , test_features ].drop(drop_feature, axis=1)\n",
" \n",
" RF_test = RandomForestRegressor(n_jobs = -1) # n_estimators = n_est, max_depth = tree_depth, \n",
" Y = cross_val_predict(RF_test, X, T, cv=5, n_jobs=-1)\n",
" \n",
" print(\"Leaving out %s: %f\" %(drop_feature, mse(Y, T)))\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cross-validation and feature selection"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
"n_crossval = 10\n",
"all_features_sorted = np.asarray(all_features)[ind]\n",
"MSE = np.zeros(n_features)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RF_test = RandomForestRegressor(n_estimators = n_est, max_depth = tree_depth, n_jobs = -1)\n",
"Y = cross_val_predict(RF_test, X1, T, cv=5, n_jobs=-1)\n",
"print(mse(Y, T))"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Iteration 1 out of 14\n",
"CPU time: 0.37 seconds\n",
"Wall clock time: 134.33 seconds\n",
"Iteration 2 out of 14\n",
"CPU time: 0.43 seconds\n",
"Wall clock time: 142.81 seconds\n",
"Iteration 3 out of 14\n",
"CPU time: 0.42 seconds\n",
"Wall clock time: 128.43 seconds\n",
"Iteration 4 out of 14\n",
"CPU time: 0.36 seconds\n",
"Wall clock time: 115.09 seconds\n",
"Iteration 5 out of 14\n",
"CPU time: 0.34 seconds\n",
"Wall clock time: 110.06 seconds\n",
"Iteration 6 out of 14\n",
"CPU time: 0.25 seconds\n",
"Wall clock time: 104.81 seconds\n",
"Iteration 7 out of 14\n",
"CPU time: 0.42 seconds\n",
"Wall clock time: 95.86 seconds\n",
"Iteration 8 out of 14\n",
"CPU time: 0.23 seconds\n",
"Wall clock time: 88.49 seconds\n",
"Iteration 9 out of 14\n",
"CPU time: 0.20 seconds\n",
"Wall clock time: 72.49 seconds\n",
"Iteration 10 out of 14\n",
"CPU time: 0.19 seconds\n",
"Wall clock time: 56.79 seconds\n",
"Iteration 11 out of 14\n",
"CPU time: 0.18 seconds\n",
"Wall clock time: 42.77 seconds\n",
"Iteration 12 out of 14\n",
"CPU time: 0.17 seconds\n",
"Wall clock time: 36.34 seconds\n",
"Iteration 13 out of 14\n",
"CPU time: 0.15 seconds\n",
"Wall clock time: 10.90 seconds\n",
"Iteration 14 out of 14\n",
"CPU time: 0.15 seconds\n",
"Wall clock time: 5.84 seconds\n"
]
}
],
"source": [
"shuffle = np.random.permutation(len(learning_table))\n",
"shuffled_table = learning_table.loc[ shuffle , :]\n",
"\n",
"tt = util.Timer()\n",
"for i in range(n_features):\n",
" \n",
" print('Iteration %d out of %d' %(i+1, n_features))\n",
"\n",
" X = shuffled_table.loc[ : , all_features_sorted[ i : ] ]\n",
" t_cv = shuffled_table.loc[ : , label_name ]\n",
"\n",
" RF_CV = RandomForestRegressor(n_estimators = n_est, max_depth = tree_depth, n_jobs = -1)\n",
" y_CV = cross_val_predict(RF_CV, X, t_cv, cv=5, n_jobs=-1)\n",
"\n",
" MSE[i] = mse(y_CV, t_cv)\n",
" \n",
" tt.restart()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Visualisation"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.bar(range(n_features,0,-1), MSE)\n",
"plt.title('Mean-squared error for different numbers of features')\n",
"plt.xlabel('Number of features')\n",
"plt.ylabel('Mean-squared error')\n",
"plt.show()\n",
"plt.savefig('MSE_varying_features.png', dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.02356106 0.02355203 0.02354303 0.0235818 0.02361018 0.02373792\n",
" 0.02427768 0.02517083 0.02510396 0.02596514 0.02861912 0.03549382\n",
" 0.03489173 0.03438738]\n"
]
}
],
"source": [
"print(MSE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(min(MSE)) # --> 10 features minimum, nearly the same error with 8 features"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"bins=20\n",
"plt.hist(learning_table.available_area_ratio,bins=bins, range=(0,1), density=True, facecolor='r', alpha=0.2, edgecolor='r', label = 'Available area ratio')\n",
"plt.hist(y, bins=bins, range=(0,1), density=True, facecolor='b', alpha=0.2, edgecolor='b', label = 'training')\n",
"plt.hist(y_val, bins=bins, range=(0,1), density=True, facecolor='g', alpha=0.2, edgecolor='g', label = 'RF - validation')\n",
"plt.legend()\n",
"plt.title('Distribution of predicted data')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plot random sample\n",
"Plot original value and corrected value for different roof IDs (random)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"validation['prediction'] = ( 1 - y_val[:,0] ) * y_val[:,1]\n",
"validation_sample = validation.sample(30)"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DF_UID', 'FLAECHE', 'NEIGUNG', 'AUSRICHTUNG', 'XCOORD', 'YCOORD',\n",
" 'Shape_Length', 'Shape_Area', 'GWR_EGID', 'GBAUP', 'GKAT', 'GAREA',\n",
" 'GASTW', 'GKODX', 'GKODY', 'Shape_Ratio', 'n_neighbors_100',\n",
" 'Estim_build_area', 'n_corners', 'panel_tilt', 'best_align',\n",
" 'panelled_area_ratio_ftr', 'panelled_area_ratio_tgt',\n",
" 'shaded_area_ratio_ftr', 'shaded_area_ratio_tgt', 'tilt_cat',\n",
" 'orientation_cat', 'available_area_ratio', 'prediction'],\n",
" dtype='object')"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"validation_sample.columns"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Text(0.5,1,'Performance of available area ratio estimation')"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(range(len(validation_sample)), (1-validation_sample.shaded_area_ratio_ftr) * validation_sample.panelled_area_ratio_ftr, facecolor='w',edgecolor='r', alpha=0.7, label = 'Approx. ratio')\n",
"plt.scatter(range(len(validation_sample)), validation_sample.available_area_ratio,facecolor='g', alpha=0.5, edgecolor='g', label = 'Target ratio')\n",
"plt.scatter(range(len(validation_sample)), validation_sample.prediction,facecolor='b', alpha=0.5, edgecolor='b', label = 'Corrected ratio')\n",
"plt.legend()\n",
"plt.xlabel('Rooftop sample (random)')\n",
"plt.ylabel('Available area ratio')\n",
"plt.title('Performance of available area ratio estimation')\n",
"# plt.savefig('random_sample_available_area.png', dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div id='d61e12df-2c70-4f85-8686-5501feddc104'></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Text(0,0.5,'orientation')"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plt.figure(figsize=(10,3))\n",
"\n",
"plt.subplot(131)\n",
"var = horizon_50cm\n",
"plt.scatter(var.NEIGUNG, var.AUSRICHTUN, c=(var.fully_shaded_ratio), s=2)\n",
"plt.xlabel('tilt')\n",
"plt.ylabel('orientation')\n",
"\n",
"plt.subplot(132)\n",
"var = x_crossval\n",
"plt.scatter(var.NEIGUNG, var.AUSRICHTUN, c=(y_crossval), s=3)\n",
"plt.xlabel('tilt')\n",
"plt.ylabel('orientation')\n",
"\n",
"plt.subplot(133)\n",
"var = horizon_2m\n",
"plt.scatter(var.NEIGUNG, var.AUSRICHTUN, c=(var.fully_shaded_ratio), s=2)\n",
"# plt.colorbar()\n",
"plt.xlabel('tilt')\n",
"plt.ylabel('orientation')"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Text(0,0.5,'orientation')"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var = horizon_2m\n",
"plt.figure()\n",
"plt.scatter(var.NEIGUNG, var.AUSRICHTUN, c=(var.fully_shaded_ratio), s=3)\n",
"#var.mean_06_15h.hist(bins=100, range=(0,1))\n",
"plt.colorbar()\n",
"plt.xlabel('tilt')\n",
"plt.ylabel('orientation')"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Text(0,0.5,'orientation')"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var = x_crossval\n",
"plt.figure()\n",
"plt.scatter(var.NEIGUNG, var.AUSRICHTUN, c=(y_crossval), s=3)\n",
"#var.mean_06_15h.hist(bins=100, range=(0,1))\n",
"plt.colorbar()\n",
"plt.xlabel('tilt')\n",
"plt.ylabel('orientation')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Available_area/ML_available_area.ipynb b/Available_area/ML_panelled_area_onlySP.ipynb
similarity index 93%
copy from Available_area/ML_available_area.ipynb
copy to Available_area/ML_panelled_area_onlySP.ipynb
index a6510b5..382994d 100644
--- a/Available_area/ML_available_area.ipynb
+++ b/Available_area/ML_panelled_area_onlySP.ipynb
@@ -1,9592 +1,7943 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" from ._conv import register_converters as _register_converters\n"
]
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import xarray as xr\n",
"import os\n",
"\n",
- "from sklearn.ensemble import RandomForestRegressor\n",
- "from sklearn.metrics import mean_squared_error as mse\n",
- "from sklearn.metrics import mean_absolute_error as mae\n",
+ "from sklearn.ensemble import RandomForestRegressor\n",
+ "from sklearn.linear_model import LinearRegression\n",
+ "from sklearn.neighbors import KNeighborsRegressor\n",
+ "from sklearn.neural_network import MLPRegressor\n",
+ "from sklearn.metrics import mean_squared_error as mse\n",
+ "from sklearn.metrics import mean_absolute_error as mae\n",
+ "from sklearn.metrics import r2_score as r2\n",
"from sklearn.model_selection import cross_val_predict\n",
+ "from sklearn.preprocessing import Normalizer\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from xgboost import XGBRegressor\n",
+ "from ELM_ensemble import ELM_Ensemble\n",
"import scipy.spatial as spatial\n",
"\n",
"from pvlib.solarposition import get_solarposition\n",
"\n",
"import util\n",
"import matplotlib\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# ERROR MEASUREMENTS\n",
+ "error = {\n",
+ " 'MSE' : lambda y, t: mse(t,y),\n",
+ " 'RMSE': lambda y, t: np.sqrt(mse(t,y)),\n",
+ " 'MAE' : lambda y, t: mae(t,y),\n",
+ " 'MBE' : lambda y, t: np.mean(t - y),\n",
+ " 'R2' : lambda y, t: r2(t,y)\n",
+ "}\n",
+ "\n",
+ "def get_errors(true, pred, label = ''):\n",
+ " # create a pandas series with errors and print them\n",
+ " err_series = pd.Series(data = np.zeros(len(error)), index = error.keys())\n",
+ " for key, val in error.items():\n",
+ " print('%s %s: %f' %(label, key, val(pred, true)))\n",
+ " err_series[ key ] = val(pred, true)\n",
+ " \n",
+ " return err_series"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Bias_Correction():\n",
+ " def __init__(self, column_idx):\n",
+ " self.params = { 'column_idx' : column_idx }\n",
+ " \n",
+ " def get_params(self, deep = False): return self.params\n",
+ " \n",
+ " def fit(self, x, t):\n",
+ " self.MBE = np.mean( t - x[ :, self.params['column_idx'] ] )\n",
+ " \n",
+ " def predict(self, x):\n",
+ " return np.maximum( np.minimum( x[ :, self.params['column_idx'] ] + self.MBE, 1), 0)"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load training data"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
- "fp = '/Users/alinawalch/Documents/EPFL/data/rooftops/TRN_available_area_data_all.csv'\n",
+ "fp = '/Users/alinawalch/Documents/EPFL/data/rooftops/TRN_panelled_area.csv'\n",
"learning_table = pd.read_csv(fp)"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DF_UID', 'FLAECHE', 'NEIGUNG', 'AUSRICHTUNG', 'XCOORD', 'YCOORD',\n",
" 'Shape_Length', 'Shape_Area', 'GWR_EGID', 'GBAUP', 'GKAT', 'GAREA',\n",
" 'GASTW', 'GKODX', 'GKODY', 'Shape_Ratio', 'n_neighbors_100',\n",
" 'Estim_build_area', 'n_corners', 'panel_tilt', 'best_align',\n",
- " 'panelled_area_ratio_ftr', 'shaded_area_ratio_ftr',\n",
- " 'shaded_area_ratio_tgt', 'tilt_cat', 'orientation_cat',\n",
- " 'available_area_ratio', 'panelled_area_ratio_tgt'],\n",
+ " 'panelled_area_ratio_ftr', 'panelled_area_ratio_tgt'],\n",
" dtype='object')"
]
},
- "execution_count": 3,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"learning_table.columns"
]
},
{
"cell_type": "code",
- "execution_count": 22,
- "metadata": {},
+ "execution_count": 6,
+ "metadata": {
+ "scrolled": false
+ },
"outputs": [
{
"data": {
"text/plain": [
- "154824"
+ "37729"
]
},
- "execution_count": 22,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(learning_table)"
]
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
- "equal_area = learning_table[np.round(learning_table.panelled_area_ratio_ftr,4) == np.round(learning_table.panelled_area_ratio_tgt,4)]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "121737"
- ]
- },
- "execution_count": 25,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "len(equal_area)"
+ "# randomly suffle entries in table\n",
+ "learning_table = learning_table.sample(len(learning_table))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create table with features and labels\n",
"Possible features for available area are:\n",
"##### Roof data\n",
"- Slope (NEIGUNG)\n",
"- Aspect (AUSRICHTUNG)\n",
"- Roof area (FLAECHE)\n",
"- Roof perimeter (Shape_Length)\n",
"- Roof shape ratio (Shape_Ratio, i.e. Shape_Length / FLAECHE)\n",
"- Roof vertices (n_corners)\n",
"- Panel tilt (different for flat roofs, panel_tilt)\n",
"- ? panel alignment ?\n",
"\n",
"##### Building data\n",
"- Number of floors (GASTW)\n",
"- Period of construction (GBAUP)\n",
"- Building area (GAREA)\n",
"- Building category (GKAT)\n",
"- Number of neighbors (n_neighbors_100, 100m radius)\n",
"\n",
"##### Approximate ratios\n",
"- Approximate shaded area ratio (shaded_area_ratio_ftr, based on 2m res. DOM)\n",
"- Approximate panelled area ratio (panelled_area_ratio_ftr, based on roofs without superstructures)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Machine Learning"
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
- "label_name = ['shaded_area_ratio_tgt', 'panelled_area_ratio_tgt']\n",
+ "label_name = ['panelled_area_ratio_tgt']\n",
"identifier = 'DF_UID'\n",
"\n",
"# choose from: \n",
"# -'shaded_area_ratio_ftr', 'panelled_area_ratio_ftr' (approximate ratios)\n",
"# -'NEIGUNG', 'AUSRICHTUNG', 'FLAECHE', 'Shape_Length', 'Shape_Ratio', 'n_corners', 'panel_tilt' (rooftop info)\n",
"# -'GASTW', 'GBAUP', 'GKAT', 'GAREA', 'n_neighbors_100' (GWR info)\n",
"\n",
- "all_features = ['shaded_area_ratio_ftr', 'panelled_area_ratio_ftr', \n",
+ "all_features = ['panelled_area_ratio_ftr', \n",
" 'NEIGUNG', 'AUSRICHTUNG', 'FLAECHE', 'Shape_Length', 'Shape_Ratio', 'n_corners', 'panel_tilt',\n",
" 'GASTW', 'GBAUP', 'GKAT', 'GAREA', 'n_neighbors_100']\n",
"\n",
"feature_names = all_features"
]
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Baseline MSE: 0.022830\n",
- "Baseline MSE (shading): 0.054517\n",
- "Baseline MSE (panelling): 0.012738\n"
+ "Baseline MSE: 0.052496\n",
+ "Baseline RMSE: 0.229120\n",
+ "Baseline MAE: 0.171266\n",
+ "Baseline MBE: -0.170315\n",
+ "Baseline R2: -0.099542\n"
]
}
],
"source": [
"# Baseline mse:\n",
- "av_area_ratio_ftr = (1 - learning_table.shaded_area_ratio_ftr) * learning_table.panelled_area_ratio_ftr\n",
- "print( 'Baseline MSE: %f' %mse(av_area_ratio_ftr, learning_table[ 'available_area_ratio' ]))\n",
- "print( 'Baseline MSE (shading): %f' %mse(learning_table.shaded_area_ratio_ftr, learning_table[ 'shaded_area_ratio_tgt' ]))\n",
- "print( 'Baseline MSE (panelling): %f' %mse(learning_table.panelled_area_ratio_ftr, learning_table[ 'panelled_area_ratio_tgt' ]))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Baseline RMSE: 0.151095\n",
- "Baseline RMSE (shading): 0.233488\n",
- "Baseline RMSE (panelling): 0.112861\n"
- ]
- }
- ],
- "source": [
- "print( 'Baseline RMSE: %f' %np.sqrt(mse(av_area_ratio_ftr, learning_table[ 'available_area_ratio' ])))\n",
- "print( 'Baseline RMSE (shading): %f' %np.sqrt(mse(learning_table.shaded_area_ratio_ftr, learning_table[ 'shaded_area_ratio_tgt' ])))\n",
- "print( 'Baseline RMSE (panelling): %f' %np.sqrt(mse(learning_table.panelled_area_ratio_ftr, learning_table[ 'panelled_area_ratio_tgt' ])))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Baseline MAE: 0.090179\n",
- "Baseline MAE (shading): 0.132462\n",
- "Baseline MAE (panelling): 0.041571\n"
- ]
- }
- ],
- "source": [
- "print('Baseline MAE: %f' %mae(av_area_ratio_ftr, learning_table[ 'available_area_ratio' ]))\n",
- "print('Baseline MAE (shading): %f' %mae(learning_table.shaded_area_ratio_ftr, learning_table.shaded_area_ratio_tgt))\n",
- "print('Baseline MAE (panelling): %f' %mae(learning_table.panelled_area_ratio_ftr, learning_table.panelled_area_ratio_tgt))"
+ "baseline_error = get_errors( learning_table.panelled_area_ratio_tgt, learning_table.panelled_area_ratio_ftr, 'Baseline' )"
]
},
{
"cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Baseline MBE: 0.078318\n",
- "Baseline MBE (shading): -0.103875\n",
- "Baseline MBE (panelling): 0.041277\n"
- ]
- }
- ],
- "source": [
- "print('Baseline MBE: %f' %np.mean(av_area_ratio_ftr - learning_table[ 'available_area_ratio' ]))\n",
- "print('Baseline MBE (shading): %f' %np.mean(learning_table.shaded_area_ratio_ftr - learning_table.shaded_area_ratio_tgt))\n",
- "print('Baseline MBE (panelling): %f' %np.mean(learning_table.panelled_area_ratio_ftr - learning_table.panelled_area_ratio_tgt))"
- ]
- },
- {
- "cell_type": "markdown",
+ "execution_count": 10,
"metadata": {},
+ "outputs": [],
"source": [
- "Tests:\n",
- "- 14 features in total\n",
- "- Total options of combinations: 14 CHOOSE K"
+ "err_base = pd.DataFrame( data = baseline_error, columns = ['base'] )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "n_features = len(feature_names)\n",
- "max_trials = 20\n",
- "#. for i in range(len(feature_names)):\n",
- "i=0\n",
- "n_permutations = comb(n_features, i) "
+ "# TRAINING & VALIDATION"
]
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
- "tr_ratio = 0.8\n",
- "ind = np.random.permutation(len(learning_table))\n",
- "tr_ind = int( tr_ratio * len(learning_table) )\n",
+ "X = learning_table.loc[ : , feature_names ].values\n",
+ "t = learning_table.loc[ : , label_name ].values.reshape((-1,))\n",
"\n",
- "training = learning_table.loc[ ind[ : tr_ind ] , :]\n",
- "validation = learning_table.loc[ ind[ tr_ind : ] , :]"
+ "nx = X.shape[1]\n",
+ "nt = 1"
]
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 12,
"metadata": {
"scrolled": true
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "<div>\n",
- "<style scoped>\n",
- " .dataframe tbody tr th:only-of-type {\n",
- " vertical-align: middle;\n",
- " }\n",
- "\n",
- " .dataframe tbody tr th {\n",
- " vertical-align: top;\n",
- " }\n",
- "\n",
- " .dataframe thead th {\n",
- " text-align: right;\n",
- " }\n",
- "</style>\n",
- "<table border=\"1\" class=\"dataframe\">\n",
- " <thead>\n",
- " <tr style=\"text-align: right;\">\n",
- " <th></th>\n",
- " <th>DF_UID</th>\n",
- " <th>FLAECHE</th>\n",
- " <th>NEIGUNG</th>\n",
- " <th>AUSRICHTUNG</th>\n",
- " <th>XCOORD</th>\n",
- " <th>YCOORD</th>\n",
- " <th>Shape_Length</th>\n",
- " <th>Shape_Area</th>\n",
- " <th>GWR_EGID</th>\n",
- " <th>GBAUP</th>\n",
- " <th>...</th>\n",
- " <th>n_corners</th>\n",
- " <th>panel_tilt</th>\n",
- " <th>best_align</th>\n",
- " <th>panelled_area_ratio_ftr</th>\n",
- " <th>shaded_area_ratio_ftr</th>\n",
- " <th>shaded_area_ratio_tgt</th>\n",
- " <th>tilt_cat</th>\n",
- " <th>orientation_cat</th>\n",
- " <th>available_area_ratio</th>\n",
- " <th>panelled_area_ratio_tgt</th>\n",
- " </tr>\n",
- " </thead>\n",
- " <tbody>\n",
- " <tr>\n",
- " <th>0</th>\n",
- " <td>4817410.0</td>\n",
- " <td>71.487047</td>\n",
- " <td>10.0</td>\n",
- " <td>127.0</td>\n",
- " <td>503491.325015</td>\n",
- " <td>134197.490397</td>\n",
- " <td>33.936595</td>\n",
- " <td>70.390620</td>\n",
- " <td>295070969.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>10</td>\n",
- " <td>vertical</td>\n",
- " <td>0.805740</td>\n",
- " <td>0.117647</td>\n",
- " <td>0.166667</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.671450</td>\n",
- " <td>0.805740</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1</th>\n",
- " <td>4817425.0</td>\n",
- " <td>36.859836</td>\n",
- " <td>37.0</td>\n",
- " <td>33.0</td>\n",
- " <td>503503.812619</td>\n",
- " <td>134131.833522</td>\n",
- " <td>28.208608</td>\n",
- " <td>29.339500</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>37</td>\n",
- " <td>equal</td>\n",
- " <td>0.390669</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.386555</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.106513</td>\n",
- " <td>0.173631</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>2</th>\n",
- " <td>4817426.0</td>\n",
- " <td>51.333864</td>\n",
- " <td>31.0</td>\n",
- " <td>-57.0</td>\n",
- " <td>503509.783165</td>\n",
- " <td>134135.282805</td>\n",
- " <td>40.053428</td>\n",
- " <td>44.043504</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>7</td>\n",
- " <td>31</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.155843</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.119318</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.137248</td>\n",
- " <td>0.155843</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>3</th>\n",
- " <td>4817427.0</td>\n",
- " <td>36.861447</td>\n",
- " <td>37.0</td>\n",
- " <td>-147.0</td>\n",
- " <td>503510.594159</td>\n",
- " <td>134142.188986</td>\n",
- " <td>28.210273</td>\n",
- " <td>29.341346</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>37</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.390652</td>\n",
- " <td>0.166667</td>\n",
- " <td>0.322034</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.147138</td>\n",
- " <td>0.217029</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>4</th>\n",
- " <td>4817428.0</td>\n",
- " <td>81.256555</td>\n",
- " <td>28.0</td>\n",
- " <td>123.0</td>\n",
- " <td>503504.226918</td>\n",
- " <td>134138.960671</td>\n",
- " <td>37.840077</td>\n",
- " <td>71.574129</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>28</td>\n",
- " <td>vertical</td>\n",
- " <td>0.708866</td>\n",
- " <td>0.333333</td>\n",
- " <td>0.077193</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.654146</td>\n",
- " <td>0.708866</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>5</th>\n",
- " <td>4817429.0</td>\n",
- " <td>11.397236</td>\n",
- " <td>27.0</td>\n",
- " <td>-144.0</td>\n",
- " <td>503512.070989</td>\n",
- " <td>134135.795686</td>\n",
- " <td>15.417311</td>\n",
- " <td>10.154872</td>\n",
- " <td>1004090.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>3</td>\n",
- " <td>27</td>\n",
- " <td>equal</td>\n",
- " <td>0.140385</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.075000</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.129856</td>\n",
- " <td>0.140385</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>6</th>\n",
- " <td>4817431.0</td>\n",
- " <td>174.501987</td>\n",
- " <td>31.0</td>\n",
- " <td>-147.0</td>\n",
- " <td>503503.978942</td>\n",
- " <td>134181.171146</td>\n",
- " <td>59.815925</td>\n",
- " <td>149.165008</td>\n",
- " <td>1004088.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>31</td>\n",
- " <td>vertical</td>\n",
- " <td>0.806868</td>\n",
- " <td>0.135135</td>\n",
- " <td>0.020101</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.790649</td>\n",
- " <td>0.806868</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>7</th>\n",
- " <td>4817432.0</td>\n",
- " <td>174.108293</td>\n",
- " <td>31.0</td>\n",
- " <td>33.0</td>\n",
- " <td>503500.517066</td>\n",
- " <td>134175.889168</td>\n",
- " <td>59.775896</td>\n",
- " <td>148.702405</td>\n",
- " <td>1004088.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>31</td>\n",
- " <td>vertical</td>\n",
- " <td>0.808692</td>\n",
- " <td>0.131579</td>\n",
- " <td>0.161345</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.678214</td>\n",
- " <td>0.808692</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>8</th>\n",
- " <td>4817433.0</td>\n",
- " <td>69.216255</td>\n",
- " <td>26.0</td>\n",
- " <td>33.0</td>\n",
- " <td>503510.917446</td>\n",
- " <td>134191.713704</td>\n",
- " <td>45.633223</td>\n",
- " <td>61.997846</td>\n",
- " <td>295084893.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>26</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.508551</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.060241</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.260681</td>\n",
- " <td>0.277391</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>9</th>\n",
- " <td>4817434.0</td>\n",
- " <td>26.716480</td>\n",
- " <td>31.0</td>\n",
- " <td>-147.0</td>\n",
- " <td>503517.020358</td>\n",
- " <td>134191.118711</td>\n",
- " <td>23.687927</td>\n",
- " <td>22.959133</td>\n",
- " <td>295084893.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>31</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.479105</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.000000</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.479105</td>\n",
- " <td>0.479105</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>10</th>\n",
- " <td>4817435.0</td>\n",
- " <td>26.018729</td>\n",
- " <td>31.0</td>\n",
- " <td>-147.0</td>\n",
- " <td>503507.806109</td>\n",
- " <td>134197.114437</td>\n",
- " <td>23.199036</td>\n",
- " <td>22.360589</td>\n",
- " <td>295084893.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>31</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.491953</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.000000</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.491953</td>\n",
- " <td>0.491953</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>11</th>\n",
- " <td>4817436.0</td>\n",
- " <td>13.309012</td>\n",
- " <td>33.0</td>\n",
- " <td>123.0</td>\n",
- " <td>503512.471353</td>\n",
- " <td>134196.622116</td>\n",
- " <td>15.096068</td>\n",
- " <td>11.164928</td>\n",
- " <td>295084893.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>6</td>\n",
- " <td>33</td>\n",
- " <td>equal</td>\n",
- " <td>0.240439</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.266667</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.176322</td>\n",
- " <td>0.240439</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>12</th>\n",
- " <td>4817437.0</td>\n",
- " <td>13.503089</td>\n",
- " <td>32.0</td>\n",
- " <td>-57.0</td>\n",
- " <td>503514.586126</td>\n",
- " <td>134195.245953</td>\n",
- " <td>15.198331</td>\n",
- " <td>11.396747</td>\n",
- " <td>295084893.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>32</td>\n",
- " <td>vertical</td>\n",
- " <td>0.236983</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.000000</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.236983</td>\n",
- " <td>0.236983</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>13</th>\n",
- " <td>4817438.0</td>\n",
- " <td>130.038144</td>\n",
- " <td>26.0</td>\n",
- " <td>-144.0</td>\n",
- " <td>503951.193324</td>\n",
- " <td>134195.306644</td>\n",
- " <td>64.584475</td>\n",
- " <td>117.365353</td>\n",
- " <td>295084994.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>26</td>\n",
- " <td>vertical</td>\n",
- " <td>0.664420</td>\n",
- " <td>0.900000</td>\n",
- " <td>0.785106</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.142780</td>\n",
- " <td>0.664420</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>14</th>\n",
- " <td>4817439.0</td>\n",
- " <td>126.475108</td>\n",
- " <td>26.0</td>\n",
- " <td>36.0</td>\n",
- " <td>503948.788882</td>\n",
- " <td>134191.981218</td>\n",
- " <td>64.301850</td>\n",
- " <td>113.406403</td>\n",
- " <td>295084994.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>26</td>\n",
- " <td>vertical</td>\n",
- " <td>0.683138</td>\n",
- " <td>0.214286</td>\n",
- " <td>0.556291</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.303114</td>\n",
- " <td>0.683138</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>15</th>\n",
- " <td>4817440.0</td>\n",
- " <td>47.540096</td>\n",
- " <td>37.0</td>\n",
- " <td>-144.0</td>\n",
- " <td>503996.949571</td>\n",
- " <td>134161.244934</td>\n",
- " <td>27.081498</td>\n",
- " <td>37.981483</td>\n",
- " <td>1004076.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>37</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.673116</td>\n",
- " <td>0.800000</td>\n",
- " <td>0.973510</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.017831</td>\n",
- " <td>0.673116</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>16</th>\n",
- " <td>4817441.0</td>\n",
- " <td>35.497241</td>\n",
- " <td>32.0</td>\n",
- " <td>36.0</td>\n",
- " <td>503994.863047</td>\n",
- " <td>134158.375583</td>\n",
- " <td>25.402378</td>\n",
- " <td>29.945648</td>\n",
- " <td>1004076.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>32</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.450739</td>\n",
- " <td>0.142857</td>\n",
- " <td>0.725000</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.123953</td>\n",
- " <td>0.450739</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>17</th>\n",
- " <td>4817442.0</td>\n",
- " <td>49.847956</td>\n",
- " <td>38.0</td>\n",
- " <td>36.0</td>\n",
- " <td>504003.468131</td>\n",
- " <td>134152.306087</td>\n",
- " <td>29.835723</td>\n",
- " <td>39.429900</td>\n",
- " <td>1004076.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>38</td>\n",
- " <td>vertical</td>\n",
- " <td>0.641952</td>\n",
- " <td>0.900000</td>\n",
- " <td>0.961538</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.024690</td>\n",
- " <td>0.641952</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>18</th>\n",
- " <td>4817448.0</td>\n",
- " <td>34.963254</td>\n",
- " <td>28.0</td>\n",
- " <td>-145.0</td>\n",
- " <td>503922.898105</td>\n",
- " <td>134216.939359</td>\n",
- " <td>29.062031</td>\n",
- " <td>30.741322</td>\n",
- " <td>1004089.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>28</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.457623</td>\n",
- " <td>0.125000</td>\n",
- " <td>0.975610</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.011162</td>\n",
- " <td>0.457623</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>19</th>\n",
- " <td>4817449.0</td>\n",
- " <td>19.979434</td>\n",
- " <td>7.0</td>\n",
- " <td>35.0</td>\n",
- " <td>503916.075512</td>\n",
- " <td>134213.701005</td>\n",
- " <td>17.895750</td>\n",
- " <td>19.831984</td>\n",
- " <td>1004089.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>7</td>\n",
- " <td>vertical</td>\n",
- " <td>0.640659</td>\n",
- " <td>0.666667</td>\n",
- " <td>0.925000</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.048049</td>\n",
- " <td>0.640659</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>20</th>\n",
- " <td>4817450.0</td>\n",
- " <td>21.119847</td>\n",
- " <td>18.0</td>\n",
- " <td>-144.0</td>\n",
- " <td>503936.461763</td>\n",
- " <td>134203.761986</td>\n",
- " <td>18.414721</td>\n",
- " <td>20.066844</td>\n",
- " <td>295084994.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>18</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.454549</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.506173</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.224469</td>\n",
- " <td>0.454549</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>21</th>\n",
- " <td>4817451.0</td>\n",
- " <td>21.374411</td>\n",
- " <td>19.0</td>\n",
- " <td>36.0</td>\n",
- " <td>503934.470464</td>\n",
- " <td>134200.829905</td>\n",
- " <td>19.727025</td>\n",
- " <td>20.261942</td>\n",
- " <td>295084994.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>...</td>\n",
- " <td>6</td>\n",
- " <td>19</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.449135</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.543210</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.205161</td>\n",
- " <td>0.449135</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>22</th>\n",
- " <td>4817452.0</td>\n",
- " <td>68.854261</td>\n",
- " <td>35.0</td>\n",
- " <td>-140.0</td>\n",
- " <td>504222.101990</td>\n",
- " <td>134017.187739</td>\n",
- " <td>31.767443</td>\n",
- " <td>56.268749</td>\n",
- " <td>1004049.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>35</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.697125</td>\n",
- " <td>0.142857</td>\n",
- " <td>0.053333</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.659945</td>\n",
- " <td>0.697125</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>23</th>\n",
- " <td>4817453.0</td>\n",
- " <td>52.296595</td>\n",
- " <td>34.0</td>\n",
- " <td>40.0</td>\n",
- " <td>504219.058562</td>\n",
- " <td>134013.574920</td>\n",
- " <td>29.327904</td>\n",
- " <td>43.406040</td>\n",
- " <td>1004049.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>34</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.734273</td>\n",
- " <td>0.100000</td>\n",
- " <td>0.034682</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.649740</td>\n",
- " <td>0.673084</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>24</th>\n",
- " <td>4817458.0</td>\n",
- " <td>258.858167</td>\n",
- " <td>34.0</td>\n",
- " <td>127.0</td>\n",
- " <td>504246.524168</td>\n",
- " <td>134078.107216</td>\n",
- " <td>66.270016</td>\n",
- " <td>215.837030</td>\n",
- " <td>1004035.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>34</td>\n",
- " <td>vertical</td>\n",
- " <td>0.834434</td>\n",
- " <td>0.109091</td>\n",
- " <td>0.030093</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.809324</td>\n",
- " <td>0.834434</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>25</th>\n",
- " <td>4817459.0</td>\n",
- " <td>260.507359</td>\n",
- " <td>30.0</td>\n",
- " <td>-49.0</td>\n",
- " <td>504253.910958</td>\n",
- " <td>134072.701545</td>\n",
- " <td>66.856008</td>\n",
- " <td>225.390527</td>\n",
- " <td>1004035.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>30</td>\n",
- " <td>vertical</td>\n",
- " <td>0.767733</td>\n",
- " <td>0.035714</td>\n",
- " <td>0.008869</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.760923</td>\n",
- " <td>0.767733</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>26</th>\n",
- " <td>4817460.0</td>\n",
- " <td>33.455253</td>\n",
- " <td>24.0</td>\n",
- " <td>-142.0</td>\n",
- " <td>504252.873380</td>\n",
- " <td>134059.252231</td>\n",
- " <td>24.705455</td>\n",
- " <td>30.633213</td>\n",
- " <td>1004035.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>6</td>\n",
- " <td>24</td>\n",
- " <td>vertical</td>\n",
- " <td>0.478251</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.008130</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.474363</td>\n",
- " <td>0.478251</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>27</th>\n",
- " <td>4817461.0</td>\n",
- " <td>45.821417</td>\n",
- " <td>22.0</td>\n",
- " <td>32.0</td>\n",
- " <td>504249.859870</td>\n",
- " <td>134055.974734</td>\n",
- " <td>27.196876</td>\n",
- " <td>42.462233</td>\n",
- " <td>1004035.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>22</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.593609</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.005952</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.590075</td>\n",
- " <td>0.593609</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>28</th>\n",
- " <td>4817463.0</td>\n",
- " <td>82.400929</td>\n",
- " <td>33.0</td>\n",
- " <td>-50.0</td>\n",
- " <td>504157.851075</td>\n",
- " <td>134078.914455</td>\n",
- " <td>32.942705</td>\n",
- " <td>69.128758</td>\n",
- " <td>1004073.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>6</td>\n",
- " <td>33</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.621352</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.003610</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.619109</td>\n",
- " <td>0.621352</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>29</th>\n",
- " <td>4817464.0</td>\n",
- " <td>78.771912</td>\n",
- " <td>31.0</td>\n",
- " <td>130.0</td>\n",
- " <td>504150.396646</td>\n",
- " <td>134085.492644</td>\n",
- " <td>32.609685</td>\n",
- " <td>67.373176</td>\n",
- " <td>1004073.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>31</td>\n",
- " <td>vertical</td>\n",
- " <td>0.710913</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.092937</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.368482</td>\n",
- " <td>0.406236</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>...</th>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " <td>...</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154794</th>\n",
- " <td>5124495.0</td>\n",
- " <td>27.490066</td>\n",
- " <td>21.0</td>\n",
- " <td>116.0</td>\n",
- " <td>512507.153297</td>\n",
- " <td>121868.767886</td>\n",
- " <td>24.997104</td>\n",
- " <td>25.656416</td>\n",
- " <td>295081617.0</td>\n",
- " <td>8017.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>21</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.582028</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.009434</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.576538</td>\n",
- " <td>0.582028</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154795</th>\n",
- " <td>5124496.0</td>\n",
- " <td>33.733199</td>\n",
- " <td>11.0</td>\n",
- " <td>30.0</td>\n",
- " <td>512653.714458</td>\n",
- " <td>121846.443211</td>\n",
- " <td>27.509294</td>\n",
- " <td>33.153466</td>\n",
- " <td>1018650.0</td>\n",
- " <td>8015.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>11</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.569172</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.015152</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.560548</td>\n",
- " <td>0.569172</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154796</th>\n",
- " <td>5124497.0</td>\n",
- " <td>139.413591</td>\n",
- " <td>30.0</td>\n",
- " <td>-60.0</td>\n",
- " <td>512727.853591</td>\n",
- " <td>121799.313992</td>\n",
- " <td>54.005430</td>\n",
- " <td>120.493402</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>9</td>\n",
- " <td>30</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.677122</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.004149</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.674312</td>\n",
- " <td>0.677122</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154797</th>\n",
- " <td>5124498.0</td>\n",
- " <td>137.530298</td>\n",
- " <td>30.0</td>\n",
- " <td>120.0</td>\n",
- " <td>512722.012941</td>\n",
- " <td>121802.781737</td>\n",
- " <td>53.905711</td>\n",
- " <td>119.641777</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>9</td>\n",
- " <td>30</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.639859</td>\n",
- " <td>0.064516</td>\n",
- " <td>0.041841</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.613087</td>\n",
- " <td>0.639859</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154798</th>\n",
- " <td>5124499.0</td>\n",
- " <td>92.630815</td>\n",
- " <td>7.0</td>\n",
- " <td>-150.0</td>\n",
- " <td>512731.300787</td>\n",
- " <td>121811.881398</td>\n",
- " <td>47.143675</td>\n",
- " <td>91.927158</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>8</td>\n",
- " <td>7</td>\n",
- " <td>equal</td>\n",
- " <td>0.656369</td>\n",
- " <td>0.045455</td>\n",
- " <td>0.147541</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.559528</td>\n",
- " <td>0.656369</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154799</th>\n",
- " <td>5124500.0</td>\n",
- " <td>44.081253</td>\n",
- " <td>7.0</td>\n",
- " <td>-148.0</td>\n",
- " <td>512734.614676</td>\n",
- " <td>121817.612632</td>\n",
- " <td>28.618486</td>\n",
- " <td>43.718502</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>7</td>\n",
- " <td>vertical</td>\n",
- " <td>0.653339</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.022857</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.638405</td>\n",
- " <td>0.653339</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154800</th>\n",
- " <td>5124502.0</td>\n",
- " <td>14.119724</td>\n",
- " <td>11.0</td>\n",
- " <td>-147.0</td>\n",
- " <td>512729.165421</td>\n",
- " <td>121822.382400</td>\n",
- " <td>16.789635</td>\n",
- " <td>13.863595</td>\n",
- " <td>1018653.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>6</td>\n",
- " <td>11</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.453267</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.071429</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.420890</td>\n",
- " <td>0.453267</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154801</th>\n",
- " <td>5124503.0</td>\n",
- " <td>36.753693</td>\n",
- " <td>21.0</td>\n",
- " <td>122.0</td>\n",
- " <td>512683.971180</td>\n",
- " <td>121769.079140</td>\n",
- " <td>23.556753</td>\n",
- " <td>34.231614</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>21</td>\n",
- " <td>equal</td>\n",
- " <td>0.522396</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.000000</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.522396</td>\n",
- " <td>0.522396</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154802</th>\n",
- " <td>5124505.0</td>\n",
- " <td>36.179539</td>\n",
- " <td>19.0</td>\n",
- " <td>-58.0</td>\n",
- " <td>512689.565868</td>\n",
- " <td>121765.612262</td>\n",
- " <td>23.566963</td>\n",
- " <td>34.201265</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>19</td>\n",
- " <td>equal</td>\n",
- " <td>0.530687</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.000000</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.530687</td>\n",
- " <td>0.530687</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154803</th>\n",
- " <td>5124506.0</td>\n",
- " <td>57.609988</td>\n",
- " <td>17.0</td>\n",
- " <td>-57.0</td>\n",
- " <td>512685.874412</td>\n",
- " <td>121760.247993</td>\n",
- " <td>37.797327</td>\n",
- " <td>55.148314</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>8</td>\n",
- " <td>17</td>\n",
- " <td>vertical</td>\n",
- " <td>0.694324</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.105023</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.621404</td>\n",
- " <td>0.694324</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154804</th>\n",
- " <td>5124507.0</td>\n",
- " <td>57.882063</td>\n",
- " <td>22.0</td>\n",
- " <td>122.0</td>\n",
- " <td>512679.975021</td>\n",
- " <td>121763.783138</td>\n",
- " <td>29.386703</td>\n",
- " <td>53.499302</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>22</td>\n",
- " <td>vertical</td>\n",
- " <td>0.773988</td>\n",
- " <td>0.076923</td>\n",
- " <td>0.186916</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.629317</td>\n",
- " <td>0.773988</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154805</th>\n",
- " <td>5124508.0</td>\n",
- " <td>35.898733</td>\n",
- " <td>22.0</td>\n",
- " <td>-153.0</td>\n",
- " <td>512676.571716</td>\n",
- " <td>121745.126015</td>\n",
- " <td>30.833490</td>\n",
- " <td>33.393443</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>7</td>\n",
- " <td>22</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.356559</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.014493</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.351391</td>\n",
- " <td>0.356559</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154806</th>\n",
- " <td>5124509.0</td>\n",
- " <td>88.059840</td>\n",
- " <td>20.0</td>\n",
- " <td>27.0</td>\n",
- " <td>512674.020870</td>\n",
- " <td>121740.921893</td>\n",
- " <td>39.260540</td>\n",
- " <td>82.722458</td>\n",
- " <td>2040405.0</td>\n",
- " <td>8012.0</td>\n",
- " <td>...</td>\n",
- " <td>8</td>\n",
- " <td>20</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.744948</td>\n",
- " <td>0.052632</td>\n",
- " <td>0.015291</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.733557</td>\n",
- " <td>0.744948</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154807</th>\n",
- " <td>5124510.0</td>\n",
- " <td>234.137426</td>\n",
- " <td>15.0</td>\n",
- " <td>-139.0</td>\n",
- " <td>512576.260995</td>\n",
- " <td>121776.663075</td>\n",
- " <td>66.560300</td>\n",
- " <td>226.093454</td>\n",
- " <td>1018659.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>15</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.861033</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.002212</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.859128</td>\n",
- " <td>0.861033</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154808</th>\n",
- " <td>5124511.0</td>\n",
- " <td>232.447102</td>\n",
- " <td>16.0</td>\n",
- " <td>41.0</td>\n",
- " <td>512570.079754</td>\n",
- " <td>121769.520367</td>\n",
- " <td>66.292584</td>\n",
- " <td>222.913017</td>\n",
- " <td>1018659.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>16</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.867294</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.000000</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.867294</td>\n",
- " <td>0.867294</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154809</th>\n",
- " <td>5124512.0</td>\n",
- " <td>131.925651</td>\n",
- " <td>29.0</td>\n",
- " <td>121.0</td>\n",
- " <td>512861.419320</td>\n",
- " <td>121844.774678</td>\n",
- " <td>55.702429</td>\n",
- " <td>114.847781</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>29</td>\n",
- " <td>vertical</td>\n",
- " <td>0.800451</td>\n",
- " <td>0.033333</td>\n",
- " <td>0.087146</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.675339</td>\n",
- " <td>0.739811</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154810</th>\n",
- " <td>5124513.0</td>\n",
- " <td>137.339196</td>\n",
- " <td>28.0</td>\n",
- " <td>-59.0</td>\n",
- " <td>512865.854189</td>\n",
- " <td>121842.120366</td>\n",
- " <td>56.243851</td>\n",
- " <td>121.027343</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>28</td>\n",
- " <td>vertical</td>\n",
- " <td>0.768899</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.004124</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.765728</td>\n",
- " <td>0.768899</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154811</th>\n",
- " <td>5124514.0</td>\n",
- " <td>21.008432</td>\n",
- " <td>23.0</td>\n",
- " <td>-150.0</td>\n",
- " <td>512862.686744</td>\n",
- " <td>121857.263294</td>\n",
- " <td>23.119281</td>\n",
- " <td>19.328343</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>6</td>\n",
- " <td>23</td>\n",
- " <td>vertical</td>\n",
- " <td>0.380799</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.129870</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.331345</td>\n",
- " <td>0.380799</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154812</th>\n",
- " <td>5124515.0</td>\n",
- " <td>21.541363</td>\n",
- " <td>19.0</td>\n",
- " <td>30.0</td>\n",
- " <td>512860.734800</td>\n",
- " <td>121855.152708</td>\n",
- " <td>19.585625</td>\n",
- " <td>20.336518</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>19</td>\n",
- " <td>equal</td>\n",
- " <td>0.445654</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.123457</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>SW</td>\n",
- " <td>0.390635</td>\n",
- " <td>0.445654</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154813</th>\n",
- " <td>5124516.0</td>\n",
- " <td>33.342276</td>\n",
- " <td>17.0</td>\n",
- " <td>-58.0</td>\n",
- " <td>512857.342542</td>\n",
- " <td>121829.041410</td>\n",
- " <td>24.377198</td>\n",
- " <td>31.954253</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>17</td>\n",
- " <td>vertical</td>\n",
- " <td>0.671820</td>\n",
- " <td>0.125000</td>\n",
- " <td>0.570312</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.288673</td>\n",
- " <td>0.671820</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154814</th>\n",
- " <td>5124517.0</td>\n",
- " <td>43.358052</td>\n",
- " <td>13.0</td>\n",
- " <td>122.0</td>\n",
- " <td>512853.537208</td>\n",
- " <td>121831.368979</td>\n",
- " <td>26.787103</td>\n",
- " <td>42.321731</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>13</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.590432</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.470588</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.312582</td>\n",
- " <td>0.590432</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154815</th>\n",
- " <td>5124518.0</td>\n",
- " <td>34.768271</td>\n",
- " <td>0.0</td>\n",
- " <td>0.0</td>\n",
- " <td>512851.492252</td>\n",
- " <td>121838.457750</td>\n",
- " <td>29.085365</td>\n",
- " <td>34.768271</td>\n",
- " <td>1018654.0</td>\n",
- " <td>8011.0</td>\n",
- " <td>...</td>\n",
- " <td>6</td>\n",
- " <td>30</td>\n",
- " <td>vertical</td>\n",
- " <td>0.119561</td>\n",
- " <td>0.111111</td>\n",
- " <td>0.231884</td>\n",
- " <td>flat</td>\n",
- " <td>S</td>\n",
- " <td>0.091837</td>\n",
- " <td>0.119561</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154816</th>\n",
- " <td>5124519.0</td>\n",
- " <td>32.262272</td>\n",
- " <td>7.0</td>\n",
- " <td>-62.0</td>\n",
- " <td>512889.292856</td>\n",
- " <td>121962.982921</td>\n",
- " <td>22.665441</td>\n",
- " <td>32.006156</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>7</td>\n",
- " <td>vertical</td>\n",
- " <td>0.595122</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.375000</td>\n",
- " <td>shallow_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.371951</td>\n",
- " <td>0.595122</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154817</th>\n",
- " <td>5124520.0</td>\n",
- " <td>14.249623</td>\n",
- " <td>25.0</td>\n",
- " <td>118.0</td>\n",
- " <td>512885.599017</td>\n",
- " <td>121964.977036</td>\n",
- " <td>15.514710</td>\n",
- " <td>12.886922</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>...</td>\n",
- " <td>5</td>\n",
- " <td>25</td>\n",
- " <td>vertical</td>\n",
- " <td>0.449135</td>\n",
- " <td>0.500000</td>\n",
- " <td>0.250000</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.336851</td>\n",
- " <td>0.449135</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154818</th>\n",
- " <td>5124523.0</td>\n",
- " <td>202.860586</td>\n",
- " <td>26.0</td>\n",
- " <td>-65.0</td>\n",
- " <td>512907.355343</td>\n",
- " <td>121907.640275</td>\n",
- " <td>69.264065</td>\n",
- " <td>181.708205</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>26</td>\n",
- " <td>vertical</td>\n",
- " <td>0.836042</td>\n",
- " <td>0.022222</td>\n",
- " <td>0.042582</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.800441</td>\n",
- " <td>0.836042</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154819</th>\n",
- " <td>5124524.0</td>\n",
- " <td>221.668609</td>\n",
- " <td>25.0</td>\n",
- " <td>115.0</td>\n",
- " <td>512901.324171</td>\n",
- " <td>121910.827716</td>\n",
- " <td>72.136766</td>\n",
- " <td>201.586966</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>...</td>\n",
- " <td>6</td>\n",
- " <td>25</td>\n",
- " <td>horizontal</td>\n",
- " <td>0.692926</td>\n",
- " <td>0.102041</td>\n",
- " <td>0.042131</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.663732</td>\n",
- " <td>0.692926</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154820</th>\n",
- " <td>5124525.0</td>\n",
- " <td>126.405824</td>\n",
- " <td>22.0</td>\n",
- " <td>118.0</td>\n",
- " <td>512801.107921</td>\n",
- " <td>121763.322478</td>\n",
- " <td>43.276794</td>\n",
- " <td>116.796274</td>\n",
- " <td>1018651.0</td>\n",
- " <td>8013.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>22</td>\n",
- " <td>equal</td>\n",
- " <td>0.759459</td>\n",
- " <td>0.035714</td>\n",
- " <td>0.012876</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.749680</td>\n",
- " <td>0.759459</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154821</th>\n",
- " <td>5124526.0</td>\n",
- " <td>126.408740</td>\n",
- " <td>22.0</td>\n",
- " <td>-62.0</td>\n",
- " <td>512810.176759</td>\n",
- " <td>121758.418405</td>\n",
- " <td>43.277184</td>\n",
- " <td>116.797944</td>\n",
- " <td>1018651.0</td>\n",
- " <td>8013.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>22</td>\n",
- " <td>equal</td>\n",
- " <td>0.759441</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.040598</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.728609</td>\n",
- " <td>0.759441</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154822</th>\n",
- " <td>5124527.0</td>\n",
- " <td>17.738624</td>\n",
- " <td>32.0</td>\n",
- " <td>-67.0</td>\n",
- " <td>512895.656423</td>\n",
- " <td>121945.700714</td>\n",
- " <td>16.399780</td>\n",
- " <td>14.964642</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>32</td>\n",
- " <td>equal</td>\n",
- " <td>0.360795</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.000000</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>SE</td>\n",
- " <td>0.360795</td>\n",
- " <td>0.360795</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>154823</th>\n",
- " <td>5124528.0</td>\n",
- " <td>17.671450</td>\n",
- " <td>33.0</td>\n",
- " <td>113.0</td>\n",
- " <td>512893.143353</td>\n",
- " <td>121946.778198</td>\n",
- " <td>16.370630</td>\n",
- " <td>14.885036</td>\n",
- " <td>1018655.0</td>\n",
- " <td>8014.0</td>\n",
- " <td>...</td>\n",
- " <td>4</td>\n",
- " <td>33</td>\n",
- " <td>equal</td>\n",
- " <td>0.362166</td>\n",
- " <td>0.000000</td>\n",
- " <td>0.016393</td>\n",
- " <td>medium_tilt</td>\n",
- " <td>N</td>\n",
- " <td>0.356229</td>\n",
- " <td>0.362166</td>\n",
- " </tr>\n",
- " </tbody>\n",
- "</table>\n",
- "<p>154824 rows × 28 columns</p>\n",
- "</div>"
- ],
- "text/plain": [
- " DF_UID FLAECHE NEIGUNG AUSRICHTUNG XCOORD \\\n",
- "0 4817410.0 71.487047 10.0 127.0 503491.325015 \n",
- "1 4817425.0 36.859836 37.0 33.0 503503.812619 \n",
- "2 4817426.0 51.333864 31.0 -57.0 503509.783165 \n",
- "3 4817427.0 36.861447 37.0 -147.0 503510.594159 \n",
- "4 4817428.0 81.256555 28.0 123.0 503504.226918 \n",
- "5 4817429.0 11.397236 27.0 -144.0 503512.070989 \n",
- "6 4817431.0 174.501987 31.0 -147.0 503503.978942 \n",
- "7 4817432.0 174.108293 31.0 33.0 503500.517066 \n",
- "8 4817433.0 69.216255 26.0 33.0 503510.917446 \n",
- "9 4817434.0 26.716480 31.0 -147.0 503517.020358 \n",
- "10 4817435.0 26.018729 31.0 -147.0 503507.806109 \n",
- "11 4817436.0 13.309012 33.0 123.0 503512.471353 \n",
- "12 4817437.0 13.503089 32.0 -57.0 503514.586126 \n",
- "13 4817438.0 130.038144 26.0 -144.0 503951.193324 \n",
- "14 4817439.0 126.475108 26.0 36.0 503948.788882 \n",
- "15 4817440.0 47.540096 37.0 -144.0 503996.949571 \n",
- "16 4817441.0 35.497241 32.0 36.0 503994.863047 \n",
- "17 4817442.0 49.847956 38.0 36.0 504003.468131 \n",
- "18 4817448.0 34.963254 28.0 -145.0 503922.898105 \n",
- "19 4817449.0 19.979434 7.0 35.0 503916.075512 \n",
- "20 4817450.0 21.119847 18.0 -144.0 503936.461763 \n",
- "21 4817451.0 21.374411 19.0 36.0 503934.470464 \n",
- "22 4817452.0 68.854261 35.0 -140.0 504222.101990 \n",
- "23 4817453.0 52.296595 34.0 40.0 504219.058562 \n",
- "24 4817458.0 258.858167 34.0 127.0 504246.524168 \n",
- "25 4817459.0 260.507359 30.0 -49.0 504253.910958 \n",
- "26 4817460.0 33.455253 24.0 -142.0 504252.873380 \n",
- "27 4817461.0 45.821417 22.0 32.0 504249.859870 \n",
- "28 4817463.0 82.400929 33.0 -50.0 504157.851075 \n",
- "29 4817464.0 78.771912 31.0 130.0 504150.396646 \n",
- "... ... ... ... ... ... \n",
- "154794 5124495.0 27.490066 21.0 116.0 512507.153297 \n",
- "154795 5124496.0 33.733199 11.0 30.0 512653.714458 \n",
- "154796 5124497.0 139.413591 30.0 -60.0 512727.853591 \n",
- "154797 5124498.0 137.530298 30.0 120.0 512722.012941 \n",
- "154798 5124499.0 92.630815 7.0 -150.0 512731.300787 \n",
- "154799 5124500.0 44.081253 7.0 -148.0 512734.614676 \n",
- "154800 5124502.0 14.119724 11.0 -147.0 512729.165421 \n",
- "154801 5124503.0 36.753693 21.0 122.0 512683.971180 \n",
- "154802 5124505.0 36.179539 19.0 -58.0 512689.565868 \n",
- "154803 5124506.0 57.609988 17.0 -57.0 512685.874412 \n",
- "154804 5124507.0 57.882063 22.0 122.0 512679.975021 \n",
- "154805 5124508.0 35.898733 22.0 -153.0 512676.571716 \n",
- "154806 5124509.0 88.059840 20.0 27.0 512674.020870 \n",
- "154807 5124510.0 234.137426 15.0 -139.0 512576.260995 \n",
- "154808 5124511.0 232.447102 16.0 41.0 512570.079754 \n",
- "154809 5124512.0 131.925651 29.0 121.0 512861.419320 \n",
- "154810 5124513.0 137.339196 28.0 -59.0 512865.854189 \n",
- "154811 5124514.0 21.008432 23.0 -150.0 512862.686744 \n",
- "154812 5124515.0 21.541363 19.0 30.0 512860.734800 \n",
- "154813 5124516.0 33.342276 17.0 -58.0 512857.342542 \n",
- "154814 5124517.0 43.358052 13.0 122.0 512853.537208 \n",
- "154815 5124518.0 34.768271 0.0 0.0 512851.492252 \n",
- "154816 5124519.0 32.262272 7.0 -62.0 512889.292856 \n",
- "154817 5124520.0 14.249623 25.0 118.0 512885.599017 \n",
- "154818 5124523.0 202.860586 26.0 -65.0 512907.355343 \n",
- "154819 5124524.0 221.668609 25.0 115.0 512901.324171 \n",
- "154820 5124525.0 126.405824 22.0 118.0 512801.107921 \n",
- "154821 5124526.0 126.408740 22.0 -62.0 512810.176759 \n",
- "154822 5124527.0 17.738624 32.0 -67.0 512895.656423 \n",
- "154823 5124528.0 17.671450 33.0 113.0 512893.143353 \n",
- "\n",
- " YCOORD Shape_Length Shape_Area GWR_EGID GBAUP \\\n",
- "0 134197.490397 33.936595 70.390620 295070969.0 8011.0 \n",
- "1 134131.833522 28.208608 29.339500 1004090.0 8012.0 \n",
- "2 134135.282805 40.053428 44.043504 1004090.0 8012.0 \n",
- "3 134142.188986 28.210273 29.341346 1004090.0 8012.0 \n",
- "4 134138.960671 37.840077 71.574129 1004090.0 8012.0 \n",
- "5 134135.795686 15.417311 10.154872 1004090.0 8012.0 \n",
- "6 134181.171146 59.815925 149.165008 1004088.0 8011.0 \n",
- "7 134175.889168 59.775896 148.702405 1004088.0 8011.0 \n",
- "8 134191.713704 45.633223 61.997846 295084893.0 8011.0 \n",
- "9 134191.118711 23.687927 22.959133 295084893.0 8011.0 \n",
- "10 134197.114437 23.199036 22.360589 295084893.0 8011.0 \n",
- "11 134196.622116 15.096068 11.164928 295084893.0 8011.0 \n",
- "12 134195.245953 15.198331 11.396747 295084893.0 8011.0 \n",
- "13 134195.306644 64.584475 117.365353 295084994.0 8014.0 \n",
- "14 134191.981218 64.301850 113.406403 295084994.0 8014.0 \n",
- "15 134161.244934 27.081498 37.981483 1004076.0 8012.0 \n",
- "16 134158.375583 25.402378 29.945648 1004076.0 8012.0 \n",
- "17 134152.306087 29.835723 39.429900 1004076.0 8012.0 \n",
- "18 134216.939359 29.062031 30.741322 1004089.0 8012.0 \n",
- "19 134213.701005 17.895750 19.831984 1004089.0 8012.0 \n",
- "20 134203.761986 18.414721 20.066844 295084994.0 8014.0 \n",
- "21 134200.829905 19.727025 20.261942 295084994.0 8014.0 \n",
- "22 134017.187739 31.767443 56.268749 1004049.0 8011.0 \n",
- "23 134013.574920 29.327904 43.406040 1004049.0 8011.0 \n",
- "24 134078.107216 66.270016 215.837030 1004035.0 8011.0 \n",
- "25 134072.701545 66.856008 225.390527 1004035.0 8011.0 \n",
- "26 134059.252231 24.705455 30.633213 1004035.0 8011.0 \n",
- "27 134055.974734 27.196876 42.462233 1004035.0 8011.0 \n",
- "28 134078.914455 32.942705 69.128758 1004073.0 8011.0 \n",
- "29 134085.492644 32.609685 67.373176 1004073.0 8011.0 \n",
- "... ... ... ... ... ... \n",
- "154794 121868.767886 24.997104 25.656416 295081617.0 8017.0 \n",
- "154795 121846.443211 27.509294 33.153466 1018650.0 8015.0 \n",
- "154796 121799.313992 54.005430 120.493402 1018653.0 8012.0 \n",
- "154797 121802.781737 53.905711 119.641777 1018653.0 8012.0 \n",
- "154798 121811.881398 47.143675 91.927158 1018653.0 8012.0 \n",
- "154799 121817.612632 28.618486 43.718502 1018653.0 8012.0 \n",
- "154800 121822.382400 16.789635 13.863595 1018653.0 8012.0 \n",
- "154801 121769.079140 23.556753 34.231614 2040405.0 8012.0 \n",
- "154802 121765.612262 23.566963 34.201265 2040405.0 8012.0 \n",
- "154803 121760.247993 37.797327 55.148314 2040405.0 8012.0 \n",
- "154804 121763.783138 29.386703 53.499302 2040405.0 8012.0 \n",
- "154805 121745.126015 30.833490 33.393443 2040405.0 8012.0 \n",
- "154806 121740.921893 39.260540 82.722458 2040405.0 8012.0 \n",
- "154807 121776.663075 66.560300 226.093454 1018659.0 8011.0 \n",
- "154808 121769.520367 66.292584 222.913017 1018659.0 8011.0 \n",
- "154809 121844.774678 55.702429 114.847781 1018654.0 8011.0 \n",
- "154810 121842.120366 56.243851 121.027343 1018654.0 8011.0 \n",
- "154811 121857.263294 23.119281 19.328343 1018654.0 8011.0 \n",
- "154812 121855.152708 19.585625 20.336518 1018654.0 8011.0 \n",
- "154813 121829.041410 24.377198 31.954253 1018654.0 8011.0 \n",
- "154814 121831.368979 26.787103 42.321731 1018654.0 8011.0 \n",
- "154815 121838.457750 29.085365 34.768271 1018654.0 8011.0 \n",
- "154816 121962.982921 22.665441 32.006156 1018655.0 8014.0 \n",
- "154817 121964.977036 15.514710 12.886922 1018655.0 8014.0 \n",
- "154818 121907.640275 69.264065 181.708205 1018655.0 8014.0 \n",
- "154819 121910.827716 72.136766 201.586966 1018655.0 8014.0 \n",
- "154820 121763.322478 43.276794 116.796274 1018651.0 8013.0 \n",
- "154821 121758.418405 43.277184 116.797944 1018651.0 8013.0 \n",
- "154822 121945.700714 16.399780 14.964642 1018655.0 8014.0 \n",
- "154823 121946.778198 16.370630 14.885036 1018655.0 8014.0 \n",
- "\n",
- " ... n_corners panel_tilt best_align \\\n",
- "0 ... 4 10 vertical \n",
- "1 ... 4 37 equal \n",
- "2 ... 7 31 horizontal \n",
- "3 ... 4 37 horizontal \n",
- "4 ... 4 28 vertical \n",
- "5 ... 3 27 equal \n",
- "6 ... 4 31 vertical \n",
- "7 ... 4 31 vertical \n",
- "8 ... 5 26 horizontal \n",
- "9 ... 5 31 horizontal \n",
- "10 ... 5 31 horizontal \n",
- "11 ... 6 33 equal \n",
- "12 ... 5 32 vertical \n",
- "13 ... 4 26 vertical \n",
- "14 ... 4 26 vertical \n",
- "15 ... 5 37 horizontal \n",
- "16 ... 4 32 horizontal \n",
- "17 ... 4 38 vertical \n",
- "18 ... 4 28 horizontal \n",
- "19 ... 4 7 vertical \n",
- "20 ... 5 18 horizontal \n",
- "21 ... 6 19 horizontal \n",
- "22 ... 5 35 horizontal \n",
- "23 ... 5 34 horizontal \n",
- "24 ... 4 34 vertical \n",
- "25 ... 5 30 vertical \n",
- "26 ... 6 24 vertical \n",
- "27 ... 4 22 horizontal \n",
- "28 ... 6 33 horizontal \n",
- "29 ... 5 31 vertical \n",
- "... ... ... ... ... \n",
- "154794 ... 5 21 horizontal \n",
- "154795 ... 4 11 horizontal \n",
- "154796 ... 9 30 horizontal \n",
- "154797 ... 9 30 horizontal \n",
- "154798 ... 8 7 equal \n",
- "154799 ... 4 7 vertical \n",
- "154800 ... 6 11 horizontal \n",
- "154801 ... 5 21 equal \n",
- "154802 ... 4 19 equal \n",
- "154803 ... 8 17 vertical \n",
- "154804 ... 5 22 vertical \n",
- "154805 ... 7 22 horizontal \n",
- "154806 ... 8 20 horizontal \n",
- "154807 ... 4 15 horizontal \n",
- "154808 ... 4 16 horizontal \n",
- "154809 ... 5 29 vertical \n",
- "154810 ... 4 28 vertical \n",
- "154811 ... 6 23 vertical \n",
- "154812 ... 4 19 equal \n",
- "154813 ... 4 17 vertical \n",
- "154814 ... 4 13 horizontal \n",
- "154815 ... 6 30 vertical \n",
- "154816 ... 5 7 vertical \n",
- "154817 ... 5 25 vertical \n",
- "154818 ... 4 26 vertical \n",
- "154819 ... 6 25 horizontal \n",
- "154820 ... 4 22 equal \n",
- "154821 ... 4 22 equal \n",
- "154822 ... 4 32 equal \n",
- "154823 ... 4 33 equal \n",
- "\n",
- " panelled_area_ratio_ftr shaded_area_ratio_ftr shaded_area_ratio_tgt \\\n",
- "0 0.805740 0.117647 0.166667 \n",
- "1 0.390669 0.000000 0.386555 \n",
- "2 0.155843 0.000000 0.119318 \n",
- "3 0.390652 0.166667 0.322034 \n",
- "4 0.708866 0.333333 0.077193 \n",
- "5 0.140385 0.000000 0.075000 \n",
- "6 0.806868 0.135135 0.020101 \n",
- "7 0.808692 0.131579 0.161345 \n",
- "8 0.508551 0.000000 0.060241 \n",
- "9 0.479105 0.000000 0.000000 \n",
- "10 0.491953 0.000000 0.000000 \n",
- "11 0.240439 0.000000 0.266667 \n",
- "12 0.236983 0.000000 0.000000 \n",
- "13 0.664420 0.900000 0.785106 \n",
- "14 0.683138 0.214286 0.556291 \n",
- "15 0.673116 0.800000 0.973510 \n",
- "16 0.450739 0.142857 0.725000 \n",
- "17 0.641952 0.900000 0.961538 \n",
- "18 0.457623 0.125000 0.975610 \n",
- "19 0.640659 0.666667 0.925000 \n",
- "20 0.454549 0.000000 0.506173 \n",
- "21 0.449135 0.000000 0.543210 \n",
- "22 0.697125 0.142857 0.053333 \n",
- "23 0.734273 0.100000 0.034682 \n",
- "24 0.834434 0.109091 0.030093 \n",
- "25 0.767733 0.035714 0.008869 \n",
- "26 0.478251 0.000000 0.008130 \n",
- "27 0.593609 0.000000 0.005952 \n",
- "28 0.621352 0.000000 0.003610 \n",
- "29 0.710913 0.000000 0.092937 \n",
- "... ... ... ... \n",
- "154794 0.582028 0.000000 0.009434 \n",
- "154795 0.569172 0.000000 0.015152 \n",
- "154796 0.677122 0.000000 0.004149 \n",
- "154797 0.639859 0.064516 0.041841 \n",
- "154798 0.656369 0.045455 0.147541 \n",
- "154799 0.653339 0.000000 0.022857 \n",
- "154800 0.453267 0.000000 0.071429 \n",
- "154801 0.522396 0.000000 0.000000 \n",
- "154802 0.530687 0.000000 0.000000 \n",
- "154803 0.694324 0.000000 0.105023 \n",
- "154804 0.773988 0.076923 0.186916 \n",
- "154805 0.356559 0.000000 0.014493 \n",
- "154806 0.744948 0.052632 0.015291 \n",
- "154807 0.861033 0.000000 0.002212 \n",
- "154808 0.867294 0.000000 0.000000 \n",
- "154809 0.800451 0.033333 0.087146 \n",
- "154810 0.768899 0.000000 0.004124 \n",
- "154811 0.380799 0.000000 0.129870 \n",
- "154812 0.445654 0.000000 0.123457 \n",
- "154813 0.671820 0.125000 0.570312 \n",
- "154814 0.590432 0.000000 0.470588 \n",
- "154815 0.119561 0.111111 0.231884 \n",
- "154816 0.595122 0.000000 0.375000 \n",
- "154817 0.449135 0.500000 0.250000 \n",
- "154818 0.836042 0.022222 0.042582 \n",
- "154819 0.692926 0.102041 0.042131 \n",
- "154820 0.759459 0.035714 0.012876 \n",
- "154821 0.759441 0.000000 0.040598 \n",
- "154822 0.360795 0.000000 0.000000 \n",
- "154823 0.362166 0.000000 0.016393 \n",
- "\n",
- " tilt_cat orientation_cat available_area_ratio \\\n",
- "0 shallow_tilt N 0.671450 \n",
- "1 medium_tilt SW 0.106513 \n",
- "2 medium_tilt SE 0.137248 \n",
- "3 medium_tilt N 0.147138 \n",
- "4 medium_tilt N 0.654146 \n",
- "5 medium_tilt N 0.129856 \n",
- "6 medium_tilt N 0.790649 \n",
- "7 medium_tilt SW 0.678214 \n",
- "8 medium_tilt SW 0.260681 \n",
- "9 medium_tilt N 0.479105 \n",
- "10 medium_tilt N 0.491953 \n",
- "11 medium_tilt N 0.176322 \n",
- "12 medium_tilt SE 0.236983 \n",
- "13 medium_tilt N 0.142780 \n",
- "14 medium_tilt SW 0.303114 \n",
- "15 medium_tilt N 0.017831 \n",
- "16 medium_tilt SW 0.123953 \n",
- "17 medium_tilt SW 0.024690 \n",
- "18 medium_tilt N 0.011162 \n",
- "19 shallow_tilt SW 0.048049 \n",
- "20 shallow_tilt N 0.224469 \n",
- "21 shallow_tilt SW 0.205161 \n",
- "22 medium_tilt N 0.659945 \n",
- "23 medium_tilt SW 0.649740 \n",
- "24 medium_tilt N 0.809324 \n",
- "25 medium_tilt SE 0.760923 \n",
- "26 medium_tilt N 0.474363 \n",
- "27 medium_tilt SW 0.590075 \n",
- "28 medium_tilt SE 0.619109 \n",
- "29 medium_tilt N 0.368482 \n",
- "... ... ... ... \n",
- "154794 medium_tilt N 0.576538 \n",
- "154795 shallow_tilt SW 0.560548 \n",
- "154796 medium_tilt SE 0.674312 \n",
- "154797 medium_tilt N 0.613087 \n",
- "154798 shallow_tilt N 0.559528 \n",
- "154799 shallow_tilt N 0.638405 \n",
- "154800 shallow_tilt N 0.420890 \n",
- "154801 medium_tilt N 0.522396 \n",
- "154802 shallow_tilt SE 0.530687 \n",
- "154803 shallow_tilt SE 0.621404 \n",
- "154804 medium_tilt N 0.629317 \n",
- "154805 medium_tilt N 0.351391 \n",
- "154806 medium_tilt SW 0.733557 \n",
- "154807 shallow_tilt N 0.859128 \n",
- "154808 shallow_tilt SW 0.867294 \n",
- "154809 medium_tilt N 0.675339 \n",
- "154810 medium_tilt SE 0.765728 \n",
- "154811 medium_tilt N 0.331345 \n",
- "154812 shallow_tilt SW 0.390635 \n",
- "154813 shallow_tilt SE 0.288673 \n",
- "154814 shallow_tilt N 0.312582 \n",
- "154815 flat S 0.091837 \n",
- "154816 shallow_tilt SE 0.371951 \n",
- "154817 medium_tilt N 0.336851 \n",
- "154818 medium_tilt SE 0.800441 \n",
- "154819 medium_tilt N 0.663732 \n",
- "154820 medium_tilt N 0.749680 \n",
- "154821 medium_tilt SE 0.728609 \n",
- "154822 medium_tilt SE 0.360795 \n",
- "154823 medium_tilt N 0.356229 \n",
- "\n",
- " panelled_area_ratio_tgt \n",
- "0 0.805740 \n",
- "1 0.173631 \n",
- "2 0.155843 \n",
- "3 0.217029 \n",
- "4 0.708866 \n",
- "5 0.140385 \n",
- "6 0.806868 \n",
- "7 0.808692 \n",
- "8 0.277391 \n",
- "9 0.479105 \n",
- "10 0.491953 \n",
- "11 0.240439 \n",
- "12 0.236983 \n",
- "13 0.664420 \n",
- "14 0.683138 \n",
- "15 0.673116 \n",
- "16 0.450739 \n",
- "17 0.641952 \n",
- "18 0.457623 \n",
- "19 0.640659 \n",
- "20 0.454549 \n",
- "21 0.449135 \n",
- "22 0.697125 \n",
- "23 0.673084 \n",
- "24 0.834434 \n",
- "25 0.767733 \n",
- "26 0.478251 \n",
- "27 0.593609 \n",
- "28 0.621352 \n",
- "29 0.406236 \n",
- "... ... \n",
- "154794 0.582028 \n",
- "154795 0.569172 \n",
- "154796 0.677122 \n",
- "154797 0.639859 \n",
- "154798 0.656369 \n",
- "154799 0.653339 \n",
- "154800 0.453267 \n",
- "154801 0.522396 \n",
- "154802 0.530687 \n",
- "154803 0.694324 \n",
- "154804 0.773988 \n",
- "154805 0.356559 \n",
- "154806 0.744948 \n",
- "154807 0.861033 \n",
- "154808 0.867294 \n",
- "154809 0.739811 \n",
- "154810 0.768899 \n",
- "154811 0.380799 \n",
- "154812 0.445654 \n",
- "154813 0.671820 \n",
- "154814 0.590432 \n",
- "154815 0.119561 \n",
- "154816 0.595122 \n",
- "154817 0.449135 \n",
- "154818 0.836042 \n",
- "154819 0.692926 \n",
- "154820 0.759459 \n",
- "154821 0.759441 \n",
- "154822 0.360795 \n",
- "154823 0.362166 \n",
- "\n",
- "[154824 rows x 28 columns]"
- ]
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
- "learning_table"
+ "norm = Normalizer()\n",
+ "x = norm.fit_transform(X)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "# MBE Approximation"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "MBE_shading = np.mean(training.shaded_area_ratio_tgt - training.shaded_area_ratio_ftr)\n",
- "MBE_panels = np.mean(training.panelled_area_ratio_tgt - training.panelled_area_ratio_ftr)"
+ "## MBE Approximation"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
- "outputs": [],
- "source": [
- "shading_pred = np.maximum( np.minimum( validation.shaded_area_ratio_ftr + MBE_shading , 1), 0)\n",
- "panels_pred = np.maximum( np.minimum( validation.panelled_area_ratio_ftr.values + MBE_panels, 1), 0)\n",
- "av_area_pred = (1 - shading_pred) * panels_pred"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Validation MSE (shading): 0.043389\n",
- "Validation MSE (panelling): 0.011387\n",
- "Validation MSE (combined): 0.016567\n"
+ "Bias correction MSE: 0.022751\n",
+ "Bias correction RMSE: 0.150834\n",
+ "Bias correction MAE: 0.122387\n",
+ "Bias correction MBE: -0.004303\n",
+ "Bias correction R2: 0.523476\n"
]
}
],
"source": [
- "# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
- "print( 'Validation MSE (shading): %f' %mse( shading_pred , validation.shaded_area_ratio_tgt ))\n",
- "print( 'Validation MSE (panelling): %f' %mse( panels_pred , validation.panelled_area_ratio_tgt ))\n",
- "print( 'Validation MSE (combined): %f' %mse( av_area_pred , validation.available_area_ratio ))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Validation RMSE (shading): 0.208299\n",
- "Validation RMSE (panelling): 0.106709\n",
- "Validation RMSE (combined): 0.128714\n"
- ]
- }
- ],
- "source": [
- "print( 'Validation RMSE (shading): %f' %np.sqrt( mse( shading_pred , validation.shaded_area_ratio_tgt )))\n",
- "print( 'Validation RMSE (panelling): %f' %np.sqrt( mse( panels_pred , validation.panelled_area_ratio_tgt )))\n",
- "print( 'Validation RMSE (combined): %f' %np.sqrt( mse( av_area_pred , validation.available_area_ratio )))"
+ "ftr_idx = learning_table.loc[ : , feature_names ].columns.get_loc('panelled_area_ratio_ftr')\n",
+ "mbe_est = Bias_Correction( ftr_idx )\n",
+ "\n",
+ "y = cross_val_predict( mbe_est, X, t)\n",
+ "\n",
+ "mbe_error = get_errors( t, y, 'Bias correction' )"
]
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 14,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Validation MAE (shading): 0.142402\n",
- "Validation MAE (panelling): 0.067125\n",
- "Validation MAE (combined): 0.098143\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "print( 'Validation MAE (shading): %f' %mae( shading_pred , validation.shaded_area_ratio_tgt ))\n",
- "print( 'Validation MAE (panelling): %f' %mae( panels_pred , validation.panelled_area_ratio_tgt ))\n",
- "print( 'Validation MAE (combined): %f' %mae( av_area_pred , validation.available_area_ratio ))"
+ "err_base['MBE+'] = mbe_error"
]
},
{
- "cell_type": "code",
- "execution_count": 17,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Validation MBE (shading): -0.001925\n",
- "Validation MBE (panelling): 0.001191\n",
- "Validation MBE (combined): -0.006433\n"
- ]
- }
- ],
"source": [
- "print( 'Validation MBE (shading): %f' %np.mean( shading_pred - validation.shaded_area_ratio_tgt ))\n",
- "print( 'Validation MBE (panelling): %f' %np.mean( panels_pred - validation.panelled_area_ratio_tgt ))\n",
- "print( 'Validation MBE (combined): %f' %np.mean( av_area_pred - validation.available_area_ratio ))"
+ "## Machine Learning models"
]
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
+ "execution_count": 21,
"metadata": {},
"outputs": [],
- "source": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
"source": [
- "# Random Forest"
+ "# ML MODEL PARAMETERS\n",
+ "n_est = 500\n",
+ "tree_depth = 10\n",
+ "ELM_nodes = 100\n",
+ "ELM_est = 500\n",
+ "MLP_layers = (500, 400, 200)\n",
+ "\n",
+ "k_CV = 5\n",
+ "\n",
+ "# DEFINITION OF ESTIMATORS\n",
+ "def set_estimators():\n",
+ " estimator = {\n",
+ " 'KNN': KNeighborsRegressor( n_jobs = -1 ),\n",
+ " 'LIN': LinearRegression( n_jobs = -1 ),\n",
+ " 'RF' : RandomForestRegressor( n_estimators = n_est, criterion = 'mse', n_jobs = -1 ),\n",
+ " 'XGB': XGBRegressor( n_estimators = n_est, max_depth = tree_depth, n_jobs = -1 ),\n",
+ " 'ELM': ELM_Ensemble( n_estimators = ELM_est, n_nodes = ELM_nodes, n_features = nx, n_targets = nt ),\n",
+ " 'MLP': MLPRegressor( hidden_layer_sizes = (500, 400, 100) )\n",
+ " }\n",
+ " return estimator"
]
},
{
- "cell_type": "code",
- "execution_count": 17,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [],
"source": [
- "n_est = 200\n",
- "# tree_depth = 10\n",
- "\n",
- "x = training.loc[ : , feature_names ]\n",
- "t = training.loc[ : , label_name ]"
+ "#### TRAINING OF SINGLE ESTIMATOR - simple validation"
]
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 24,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "CPU time: 354.36 seconds\n",
- "Wall clock time: 94.32 seconds\n"
+ "CPU time: 25.48 seconds\n",
+ "Wall clock time: 12.21 seconds\n",
+ "\n",
+ "Training MSE: 0.017255\n",
+ "\n",
+ "Validation MSE: 0.018107\n",
+ "Validation RMSE: 0.134563\n",
+ "Validation MAE: 0.105031\n",
+ "Validation MBE: -0.000365\n",
+ "Validation R2: 0.627932\n"
]
}
],
"source": [
- "RF = RandomForestRegressor(n_estimators = n_est, criterion = 'mse', n_jobs = -1)\n",
+ "# for training one estimator\n",
+ "training, validation = train_test_split(learning_table, test_size = float(1 / k_CV))\n",
+ "x_tr = norm.transform( training.loc[ : , feature_names ].values )\n",
+ "t_tr = training.loc[ : , label_name ].values.reshape((-1,))\n",
+ "\n",
+ "estimator = set_estimators()\n",
+ "RF = estimator['ELM']\n",
"\n",
"tt = util.Timer()\n",
- "RF.fit(x,t)\n",
- "tt.stop()"
+ "RF.fit(x_tr,t_tr)\n",
+ "tt.stop()\n",
+ "\n",
+ "y_tr = RF.predict(x_tr)\n",
+ "print( '\\nTraining MSE: %f\\n' %mse(y_tr,t_tr))\n",
+ "\n",
+ "x_val = norm.transform( validation.loc[ : , feature_names ] )\n",
+ "t_val = validation.loc[ : , label_name]\n",
+ "\n",
+ "y_val = RF.predict(x_val)\n",
+ "val_err = get_errors(t_val, y_val.reshape((-1,1)), label = 'Validation')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### TRAINING OF SINGLE ESTIMATOR - cross-validation"
]
},
{
"cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "scrolled": true
- },
+ "execution_count": 34,
+ "metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Training MSE: 0.002798\n"
+ "CPU time: 168.77 seconds\n",
+ "Wall clock time: 81.22 seconds\n",
+ "Cross-validation MSE: 0.017512\n",
+ "Cross-validation RMSE: 0.132334\n",
+ "Cross-validation MAE: 0.103287\n",
+ "Cross-validation MBE: -0.000041\n",
+ "Cross-validation R2: 0.633200\n"
]
}
],
"source": [
- "y = RF.predict(x)\n",
- "print( 'Training MSE: %f' %mse(y,t))"
+ "estimator = set_estimators()\n",
+ "est_CV = estimator['ELM']\n",
+ "\n",
+ "tt = util.Timer()\n",
+ "y = cross_val_predict(est_CV, x, t, cv = 5) # cannot use n_jobs = -1 as not all are scikit-learn estimators\n",
+ "tt.stop()\n",
+ "\n",
+ "CV_err = get_errors(t, y.reshape((-1,)), label = 'Cross-validation')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### TRAINING OF ALL ESTIMATORS - using cross-validation"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Validation MSE: 0.020185\n"
+ "\n",
+ "Training KNN\n",
+ "\n",
+ "CPU time: 1.45 seconds\n",
+ "Wall clock time: 0.70 seconds\n",
+ "Cross-validation MSE: 0.024183\n",
+ "Cross-validation RMSE: 0.155509\n",
+ "Cross-validation MAE: 0.118705\n",
+ "Cross-validation MBE: -0.000424\n",
+ "Cross-validation R2: 0.493477\n",
+ "\n",
+ "Training LIN\n",
+ "\n",
+ "CPU time: 0.10 seconds\n",
+ "Wall clock time: 0.06 seconds\n",
+ "Cross-validation MSE: 0.018053\n",
+ "Cross-validation RMSE: 0.134360\n",
+ "Cross-validation MAE: 0.105472\n",
+ "Cross-validation MBE: -0.000001\n",
+ "Cross-validation R2: 0.621882\n",
+ "\n",
+ "Training RF\n",
+ "\n",
+ "CPU time: 1068.10 seconds\n",
+ "Wall clock time: 287.64 seconds\n",
+ "Cross-validation MSE: 0.014735\n",
+ "Cross-validation RMSE: 0.121387\n",
+ "Cross-validation MAE: 0.091532\n",
+ "Cross-validation MBE: 0.002513\n",
+ "Cross-validation R2: 0.691376\n",
+ "\n",
+ "Training XGB\n",
+ "\n",
+ "CPU time: 158.91 seconds\n",
+ "Wall clock time: 159.39 seconds\n",
+ "Cross-validation MSE: 0.015186\n",
+ "Cross-validation RMSE: 0.123233\n",
+ "Cross-validation MAE: 0.092057\n",
+ "Cross-validation MBE: 0.000883\n",
+ "Cross-validation R2: 0.681918\n",
+ "\n",
+ "Training ELM\n",
+ "\n",
+ "CPU time: 55.45 seconds\n",
+ "Wall clock time: 26.13 seconds\n",
+ "Cross-validation MSE: 0.017579\n",
+ "Cross-validation RMSE: 0.132585\n",
+ "Cross-validation MAE: 0.103028\n",
+ "Cross-validation MBE: 0.000073\n",
+ "Cross-validation R2: 0.631807\n",
+ "\n",
+ "Training MLP\n",
+ "\n",
+ "CPU time: 338.23 seconds\n",
+ "Wall clock time: 129.73 seconds\n",
+ "Cross-validation MSE: 0.022509\n",
+ "Cross-validation RMSE: 0.150029\n",
+ "Cross-validation MAE: 0.117700\n",
+ "Cross-validation MBE: -0.003906\n",
+ "Cross-validation R2: 0.528548\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/ipykernel_launcher.py:16: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n",
+ "of pandas will change to not sort by default.\n",
+ "\n",
+ "To accept the future behavior, pass 'sort=False'.\n",
+ "\n",
+ "To retain the current behavior and silence the warning, pass 'sort=True'.\n",
+ "\n",
+ " app.launch_new_instance()\n"
]
}
],
"source": [
- "x_val = validation.loc[ : , feature_names ]\n",
- "t_val = validation.loc[ : , label_name]\n",
+ "# cross-validation\n",
+ "err_cv = pd.DataFrame(data = np.zeros((len(error), len(estimator))), index = error.keys(), columns = estimator.keys())\n",
+ "estimator = set_estimators()\n",
+ " \n",
+ "for name, RF in estimator.items():\n",
+ " print('\\nTraining %s\\n' %name)\n",
"\n",
- "y_val = RF.predict(x_val)\n",
- "print( 'Validation MSE: %f' %mse(y_val,t_val))"
+ " est_CV = estimator[name]\n",
+ " \n",
+ " tt = util.Timer()\n",
+ " y = cross_val_predict(est_CV, x, t, cv = 5) # cannot use n_jobs = -1 as not all are scikit-learn estimators\n",
+ " tt.stop()\n",
+ "\n",
+ " err_cv[name] = get_errors(t, y.reshape((-1,)), label = 'Cross-validation')\n",
+ " \n",
+ "err_cv = pd.concat([err_base, err_cv], axis = 1)"
]
},
{
"cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "scrolled": false
- },
+ "execution_count": 32,
+ "metadata": {},
"outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Validation RMSE: 0.142075\n",
- "Validation MAE: 0.087015\n",
- "Validation MBE: 0.001355\n"
- ]
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>base</th>\n",
+ " <th>MBE+</th>\n",
+ " <th>KNN</th>\n",
+ " <th>LIN</th>\n",
+ " <th>RF</th>\n",
+ " <th>XGB</th>\n",
+ " <th>ELM</th>\n",
+ " <th>MLP</th>\n",
+ " </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
+ " <tr>\n",
+ " <th>MSE</th>\n",
+ " <td>0.052496</td>\n",
+ " <td>0.022751</td>\n",
+ " <td>0.024183</td>\n",
+ " <td>1.805268e-02</td>\n",
+ " <td>0.014735</td>\n",
+ " <td>0.015186</td>\n",
+ " <td>0.017579</td>\n",
+ " <td>0.022509</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>RMSE</th>\n",
+ " <td>0.229120</td>\n",
+ " <td>0.150834</td>\n",
+ " <td>0.155509</td>\n",
+ " <td>1.343602e-01</td>\n",
+ " <td>0.121387</td>\n",
+ " <td>0.123233</td>\n",
+ " <td>0.132585</td>\n",
+ " <td>0.150029</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>MAE</th>\n",
+ " <td>0.171266</td>\n",
+ " <td>0.122387</td>\n",
+ " <td>0.118705</td>\n",
+ " <td>1.054718e-01</td>\n",
+ " <td>0.091532</td>\n",
+ " <td>0.092057</td>\n",
+ " <td>0.103028</td>\n",
+ " <td>0.117700</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>MBE</th>\n",
+ " <td>-0.170315</td>\n",
+ " <td>-0.004303</td>\n",
+ " <td>-0.000424</td>\n",
+ " <td>-9.113220e-07</td>\n",
+ " <td>0.002513</td>\n",
+ " <td>0.000883</td>\n",
+ " <td>0.000073</td>\n",
+ " <td>-0.003906</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>R2</th>\n",
+ " <td>-0.099542</td>\n",
+ " <td>0.523476</td>\n",
+ " <td>0.493477</td>\n",
+ " <td>6.218820e-01</td>\n",
+ " <td>0.691376</td>\n",
+ " <td>0.681918</td>\n",
+ " <td>0.631807</td>\n",
+ " <td>0.528548</td>\n",
+ " </tr>\n",
+ " </tbody>\n",
+ "</table>\n",
+ "</div>"
+ ],
+ "text/plain": [
+ " base MBE+ KNN LIN RF XGB \\\n",
+ "MSE 0.052496 0.022751 0.024183 1.805268e-02 0.014735 0.015186 \n",
+ "RMSE 0.229120 0.150834 0.155509 1.343602e-01 0.121387 0.123233 \n",
+ "MAE 0.171266 0.122387 0.118705 1.054718e-01 0.091532 0.092057 \n",
+ "MBE -0.170315 -0.004303 -0.000424 -9.113220e-07 0.002513 0.000883 \n",
+ "R2 -0.099542 0.523476 0.493477 6.218820e-01 0.691376 0.681918 \n",
+ "\n",
+ " ELM MLP \n",
+ "MSE 0.017579 0.022509 \n",
+ "RMSE 0.132585 0.150029 \n",
+ "MAE 0.103028 0.117700 \n",
+ "MBE 0.000073 -0.003906 \n",
+ "R2 0.631807 0.528548 "
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
- "# FOR A SINGLE TARGET (available_area_ratio)\n",
- "print( 'Validation RMSE: %f' %np.sqrt(mse(y_val,t_val)))\n",
- "print( 'Validation MAE: %f' %mae(y_val,t_val))\n",
- "print( 'Validation MBE: %f' %np.mean( y_val - t_val.values))"
+ "err_cv"
]
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 33,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Validation MSE (shading): 0.031665\n",
- "Validation MSE (panelling): 0.008705\n",
- "Validation MSE (combined): 0.012994\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
- "print( 'Validation MSE (shading): %f' %mse(y_val[:,0],t_val.iloc[:,0]))\n",
- "print( 'Validation MSE (panelling): %f' %mse(y_val[:,1],t_val.iloc[:,1]))\n",
- "print( 'Validation MSE (combined): %f' %mse((1 - y_val[:,0]) * y_val[:,1],( 1 - t_val.iloc[:,0]) * t_val.iloc[:,1]))"
+ "# err_cv.to_csv(\"error_stats_panels_cv.csv\")"
]
},
{
- "cell_type": "code",
- "execution_count": 23,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Validation RMSE (shading): 0.177948\n",
- "Validation RMSE (panelling): 0.093302\n",
- "Validation RMSE (combined): 0.113991\n"
- ]
- }
- ],
"source": [
- "# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
- "print( 'Validation RMSE (shading): %f' %np.sqrt(mse(y_val[:,0],t_val.iloc[:,0])))\n",
- "print( 'Validation RMSE (panelling): %f' %np.sqrt(mse(y_val[:,1],t_val.iloc[:,1])))\n",
- "print( 'Validation RMSE (combined): %f' %np.sqrt(mse((1 - y_val[:,0]) * y_val[:,1],( 1 - t_val.iloc[:,0]) * t_val.iloc[:,1])))"
+ "#### TRAINING OF ALL ESTIMATORS: multiple times, simple validation"
]
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Validation MAE (shading): 0.118576\n",
- "Validation MAE (panelling): 0.055455\n",
- "Validation MAE (combined): 0.082580\n"
+ "Current iteration: 0\n",
+ "\n",
+ "Training KNN\n",
+ "\n",
+ "CPU time: 0.03 seconds\n",
+ "Wall clock time: 0.03 seconds\n",
+ "\n",
+ "Training MSE: 0.015845\n",
+ "\n",
+ "Validation MSE: 0.024554\n",
+ "Validation RMSE: 0.156698\n",
+ "Validation MAE: 0.119903\n",
+ "Validation MBE: -0.000967\n",
+ "Validation R2: 0.486188\n",
+ "\n",
+ "Training LIN\n",
+ "\n",
+ "CPU time: 0.01 seconds\n",
+ "Wall clock time: 0.01 seconds\n",
+ "\n",
+ "Training MSE: 0.018004\n",
+ "\n",
+ "Validation MSE: 0.018218\n",
+ "Validation RMSE: 0.134974\n",
+ "Validation MAE: 0.106054\n",
+ "Validation MBE: -0.001470\n",
+ "Validation R2: 0.618778\n",
+ "\n",
+ "Training RF\n",
+ "\n",
+ "CPU time: 80.86 seconds\n",
+ "Wall clock time: 21.62 seconds\n",
+ "\n",
+ "Training MSE: 0.002038\n",
+ "\n",
+ "Validation MSE: 0.015032\n",
+ "Validation RMSE: 0.122605\n",
+ "Validation MAE: 0.092920\n",
+ "Validation MBE: 0.001716\n",
+ "Validation R2: 0.685448\n",
+ "\n",
+ "Training XGB\n",
+ "\n",
+ "CPU time: 12.91 seconds\n",
+ "Wall clock time: 12.95 seconds\n",
+ "\n",
+ "Training MSE: 0.003628\n",
+ "\n",
+ "Validation MSE: 0.015367\n",
+ "Validation RMSE: 0.123964\n",
+ "Validation MAE: 0.093454\n",
+ "Validation MBE: -0.000113\n",
+ "Validation R2: 0.678435\n",
+ "\n",
+ "Training ELM\n",
+ "\n",
+ "CPU time: 5.02 seconds\n",
+ "Wall clock time: 2.40 seconds\n",
+ "\n",
+ "Training MSE: 0.017343\n",
+ "\n",
+ "Validation MSE: 0.017628\n",
+ "Validation RMSE: 0.132772\n",
+ "Validation MAE: 0.103703\n",
+ "Validation MBE: -0.001046\n",
+ "Validation R2: 0.631111\n",
+ "\n",
+ "Training MLP\n",
+ "\n",
+ "CPU time: 88.62 seconds\n",
+ "Wall clock time: 35.06 seconds\n",
+ "\n",
+ "Training MSE: 0.019094\n",
+ "\n",
+ "Validation MSE: 0.019689\n",
+ "Validation RMSE: 0.140319\n",
+ "Validation MAE: 0.109282\n",
+ "Validation MBE: 0.000616\n",
+ "Validation R2: 0.587987\n",
+ "Current iteration: 1\n",
+ "\n",
+ "Training KNN\n",
+ "\n",
+ "CPU time: 0.03 seconds\n",
+ "Wall clock time: 0.02 seconds\n",
+ "\n",
+ "Training MSE: 0.015787\n",
+ "\n",
+ "Validation MSE: 0.024071\n",
+ "Validation RMSE: 0.155149\n",
+ "Validation MAE: 0.118085\n",
+ "Validation MBE: 0.000395\n",
+ "Validation R2: 0.490574\n",
+ "\n",
+ "Training LIN\n",
+ "\n",
+ "CPU time: 0.01 seconds\n",
+ "Wall clock time: 0.01 seconds\n",
+ "\n",
+ "Training MSE: 0.018061\n",
+ "\n",
+ "Validation MSE: 0.017984\n",
+ "Validation RMSE: 0.134105\n",
+ "Validation MAE: 0.105458\n",
+ "Validation MBE: 0.000720\n",
+ "Validation R2: 0.619396\n",
+ "\n",
+ "Training RF\n",
+ "\n"
+ ]
+ },
+ {
+ "ename": "KeyboardInterrupt",
+ "evalue": "",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m<ipython-input-29-3e7c883816e9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0mtt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mutil\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTimer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0mRF\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_tr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mt_tr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 20\u001b[0m \u001b[0mtt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/sklearn/ensemble/forest.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m 326\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrees\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 327\u001b[0m verbose=self.verbose, class_weight=self.class_weight)\n\u001b[0;32m--> 328\u001b[0;31m for i, t in enumerate(trees))\n\u001b[0m\u001b[1;32m 329\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;31m# Collect newly grown trees\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 787\u001b[0m \u001b[0;31m# consumption.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 788\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_iterating\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 789\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 790\u001b[0m \u001b[0;31m# Make sure that we get a last message telling us we are done\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 791\u001b[0m \u001b[0melapsed_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_start_time\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 697\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 698\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'supports_timeout'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 699\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 700\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 701\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/Applications/anaconda2/envs/py3/lib/python3.6/multiprocessing/pool.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 636\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 637\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 638\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 639\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mready\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 640\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutError\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/Applications/anaconda2/envs/py3/lib/python3.6/multiprocessing/pool.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 633\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 634\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 635\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_event\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 636\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 637\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/Applications/anaconda2/envs/py3/lib/python3.6/threading.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 549\u001b[0m \u001b[0msignaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_flag\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 550\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0msignaled\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 551\u001b[0;31m \u001b[0msignaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cond\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 552\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0msignaled\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 553\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/Applications/anaconda2/envs/py3/lib/python3.6/threading.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 293\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# restore state no matter what (e.g., KeyboardInterrupt)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 294\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 295\u001b[0;31m \u001b[0mwaiter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 296\u001b[0m \u001b[0mgotit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 297\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
- "# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
- "print( 'Validation MAE (shading): %f' %mae(y_val[:,0],t_val.iloc[:,0]))\n",
- "print( 'Validation MAE (panelling): %f' %mae(y_val[:,1],t_val.iloc[:,1]))\n",
- "print( 'Validation MAE (combined): %f' %mae((1 - y_val[:,0]) * y_val[:,1],( 1 - t_val.iloc[:,0]) * t_val.iloc[:,1]))"
+ "# testing all estimators multiple times\n",
+ "err_df = pd.DataFrame(data = np.zeros((len(error), len(estimator))), index = error.keys(), columns = estimator.keys())\n",
+ "N_ITER = 10\n",
+ "\n",
+ "for i in range(N_ITER):\n",
+ " print(\"Current iteration: %d\" %i)\n",
+ " \n",
+ " # create a new random split and test it\n",
+ " training, validation = train_test_split( learning_table, test_size = float(1 / k_CV) )\n",
+ " x_tr = norm.transform( training.loc[ : , feature_names ].values )\n",
+ " t_tr = training.loc[ : , label_name ].values.reshape((-1,))\n",
+ " \n",
+ " estimator = set_estimators()\n",
+ " \n",
+ " for name, RF in estimator.items():\n",
+ " print('\\nTraining %s\\n' %name)\n",
+ "\n",
+ " tt = util.Timer()\n",
+ " RF.fit(x_tr,t_tr)\n",
+ " tt.stop()\n",
+ "\n",
+ " y_tr = RF.predict(x_tr)\n",
+ " print( '\\nTraining MSE: %f\\n' %mse(y_tr,t_tr))\n",
+ "\n",
+ " x_val = norm.transform( validation.loc[ : , feature_names ] )\n",
+ " t_val = validation.loc[ : , label_name].values\n",
+ "\n",
+ " y_val = RF.predict(x_val)\n",
+ "\n",
+ " err_df[name] = err_df[name] + get_errors(t_val, y_val, label = 'Validation')\n",
+ " \n",
+ "err_df = err_df / N_ITER\n",
+ "err_df = pd.concat([err_base, err_df])"
]
},
{
"cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "scrolled": true
- },
+ "execution_count": 18,
+ "metadata": {},
"outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Validation MBE (shading): 0.005875\n",
- "Validation MBE (panelling): -0.002592\n",
- "Validation MBE (combined): -0.005540\n"
+ "ename": "NameError",
+ "evalue": "name 'err_df' is not defined",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m<ipython-input-18-22218743ae02>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0merr_df\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;31mNameError\u001b[0m: name 'err_df' is not defined"
]
}
],
"source": [
- "# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
- "print( 'Validation MBE (shading): %f' %np.mean(y_val[:,0]-t_val.iloc[:,0]))\n",
- "print( 'Validation MBE (panelling): %f' %np.mean(y_val[:,1]-t_val.iloc[:,1]))\n",
- "print( 'Validation MBE (combined): %f' %np.mean((1 - y_val[:,0]) * y_val[:,1]-( 1 - t_val.iloc[:,0]) * t_val.iloc[:,1]))"
+ "err_df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feature importance (all features)"
]
},
{
"cell_type": "code",
"execution_count": 171,
"metadata": {},
"outputs": [],
"source": [
"n_features = len(x.columns)\n",
"importance = np.mean([tree.feature_importances_ for tree in RF.estimators_],axis=0)\n",
"std = np.std([tree.feature_importances_ for tree in RF.estimators_],axis=0)\n",
"ind = np.argsort(importance)[-n_features:]"
]
},
{
"cell_type": "code",
"execution_count": 172,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.20015829 0.41930545 0.02777562 0.05334828 0.03734801 0.04529424\n",
" 0.04283491 0.01341948 0.0254214 0.01620846 0.03105053 0.01006987\n",
" 0.04333051 0.03443496]\n",
"[0.00249603 0.0019589 0.00209606 0.00147573 0.00216068 0.00234554\n",
" 0.00184351 0.00064939 0.00200405 0.00068381 0.00102614 0.00057901\n",
" 0.00125957 0.00099208]\n",
"[11 7 9 8 2 10 13 4 6 12 5 3 0 1]\n"
]
}
],
"source": [
"print(importance)\n",
"print(std)\n",
"print(ind)"
]
},
{
"cell_type": "code",
"execution_count": 173,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['shaded_area_ratio_ftr', 'panelled_area_ratio_ftr', 'NEIGUNG',\n",
" 'AUSRICHTUNG', 'FLAECHE', 'Shape_Length', 'Shape_Ratio', 'n_corners',\n",
" 'panel_tilt', 'GASTW', 'GBAUP', 'GKAT', 'GAREA', 'n_neighbors_100'],\n",
" dtype='object')\n"
]
}
],
"source": [
"# rename features for plotting:\n",
"print(x.columns)\n",
"feature_names = x.columns # np.asarray(['ratio_2m', 'n_shaded', 'n_unshaded', 'n_cells', 'roof_tilt', 'roof_orientation', 'roof_area', 'roof_perim', 'roof_shape_idx', 'building_levels', 'building_period', 'building_category', 'building_area', 'neighbor_count'])"
]
},
{
"cell_type": "code",
"execution_count": 174,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"ax = plt.axes()\n",
"plt.title(\"Feature Importances for Random Forest (%d trees)\\n Validation MSE: %f\" %(n_est, mse(y_val,t_val)))\n",
"plt.barh(range(n_features),importance[ind],\n",
" color=\"r\", xerr=std[ind], alpha=0.4, align=\"center\")\n",
"plt.yticks(range(n_features), feature_names[ind])\n",
"plt.ylim([-1, len(ind)])\n",
"plt.show()\n",
"\n",
"# pos : [left, bottom, width, height]\n",
"ax.set_position( [0.23, 0.11, 0.7, 0.77] )\n",
"plt.savefig('Feature_importances.png', dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# raw data\n",
"plt.figure()\n",
"bins=25\n",
"plt.hist(av_area_ratio_ftr, range=(0,1), bins=bins, facecolor='w',edgecolor='r', alpha=0.5, density=True, label = 'Approx. ratio')\n",
"plt.hist(learning_table.available_area_ratio, range=(0,1), bins=bins, density=True, facecolor='g', alpha=0.2, edgecolor='g', label = '\"Ground truth\"')\n",
"plt.hist(y_val, bins=bins, range=(0,1), density=True, facecolor='b', alpha=0.2, edgecolor='b', label = 'RF - validation')\n",
"plt.legend()\n",
"plt.title('Distribution of available area ratio')\n",
"plt.show()\n",
"plt.savefig('availabe_area_hist.png', dpi=300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cross-validation (alternative to fitting and prediction):"
]
},
{
"cell_type": "code",
"execution_count": 163,
"metadata": {},
"outputs": [],
"source": [
"x_crossval = learning_table.loc[ ind , feature_names ]\n",
"t_crossval = learning_table.loc[ ind , label_name ]"
]
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU time: 1.59 seconds\n",
"Wall clock time: 1390.94 seconds\n"
]
}
],
"source": [
"tt = util.Timer()\n",
"RF_crossval = RandomForestRegressor(n_estimators = n_est, n_jobs = -1)\n",
" \n",
"y_crossval = cross_val_predict(RF_crossval, x_crossval, t_crossval, cv=5, n_jobs=-1)\n",
"mse_crossval = mse(y_crossval, t_crossval)\n",
"\n",
"tt.stop()"
]
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.0190154455691502"
]
},
"execution_count": 165,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mse_crossval"
]
},
{
"cell_type": "code",
"execution_count": 166,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MSE (shading): 0.031725\n",
"Validation MSE (panelling): 0.006306\n",
"Validation MSE (combined): 0.011516\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation MSE (shading): %f' %mse(y_crossval[:,0],t_crossval.iloc[:,0]))\n",
"print( 'Validation MSE (panelling): %f' %mse(y_crossval[:,1],t_crossval.iloc[:,1]))\n",
"print( 'Validation MSE (combined): %f' %mse((1 - y_crossval[:,0]) * y_crossval[:,1],( 1 - t_crossval.iloc[:,0]) * t_crossval.iloc[:,1]))"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation RMSE (shading): 0.178115\n",
"Validation RMSE (panelling): 0.079411\n",
"Validation RMSE (combined): 0.107312\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation RMSE (shading): %f' %np.sqrt(mse(y_crossval[:,0],t_crossval.iloc[:,0])))\n",
"print( 'Validation RMSE (panelling): %f' %np.sqrt(mse(y_crossval[:,1],t_crossval.iloc[:,1])))\n",
"print( 'Validation RMSE (combined): %f' %np.sqrt(mse((1 - y_crossval[:,0]) * y_crossval[:,1],( 1 - t_crossval.iloc[:,0]) * t_crossval.iloc[:,1])))"
]
},
{
"cell_type": "code",
"execution_count": 168,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MAE (shading): 0.118970\n",
"Validation MAE (panelling): 0.046132\n",
"Validation MAE (combined): 0.077618\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation MAE (shading): %f' %mae(y_crossval[:,0],t_crossval.iloc[:,0]))\n",
"print( 'Validation MAE (panelling): %f' %mae(y_crossval[:,1],t_crossval.iloc[:,1]))\n",
"print( 'Validation MAE (combined): %f' %mae((1 - y_crossval[:,0]) * y_crossval[:,1],( 1 - t_crossval.iloc[:,0]) * t_crossval.iloc[:,1]))"
]
},
{
"cell_type": "code",
"execution_count": 169,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MBE (shading): 0.006775\n",
"Validation MBE (panelling): -0.002807\n",
"Validation MBE (combined): -0.005909\n"
]
}
],
"source": [
"# FOR MULTIPLE TARGETS (shaded_area_ratio_tgt, panelled_area_ratio_tgt)\n",
"print( 'Validation MBE (shading): %f' %np.mean(y_crossval[:,0]-t_crossval.iloc[:,0]))\n",
"print( 'Validation MBE (panelling): %f' %np.mean(y_crossval[:,1]-t_crossval.iloc[:,1]))\n",
"print( 'Validation MBE (combined): %f' %np.mean((1 - y_crossval[:,0]) * y_crossval[:,1]-( 1 - t_crossval.iloc[:,0]) * t_crossval.iloc[:,1]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Validation with leaving features out"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"shuffle = np.random.permutation(len(learning_table))\n",
"shuffled_table = learning_table.loc[ shuffle , :]"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
"fixed_features = ['fully_shaded_ratio_2m', 'NEIGUNG', 'perim_ratio', 'AUSRICHTUN']\n",
"maybe_features = ['GAREA', 'SHAPE_Leng','GBAUP', 'GASTW'] # TAKEN OUT FLAECHE (lowest marginal improvement)\n",
"test_features = np.hstack([fixed_features, maybe_features])\n",
"\n",
"T = shuffled_table.loc[ : , label_name ]"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Leaving out GAREA: 0.026506\n",
"Leaving out SHAPE_Leng: 0.026597\n",
"Leaving out GBAUP: 0.026666\n",
"Leaving out GASTW: 0.026386\n"
]
}
],
"source": [
"MSE_leaveout = np.zeros(len(maybe_features))\n",
"n_est = 500\n",
"tree_depth = 100\n",
"\n",
"for drop_feature in maybe_features:\n",
" # leave one test feature out\n",
" X = shuffled_table.loc[ : , test_features ].drop(drop_feature, axis=1)\n",
" \n",
" RF_test = RandomForestRegressor(n_jobs = -1) # n_estimators = n_est, max_depth = tree_depth, \n",
" Y = cross_val_predict(RF_test, X, T, cv=5, n_jobs=-1)\n",
" \n",
" print(\"Leaving out %s: %f\" %(drop_feature, mse(Y, T)))\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cross-validation and feature selection"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
"n_crossval = 10\n",
"all_features_sorted = np.asarray(all_features)[ind]\n",
"MSE = np.zeros(n_features)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RF_test = RandomForestRegressor(n_estimators = n_est, max_depth = tree_depth, n_jobs = -1)\n",
"Y = cross_val_predict(RF_test, X1, T, cv=5, n_jobs=-1)\n",
"print(mse(Y, T))"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Iteration 1 out of 14\n",
"CPU time: 0.37 seconds\n",
"Wall clock time: 134.33 seconds\n",
"Iteration 2 out of 14\n",
"CPU time: 0.43 seconds\n",
"Wall clock time: 142.81 seconds\n",
"Iteration 3 out of 14\n",
"CPU time: 0.42 seconds\n",
"Wall clock time: 128.43 seconds\n",
"Iteration 4 out of 14\n",
"CPU time: 0.36 seconds\n",
"Wall clock time: 115.09 seconds\n",
"Iteration 5 out of 14\n",
"CPU time: 0.34 seconds\n",
"Wall clock time: 110.06 seconds\n",
"Iteration 6 out of 14\n",
"CPU time: 0.25 seconds\n",
"Wall clock time: 104.81 seconds\n",
"Iteration 7 out of 14\n",
"CPU time: 0.42 seconds\n",
"Wall clock time: 95.86 seconds\n",
"Iteration 8 out of 14\n",
"CPU time: 0.23 seconds\n",
"Wall clock time: 88.49 seconds\n",
"Iteration 9 out of 14\n",
"CPU time: 0.20 seconds\n",
"Wall clock time: 72.49 seconds\n",
"Iteration 10 out of 14\n",
"CPU time: 0.19 seconds\n",
"Wall clock time: 56.79 seconds\n",
"Iteration 11 out of 14\n",
"CPU time: 0.18 seconds\n",
"Wall clock time: 42.77 seconds\n",
"Iteration 12 out of 14\n",
"CPU time: 0.17 seconds\n",
"Wall clock time: 36.34 seconds\n",
"Iteration 13 out of 14\n",
"CPU time: 0.15 seconds\n",
"Wall clock time: 10.90 seconds\n",
"Iteration 14 out of 14\n",
"CPU time: 0.15 seconds\n",
"Wall clock time: 5.84 seconds\n"
]
}
],
"source": [
"shuffle = np.random.permutation(len(learning_table))\n",
"shuffled_table = learning_table.loc[ shuffle , :]\n",
"\n",
"tt = util.Timer()\n",
"for i in range(n_features):\n",
" \n",
" print('Iteration %d out of %d' %(i+1, n_features))\n",
"\n",
" X = shuffled_table.loc[ : , all_features_sorted[ i : ] ]\n",
" t_cv = shuffled_table.loc[ : , label_name ]\n",
"\n",
" RF_CV = RandomForestRegressor(n_estimators = n_est, max_depth = tree_depth, n_jobs = -1)\n",
" y_CV = cross_val_predict(RF_CV, X, t_cv, cv=5, n_jobs=-1)\n",
"\n",
" MSE[i] = mse(y_CV, t_cv)\n",
" \n",
" tt.restart()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Visualisation"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.bar(range(n_features,0,-1), MSE)\n",
"plt.title('Mean-squared error for different numbers of features')\n",
"plt.xlabel('Number of features')\n",
"plt.ylabel('Mean-squared error')\n",
"plt.show()\n",
"plt.savefig('MSE_varying_features.png', dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.02356106 0.02355203 0.02354303 0.0235818 0.02361018 0.02373792\n",
" 0.02427768 0.02517083 0.02510396 0.02596514 0.02861912 0.03549382\n",
" 0.03489173 0.03438738]\n"
]
}
],
"source": [
"print(MSE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(min(MSE)) # --> 10 features minimum, nearly the same error with 8 features"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"bins=20\n",
"plt.hist(learning_table.available_area_ratio,bins=bins, range=(0,1), density=True, facecolor='r', alpha=0.2, edgecolor='r', label = 'Available area ratio')\n",
"plt.hist(y, bins=bins, range=(0,1), density=True, facecolor='b', alpha=0.2, edgecolor='b', label = 'training')\n",
"plt.hist(y_val, bins=bins, range=(0,1), density=True, facecolor='g', alpha=0.2, edgecolor='g', label = 'RF - validation')\n",
"plt.legend()\n",
"plt.title('Distribution of predicted data')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plot random sample\n",
"Plot original value and corrected value for different roof IDs (random)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"validation['prediction'] = ( 1 - y_val[:,0] ) * y_val[:,1]\n",
"validation_sample = validation.sample(30)"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DF_UID', 'FLAECHE', 'NEIGUNG', 'AUSRICHTUNG', 'XCOORD', 'YCOORD',\n",
" 'Shape_Length', 'Shape_Area', 'GWR_EGID', 'GBAUP', 'GKAT', 'GAREA',\n",
" 'GASTW', 'GKODX', 'GKODY', 'Shape_Ratio', 'n_neighbors_100',\n",
" 'Estim_build_area', 'n_corners', 'panel_tilt', 'best_align',\n",
" 'panelled_area_ratio_ftr', 'panelled_area_ratio_tgt',\n",
" 'shaded_area_ratio_ftr', 'shaded_area_ratio_tgt', 'tilt_cat',\n",
" 'orientation_cat', 'available_area_ratio', 'prediction'],\n",
" dtype='object')"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"validation_sample.columns"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Text(0.5,1,'Performance of available area ratio estimation')"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plt.figure()\n",
"plt.scatter(range(len(validation_sample)), (1-validation_sample.shaded_area_ratio_ftr) * validation_sample.panelled_area_ratio_ftr, facecolor='w',edgecolor='r', alpha=0.7, label = 'Approx. ratio')\n",
"plt.scatter(range(len(validation_sample)), validation_sample.available_area_ratio,facecolor='g', alpha=0.5, edgecolor='g', label = 'Target ratio')\n",
"plt.scatter(range(len(validation_sample)), validation_sample.prediction,facecolor='b', alpha=0.5, edgecolor='b', label = 'Corrected ratio')\n",
"plt.legend()\n",
"plt.xlabel('Rooftop sample (random)')\n",
"plt.ylabel('Available area ratio')\n",
"plt.title('Performance of available area ratio estimation')\n",
"# plt.savefig('random_sample_available_area.png', dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div id='d61e12df-2c70-4f85-8686-5501feddc104'></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Text(0,0.5,'orientation')"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plt.figure(figsize=(10,3))\n",
"\n",
"plt.subplot(131)\n",
"var = horizon_50cm\n",
"plt.scatter(var.NEIGUNG, var.AUSRICHTUN, c=(var.fully_shaded_ratio), s=2)\n",
"plt.xlabel('tilt')\n",
"plt.ylabel('orientation')\n",
"\n",
"plt.subplot(132)\n",
"var = x_crossval\n",
"plt.scatter(var.NEIGUNG, var.AUSRICHTUN, c=(y_crossval), s=3)\n",
"plt.xlabel('tilt')\n",
"plt.ylabel('orientation')\n",
"\n",
"plt.subplot(133)\n",
"var = horizon_2m\n",
"plt.scatter(var.NEIGUNG, var.AUSRICHTUN, c=(var.fully_shaded_ratio), s=2)\n",
"# plt.colorbar()\n",
"plt.xlabel('tilt')\n",
"plt.ylabel('orientation')"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Text(0,0.5,'orientation')"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var = horizon_2m\n",
"plt.figure()\n",
"plt.scatter(var.NEIGUNG, var.AUSRICHTUN, c=(var.fully_shaded_ratio), s=3)\n",
"#var.mean_06_15h.hist(bins=100, range=(0,1))\n",
"plt.colorbar()\n",
"plt.xlabel('tilt')\n",
"plt.ylabel('orientation')"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Text(0,0.5,'orientation')"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var = x_crossval\n",
"plt.figure()\n",
"plt.scatter(var.NEIGUNG, var.AUSRICHTUN, c=(y_crossval), s=3)\n",
"#var.mean_06_15h.hist(bins=100, range=(0,1))\n",
"plt.colorbar()\n",
"plt.xlabel('tilt')\n",
"plt.ylabel('orientation')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Available_area/Roof_image_missingSP.pdf b/Available_area/Roof_image_missingSP.pdf
new file mode 100644
index 0000000..5f5f9ef
Binary files /dev/null and b/Available_area/Roof_image_missingSP.pdf differ
diff --git a/Available_area/Roof_image_withSP.pdf b/Available_area/Roof_image_withSP.pdf
new file mode 100644
index 0000000..858238c
Binary files /dev/null and b/Available_area/Roof_image_withSP.pdf differ
diff --git a/Available_area/error_stats.xlsx b/Available_area/error_stats.xlsx
index 7fa3f18..8d1f625 100644
Binary files a/Available_area/error_stats.xlsx and b/Available_area/error_stats.xlsx differ
diff --git a/Available_area/error_stats_panels_cv.csv b/Available_area/error_stats_panels_cv.csv
new file mode 100644
index 0000000..7df1e34
--- /dev/null
+++ b/Available_area/error_stats_panels_cv.csv
@@ -0,0 +1,9 @@
+,base,MBE+,KNN,LIN,RF,XGB,ELM,MLP
+MSE,0.052,0.023,0.024,0.018,0.015,0.015,0.018,0.023
+RMSE,0.229,0.151,0.156,0.134,0.121,0.123,0.132,0.150
+MAE,0.171,0.122,0.119,0.105,0.092,0.092,0.103,0.118
+MBE,-0.170,-0.004,0.000,0.000,0.003,0.001,0.000,-0.004
+R2,-0.100,0.523,0.493,0.622,0.691,0.682,0.633,0.529
+,,,,,,,,
+,,,,,,,,
+,,,,,*500 trees,"*500 trees, depth 10","*N100,E500","*(500,400,200)"
\ No newline at end of file
diff --git a/Available_area/fill_missing_data.ipynb b/Available_area/fill_missing_data.ipynb
index 4ef3db9..af2ecad 100644
--- a/Available_area/fill_missing_data.ipynb
+++ b/Available_area/fill_missing_data.ipynb
@@ -1,613 +1,613 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" from ._conv import register_converters as _register_converters\n"
]
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import os\n",
"import sys\n",
"import util\n",
"\n",
"import scipy.spatial as spatial"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"ROOFTOP_FILE = '/Users/alinawalch/Documents/EPFL/data/rooftops/ROOFS_CH_merged.csv'\n",
"SHADE_2m_FILE = '/Users/alinawalch/Documents/EPFL/data/rooftops/shading_stats_final/CH_shading_in_GVA.csv'\n",
"SHADE_50cm_FILE = '/Users/alinawalch/Documents/EPFL/data/rooftops/shading_stats_final/GVA_shading.csv'"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Applications/anaconda2/envs/py3/lib/python3.6/site-packages/numpy/lib/arraysetops.py:472: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
" mask |= (ar1 == a)\n"
]
}
],
"source": [
"## === MERGE INFORMATION OF ROOFS & SHADING ==\n",
"rooftops = pd.read_csv( ROOFTOP_FILE , index_col=0 )"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"All columns of rooftop dataframe:\n"
]
},
{
"data": {
"text/plain": [
"Index(['DF_UID', 'FLAECHE', 'NEIGUNG', 'AUSRICHTUNG', 'XCOORD', 'YCOORD',\n",
" 'Shape_Length', 'Shape_Area', 'GWR_EGID', 'GBAUP', 'GKAT', 'GAREA',\n",
" 'GASTW', 'GKODX', 'GKODY', 'Shape_Ratio', 'n_neighbors_100',\n",
" 'Estim_build_area'],\n",
" dtype='object')"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print('All columns of rooftop dataframe:')\n",
"rooftops.columns"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Length of rooftop dataset:\n"
]
},
{
"data": {
"text/plain": [
"9970046"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print('Length of rooftop dataset:')\n",
"len(rooftops)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Missing data ratio:\n"
]
},
{
"data": {
"text/plain": [
"0.0"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"feature = 'GAREA'\n",
"\n",
"print('Missing data ratio:')\n",
"1 - len(rooftops.dropna(subset=[feature])) / len(rooftops)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Handle missing values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 1: fill missing GWR data"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"rooftops_filled = rooftops"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"GWR_COLUMNS = ['GWR_EGID', 'GBAUP', 'GKAT', 'GASTW', 'GKODX', 'GKODY', 'n_neighbors_100']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Part 1.1 : replace GAREA with Estim_build_area wherever it is missing"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"idx_wo_GAREA = pd.isnull(rooftops.GAREA)\n",
"rooftops_filled.loc[idx_wo_GAREA,'GAREA'] = rooftops_filled.loc[idx_wo_GAREA,'Estim_build_area']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Part 1.2 : identify buildings with all available GWR data, and buildings with missing GWR_EGID"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"buildings_with_available_GWR = rooftops.loc[:,GWR_COLUMNS].dropna().groupby('GWR_EGID').mean()"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# create GWR reference map and sort it by x and y coordinates (for merging)\n",
"GWR_reference_to_merge = buildings_with_available_GWR.reset_index().loc[:,['GWR_EGID', 'GKODX', 'GKODY']]\n",
"GWR_reference_to_merge.rename( { 'GWR_EGID' : 'GWR_EGID_near',\n",
" 'GKODX' : 'GKODX_near' ,\n",
" 'GKODY' : 'GKODY_near'\n",
" }, axis = 1, inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# identify rooftops with at least one missing datapoint and sort by x and y coordinates (for merging)\n",
"rooftops_with_missing_data = rooftops.loc[rooftops.isnull().max(axis = 1),:].reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2706775"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(rooftops_with_missing_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Part 1.3 Merge nearest building coordinates with all data onto roofs with missing data"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"GWR_ref = spatial.KDTree(GWR_reference_to_merge.loc[:,['GKODX_near','GKODY_near']])"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU time: 489.51 seconds\n",
"Wall clock time: 8332.35 seconds\n"
]
}
],
"source": [
"tt = util.Timer()\n",
"dist, idx = GWR_ref.query(rooftops_with_missing_data.loc[:,['XCOORD', 'YCOORD']])\n",
"tt.stop()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Part 1.4 Merge information from nearest building based on idx / DF_UID"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"rooftops_with_missing_data['GWR_EGID_near'] = GWR_reference_to_merge.GWR_EGID_near[idx].values"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Filling column GWR_EGID\n",
"Filling column GBAUP\n",
"Filling column GKAT\n",
"Filling column GASTW\n",
"Filling column GKODX\n",
"Filling column GKODY\n",
"Filling column n_neighbors_100\n"
]
}
],
"source": [
"for column in GWR_COLUMNS:\n",
" # get index of rooftops with NaN for current column\n",
" nan_idx = rooftops_with_missing_data[column].isnull()\n",
" \n",
" if column == 'GWR_EGID':\n",
" GWR_fill = rooftops_with_missing_data.loc[ nan_idx, 'GWR_EGID_near' ]\n",
" else:\n",
" GWR_fill = buildings_with_available_GWR.loc[ rooftops_with_missing_data.loc[ nan_idx, 'GWR_EGID_near' ], column ]\n",
" \n",
" rooftops_with_missing_data.loc[ nan_idx, column ] = GWR_fill.values\n",
" print('Filling column %s' %column)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Part 1.5 Replace data in rooftop dataframe"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"collapsed": true,
"scrolled": true
},
"outputs": [],
"source": [
"replacement_idx = rooftops_with_missing_data['index'].values"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {
"collapsed": true,
"scrolled": true
},
"outputs": [],
"source": [
"rooftops_filled.loc[replacement_idx, :] = rooftops_with_missing_data.iloc[:,1:-1].values # NEED .values here as otherwise matching is performed by index - so NaNs are introduced"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Part 1.6 Save intermediate files"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {
"collapsed": true,
"scrolled": false
},
"outputs": [],
"source": [
"rooftops_filled.to_csv( '/Users/alinawalch/Documents/EPFL/data/rooftops/ROOFS_CH_replaced.csv' )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 2: Fill 2m_shaded_ratio\n",
"NOTE: SHOULD PERFORM THIS WITH ALL DATA!! (merged shading file on cluster)\n",
"\n",
"Implemented in DOM/categorize_shading_2m.py"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"shade_2m = pd.read_csv( SHADE_2m_FILE )\n",
"rooftops_filled = pd.read_csv( '/Users/alinawalch/Documents/EPFL/data/rooftops/ROOFS_CH_replaced.csv' )\n",
"\n",
"shade_2m_merged = shade_2m.merge( rooftops_filled.loc[:,['DF_UID', 'NEIGUNG', 'AUSRICHTUNG']] , on = 'DF_UID', how = 'left')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Part 2.1 : Group shaded_area_ratio by tilt & orientation\n",
"Bins for tilt:\n",
"- flat roofs: tilt < 5\n",
"- shallow tilt: 5 < tilt < 20\n",
"- medium tilt: 20 < tilt < 45\n",
"- steep tilt: 45 < tilt < 90\n",
"\n",
"Bins for orientation:\n",
"- South facing: abs(orientation) < 22.5\n",
"- South-west and south-east facing: 22.5 < abs(orientation) < 67.5\n",
"- East and west-facing: 67.5 < abs(orientation) < 112.5\n",
"- North-facing: abs(orientation) > 112.5"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def get_tilt_category(column):\n",
" # define different categories of NEIGUNG (= rooftop tilt)\n",
" if column.NEIGUNG < 5 : return 'flat'\n",
" elif column.NEIGUNG < 20 : return 'shallow_tilt' \n",
" elif column.NEIGUNG < 45 : return 'medium_tilt' \n",
" else : return 'steep_tilt' \n",
"\n",
"def get_orientation_category(column):\n",
" # define different categories of AUSRICHTUNG (= rooftop orientation, 0 = S, 90 = W, -90 = E)\n",
" if abs(column.AUSRICHTUNG) < 22.5 : return 'S'\n",
" elif column.AUSRICHTUNG > 22.5 and column.AUSRICHTUNG < 67.5 : return 'SW'\n",
" elif column.AUSRICHTUNG < -22.5 and column.AUSRICHTUNG > -67.5 : return 'SE'\n",
" elif column.AUSRICHTUNG > 67.5 and column.AUSRICHTUNG < 112.5 : return 'W'\n",
" elif column.AUSRICHTUNG < -67.5 and column.AUSRICHTUNG > -112.5 : return 'E' \n",
" else : return 'N'"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"shade_2m_merged.loc[: , 'tilt_cat'] = shade_2m_merged.apply( get_tilt_category , axis = 1 )\n",
"shade_2m_merged.loc[: , 'orientation_cat'] = shade_2m_merged.apply( get_orientation_category, axis = 1 )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Part 2.2 : Calculate mean values of shaded_area_ratio for each tilt, orientation category pair"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"shade_2m_merged.drop(['DF_UID', 'NEIGUNG', 'AUSRICHTUNG'], axis = 1, inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"shading_2m_groups = shade_2m_merged.groupby(['orientation_cat', 'tilt_cat'])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"shading_2m_cats = shading_2m_groups.mean()\n",
"shading_2m_counts = shading_2m_groups.count()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"shading_2m_cats.loc[: , 'roof_count'] = shading_2m_counts.iloc[:,0].values"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"shading_2m_cats.to_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/shading_stats_final/CH_shading_in_GVA_cats.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Part 2.3 : Replace NaN values by mean values (DO WHEN CREATING FEATURE TABLES)\n",
"Steps:\n",
"- Merge fully_shaded_factor on rooftops\n",
"- Identify rooftops with missing shading data (drop all others)\n",
"- Compute categories for missing shading data\n",
"- Merge category table on missing shading data (how = 'left')\n",
"- Join with rest of table"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Part 3: Split data into training and query sets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.5"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Available_area/prepare_area_training.ipynb b/Available_area/prepare_area_training.ipynb
index 7ad954f..d3b7d25 100644
--- a/Available_area/prepare_area_training.ipynb
+++ b/Available_area/prepare_area_training.ipynb
@@ -1,3875 +1,3875 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import geopandas as gpd\n",
"import pandas as pd\n",
"import numpy as np\n",
"from rooftop_handling import get_tilt_category, get_orientation_category\n",
"\n",
"import os\n",
"import time\n",
"\n",
"import matplotlib\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# General roof information\n",
"GVA_roofs_w_shade = pd.read_csv(\"/Users/alinawalch/Documents/EPFL/data/rooftops/ROOFS_GVA_replaced.csv\")\n",
"GVA_roof_corners = pd.read_csv(\"/Users/alinawalch/Documents/EPFL/data/rooftops/SOLKAT_DACH_GVA_ncorners.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# shading information\n",
"GVA_shade_tgt = pd.read_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/shading_stats_final/GVA_shading.csv')\n",
"GVA_shade_ftr = pd.read_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/shading_stats_final/GVA_shading_2m.csv')\n",
"\n",
"# shading information for filling missing features (classified shading data)\n",
"CH_shade_cats = pd.read_csv(\"/Users/alinawalch/Documents/EPFL/data/rooftops/shading_stats_final/CH_shading_categories.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# panel fitting information\n",
"GVA_panels_tgt = pd.read_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/panel_stats_final/panelled_area_stats_GVA_best.csv')\n",
"CH_panels_ftr = pd.read_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/panel_stats_final/panelled_area_stats_CH_best.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Merge roofs with shading info and roofs with panelled area info"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 1: get roofs for training set\n",
"By merging the roofs_w_shade and roofs_w_panels, we get a dataframe that contains all rooftops for which 50cm shading information is available, and who's footprint overlaps with the SITG roof information, for which superstructure information is available. To complement the superstructure information, all roof surfaces smaller than 8m^2 in SITG were also categorized as superstructures."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"training_roofs = pd.merge(GVA_roofs_w_shade, GVA_roof_corners, how = 'inner', on = 'DF_UID')"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>XCOORD</th>\n",
" <th>YCOORD</th>\n",
" <th>Shape_Length</th>\n",
" <th>Shape_Area</th>\n",
" <th>GWR_EGID</th>\n",
" <th>GBAUP</th>\n",
" <th>GKAT</th>\n",
" <th>GAREA</th>\n",
" <th>GASTW</th>\n",
" <th>GKODX</th>\n",
" <th>GKODY</th>\n",
" <th>Shape_Ratio</th>\n",
" <th>n_neighbors_100</th>\n",
" <th>Estim_build_area</th>\n",
" <th>n_corners</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4817410.0</td>\n",
" <td>71.487047</td>\n",
" <td>10.0</td>\n",
" <td>127.0</td>\n",
" <td>503491.325015</td>\n",
" <td>134197.490397</td>\n",
" <td>33.936595</td>\n",
" <td>70.390620</td>\n",
" <td>295070969.0</td>\n",
" <td>8011.0</td>\n",
" <td>1021.0</td>\n",
" <td>44.000000</td>\n",
" <td>2.0</td>\n",
" <td>503491.0</td>\n",
" <td>134198.0</td>\n",
" <td>0.474724</td>\n",
" <td>3.0</td>\n",
" <td>70.400998</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4817425.0</td>\n",
" <td>36.859836</td>\n",
" <td>37.0</td>\n",
" <td>33.0</td>\n",
" <td>503503.812619</td>\n",
" <td>134131.833522</td>\n",
" <td>28.208608</td>\n",
" <td>29.339500</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>152.000000</td>\n",
" <td>2.0</td>\n",
" <td>503507.0</td>\n",
" <td>134137.0</td>\n",
" <td>0.765294</td>\n",
" <td>3.0</td>\n",
" <td>194.813319</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4817426.0</td>\n",
" <td>51.333864</td>\n",
" <td>31.0</td>\n",
" <td>-57.0</td>\n",
" <td>503509.783165</td>\n",
" <td>134135.282805</td>\n",
" <td>40.053428</td>\n",
" <td>44.043504</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>152.000000</td>\n",
" <td>2.0</td>\n",
" <td>503507.0</td>\n",
" <td>134137.0</td>\n",
" <td>0.780254</td>\n",
" <td>3.0</td>\n",
" <td>194.813319</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4817427.0</td>\n",
" <td>36.861447</td>\n",
" <td>37.0</td>\n",
" <td>-147.0</td>\n",
" <td>503510.594159</td>\n",
" <td>134142.188986</td>\n",
" <td>28.210273</td>\n",
" <td>29.341346</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>152.000000</td>\n",
" <td>2.0</td>\n",
" <td>503507.0</td>\n",
" <td>134137.0</td>\n",
" <td>0.765306</td>\n",
" <td>3.0</td>\n",
" <td>194.813319</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4817428.0</td>\n",
" <td>81.256555</td>\n",
" <td>28.0</td>\n",
" <td>123.0</td>\n",
" <td>503504.226918</td>\n",
" <td>134138.960671</td>\n",
" <td>37.840077</td>\n",
" <td>71.574129</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>152.000000</td>\n",
" <td>2.0</td>\n",
" <td>503507.0</td>\n",
" <td>134137.0</td>\n",
" <td>0.465686</td>\n",
" <td>3.0</td>\n",
" <td>194.813319</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>4817429.0</td>\n",
" <td>11.397236</td>\n",
" <td>27.0</td>\n",
" <td>-144.0</td>\n",
" <td>503512.070989</td>\n",
" <td>134135.795686</td>\n",
" <td>15.417311</td>\n",
" <td>10.154872</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>152.000000</td>\n",
" <td>2.0</td>\n",
" <td>503507.0</td>\n",
" <td>134137.0</td>\n",
" <td>1.352724</td>\n",
" <td>3.0</td>\n",
" <td>194.813319</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>4817430.0</td>\n",
" <td>11.262413</td>\n",
" <td>27.0</td>\n",
" <td>31.0</td>\n",
" <td>503510.350525</td>\n",
" <td>134133.126967</td>\n",
" <td>15.346288</td>\n",
" <td>10.045172</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>152.000000</td>\n",
" <td>2.0</td>\n",
" <td>503507.0</td>\n",
" <td>134137.0</td>\n",
" <td>1.362611</td>\n",
" <td>3.0</td>\n",
" <td>194.813319</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>4817431.0</td>\n",
" <td>174.501987</td>\n",
" <td>31.0</td>\n",
" <td>-147.0</td>\n",
" <td>503503.978942</td>\n",
" <td>134181.171146</td>\n",
" <td>59.815925</td>\n",
" <td>149.165008</td>\n",
" <td>1004088.0</td>\n",
" <td>8011.0</td>\n",
" <td>1021.0</td>\n",
" <td>206.000000</td>\n",
" <td>2.0</td>\n",
" <td>503503.0</td>\n",
" <td>134179.0</td>\n",
" <td>0.342781</td>\n",
" <td>3.0</td>\n",
" <td>298.817334</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>4817432.0</td>\n",
" <td>174.108293</td>\n",
" <td>31.0</td>\n",
" <td>33.0</td>\n",
" <td>503500.517066</td>\n",
" <td>134175.889168</td>\n",
" <td>59.775896</td>\n",
" <td>148.702405</td>\n",
" <td>1004088.0</td>\n",
" <td>8011.0</td>\n",
" <td>1021.0</td>\n",
" <td>206.000000</td>\n",
" <td>2.0</td>\n",
" <td>503503.0</td>\n",
" <td>134179.0</td>\n",
" <td>0.343326</td>\n",
" <td>3.0</td>\n",
" <td>298.817334</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>4817433.0</td>\n",
" <td>69.216255</td>\n",
" <td>26.0</td>\n",
" <td>33.0</td>\n",
" <td>503510.917446</td>\n",
" <td>134191.713704</td>\n",
" <td>45.633223</td>\n",
" <td>61.997846</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>1021.0</td>\n",
" <td>100.000000</td>\n",
" <td>2.0</td>\n",
" <td>503512.0</td>\n",
" <td>134193.0</td>\n",
" <td>0.659285</td>\n",
" <td>3.0</td>\n",
" <td>107.414054</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>4817434.0</td>\n",
" <td>26.716480</td>\n",
" <td>31.0</td>\n",
" <td>-147.0</td>\n",
" <td>503517.020358</td>\n",
" <td>134191.118711</td>\n",
" <td>23.687927</td>\n",
" <td>22.959133</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>1021.0</td>\n",
" <td>100.000000</td>\n",
" <td>2.0</td>\n",
" <td>503512.0</td>\n",
" <td>134193.0</td>\n",
" <td>0.886641</td>\n",
" <td>3.0</td>\n",
" <td>107.414054</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>4817435.0</td>\n",
" <td>26.018729</td>\n",
" <td>31.0</td>\n",
" <td>-147.0</td>\n",
" <td>503507.806109</td>\n",
" <td>134197.114437</td>\n",
" <td>23.199036</td>\n",
" <td>22.360589</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>1021.0</td>\n",
" <td>100.000000</td>\n",
" <td>2.0</td>\n",
" <td>503512.0</td>\n",
" <td>134193.0</td>\n",
" <td>0.891628</td>\n",
" <td>3.0</td>\n",
" <td>107.414054</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>4817436.0</td>\n",
" <td>13.309012</td>\n",
" <td>33.0</td>\n",
" <td>123.0</td>\n",
" <td>503512.471353</td>\n",
" <td>134196.622116</td>\n",
" <td>15.096068</td>\n",
" <td>11.164928</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>1021.0</td>\n",
" <td>100.000000</td>\n",
" <td>2.0</td>\n",
" <td>503512.0</td>\n",
" <td>134193.0</td>\n",
" <td>1.134274</td>\n",
" <td>3.0</td>\n",
" <td>22.613146</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>4817437.0</td>\n",
" <td>13.503089</td>\n",
" <td>32.0</td>\n",
" <td>-57.0</td>\n",
" <td>503514.586126</td>\n",
" <td>134195.245953</td>\n",
" <td>15.198331</td>\n",
" <td>11.396747</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>1021.0</td>\n",
" <td>100.000000</td>\n",
" <td>2.0</td>\n",
" <td>503512.0</td>\n",
" <td>134193.0</td>\n",
" <td>1.125545</td>\n",
" <td>3.0</td>\n",
" <td>22.613146</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>4817438.0</td>\n",
" <td>130.038144</td>\n",
" <td>26.0</td>\n",
" <td>-144.0</td>\n",
" <td>503951.193324</td>\n",
" <td>134195.306644</td>\n",
" <td>64.584475</td>\n",
" <td>117.365353</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>1030.0</td>\n",
" <td>213.000000</td>\n",
" <td>2.0</td>\n",
" <td>503949.0</td>\n",
" <td>134194.0</td>\n",
" <td>0.496658</td>\n",
" <td>5.0</td>\n",
" <td>230.552584</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>4817439.0</td>\n",
" <td>126.475108</td>\n",
" <td>26.0</td>\n",
" <td>36.0</td>\n",
" <td>503948.788882</td>\n",
" <td>134191.981218</td>\n",
" <td>64.301850</td>\n",
" <td>113.406403</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>1030.0</td>\n",
" <td>213.000000</td>\n",
" <td>2.0</td>\n",
" <td>503949.0</td>\n",
" <td>134194.0</td>\n",
" <td>0.508415</td>\n",
" <td>5.0</td>\n",
" <td>230.552584</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>4817440.0</td>\n",
" <td>47.540096</td>\n",
" <td>37.0</td>\n",
" <td>-144.0</td>\n",
" <td>503996.949571</td>\n",
" <td>134161.244934</td>\n",
" <td>27.081498</td>\n",
" <td>37.981483</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>66.000000</td>\n",
" <td>3.0</td>\n",
" <td>504005.0</td>\n",
" <td>134153.0</td>\n",
" <td>0.569656</td>\n",
" <td>7.0</td>\n",
" <td>68.070576</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>4817441.0</td>\n",
" <td>35.497241</td>\n",
" <td>32.0</td>\n",
" <td>36.0</td>\n",
" <td>503994.863047</td>\n",
" <td>134158.375583</td>\n",
" <td>25.402378</td>\n",
" <td>29.945648</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>66.000000</td>\n",
" <td>3.0</td>\n",
" <td>504005.0</td>\n",
" <td>134153.0</td>\n",
" <td>0.715616</td>\n",
" <td>7.0</td>\n",
" <td>68.070576</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>4817442.0</td>\n",
" <td>49.847956</td>\n",
" <td>38.0</td>\n",
" <td>36.0</td>\n",
" <td>504003.468131</td>\n",
" <td>134152.306087</td>\n",
" <td>29.835723</td>\n",
" <td>39.429900</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>66.000000</td>\n",
" <td>3.0</td>\n",
" <td>504005.0</td>\n",
" <td>134153.0</td>\n",
" <td>0.598535</td>\n",
" <td>7.0</td>\n",
" <td>96.433564</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>4817444.0</td>\n",
" <td>12.607657</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>503991.439805</td>\n",
" <td>134163.317363</td>\n",
" <td>17.745074</td>\n",
" <td>12.607657</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>66.000000</td>\n",
" <td>3.0</td>\n",
" <td>504005.0</td>\n",
" <td>134153.0</td>\n",
" <td>1.407484</td>\n",
" <td>7.0</td>\n",
" <td>12.607657</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>4817448.0</td>\n",
" <td>34.963254</td>\n",
" <td>28.0</td>\n",
" <td>-145.0</td>\n",
" <td>503922.898105</td>\n",
" <td>134216.939359</td>\n",
" <td>29.062031</td>\n",
" <td>30.741322</td>\n",
" <td>1004089.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>57.000000</td>\n",
" <td>2.0</td>\n",
" <td>503922.0</td>\n",
" <td>134215.0</td>\n",
" <td>0.831216</td>\n",
" <td>4.0</td>\n",
" <td>78.634747</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>4817449.0</td>\n",
" <td>19.979434</td>\n",
" <td>7.0</td>\n",
" <td>35.0</td>\n",
" <td>503916.075512</td>\n",
" <td>134213.701005</td>\n",
" <td>17.895750</td>\n",
" <td>19.831984</td>\n",
" <td>1004089.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>57.000000</td>\n",
" <td>2.0</td>\n",
" <td>503922.0</td>\n",
" <td>134215.0</td>\n",
" <td>0.895709</td>\n",
" <td>4.0</td>\n",
" <td>19.830510</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>4817450.0</td>\n",
" <td>21.119847</td>\n",
" <td>18.0</td>\n",
" <td>-144.0</td>\n",
" <td>503936.461763</td>\n",
" <td>134203.761986</td>\n",
" <td>18.414721</td>\n",
" <td>20.066844</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>1030.0</td>\n",
" <td>213.000000</td>\n",
" <td>2.0</td>\n",
" <td>503949.0</td>\n",
" <td>134194.0</td>\n",
" <td>0.871915</td>\n",
" <td>5.0</td>\n",
" <td>40.296071</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>4817451.0</td>\n",
" <td>21.374411</td>\n",
" <td>19.0</td>\n",
" <td>36.0</td>\n",
" <td>503934.470464</td>\n",
" <td>134200.829905</td>\n",
" <td>19.727025</td>\n",
" <td>20.261942</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>1030.0</td>\n",
" <td>213.000000</td>\n",
" <td>2.0</td>\n",
" <td>503949.0</td>\n",
" <td>134194.0</td>\n",
" <td>0.922927</td>\n",
" <td>5.0</td>\n",
" <td>40.296071</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>4817452.0</td>\n",
" <td>68.854261</td>\n",
" <td>35.0</td>\n",
" <td>-140.0</td>\n",
" <td>504222.101990</td>\n",
" <td>134017.187739</td>\n",
" <td>31.767443</td>\n",
" <td>56.268749</td>\n",
" <td>1004049.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>67.000000</td>\n",
" <td>3.0</td>\n",
" <td>504220.0</td>\n",
" <td>134015.0</td>\n",
" <td>0.461372</td>\n",
" <td>25.0</td>\n",
" <td>99.757951</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>4817453.0</td>\n",
" <td>52.296595</td>\n",
" <td>34.0</td>\n",
" <td>40.0</td>\n",
" <td>504219.058562</td>\n",
" <td>134013.574920</td>\n",
" <td>29.327904</td>\n",
" <td>43.406040</td>\n",
" <td>1004049.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>67.000000</td>\n",
" <td>3.0</td>\n",
" <td>504220.0</td>\n",
" <td>134015.0</td>\n",
" <td>0.560799</td>\n",
" <td>25.0</td>\n",
" <td>99.757951</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>4817458.0</td>\n",
" <td>258.858167</td>\n",
" <td>34.0</td>\n",
" <td>127.0</td>\n",
" <td>504246.524168</td>\n",
" <td>134078.107216</td>\n",
" <td>66.270016</td>\n",
" <td>215.837030</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>390.000000</td>\n",
" <td>3.0</td>\n",
" <td>504250.0</td>\n",
" <td>134075.0</td>\n",
" <td>0.256009</td>\n",
" <td>25.0</td>\n",
" <td>440.209137</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>4817459.0</td>\n",
" <td>260.507359</td>\n",
" <td>30.0</td>\n",
" <td>-49.0</td>\n",
" <td>504253.910958</td>\n",
" <td>134072.701545</td>\n",
" <td>66.856008</td>\n",
" <td>225.390527</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>390.000000</td>\n",
" <td>3.0</td>\n",
" <td>504250.0</td>\n",
" <td>134075.0</td>\n",
" <td>0.256638</td>\n",
" <td>25.0</td>\n",
" <td>440.209137</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>4817460.0</td>\n",
" <td>33.455253</td>\n",
" <td>24.0</td>\n",
" <td>-142.0</td>\n",
" <td>504252.873380</td>\n",
" <td>134059.252231</td>\n",
" <td>24.705455</td>\n",
" <td>30.633213</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>390.000000</td>\n",
" <td>3.0</td>\n",
" <td>504250.0</td>\n",
" <td>134075.0</td>\n",
" <td>0.738463</td>\n",
" <td>25.0</td>\n",
" <td>73.047773</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>4817461.0</td>\n",
" <td>45.821417</td>\n",
" <td>22.0</td>\n",
" <td>32.0</td>\n",
" <td>504249.859870</td>\n",
" <td>134055.974734</td>\n",
" <td>27.196876</td>\n",
" <td>42.462233</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>390.000000</td>\n",
" <td>3.0</td>\n",
" <td>504250.0</td>\n",
" <td>134075.0</td>\n",
" <td>0.593541</td>\n",
" <td>25.0</td>\n",
" <td>73.047773</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200938</th>\n",
" <td>5124496.0</td>\n",
" <td>33.733199</td>\n",
" <td>11.0</td>\n",
" <td>30.0</td>\n",
" <td>512653.714458</td>\n",
" <td>121846.443211</td>\n",
" <td>27.509294</td>\n",
" <td>33.153466</td>\n",
" <td>1018650.0</td>\n",
" <td>8015.0</td>\n",
" <td>1025.0</td>\n",
" <td>33.113425</td>\n",
" <td>3.0</td>\n",
" <td>512606.0</td>\n",
" <td>121899.0</td>\n",
" <td>0.815496</td>\n",
" <td>2.0</td>\n",
" <td>33.113425</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200939</th>\n",
" <td>5124497.0</td>\n",
" <td>139.413591</td>\n",
" <td>30.0</td>\n",
" <td>-60.0</td>\n",
" <td>512727.853591</td>\n",
" <td>121799.313992</td>\n",
" <td>54.005430</td>\n",
" <td>120.493402</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>1025.0</td>\n",
" <td>153.000000</td>\n",
" <td>3.0</td>\n",
" <td>512725.0</td>\n",
" <td>121800.0</td>\n",
" <td>0.387376</td>\n",
" <td>3.0</td>\n",
" <td>239.840444</td>\n",
" <td>9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200940</th>\n",
" <td>5124498.0</td>\n",
" <td>137.530298</td>\n",
" <td>30.0</td>\n",
" <td>120.0</td>\n",
" <td>512722.012941</td>\n",
" <td>121802.781737</td>\n",
" <td>53.905711</td>\n",
" <td>119.641777</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>1025.0</td>\n",
" <td>153.000000</td>\n",
" <td>3.0</td>\n",
" <td>512725.0</td>\n",
" <td>121800.0</td>\n",
" <td>0.391955</td>\n",
" <td>3.0</td>\n",
" <td>239.840444</td>\n",
" <td>9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200941</th>\n",
" <td>5124499.0</td>\n",
" <td>92.630815</td>\n",
" <td>7.0</td>\n",
" <td>-150.0</td>\n",
" <td>512731.300787</td>\n",
" <td>121811.881398</td>\n",
" <td>47.143675</td>\n",
" <td>91.927158</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>1025.0</td>\n",
" <td>153.000000</td>\n",
" <td>3.0</td>\n",
" <td>512725.0</td>\n",
" <td>121800.0</td>\n",
" <td>0.508942</td>\n",
" <td>3.0</td>\n",
" <td>91.940359</td>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200942</th>\n",
" <td>5124500.0</td>\n",
" <td>44.081253</td>\n",
" <td>7.0</td>\n",
" <td>-148.0</td>\n",
" <td>512734.614676</td>\n",
" <td>121817.612632</td>\n",
" <td>28.618486</td>\n",
" <td>43.718502</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>1025.0</td>\n",
" <td>153.000000</td>\n",
" <td>3.0</td>\n",
" <td>512725.0</td>\n",
" <td>121800.0</td>\n",
" <td>0.649221</td>\n",
" <td>3.0</td>\n",
" <td>43.752678</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200943</th>\n",
" <td>5124501.0</td>\n",
" <td>12.602429</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>512727.537367</td>\n",
" <td>121820.039977</td>\n",
" <td>14.885065</td>\n",
" <td>12.602429</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>1025.0</td>\n",
" <td>153.000000</td>\n",
" <td>3.0</td>\n",
" <td>512725.0</td>\n",
" <td>121800.0</td>\n",
" <td>1.181127</td>\n",
" <td>3.0</td>\n",
" <td>26.462734</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200944</th>\n",
" <td>5124502.0</td>\n",
" <td>14.119724</td>\n",
" <td>11.0</td>\n",
" <td>-147.0</td>\n",
" <td>512729.165421</td>\n",
" <td>121822.382400</td>\n",
" <td>16.789635</td>\n",
" <td>13.863595</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>1025.0</td>\n",
" <td>153.000000</td>\n",
" <td>3.0</td>\n",
" <td>512725.0</td>\n",
" <td>121800.0</td>\n",
" <td>1.189091</td>\n",
" <td>3.0</td>\n",
" <td>26.462734</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200945</th>\n",
" <td>5124503.0</td>\n",
" <td>36.753693</td>\n",
" <td>21.0</td>\n",
" <td>122.0</td>\n",
" <td>512683.971180</td>\n",
" <td>121769.079140</td>\n",
" <td>23.556753</td>\n",
" <td>34.231614</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>129.000000</td>\n",
" <td>3.0</td>\n",
" <td>512678.0</td>\n",
" <td>121753.0</td>\n",
" <td>0.640936</td>\n",
" <td>7.0</td>\n",
" <td>68.582316</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200946</th>\n",
" <td>5124505.0</td>\n",
" <td>36.179539</td>\n",
" <td>19.0</td>\n",
" <td>-58.0</td>\n",
" <td>512689.565868</td>\n",
" <td>121765.612262</td>\n",
" <td>23.566963</td>\n",
" <td>34.201265</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>129.000000</td>\n",
" <td>3.0</td>\n",
" <td>512678.0</td>\n",
" <td>121753.0</td>\n",
" <td>0.651389</td>\n",
" <td>7.0</td>\n",
" <td>68.582316</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200947</th>\n",
" <td>5124506.0</td>\n",
" <td>57.609988</td>\n",
" <td>17.0</td>\n",
" <td>-57.0</td>\n",
" <td>512685.874412</td>\n",
" <td>121760.247993</td>\n",
" <td>37.797327</td>\n",
" <td>55.148314</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>129.000000</td>\n",
" <td>3.0</td>\n",
" <td>512678.0</td>\n",
" <td>121753.0</td>\n",
" <td>0.656090</td>\n",
" <td>7.0</td>\n",
" <td>108.760020</td>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200948</th>\n",
" <td>5124507.0</td>\n",
" <td>57.882063</td>\n",
" <td>22.0</td>\n",
" <td>122.0</td>\n",
" <td>512679.975021</td>\n",
" <td>121763.783138</td>\n",
" <td>29.386703</td>\n",
" <td>53.499302</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>129.000000</td>\n",
" <td>3.0</td>\n",
" <td>512678.0</td>\n",
" <td>121753.0</td>\n",
" <td>0.507700</td>\n",
" <td>7.0</td>\n",
" <td>108.760020</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200949</th>\n",
" <td>5124508.0</td>\n",
" <td>35.898733</td>\n",
" <td>22.0</td>\n",
" <td>-153.0</td>\n",
" <td>512676.571716</td>\n",
" <td>121745.126015</td>\n",
" <td>30.833490</td>\n",
" <td>33.393443</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>129.000000</td>\n",
" <td>3.0</td>\n",
" <td>512678.0</td>\n",
" <td>121753.0</td>\n",
" <td>0.858902</td>\n",
" <td>7.0</td>\n",
" <td>116.033907</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200950</th>\n",
" <td>5124509.0</td>\n",
" <td>88.059840</td>\n",
" <td>20.0</td>\n",
" <td>27.0</td>\n",
" <td>512674.020870</td>\n",
" <td>121740.921893</td>\n",
" <td>39.260540</td>\n",
" <td>82.722458</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>1021.0</td>\n",
" <td>129.000000</td>\n",
" <td>3.0</td>\n",
" <td>512678.0</td>\n",
" <td>121753.0</td>\n",
" <td>0.445839</td>\n",
" <td>7.0</td>\n",
" <td>116.033907</td>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200951</th>\n",
" <td>5124510.0</td>\n",
" <td>234.137426</td>\n",
" <td>15.0</td>\n",
" <td>-139.0</td>\n",
" <td>512576.260995</td>\n",
" <td>121776.663075</td>\n",
" <td>66.560300</td>\n",
" <td>226.093454</td>\n",
" <td>1018659.0</td>\n",
" <td>8011.0</td>\n",
" <td>1030.0</td>\n",
" <td>449.601882</td>\n",
" <td>2.0</td>\n",
" <td>512596.0</td>\n",
" <td>121754.0</td>\n",
" <td>0.284279</td>\n",
" <td>7.0</td>\n",
" <td>449.601882</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200952</th>\n",
" <td>5124511.0</td>\n",
" <td>232.447102</td>\n",
" <td>16.0</td>\n",
" <td>41.0</td>\n",
" <td>512570.079754</td>\n",
" <td>121769.520367</td>\n",
" <td>66.292584</td>\n",
" <td>222.913017</td>\n",
" <td>1018659.0</td>\n",
" <td>8011.0</td>\n",
" <td>1030.0</td>\n",
" <td>449.601882</td>\n",
" <td>2.0</td>\n",
" <td>512596.0</td>\n",
" <td>121754.0</td>\n",
" <td>0.285194</td>\n",
" <td>7.0</td>\n",
" <td>449.601882</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200953</th>\n",
" <td>5124512.0</td>\n",
" <td>131.925651</td>\n",
" <td>29.0</td>\n",
" <td>121.0</td>\n",
" <td>512861.419320</td>\n",
" <td>121844.774678</td>\n",
" <td>55.702429</td>\n",
" <td>114.847781</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>304.000000</td>\n",
" <td>2.0</td>\n",
" <td>512862.0</td>\n",
" <td>121841.0</td>\n",
" <td>0.422226</td>\n",
" <td>2.0</td>\n",
" <td>236.648087</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200954</th>\n",
" <td>5124513.0</td>\n",
" <td>137.339196</td>\n",
" <td>28.0</td>\n",
" <td>-59.0</td>\n",
" <td>512865.854189</td>\n",
" <td>121842.120366</td>\n",
" <td>56.243851</td>\n",
" <td>121.027343</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>304.000000</td>\n",
" <td>2.0</td>\n",
" <td>512862.0</td>\n",
" <td>121841.0</td>\n",
" <td>0.409525</td>\n",
" <td>2.0</td>\n",
" <td>236.648087</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200955</th>\n",
" <td>5124514.0</td>\n",
" <td>21.008432</td>\n",
" <td>23.0</td>\n",
" <td>-150.0</td>\n",
" <td>512862.686744</td>\n",
" <td>121857.263294</td>\n",
" <td>23.119281</td>\n",
" <td>19.328343</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>304.000000</td>\n",
" <td>2.0</td>\n",
" <td>512862.0</td>\n",
" <td>121841.0</td>\n",
" <td>1.100476</td>\n",
" <td>2.0</td>\n",
" <td>39.706122</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200956</th>\n",
" <td>5124515.0</td>\n",
" <td>21.541363</td>\n",
" <td>19.0</td>\n",
" <td>30.0</td>\n",
" <td>512860.734800</td>\n",
" <td>121855.152708</td>\n",
" <td>19.585625</td>\n",
" <td>20.336518</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>304.000000</td>\n",
" <td>2.0</td>\n",
" <td>512862.0</td>\n",
" <td>121841.0</td>\n",
" <td>0.909210</td>\n",
" <td>2.0</td>\n",
" <td>39.706122</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200957</th>\n",
" <td>5124516.0</td>\n",
" <td>33.342276</td>\n",
" <td>17.0</td>\n",
" <td>-58.0</td>\n",
" <td>512857.342542</td>\n",
" <td>121829.041410</td>\n",
" <td>24.377198</td>\n",
" <td>31.954253</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>304.000000</td>\n",
" <td>2.0</td>\n",
" <td>512862.0</td>\n",
" <td>121841.0</td>\n",
" <td>0.731120</td>\n",
" <td>2.0</td>\n",
" <td>108.900435</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200958</th>\n",
" <td>5124517.0</td>\n",
" <td>43.358052</td>\n",
" <td>13.0</td>\n",
" <td>122.0</td>\n",
" <td>512853.537208</td>\n",
" <td>121831.368979</td>\n",
" <td>26.787103</td>\n",
" <td>42.321731</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>304.000000</td>\n",
" <td>2.0</td>\n",
" <td>512862.0</td>\n",
" <td>121841.0</td>\n",
" <td>0.617811</td>\n",
" <td>2.0</td>\n",
" <td>108.900435</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200959</th>\n",
" <td>5124518.0</td>\n",
" <td>34.768271</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>512851.492252</td>\n",
" <td>121838.457750</td>\n",
" <td>29.085365</td>\n",
" <td>34.768271</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>1025.0</td>\n",
" <td>304.000000</td>\n",
" <td>2.0</td>\n",
" <td>512862.0</td>\n",
" <td>121841.0</td>\n",
" <td>0.836549</td>\n",
" <td>2.0</td>\n",
" <td>108.900435</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200960</th>\n",
" <td>5124519.0</td>\n",
" <td>32.262272</td>\n",
" <td>7.0</td>\n",
" <td>-62.0</td>\n",
" <td>512889.292856</td>\n",
" <td>121962.982921</td>\n",
" <td>22.665441</td>\n",
" <td>32.006156</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>1025.0</td>\n",
" <td>44.936338</td>\n",
" <td>3.0</td>\n",
" <td>512908.0</td>\n",
" <td>121915.0</td>\n",
" <td>0.702537</td>\n",
" <td>1.0</td>\n",
" <td>44.936338</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200961</th>\n",
" <td>5124520.0</td>\n",
" <td>14.249623</td>\n",
" <td>25.0</td>\n",
" <td>118.0</td>\n",
" <td>512885.599017</td>\n",
" <td>121964.977036</td>\n",
" <td>15.514710</td>\n",
" <td>12.886922</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>1025.0</td>\n",
" <td>44.936338</td>\n",
" <td>3.0</td>\n",
" <td>512908.0</td>\n",
" <td>121915.0</td>\n",
" <td>1.088780</td>\n",
" <td>1.0</td>\n",
" <td>44.936338</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200962</th>\n",
" <td>5124523.0</td>\n",
" <td>202.860586</td>\n",
" <td>26.0</td>\n",
" <td>-65.0</td>\n",
" <td>512907.355343</td>\n",
" <td>121907.640275</td>\n",
" <td>69.264065</td>\n",
" <td>181.708205</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>1025.0</td>\n",
" <td>148.000000</td>\n",
" <td>3.0</td>\n",
" <td>512908.0</td>\n",
" <td>121915.0</td>\n",
" <td>0.341437</td>\n",
" <td>1.0</td>\n",
" <td>383.229874</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200963</th>\n",
" <td>5124524.0</td>\n",
" <td>221.668609</td>\n",
" <td>25.0</td>\n",
" <td>115.0</td>\n",
" <td>512901.324171</td>\n",
" <td>121910.827716</td>\n",
" <td>72.136766</td>\n",
" <td>201.586966</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>1025.0</td>\n",
" <td>148.000000</td>\n",
" <td>3.0</td>\n",
" <td>512908.0</td>\n",
" <td>121915.0</td>\n",
" <td>0.325426</td>\n",
" <td>1.0</td>\n",
" <td>383.229874</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200964</th>\n",
" <td>5124525.0</td>\n",
" <td>126.405824</td>\n",
" <td>22.0</td>\n",
" <td>118.0</td>\n",
" <td>512801.107921</td>\n",
" <td>121763.322478</td>\n",
" <td>43.276794</td>\n",
" <td>116.796274</td>\n",
" <td>1018651.0</td>\n",
" <td>8013.0</td>\n",
" <td>1030.0</td>\n",
" <td>181.000000</td>\n",
" <td>3.0</td>\n",
" <td>512806.0</td>\n",
" <td>121761.0</td>\n",
" <td>0.342364</td>\n",
" <td>2.0</td>\n",
" <td>234.405582</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200965</th>\n",
" <td>5124526.0</td>\n",
" <td>126.408740</td>\n",
" <td>22.0</td>\n",
" <td>-62.0</td>\n",
" <td>512810.176759</td>\n",
" <td>121758.418405</td>\n",
" <td>43.277184</td>\n",
" <td>116.797944</td>\n",
" <td>1018651.0</td>\n",
" <td>8013.0</td>\n",
" <td>1030.0</td>\n",
" <td>181.000000</td>\n",
" <td>3.0</td>\n",
" <td>512806.0</td>\n",
" <td>121761.0</td>\n",
" <td>0.342359</td>\n",
" <td>2.0</td>\n",
" <td>234.405582</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200966</th>\n",
" <td>5124527.0</td>\n",
" <td>17.738624</td>\n",
" <td>32.0</td>\n",
" <td>-67.0</td>\n",
" <td>512895.656423</td>\n",
" <td>121945.700714</td>\n",
" <td>16.399780</td>\n",
" <td>14.964642</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>1025.0</td>\n",
" <td>29.863731</td>\n",
" <td>3.0</td>\n",
" <td>512908.0</td>\n",
" <td>121915.0</td>\n",
" <td>0.924524</td>\n",
" <td>1.0</td>\n",
" <td>29.863731</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200967</th>\n",
" <td>5124528.0</td>\n",
" <td>17.671450</td>\n",
" <td>33.0</td>\n",
" <td>113.0</td>\n",
" <td>512893.143353</td>\n",
" <td>121946.778198</td>\n",
" <td>16.370630</td>\n",
" <td>14.885036</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>1025.0</td>\n",
" <td>29.863731</td>\n",
" <td>3.0</td>\n",
" <td>512908.0</td>\n",
" <td>121915.0</td>\n",
" <td>0.926389</td>\n",
" <td>1.0</td>\n",
" <td>29.863731</td>\n",
" <td>4</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>200968 rows × 19 columns</p>\n",
"</div>"
],
"text/plain": [
" DF_UID FLAECHE NEIGUNG AUSRICHTUNG XCOORD \\\n",
"0 4817410.0 71.487047 10.0 127.0 503491.325015 \n",
"1 4817425.0 36.859836 37.0 33.0 503503.812619 \n",
"2 4817426.0 51.333864 31.0 -57.0 503509.783165 \n",
"3 4817427.0 36.861447 37.0 -147.0 503510.594159 \n",
"4 4817428.0 81.256555 28.0 123.0 503504.226918 \n",
"5 4817429.0 11.397236 27.0 -144.0 503512.070989 \n",
"6 4817430.0 11.262413 27.0 31.0 503510.350525 \n",
"7 4817431.0 174.501987 31.0 -147.0 503503.978942 \n",
"8 4817432.0 174.108293 31.0 33.0 503500.517066 \n",
"9 4817433.0 69.216255 26.0 33.0 503510.917446 \n",
"10 4817434.0 26.716480 31.0 -147.0 503517.020358 \n",
"11 4817435.0 26.018729 31.0 -147.0 503507.806109 \n",
"12 4817436.0 13.309012 33.0 123.0 503512.471353 \n",
"13 4817437.0 13.503089 32.0 -57.0 503514.586126 \n",
"14 4817438.0 130.038144 26.0 -144.0 503951.193324 \n",
"15 4817439.0 126.475108 26.0 36.0 503948.788882 \n",
"16 4817440.0 47.540096 37.0 -144.0 503996.949571 \n",
"17 4817441.0 35.497241 32.0 36.0 503994.863047 \n",
"18 4817442.0 49.847956 38.0 36.0 504003.468131 \n",
"19 4817444.0 12.607657 0.0 0.0 503991.439805 \n",
"20 4817448.0 34.963254 28.0 -145.0 503922.898105 \n",
"21 4817449.0 19.979434 7.0 35.0 503916.075512 \n",
"22 4817450.0 21.119847 18.0 -144.0 503936.461763 \n",
"23 4817451.0 21.374411 19.0 36.0 503934.470464 \n",
"24 4817452.0 68.854261 35.0 -140.0 504222.101990 \n",
"25 4817453.0 52.296595 34.0 40.0 504219.058562 \n",
"26 4817458.0 258.858167 34.0 127.0 504246.524168 \n",
"27 4817459.0 260.507359 30.0 -49.0 504253.910958 \n",
"28 4817460.0 33.455253 24.0 -142.0 504252.873380 \n",
"29 4817461.0 45.821417 22.0 32.0 504249.859870 \n",
"... ... ... ... ... ... \n",
"200938 5124496.0 33.733199 11.0 30.0 512653.714458 \n",
"200939 5124497.0 139.413591 30.0 -60.0 512727.853591 \n",
"200940 5124498.0 137.530298 30.0 120.0 512722.012941 \n",
"200941 5124499.0 92.630815 7.0 -150.0 512731.300787 \n",
"200942 5124500.0 44.081253 7.0 -148.0 512734.614676 \n",
"200943 5124501.0 12.602429 0.0 0.0 512727.537367 \n",
"200944 5124502.0 14.119724 11.0 -147.0 512729.165421 \n",
"200945 5124503.0 36.753693 21.0 122.0 512683.971180 \n",
"200946 5124505.0 36.179539 19.0 -58.0 512689.565868 \n",
"200947 5124506.0 57.609988 17.0 -57.0 512685.874412 \n",
"200948 5124507.0 57.882063 22.0 122.0 512679.975021 \n",
"200949 5124508.0 35.898733 22.0 -153.0 512676.571716 \n",
"200950 5124509.0 88.059840 20.0 27.0 512674.020870 \n",
"200951 5124510.0 234.137426 15.0 -139.0 512576.260995 \n",
"200952 5124511.0 232.447102 16.0 41.0 512570.079754 \n",
"200953 5124512.0 131.925651 29.0 121.0 512861.419320 \n",
"200954 5124513.0 137.339196 28.0 -59.0 512865.854189 \n",
"200955 5124514.0 21.008432 23.0 -150.0 512862.686744 \n",
"200956 5124515.0 21.541363 19.0 30.0 512860.734800 \n",
"200957 5124516.0 33.342276 17.0 -58.0 512857.342542 \n",
"200958 5124517.0 43.358052 13.0 122.0 512853.537208 \n",
"200959 5124518.0 34.768271 0.0 0.0 512851.492252 \n",
"200960 5124519.0 32.262272 7.0 -62.0 512889.292856 \n",
"200961 5124520.0 14.249623 25.0 118.0 512885.599017 \n",
"200962 5124523.0 202.860586 26.0 -65.0 512907.355343 \n",
"200963 5124524.0 221.668609 25.0 115.0 512901.324171 \n",
"200964 5124525.0 126.405824 22.0 118.0 512801.107921 \n",
"200965 5124526.0 126.408740 22.0 -62.0 512810.176759 \n",
"200966 5124527.0 17.738624 32.0 -67.0 512895.656423 \n",
"200967 5124528.0 17.671450 33.0 113.0 512893.143353 \n",
"\n",
" YCOORD Shape_Length Shape_Area GWR_EGID GBAUP GKAT \\\n",
"0 134197.490397 33.936595 70.390620 295070969.0 8011.0 1021.0 \n",
"1 134131.833522 28.208608 29.339500 1004090.0 8012.0 1021.0 \n",
"2 134135.282805 40.053428 44.043504 1004090.0 8012.0 1021.0 \n",
"3 134142.188986 28.210273 29.341346 1004090.0 8012.0 1021.0 \n",
"4 134138.960671 37.840077 71.574129 1004090.0 8012.0 1021.0 \n",
"5 134135.795686 15.417311 10.154872 1004090.0 8012.0 1021.0 \n",
"6 134133.126967 15.346288 10.045172 1004090.0 8012.0 1021.0 \n",
"7 134181.171146 59.815925 149.165008 1004088.0 8011.0 1021.0 \n",
"8 134175.889168 59.775896 148.702405 1004088.0 8011.0 1021.0 \n",
"9 134191.713704 45.633223 61.997846 295084893.0 8011.0 1021.0 \n",
"10 134191.118711 23.687927 22.959133 295084893.0 8011.0 1021.0 \n",
"11 134197.114437 23.199036 22.360589 295084893.0 8011.0 1021.0 \n",
"12 134196.622116 15.096068 11.164928 295084893.0 8011.0 1021.0 \n",
"13 134195.245953 15.198331 11.396747 295084893.0 8011.0 1021.0 \n",
"14 134195.306644 64.584475 117.365353 295084994.0 8014.0 1030.0 \n",
"15 134191.981218 64.301850 113.406403 295084994.0 8014.0 1030.0 \n",
"16 134161.244934 27.081498 37.981483 1004076.0 8012.0 1021.0 \n",
"17 134158.375583 25.402378 29.945648 1004076.0 8012.0 1021.0 \n",
"18 134152.306087 29.835723 39.429900 1004076.0 8012.0 1021.0 \n",
"19 134163.317363 17.745074 12.607657 1004076.0 8012.0 1021.0 \n",
"20 134216.939359 29.062031 30.741322 1004089.0 8012.0 1021.0 \n",
"21 134213.701005 17.895750 19.831984 1004089.0 8012.0 1021.0 \n",
"22 134203.761986 18.414721 20.066844 295084994.0 8014.0 1030.0 \n",
"23 134200.829905 19.727025 20.261942 295084994.0 8014.0 1030.0 \n",
"24 134017.187739 31.767443 56.268749 1004049.0 8011.0 1025.0 \n",
"25 134013.574920 29.327904 43.406040 1004049.0 8011.0 1025.0 \n",
"26 134078.107216 66.270016 215.837030 1004035.0 8011.0 1025.0 \n",
"27 134072.701545 66.856008 225.390527 1004035.0 8011.0 1025.0 \n",
"28 134059.252231 24.705455 30.633213 1004035.0 8011.0 1025.0 \n",
"29 134055.974734 27.196876 42.462233 1004035.0 8011.0 1025.0 \n",
"... ... ... ... ... ... ... \n",
"200938 121846.443211 27.509294 33.153466 1018650.0 8015.0 1025.0 \n",
"200939 121799.313992 54.005430 120.493402 1018653.0 8012.0 1025.0 \n",
"200940 121802.781737 53.905711 119.641777 1018653.0 8012.0 1025.0 \n",
"200941 121811.881398 47.143675 91.927158 1018653.0 8012.0 1025.0 \n",
"200942 121817.612632 28.618486 43.718502 1018653.0 8012.0 1025.0 \n",
"200943 121820.039977 14.885065 12.602429 1018653.0 8012.0 1025.0 \n",
"200944 121822.382400 16.789635 13.863595 1018653.0 8012.0 1025.0 \n",
"200945 121769.079140 23.556753 34.231614 2040405.0 8012.0 1021.0 \n",
"200946 121765.612262 23.566963 34.201265 2040405.0 8012.0 1021.0 \n",
"200947 121760.247993 37.797327 55.148314 2040405.0 8012.0 1021.0 \n",
"200948 121763.783138 29.386703 53.499302 2040405.0 8012.0 1021.0 \n",
"200949 121745.126015 30.833490 33.393443 2040405.0 8012.0 1021.0 \n",
"200950 121740.921893 39.260540 82.722458 2040405.0 8012.0 1021.0 \n",
"200951 121776.663075 66.560300 226.093454 1018659.0 8011.0 1030.0 \n",
"200952 121769.520367 66.292584 222.913017 1018659.0 8011.0 1030.0 \n",
"200953 121844.774678 55.702429 114.847781 1018654.0 8011.0 1025.0 \n",
"200954 121842.120366 56.243851 121.027343 1018654.0 8011.0 1025.0 \n",
"200955 121857.263294 23.119281 19.328343 1018654.0 8011.0 1025.0 \n",
"200956 121855.152708 19.585625 20.336518 1018654.0 8011.0 1025.0 \n",
"200957 121829.041410 24.377198 31.954253 1018654.0 8011.0 1025.0 \n",
"200958 121831.368979 26.787103 42.321731 1018654.0 8011.0 1025.0 \n",
"200959 121838.457750 29.085365 34.768271 1018654.0 8011.0 1025.0 \n",
"200960 121962.982921 22.665441 32.006156 1018655.0 8014.0 1025.0 \n",
"200961 121964.977036 15.514710 12.886922 1018655.0 8014.0 1025.0 \n",
"200962 121907.640275 69.264065 181.708205 1018655.0 8014.0 1025.0 \n",
"200963 121910.827716 72.136766 201.586966 1018655.0 8014.0 1025.0 \n",
"200964 121763.322478 43.276794 116.796274 1018651.0 8013.0 1030.0 \n",
"200965 121758.418405 43.277184 116.797944 1018651.0 8013.0 1030.0 \n",
"200966 121945.700714 16.399780 14.964642 1018655.0 8014.0 1025.0 \n",
"200967 121946.778198 16.370630 14.885036 1018655.0 8014.0 1025.0 \n",
"\n",
" GAREA GASTW GKODX GKODY Shape_Ratio n_neighbors_100 \\\n",
"0 44.000000 2.0 503491.0 134198.0 0.474724 3.0 \n",
"1 152.000000 2.0 503507.0 134137.0 0.765294 3.0 \n",
"2 152.000000 2.0 503507.0 134137.0 0.780254 3.0 \n",
"3 152.000000 2.0 503507.0 134137.0 0.765306 3.0 \n",
"4 152.000000 2.0 503507.0 134137.0 0.465686 3.0 \n",
"5 152.000000 2.0 503507.0 134137.0 1.352724 3.0 \n",
"6 152.000000 2.0 503507.0 134137.0 1.362611 3.0 \n",
"7 206.000000 2.0 503503.0 134179.0 0.342781 3.0 \n",
"8 206.000000 2.0 503503.0 134179.0 0.343326 3.0 \n",
"9 100.000000 2.0 503512.0 134193.0 0.659285 3.0 \n",
"10 100.000000 2.0 503512.0 134193.0 0.886641 3.0 \n",
"11 100.000000 2.0 503512.0 134193.0 0.891628 3.0 \n",
"12 100.000000 2.0 503512.0 134193.0 1.134274 3.0 \n",
"13 100.000000 2.0 503512.0 134193.0 1.125545 3.0 \n",
"14 213.000000 2.0 503949.0 134194.0 0.496658 5.0 \n",
"15 213.000000 2.0 503949.0 134194.0 0.508415 5.0 \n",
"16 66.000000 3.0 504005.0 134153.0 0.569656 7.0 \n",
"17 66.000000 3.0 504005.0 134153.0 0.715616 7.0 \n",
"18 66.000000 3.0 504005.0 134153.0 0.598535 7.0 \n",
"19 66.000000 3.0 504005.0 134153.0 1.407484 7.0 \n",
"20 57.000000 2.0 503922.0 134215.0 0.831216 4.0 \n",
"21 57.000000 2.0 503922.0 134215.0 0.895709 4.0 \n",
"22 213.000000 2.0 503949.0 134194.0 0.871915 5.0 \n",
"23 213.000000 2.0 503949.0 134194.0 0.922927 5.0 \n",
"24 67.000000 3.0 504220.0 134015.0 0.461372 25.0 \n",
"25 67.000000 3.0 504220.0 134015.0 0.560799 25.0 \n",
"26 390.000000 3.0 504250.0 134075.0 0.256009 25.0 \n",
"27 390.000000 3.0 504250.0 134075.0 0.256638 25.0 \n",
"28 390.000000 3.0 504250.0 134075.0 0.738463 25.0 \n",
"29 390.000000 3.0 504250.0 134075.0 0.593541 25.0 \n",
"... ... ... ... ... ... ... \n",
"200938 33.113425 3.0 512606.0 121899.0 0.815496 2.0 \n",
"200939 153.000000 3.0 512725.0 121800.0 0.387376 3.0 \n",
"200940 153.000000 3.0 512725.0 121800.0 0.391955 3.0 \n",
"200941 153.000000 3.0 512725.0 121800.0 0.508942 3.0 \n",
"200942 153.000000 3.0 512725.0 121800.0 0.649221 3.0 \n",
"200943 153.000000 3.0 512725.0 121800.0 1.181127 3.0 \n",
"200944 153.000000 3.0 512725.0 121800.0 1.189091 3.0 \n",
"200945 129.000000 3.0 512678.0 121753.0 0.640936 7.0 \n",
"200946 129.000000 3.0 512678.0 121753.0 0.651389 7.0 \n",
"200947 129.000000 3.0 512678.0 121753.0 0.656090 7.0 \n",
"200948 129.000000 3.0 512678.0 121753.0 0.507700 7.0 \n",
"200949 129.000000 3.0 512678.0 121753.0 0.858902 7.0 \n",
"200950 129.000000 3.0 512678.0 121753.0 0.445839 7.0 \n",
"200951 449.601882 2.0 512596.0 121754.0 0.284279 7.0 \n",
"200952 449.601882 2.0 512596.0 121754.0 0.285194 7.0 \n",
"200953 304.000000 2.0 512862.0 121841.0 0.422226 2.0 \n",
"200954 304.000000 2.0 512862.0 121841.0 0.409525 2.0 \n",
"200955 304.000000 2.0 512862.0 121841.0 1.100476 2.0 \n",
"200956 304.000000 2.0 512862.0 121841.0 0.909210 2.0 \n",
"200957 304.000000 2.0 512862.0 121841.0 0.731120 2.0 \n",
"200958 304.000000 2.0 512862.0 121841.0 0.617811 2.0 \n",
"200959 304.000000 2.0 512862.0 121841.0 0.836549 2.0 \n",
"200960 44.936338 3.0 512908.0 121915.0 0.702537 1.0 \n",
"200961 44.936338 3.0 512908.0 121915.0 1.088780 1.0 \n",
"200962 148.000000 3.0 512908.0 121915.0 0.341437 1.0 \n",
"200963 148.000000 3.0 512908.0 121915.0 0.325426 1.0 \n",
"200964 181.000000 3.0 512806.0 121761.0 0.342364 2.0 \n",
"200965 181.000000 3.0 512806.0 121761.0 0.342359 2.0 \n",
"200966 29.863731 3.0 512908.0 121915.0 0.924524 1.0 \n",
"200967 29.863731 3.0 512908.0 121915.0 0.926389 1.0 \n",
"\n",
" Estim_build_area n_corners \n",
"0 70.400998 4 \n",
"1 194.813319 4 \n",
"2 194.813319 7 \n",
"3 194.813319 4 \n",
"4 194.813319 4 \n",
"5 194.813319 3 \n",
"6 194.813319 3 \n",
"7 298.817334 4 \n",
"8 298.817334 4 \n",
"9 107.414054 5 \n",
"10 107.414054 5 \n",
"11 107.414054 5 \n",
"12 22.613146 6 \n",
"13 22.613146 5 \n",
"14 230.552584 4 \n",
"15 230.552584 4 \n",
"16 68.070576 5 \n",
"17 68.070576 4 \n",
"18 96.433564 4 \n",
"19 12.607657 5 \n",
"20 78.634747 4 \n",
"21 19.830510 4 \n",
"22 40.296071 5 \n",
"23 40.296071 6 \n",
"24 99.757951 5 \n",
"25 99.757951 5 \n",
"26 440.209137 4 \n",
"27 440.209137 5 \n",
"28 73.047773 6 \n",
"29 73.047773 4 \n",
"... ... ... \n",
"200938 33.113425 4 \n",
"200939 239.840444 9 \n",
"200940 239.840444 9 \n",
"200941 91.940359 8 \n",
"200942 43.752678 4 \n",
"200943 26.462734 6 \n",
"200944 26.462734 6 \n",
"200945 68.582316 5 \n",
"200946 68.582316 4 \n",
"200947 108.760020 8 \n",
"200948 108.760020 5 \n",
"200949 116.033907 7 \n",
"200950 116.033907 8 \n",
"200951 449.601882 4 \n",
"200952 449.601882 4 \n",
"200953 236.648087 5 \n",
"200954 236.648087 4 \n",
"200955 39.706122 6 \n",
"200956 39.706122 4 \n",
"200957 108.900435 4 \n",
"200958 108.900435 4 \n",
"200959 108.900435 6 \n",
"200960 44.936338 5 \n",
"200961 44.936338 5 \n",
"200962 383.229874 4 \n",
"200963 383.229874 6 \n",
"200964 234.405582 4 \n",
"200965 234.405582 4 \n",
"200966 29.863731 4 \n",
"200967 29.863731 4 \n",
"\n",
"[200968 rows x 19 columns]"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_roofs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 2: add panel information\n",
"Add information of panelled area for Sonnendach roof polygons (ftr) and roof polygons with excluded superstructures (tgt). Note that CH_panels_ftr contains ALL rooftops and their panel_count information. For all roofs where panel_count == 0, we know already that there cannot be any panels fitted (due to geometry/size), neither vertically nor horizontally, so any calculation of available area for these rooftops is obsolete, i.e. the panels are excluded from further analysis."
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"# exclude all roofs that cannot fit even a single panel on the roof polygons (neither vertical nor horizontal)\n",
"roofs_with_available_area = CH_panels_ftr[CH_panels_ftr.panel_count > 0]\n",
"GVA_panels_ftr = roofs_with_available_area.loc[:,['DF_UID', 'panel_tilt', 'best_align', 'panelled_area_ratio']]"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
"# merge panelled area ratio for features (no superstructure excluded)\n",
"training_roofs_panel_ftr = training_roofs.merge(GVA_panels_ftr, how = 'inner', on = 'DF_UID')\n",
"training_roofs_panel_ftr.rename( {'panelled_area_ratio' : 'panelled_area_ratio_ftr'}, axis = 1, inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# merge panelled area ratio for training (GVA only, exclude superstrucutres)\n",
"training_roofs_panel_tgt = training_roofs_panel_ftr.merge(GVA_panels_tgt.loc[:,['DF_UID', 'panelled_area_ratio']], how = 'left', on = 'DF_UID')\n",
"training_roofs_panel_tgt.rename( {'panelled_area_ratio' : 'panelled_area_ratio_tgt'}, axis = 1, inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [],
"source": [
"# set all roofs for which no count was found after extracting buffer and roof superstrucutres to 0\n",
"training_roofs_panel_tgt.loc[training_roofs_panel_tgt.panelled_area_ratio_tgt.isnull(), 'panelled_area_ratio_tgt'] = 0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 3: add shading information (shaded area only)\n",
"The shading values (shaded_area_ratio) based on the 2m DOM are added as features, while the shading based on the 50cm resolution DOM are used to calculate the labels (they are assumed to represent the ground truth for shading). For all roofs for which the 2m DOM shading information is not available, the mean values as given in the CH_shade_cats are used."
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [],
"source": [
"# add shading features\n",
"training_roofs_shade_ftr = training_roofs_panel_tgt.merge(GVA_shade_ftr.loc[:,['DF_UID', 'fully_shaded_ratio']], how = 'left', on = 'DF_UID')\n",
"training_roofs_shade_ftr.rename({ 'fully_shaded_ratio' : 'shaded_area_ratio_ftr' }, axis = 1, inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# add shading targets\n",
"training_roofs_shade_tgt = training_roofs_shade_ftr.merge(GVA_shade_tgt.loc[:,['DF_UID', 'fully_shaded_ratio']], how = 'left', on = 'DF_UID')\n",
"training_roofs_shade_tgt.rename({ 'fully_shaded_ratio' : 'shaded_area_ratio_tgt' }, axis = 1, inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
"training_roofs_shade_tgt['tilt_cat'] = training_roofs_shade_tgt.apply(get_tilt_category, axis = 1)\n",
"training_roofs_shade_tgt['orientation_cat'] = training_roofs_shade_tgt.apply(get_orientation_category, axis = 1)"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
"# replace NaNs in shaded_area_ratio_ftr by values from CH_shade_cats\n",
"shade_null_idx = training_roofs_shade_tgt.shaded_area_ratio_ftr.isnull()\n",
"replacemnt_shade = training_roofs_shade_tgt.loc[shade_null_idx, ['DF_UID', 'orientation_cat', 'tilt_cat']]\n",
"\n",
"replaced_shade = replacemnt_shade.merge(CH_shade_cats.loc[:,['orientation_cat', 'tilt_cat', 'fully_shaded_ratio']], how = 'left', on = ['orientation_cat', 'tilt_cat'])\n",
"training_roofs_shade_tgt.loc[shade_null_idx, 'shaded_area_ratio_ftr'] = replaced_shade.fully_shaded_ratio.values"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"178417\n",
"178417\n"
]
}
],
"source": [
"print(len(training_roofs_shade_tgt))\n",
"print(len(training_roofs_shade_tgt.dropna()))"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [],
"source": [
"# add the total available area ratio as final target of the ML model\n",
"training_roofs_shade_tgt['available_area_ratio'] = training_roofs_shade_tgt.panelled_area_ratio_tgt * (1 - training_roofs_shade_tgt.shaded_area_ratio_tgt)"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [],
"source": [
"training_roofs_shade_tgt.to_csv(\"/Users/alinawalch/Documents/EPFL/data/rooftops/TRN_available_area_data_all.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DF_UID</th>\n",
" <th>FLAECHE</th>\n",
" <th>NEIGUNG</th>\n",
" <th>AUSRICHTUNG</th>\n",
" <th>XCOORD</th>\n",
" <th>YCOORD</th>\n",
" <th>Shape_Length</th>\n",
" <th>Shape_Area</th>\n",
" <th>GWR_EGID</th>\n",
" <th>GBAUP</th>\n",
" <th>...</th>\n",
" <th>n_corners</th>\n",
" <th>panel_tilt</th>\n",
" <th>best_align</th>\n",
" <th>panelled_area_ratio_ftr</th>\n",
" <th>panelled_area_ratio_tgt</th>\n",
" <th>shaded_area_ratio_ftr</th>\n",
" <th>shaded_area_ratio_tgt</th>\n",
" <th>tilt_cat</th>\n",
" <th>orientation_cat</th>\n",
" <th>available_area_ratio</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4817410.0</td>\n",
" <td>71.487047</td>\n",
" <td>10.0</td>\n",
" <td>127.0</td>\n",
" <td>503491.325015</td>\n",
" <td>134197.490397</td>\n",
" <td>33.936595</td>\n",
" <td>70.390620</td>\n",
" <td>295070969.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>10</td>\n",
" <td>horizontal</td>\n",
" <td>0.940030</td>\n",
" <td>0.805740</td>\n",
" <td>0.117647</td>\n",
" <td>0.166667</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.671450</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4817425.0</td>\n",
" <td>36.859836</td>\n",
" <td>37.0</td>\n",
" <td>33.0</td>\n",
" <td>503503.812619</td>\n",
" <td>134131.833522</td>\n",
" <td>28.208608</td>\n",
" <td>29.339500</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>37</td>\n",
" <td>equal</td>\n",
" <td>0.607708</td>\n",
" <td>0.260446</td>\n",
" <td>0.000000</td>\n",
" <td>0.386555</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.159769</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4817426.0</td>\n",
" <td>51.333864</td>\n",
" <td>31.0</td>\n",
" <td>-57.0</td>\n",
" <td>503509.783165</td>\n",
" <td>134135.282805</td>\n",
" <td>40.053428</td>\n",
" <td>44.043504</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>7</td>\n",
" <td>31</td>\n",
" <td>vertical</td>\n",
" <td>0.623370</td>\n",
" <td>0.187011</td>\n",
" <td>0.000000</td>\n",
" <td>0.119318</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.164697</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4817427.0</td>\n",
" <td>36.861447</td>\n",
" <td>37.0</td>\n",
" <td>-147.0</td>\n",
" <td>503510.594159</td>\n",
" <td>134142.188986</td>\n",
" <td>28.210273</td>\n",
" <td>29.341346</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>37</td>\n",
" <td>horizontal</td>\n",
" <td>0.607681</td>\n",
" <td>0.260435</td>\n",
" <td>0.166667</td>\n",
" <td>0.322034</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.176566</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4817428.0</td>\n",
" <td>81.256555</td>\n",
" <td>28.0</td>\n",
" <td>123.0</td>\n",
" <td>503504.226918</td>\n",
" <td>134138.960671</td>\n",
" <td>37.840077</td>\n",
" <td>71.574129</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>28</td>\n",
" <td>horizontal</td>\n",
" <td>0.767938</td>\n",
" <td>0.708866</td>\n",
" <td>0.333333</td>\n",
" <td>0.077193</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.654146</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>4817429.0</td>\n",
" <td>11.397236</td>\n",
" <td>27.0</td>\n",
" <td>-144.0</td>\n",
" <td>503512.070989</td>\n",
" <td>134135.795686</td>\n",
" <td>15.417311</td>\n",
" <td>10.154872</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>3</td>\n",
" <td>27</td>\n",
" <td>horizontal</td>\n",
" <td>0.561540</td>\n",
" <td>0.140385</td>\n",
" <td>0.000000</td>\n",
" <td>0.075000</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.129856</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>4817430.0</td>\n",
" <td>11.262413</td>\n",
" <td>27.0</td>\n",
" <td>31.0</td>\n",
" <td>503510.350525</td>\n",
" <td>134133.126967</td>\n",
" <td>15.346288</td>\n",
" <td>10.045172</td>\n",
" <td>1004090.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>3</td>\n",
" <td>27</td>\n",
" <td>horizontal</td>\n",
" <td>0.568262</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>4817431.0</td>\n",
" <td>174.501987</td>\n",
" <td>31.0</td>\n",
" <td>-147.0</td>\n",
" <td>503503.978942</td>\n",
" <td>134181.171146</td>\n",
" <td>59.815925</td>\n",
" <td>149.165008</td>\n",
" <td>1004088.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>31</td>\n",
" <td>horizontal</td>\n",
" <td>0.898557</td>\n",
" <td>0.806868</td>\n",
" <td>0.135135</td>\n",
" <td>0.020101</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.790649</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>4817432.0</td>\n",
" <td>174.108293</td>\n",
" <td>31.0</td>\n",
" <td>33.0</td>\n",
" <td>503500.517066</td>\n",
" <td>134175.889168</td>\n",
" <td>59.775896</td>\n",
" <td>148.702405</td>\n",
" <td>1004088.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>31</td>\n",
" <td>horizontal</td>\n",
" <td>0.900589</td>\n",
" <td>0.808692</td>\n",
" <td>0.131579</td>\n",
" <td>0.161345</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.678214</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>4817433.0</td>\n",
" <td>69.216255</td>\n",
" <td>26.0</td>\n",
" <td>33.0</td>\n",
" <td>503510.917446</td>\n",
" <td>134191.713704</td>\n",
" <td>45.633223</td>\n",
" <td>61.997846</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>26</td>\n",
" <td>vertical</td>\n",
" <td>0.878406</td>\n",
" <td>0.277391</td>\n",
" <td>0.000000</td>\n",
" <td>0.060241</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.260681</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>4817434.0</td>\n",
" <td>26.716480</td>\n",
" <td>31.0</td>\n",
" <td>-147.0</td>\n",
" <td>503517.020358</td>\n",
" <td>134191.118711</td>\n",
" <td>23.687927</td>\n",
" <td>22.959133</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>31</td>\n",
" <td>horizontal</td>\n",
" <td>0.538993</td>\n",
" <td>0.479105</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.479105</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>4817435.0</td>\n",
" <td>26.018729</td>\n",
" <td>31.0</td>\n",
" <td>-147.0</td>\n",
" <td>503507.806109</td>\n",
" <td>134197.114437</td>\n",
" <td>23.199036</td>\n",
" <td>22.360589</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>31</td>\n",
" <td>horizontal</td>\n",
" <td>0.553447</td>\n",
" <td>0.491953</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.491953</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>4817436.0</td>\n",
" <td>13.309012</td>\n",
" <td>33.0</td>\n",
" <td>123.0</td>\n",
" <td>503512.471353</td>\n",
" <td>134196.622116</td>\n",
" <td>15.096068</td>\n",
" <td>11.164928</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>33</td>\n",
" <td>vertical</td>\n",
" <td>0.721316</td>\n",
" <td>0.240439</td>\n",
" <td>0.000000</td>\n",
" <td>0.266667</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.176322</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>4817437.0</td>\n",
" <td>13.503089</td>\n",
" <td>32.0</td>\n",
" <td>-57.0</td>\n",
" <td>503514.586126</td>\n",
" <td>134195.245953</td>\n",
" <td>15.198331</td>\n",
" <td>11.396747</td>\n",
" <td>295084893.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>32</td>\n",
" <td>vertical</td>\n",
" <td>0.710948</td>\n",
" <td>0.236983</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.236983</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>4817438.0</td>\n",
" <td>130.038144</td>\n",
" <td>26.0</td>\n",
" <td>-144.0</td>\n",
" <td>503951.193324</td>\n",
" <td>134195.306644</td>\n",
" <td>64.584475</td>\n",
" <td>117.365353</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>26</td>\n",
" <td>horizontal</td>\n",
" <td>0.836678</td>\n",
" <td>0.664420</td>\n",
" <td>0.900000</td>\n",
" <td>0.785106</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.142780</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>4817439.0</td>\n",
" <td>126.475108</td>\n",
" <td>26.0</td>\n",
" <td>36.0</td>\n",
" <td>503948.788882</td>\n",
" <td>134191.981218</td>\n",
" <td>64.301850</td>\n",
" <td>113.406403</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>26</td>\n",
" <td>horizontal</td>\n",
" <td>0.860248</td>\n",
" <td>0.683138</td>\n",
" <td>0.214286</td>\n",
" <td>0.556291</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.303114</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>4817440.0</td>\n",
" <td>47.540096</td>\n",
" <td>37.0</td>\n",
" <td>-144.0</td>\n",
" <td>503996.949571</td>\n",
" <td>134161.244934</td>\n",
" <td>27.081498</td>\n",
" <td>37.981483</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>37</td>\n",
" <td>vertical</td>\n",
" <td>0.908707</td>\n",
" <td>0.673116</td>\n",
" <td>0.800000</td>\n",
" <td>0.973510</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.017831</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>4817441.0</td>\n",
" <td>35.497241</td>\n",
" <td>32.0</td>\n",
" <td>36.0</td>\n",
" <td>503994.863047</td>\n",
" <td>134158.375583</td>\n",
" <td>25.402378</td>\n",
" <td>29.945648</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>32</td>\n",
" <td>vertical</td>\n",
" <td>0.811331</td>\n",
" <td>0.450739</td>\n",
" <td>0.142857</td>\n",
" <td>0.725000</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.123953</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>4817442.0</td>\n",
" <td>49.847956</td>\n",
" <td>38.0</td>\n",
" <td>36.0</td>\n",
" <td>504003.468131</td>\n",
" <td>134152.306087</td>\n",
" <td>29.835723</td>\n",
" <td>39.429900</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>38</td>\n",
" <td>horizontal</td>\n",
" <td>0.898733</td>\n",
" <td>0.641952</td>\n",
" <td>0.900000</td>\n",
" <td>0.961538</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.024690</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>4817444.0</td>\n",
" <td>12.607657</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>503991.439805</td>\n",
" <td>134163.317363</td>\n",
" <td>17.745074</td>\n",
" <td>12.607657</td>\n",
" <td>1004076.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>30</td>\n",
" <td>vertical</td>\n",
" <td>0.219809</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.461538</td>\n",
" <td>flat</td>\n",
" <td>S</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>4817448.0</td>\n",
" <td>34.963254</td>\n",
" <td>28.0</td>\n",
" <td>-145.0</td>\n",
" <td>503922.898105</td>\n",
" <td>134216.939359</td>\n",
" <td>29.062031</td>\n",
" <td>30.741322</td>\n",
" <td>1004089.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>28</td>\n",
" <td>horizontal</td>\n",
" <td>0.777960</td>\n",
" <td>0.457623</td>\n",
" <td>0.125000</td>\n",
" <td>0.975610</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.011162</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>4817449.0</td>\n",
" <td>19.979434</td>\n",
" <td>7.0</td>\n",
" <td>35.0</td>\n",
" <td>503916.075512</td>\n",
" <td>134213.701005</td>\n",
" <td>17.895750</td>\n",
" <td>19.831984</td>\n",
" <td>1004089.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>7</td>\n",
" <td>horizontal</td>\n",
" <td>0.720741</td>\n",
" <td>0.640659</td>\n",
" <td>0.666667</td>\n",
" <td>0.925000</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.048049</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>4817450.0</td>\n",
" <td>21.119847</td>\n",
" <td>18.0</td>\n",
" <td>-144.0</td>\n",
" <td>503936.461763</td>\n",
" <td>134203.761986</td>\n",
" <td>18.414721</td>\n",
" <td>20.066844</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>18</td>\n",
" <td>vertical</td>\n",
" <td>0.757581</td>\n",
" <td>0.454549</td>\n",
" <td>0.000000</td>\n",
" <td>0.506173</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.224469</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>4817451.0</td>\n",
" <td>21.374411</td>\n",
" <td>19.0</td>\n",
" <td>36.0</td>\n",
" <td>503934.470464</td>\n",
" <td>134200.829905</td>\n",
" <td>19.727025</td>\n",
" <td>20.261942</td>\n",
" <td>295084994.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>19</td>\n",
" <td>vertical</td>\n",
" <td>0.748559</td>\n",
" <td>0.449135</td>\n",
" <td>0.000000</td>\n",
" <td>0.543210</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.205161</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>4817452.0</td>\n",
" <td>68.854261</td>\n",
" <td>35.0</td>\n",
" <td>-140.0</td>\n",
" <td>504222.101990</td>\n",
" <td>134017.187739</td>\n",
" <td>31.767443</td>\n",
" <td>56.268749</td>\n",
" <td>1004049.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>35</td>\n",
" <td>horizontal</td>\n",
" <td>0.836550</td>\n",
" <td>0.697125</td>\n",
" <td>0.142857</td>\n",
" <td>0.053333</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.659945</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>4817453.0</td>\n",
" <td>52.296595</td>\n",
" <td>34.0</td>\n",
" <td>40.0</td>\n",
" <td>504219.058562</td>\n",
" <td>134013.574920</td>\n",
" <td>29.327904</td>\n",
" <td>43.406040</td>\n",
" <td>1004049.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>34</td>\n",
" <td>vertical</td>\n",
" <td>0.917842</td>\n",
" <td>0.734273</td>\n",
" <td>0.100000</td>\n",
" <td>0.034682</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.708807</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>4817458.0</td>\n",
" <td>258.858167</td>\n",
" <td>34.0</td>\n",
" <td>127.0</td>\n",
" <td>504246.524168</td>\n",
" <td>134078.107216</td>\n",
" <td>66.270016</td>\n",
" <td>215.837030</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>34</td>\n",
" <td>horizontal</td>\n",
" <td>0.933330</td>\n",
" <td>0.834434</td>\n",
" <td>0.109091</td>\n",
" <td>0.030093</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.809324</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>4817459.0</td>\n",
" <td>260.507359</td>\n",
" <td>30.0</td>\n",
" <td>-49.0</td>\n",
" <td>504253.910958</td>\n",
" <td>134072.701545</td>\n",
" <td>66.856008</td>\n",
" <td>225.390527</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>30</td>\n",
" <td>horizontal</td>\n",
" <td>0.927421</td>\n",
" <td>0.767733</td>\n",
" <td>0.035714</td>\n",
" <td>0.008869</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.760923</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>4817460.0</td>\n",
" <td>33.455253</td>\n",
" <td>24.0</td>\n",
" <td>-142.0</td>\n",
" <td>504252.873380</td>\n",
" <td>134059.252231</td>\n",
" <td>24.705455</td>\n",
" <td>30.633213</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>24</td>\n",
" <td>horizontal</td>\n",
" <td>0.813026</td>\n",
" <td>0.478251</td>\n",
" <td>0.000000</td>\n",
" <td>0.008130</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.474363</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>4817461.0</td>\n",
" <td>45.821417</td>\n",
" <td>22.0</td>\n",
" <td>32.0</td>\n",
" <td>504249.859870</td>\n",
" <td>134055.974734</td>\n",
" <td>27.196876</td>\n",
" <td>42.462233</td>\n",
" <td>1004035.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>22</td>\n",
" <td>equal</td>\n",
" <td>0.803118</td>\n",
" <td>0.593609</td>\n",
" <td>0.000000</td>\n",
" <td>0.005952</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.590075</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178387</th>\n",
" <td>5124496.0</td>\n",
" <td>33.733199</td>\n",
" <td>11.0</td>\n",
" <td>30.0</td>\n",
" <td>512653.714458</td>\n",
" <td>121846.443211</td>\n",
" <td>27.509294</td>\n",
" <td>33.153466</td>\n",
" <td>1018650.0</td>\n",
" <td>8015.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>11</td>\n",
" <td>horizontal</td>\n",
" <td>0.853758</td>\n",
" <td>0.569172</td>\n",
" <td>0.000000</td>\n",
" <td>0.015152</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.560548</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178388</th>\n",
" <td>5124497.0</td>\n",
" <td>139.413591</td>\n",
" <td>30.0</td>\n",
" <td>-60.0</td>\n",
" <td>512727.853591</td>\n",
" <td>121799.313992</td>\n",
" <td>54.005430</td>\n",
" <td>120.493402</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>9</td>\n",
" <td>30</td>\n",
" <td>horizontal</td>\n",
" <td>0.918131</td>\n",
" <td>0.677122</td>\n",
" <td>0.000000</td>\n",
" <td>0.004149</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.674312</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178389</th>\n",
" <td>5124498.0</td>\n",
" <td>137.530298</td>\n",
" <td>30.0</td>\n",
" <td>120.0</td>\n",
" <td>512722.012941</td>\n",
" <td>121802.781737</td>\n",
" <td>53.905711</td>\n",
" <td>119.641777</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>9</td>\n",
" <td>30</td>\n",
" <td>horizontal</td>\n",
" <td>0.930704</td>\n",
" <td>0.639859</td>\n",
" <td>0.064516</td>\n",
" <td>0.041841</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.613087</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178390</th>\n",
" <td>5124499.0</td>\n",
" <td>92.630815</td>\n",
" <td>7.0</td>\n",
" <td>-150.0</td>\n",
" <td>512731.300787</td>\n",
" <td>121811.881398</td>\n",
" <td>47.143675</td>\n",
" <td>91.927158</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>8</td>\n",
" <td>7</td>\n",
" <td>vertical</td>\n",
" <td>0.898189</td>\n",
" <td>0.656369</td>\n",
" <td>0.045455</td>\n",
" <td>0.147541</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.559528</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178391</th>\n",
" <td>5124500.0</td>\n",
" <td>44.081253</td>\n",
" <td>7.0</td>\n",
" <td>-148.0</td>\n",
" <td>512734.614676</td>\n",
" <td>121817.612632</td>\n",
" <td>28.618486</td>\n",
" <td>43.718502</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>7</td>\n",
" <td>horizontal</td>\n",
" <td>0.871119</td>\n",
" <td>0.653339</td>\n",
" <td>0.000000</td>\n",
" <td>0.022857</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.638405</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178392</th>\n",
" <td>5124501.0</td>\n",
" <td>12.602429</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>512727.537367</td>\n",
" <td>121820.039977</td>\n",
" <td>14.885065</td>\n",
" <td>12.602429</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>30</td>\n",
" <td>equal</td>\n",
" <td>0.219901</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.115385</td>\n",
" <td>flat</td>\n",
" <td>S</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178393</th>\n",
" <td>5124502.0</td>\n",
" <td>14.119724</td>\n",
" <td>11.0</td>\n",
" <td>-147.0</td>\n",
" <td>512729.165421</td>\n",
" <td>121822.382400</td>\n",
" <td>16.789635</td>\n",
" <td>13.863595</td>\n",
" <td>1018653.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>11</td>\n",
" <td>equal</td>\n",
" <td>0.453267</td>\n",
" <td>0.453267</td>\n",
" <td>0.000000</td>\n",
" <td>0.071429</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.420890</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178394</th>\n",
" <td>5124503.0</td>\n",
" <td>36.753693</td>\n",
" <td>21.0</td>\n",
" <td>122.0</td>\n",
" <td>512683.971180</td>\n",
" <td>121769.079140</td>\n",
" <td>23.556753</td>\n",
" <td>34.231614</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>21</td>\n",
" <td>vertical</td>\n",
" <td>0.870661</td>\n",
" <td>0.522396</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.522396</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178395</th>\n",
" <td>5124505.0</td>\n",
" <td>36.179539</td>\n",
" <td>19.0</td>\n",
" <td>-58.0</td>\n",
" <td>512689.565868</td>\n",
" <td>121765.612262</td>\n",
" <td>23.566963</td>\n",
" <td>34.201265</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>19</td>\n",
" <td>vertical</td>\n",
" <td>0.884478</td>\n",
" <td>0.530687</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.530687</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178396</th>\n",
" <td>5124506.0</td>\n",
" <td>57.609988</td>\n",
" <td>17.0</td>\n",
" <td>-57.0</td>\n",
" <td>512685.874412</td>\n",
" <td>121760.247993</td>\n",
" <td>37.797327</td>\n",
" <td>55.148314</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>8</td>\n",
" <td>17</td>\n",
" <td>equal</td>\n",
" <td>0.777643</td>\n",
" <td>0.694324</td>\n",
" <td>0.000000</td>\n",
" <td>0.105023</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.621404</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178397</th>\n",
" <td>5124507.0</td>\n",
" <td>57.882063</td>\n",
" <td>22.0</td>\n",
" <td>122.0</td>\n",
" <td>512679.975021</td>\n",
" <td>121763.783138</td>\n",
" <td>29.386703</td>\n",
" <td>53.499302</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>22</td>\n",
" <td>equal</td>\n",
" <td>0.801630</td>\n",
" <td>0.773988</td>\n",
" <td>0.076923</td>\n",
" <td>0.186916</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.629317</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178398</th>\n",
" <td>5124508.0</td>\n",
" <td>35.898733</td>\n",
" <td>22.0</td>\n",
" <td>-153.0</td>\n",
" <td>512676.571716</td>\n",
" <td>121745.126015</td>\n",
" <td>30.833490</td>\n",
" <td>33.393443</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>7</td>\n",
" <td>22</td>\n",
" <td>equal</td>\n",
" <td>0.802257</td>\n",
" <td>0.356559</td>\n",
" <td>0.000000</td>\n",
" <td>0.014493</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.351391</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178399</th>\n",
" <td>5124509.0</td>\n",
" <td>88.059840</td>\n",
" <td>20.0</td>\n",
" <td>27.0</td>\n",
" <td>512674.020870</td>\n",
" <td>121740.921893</td>\n",
" <td>39.260540</td>\n",
" <td>82.722458</td>\n",
" <td>2040405.0</td>\n",
" <td>8012.0</td>\n",
" <td>...</td>\n",
" <td>8</td>\n",
" <td>20</td>\n",
" <td>horizontal</td>\n",
" <td>0.926643</td>\n",
" <td>0.744948</td>\n",
" <td>0.052632</td>\n",
" <td>0.015291</td>\n",
" <td>medium_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.733557</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178400</th>\n",
" <td>5124510.0</td>\n",
" <td>234.137426</td>\n",
" <td>15.0</td>\n",
" <td>-139.0</td>\n",
" <td>512576.260995</td>\n",
" <td>121776.663075</td>\n",
" <td>66.560300</td>\n",
" <td>226.093454</td>\n",
" <td>1018659.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>15</td>\n",
" <td>vertical</td>\n",
" <td>0.943036</td>\n",
" <td>0.861033</td>\n",
" <td>0.000000</td>\n",
" <td>0.002212</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.859128</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178401</th>\n",
" <td>5124511.0</td>\n",
" <td>232.447102</td>\n",
" <td>16.0</td>\n",
" <td>41.0</td>\n",
" <td>512570.079754</td>\n",
" <td>121769.520367</td>\n",
" <td>66.292584</td>\n",
" <td>222.913017</td>\n",
" <td>1018659.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>16</td>\n",
" <td>vertical</td>\n",
" <td>0.949894</td>\n",
" <td>0.867294</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.867294</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178402</th>\n",
" <td>5124512.0</td>\n",
" <td>131.925651</td>\n",
" <td>29.0</td>\n",
" <td>121.0</td>\n",
" <td>512861.419320</td>\n",
" <td>121844.774678</td>\n",
" <td>55.702429</td>\n",
" <td>114.847781</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>29</td>\n",
" <td>horizontal</td>\n",
" <td>0.848963</td>\n",
" <td>0.751939</td>\n",
" <td>0.033333</td>\n",
" <td>0.087146</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.686410</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178403</th>\n",
" <td>5124513.0</td>\n",
" <td>137.339196</td>\n",
" <td>28.0</td>\n",
" <td>-59.0</td>\n",
" <td>512865.854189</td>\n",
" <td>121842.120366</td>\n",
" <td>56.243851</td>\n",
" <td>121.027343</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>28</td>\n",
" <td>horizontal</td>\n",
" <td>0.815499</td>\n",
" <td>0.768899</td>\n",
" <td>0.000000</td>\n",
" <td>0.004124</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.765728</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178404</th>\n",
" <td>5124514.0</td>\n",
" <td>21.008432</td>\n",
" <td>23.0</td>\n",
" <td>-150.0</td>\n",
" <td>512862.686744</td>\n",
" <td>121857.263294</td>\n",
" <td>23.119281</td>\n",
" <td>19.328343</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>23</td>\n",
" <td>horizontal</td>\n",
" <td>0.685439</td>\n",
" <td>0.380799</td>\n",
" <td>0.000000</td>\n",
" <td>0.129870</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.331345</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178405</th>\n",
" <td>5124515.0</td>\n",
" <td>21.541363</td>\n",
" <td>19.0</td>\n",
" <td>30.0</td>\n",
" <td>512860.734800</td>\n",
" <td>121855.152708</td>\n",
" <td>19.585625</td>\n",
" <td>20.336518</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>19</td>\n",
" <td>horizontal</td>\n",
" <td>0.891309</td>\n",
" <td>0.445654</td>\n",
" <td>0.000000</td>\n",
" <td>0.123457</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SW</td>\n",
" <td>0.390635</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178406</th>\n",
" <td>5124516.0</td>\n",
" <td>33.342276</td>\n",
" <td>17.0</td>\n",
" <td>-58.0</td>\n",
" <td>512857.342542</td>\n",
" <td>121829.041410</td>\n",
" <td>24.377198</td>\n",
" <td>31.954253</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>17</td>\n",
" <td>vertical</td>\n",
" <td>0.767794</td>\n",
" <td>0.671820</td>\n",
" <td>0.125000</td>\n",
" <td>0.570312</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.288673</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178407</th>\n",
" <td>5124517.0</td>\n",
" <td>43.358052</td>\n",
" <td>13.0</td>\n",
" <td>122.0</td>\n",
" <td>512853.537208</td>\n",
" <td>121831.368979</td>\n",
" <td>26.787103</td>\n",
" <td>42.321731</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>13</td>\n",
" <td>horizontal</td>\n",
" <td>0.922551</td>\n",
" <td>0.590432</td>\n",
" <td>0.000000</td>\n",
" <td>0.470588</td>\n",
" <td>shallow_tilt</td>\n",
" <td>N</td>\n",
" <td>0.312582</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178408</th>\n",
" <td>5124518.0</td>\n",
" <td>34.768271</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>512851.492252</td>\n",
" <td>121838.457750</td>\n",
" <td>29.085365</td>\n",
" <td>34.768271</td>\n",
" <td>1018654.0</td>\n",
" <td>8011.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>30</td>\n",
" <td>vertical</td>\n",
" <td>0.398536</td>\n",
" <td>0.138057</td>\n",
" <td>0.111111</td>\n",
" <td>0.231884</td>\n",
" <td>flat</td>\n",
" <td>S</td>\n",
" <td>0.106044</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178409</th>\n",
" <td>5124519.0</td>\n",
" <td>32.262272</td>\n",
" <td>7.0</td>\n",
" <td>-62.0</td>\n",
" <td>512889.292856</td>\n",
" <td>121962.982921</td>\n",
" <td>22.665441</td>\n",
" <td>32.006156</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>7</td>\n",
" <td>equal</td>\n",
" <td>0.743903</td>\n",
" <td>0.595122</td>\n",
" <td>0.000000</td>\n",
" <td>0.375000</td>\n",
" <td>shallow_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.371951</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178410</th>\n",
" <td>5124520.0</td>\n",
" <td>14.249623</td>\n",
" <td>25.0</td>\n",
" <td>118.0</td>\n",
" <td>512885.599017</td>\n",
" <td>121964.977036</td>\n",
" <td>15.514710</td>\n",
" <td>12.886922</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>25</td>\n",
" <td>horizontal</td>\n",
" <td>0.673702</td>\n",
" <td>0.449135</td>\n",
" <td>0.500000</td>\n",
" <td>0.250000</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.336851</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178411</th>\n",
" <td>5124523.0</td>\n",
" <td>202.860586</td>\n",
" <td>26.0</td>\n",
" <td>-65.0</td>\n",
" <td>512907.355343</td>\n",
" <td>121907.640275</td>\n",
" <td>69.264065</td>\n",
" <td>181.708205</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>26</td>\n",
" <td>horizontal</td>\n",
" <td>0.938576</td>\n",
" <td>0.836042</td>\n",
" <td>0.022222</td>\n",
" <td>0.042582</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.800441</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178412</th>\n",
" <td>5124524.0</td>\n",
" <td>221.668609</td>\n",
" <td>25.0</td>\n",
" <td>115.0</td>\n",
" <td>512901.324171</td>\n",
" <td>121910.827716</td>\n",
" <td>72.136766</td>\n",
" <td>201.586966</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>6</td>\n",
" <td>25</td>\n",
" <td>horizontal</td>\n",
" <td>0.887812</td>\n",
" <td>0.692926</td>\n",
" <td>0.102041</td>\n",
" <td>0.042131</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.663732</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178413</th>\n",
" <td>5124525.0</td>\n",
" <td>126.405824</td>\n",
" <td>22.0</td>\n",
" <td>118.0</td>\n",
" <td>512801.107921</td>\n",
" <td>121763.322478</td>\n",
" <td>43.276794</td>\n",
" <td>116.796274</td>\n",
" <td>1018651.0</td>\n",
" <td>8013.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>22</td>\n",
" <td>horizontal</td>\n",
" <td>0.974639</td>\n",
" <td>0.759459</td>\n",
" <td>0.035714</td>\n",
" <td>0.012876</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.749680</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178414</th>\n",
" <td>5124526.0</td>\n",
" <td>126.408740</td>\n",
" <td>22.0</td>\n",
" <td>-62.0</td>\n",
" <td>512810.176759</td>\n",
" <td>121758.418405</td>\n",
" <td>43.277184</td>\n",
" <td>116.797944</td>\n",
" <td>1018651.0</td>\n",
" <td>8013.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>22</td>\n",
" <td>horizontal</td>\n",
" <td>0.974616</td>\n",
" <td>0.759441</td>\n",
" <td>0.000000</td>\n",
" <td>0.040598</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.728609</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178415</th>\n",
" <td>5124527.0</td>\n",
" <td>17.738624</td>\n",
" <td>32.0</td>\n",
" <td>-67.0</td>\n",
" <td>512895.656423</td>\n",
" <td>121945.700714</td>\n",
" <td>16.399780</td>\n",
" <td>14.964642</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>32</td>\n",
" <td>horizontal</td>\n",
" <td>0.811788</td>\n",
" <td>0.360795</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>medium_tilt</td>\n",
" <td>SE</td>\n",
" <td>0.360795</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178416</th>\n",
" <td>5124528.0</td>\n",
" <td>17.671450</td>\n",
" <td>33.0</td>\n",
" <td>113.0</td>\n",
" <td>512893.143353</td>\n",
" <td>121946.778198</td>\n",
" <td>16.370630</td>\n",
" <td>14.885036</td>\n",
" <td>1018655.0</td>\n",
" <td>8014.0</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>33</td>\n",
" <td>horizontal</td>\n",
" <td>0.814874</td>\n",
" <td>0.362166</td>\n",
" <td>0.000000</td>\n",
" <td>0.016393</td>\n",
" <td>medium_tilt</td>\n",
" <td>N</td>\n",
" <td>0.356229</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>178417 rows × 28 columns</p>\n",
"</div>"
],
"text/plain": [
" DF_UID FLAECHE NEIGUNG AUSRICHTUNG XCOORD \\\n",
"0 4817410.0 71.487047 10.0 127.0 503491.325015 \n",
"1 4817425.0 36.859836 37.0 33.0 503503.812619 \n",
"2 4817426.0 51.333864 31.0 -57.0 503509.783165 \n",
"3 4817427.0 36.861447 37.0 -147.0 503510.594159 \n",
"4 4817428.0 81.256555 28.0 123.0 503504.226918 \n",
"5 4817429.0 11.397236 27.0 -144.0 503512.070989 \n",
"6 4817430.0 11.262413 27.0 31.0 503510.350525 \n",
"7 4817431.0 174.501987 31.0 -147.0 503503.978942 \n",
"8 4817432.0 174.108293 31.0 33.0 503500.517066 \n",
"9 4817433.0 69.216255 26.0 33.0 503510.917446 \n",
"10 4817434.0 26.716480 31.0 -147.0 503517.020358 \n",
"11 4817435.0 26.018729 31.0 -147.0 503507.806109 \n",
"12 4817436.0 13.309012 33.0 123.0 503512.471353 \n",
"13 4817437.0 13.503089 32.0 -57.0 503514.586126 \n",
"14 4817438.0 130.038144 26.0 -144.0 503951.193324 \n",
"15 4817439.0 126.475108 26.0 36.0 503948.788882 \n",
"16 4817440.0 47.540096 37.0 -144.0 503996.949571 \n",
"17 4817441.0 35.497241 32.0 36.0 503994.863047 \n",
"18 4817442.0 49.847956 38.0 36.0 504003.468131 \n",
"19 4817444.0 12.607657 0.0 0.0 503991.439805 \n",
"20 4817448.0 34.963254 28.0 -145.0 503922.898105 \n",
"21 4817449.0 19.979434 7.0 35.0 503916.075512 \n",
"22 4817450.0 21.119847 18.0 -144.0 503936.461763 \n",
"23 4817451.0 21.374411 19.0 36.0 503934.470464 \n",
"24 4817452.0 68.854261 35.0 -140.0 504222.101990 \n",
"25 4817453.0 52.296595 34.0 40.0 504219.058562 \n",
"26 4817458.0 258.858167 34.0 127.0 504246.524168 \n",
"27 4817459.0 260.507359 30.0 -49.0 504253.910958 \n",
"28 4817460.0 33.455253 24.0 -142.0 504252.873380 \n",
"29 4817461.0 45.821417 22.0 32.0 504249.859870 \n",
"... ... ... ... ... ... \n",
"178387 5124496.0 33.733199 11.0 30.0 512653.714458 \n",
"178388 5124497.0 139.413591 30.0 -60.0 512727.853591 \n",
"178389 5124498.0 137.530298 30.0 120.0 512722.012941 \n",
"178390 5124499.0 92.630815 7.0 -150.0 512731.300787 \n",
"178391 5124500.0 44.081253 7.0 -148.0 512734.614676 \n",
"178392 5124501.0 12.602429 0.0 0.0 512727.537367 \n",
"178393 5124502.0 14.119724 11.0 -147.0 512729.165421 \n",
"178394 5124503.0 36.753693 21.0 122.0 512683.971180 \n",
"178395 5124505.0 36.179539 19.0 -58.0 512689.565868 \n",
"178396 5124506.0 57.609988 17.0 -57.0 512685.874412 \n",
"178397 5124507.0 57.882063 22.0 122.0 512679.975021 \n",
"178398 5124508.0 35.898733 22.0 -153.0 512676.571716 \n",
"178399 5124509.0 88.059840 20.0 27.0 512674.020870 \n",
"178400 5124510.0 234.137426 15.0 -139.0 512576.260995 \n",
"178401 5124511.0 232.447102 16.0 41.0 512570.079754 \n",
"178402 5124512.0 131.925651 29.0 121.0 512861.419320 \n",
"178403 5124513.0 137.339196 28.0 -59.0 512865.854189 \n",
"178404 5124514.0 21.008432 23.0 -150.0 512862.686744 \n",
"178405 5124515.0 21.541363 19.0 30.0 512860.734800 \n",
"178406 5124516.0 33.342276 17.0 -58.0 512857.342542 \n",
"178407 5124517.0 43.358052 13.0 122.0 512853.537208 \n",
"178408 5124518.0 34.768271 0.0 0.0 512851.492252 \n",
"178409 5124519.0 32.262272 7.0 -62.0 512889.292856 \n",
"178410 5124520.0 14.249623 25.0 118.0 512885.599017 \n",
"178411 5124523.0 202.860586 26.0 -65.0 512907.355343 \n",
"178412 5124524.0 221.668609 25.0 115.0 512901.324171 \n",
"178413 5124525.0 126.405824 22.0 118.0 512801.107921 \n",
"178414 5124526.0 126.408740 22.0 -62.0 512810.176759 \n",
"178415 5124527.0 17.738624 32.0 -67.0 512895.656423 \n",
"178416 5124528.0 17.671450 33.0 113.0 512893.143353 \n",
"\n",
" YCOORD Shape_Length Shape_Area GWR_EGID GBAUP \\\n",
"0 134197.490397 33.936595 70.390620 295070969.0 8011.0 \n",
"1 134131.833522 28.208608 29.339500 1004090.0 8012.0 \n",
"2 134135.282805 40.053428 44.043504 1004090.0 8012.0 \n",
"3 134142.188986 28.210273 29.341346 1004090.0 8012.0 \n",
"4 134138.960671 37.840077 71.574129 1004090.0 8012.0 \n",
"5 134135.795686 15.417311 10.154872 1004090.0 8012.0 \n",
"6 134133.126967 15.346288 10.045172 1004090.0 8012.0 \n",
"7 134181.171146 59.815925 149.165008 1004088.0 8011.0 \n",
"8 134175.889168 59.775896 148.702405 1004088.0 8011.0 \n",
"9 134191.713704 45.633223 61.997846 295084893.0 8011.0 \n",
"10 134191.118711 23.687927 22.959133 295084893.0 8011.0 \n",
"11 134197.114437 23.199036 22.360589 295084893.0 8011.0 \n",
"12 134196.622116 15.096068 11.164928 295084893.0 8011.0 \n",
"13 134195.245953 15.198331 11.396747 295084893.0 8011.0 \n",
"14 134195.306644 64.584475 117.365353 295084994.0 8014.0 \n",
"15 134191.981218 64.301850 113.406403 295084994.0 8014.0 \n",
"16 134161.244934 27.081498 37.981483 1004076.0 8012.0 \n",
"17 134158.375583 25.402378 29.945648 1004076.0 8012.0 \n",
"18 134152.306087 29.835723 39.429900 1004076.0 8012.0 \n",
"19 134163.317363 17.745074 12.607657 1004076.0 8012.0 \n",
"20 134216.939359 29.062031 30.741322 1004089.0 8012.0 \n",
"21 134213.701005 17.895750 19.831984 1004089.0 8012.0 \n",
"22 134203.761986 18.414721 20.066844 295084994.0 8014.0 \n",
"23 134200.829905 19.727025 20.261942 295084994.0 8014.0 \n",
"24 134017.187739 31.767443 56.268749 1004049.0 8011.0 \n",
"25 134013.574920 29.327904 43.406040 1004049.0 8011.0 \n",
"26 134078.107216 66.270016 215.837030 1004035.0 8011.0 \n",
"27 134072.701545 66.856008 225.390527 1004035.0 8011.0 \n",
"28 134059.252231 24.705455 30.633213 1004035.0 8011.0 \n",
"29 134055.974734 27.196876 42.462233 1004035.0 8011.0 \n",
"... ... ... ... ... ... \n",
"178387 121846.443211 27.509294 33.153466 1018650.0 8015.0 \n",
"178388 121799.313992 54.005430 120.493402 1018653.0 8012.0 \n",
"178389 121802.781737 53.905711 119.641777 1018653.0 8012.0 \n",
"178390 121811.881398 47.143675 91.927158 1018653.0 8012.0 \n",
"178391 121817.612632 28.618486 43.718502 1018653.0 8012.0 \n",
"178392 121820.039977 14.885065 12.602429 1018653.0 8012.0 \n",
"178393 121822.382400 16.789635 13.863595 1018653.0 8012.0 \n",
"178394 121769.079140 23.556753 34.231614 2040405.0 8012.0 \n",
"178395 121765.612262 23.566963 34.201265 2040405.0 8012.0 \n",
"178396 121760.247993 37.797327 55.148314 2040405.0 8012.0 \n",
"178397 121763.783138 29.386703 53.499302 2040405.0 8012.0 \n",
"178398 121745.126015 30.833490 33.393443 2040405.0 8012.0 \n",
"178399 121740.921893 39.260540 82.722458 2040405.0 8012.0 \n",
"178400 121776.663075 66.560300 226.093454 1018659.0 8011.0 \n",
"178401 121769.520367 66.292584 222.913017 1018659.0 8011.0 \n",
"178402 121844.774678 55.702429 114.847781 1018654.0 8011.0 \n",
"178403 121842.120366 56.243851 121.027343 1018654.0 8011.0 \n",
"178404 121857.263294 23.119281 19.328343 1018654.0 8011.0 \n",
"178405 121855.152708 19.585625 20.336518 1018654.0 8011.0 \n",
"178406 121829.041410 24.377198 31.954253 1018654.0 8011.0 \n",
"178407 121831.368979 26.787103 42.321731 1018654.0 8011.0 \n",
"178408 121838.457750 29.085365 34.768271 1018654.0 8011.0 \n",
"178409 121962.982921 22.665441 32.006156 1018655.0 8014.0 \n",
"178410 121964.977036 15.514710 12.886922 1018655.0 8014.0 \n",
"178411 121907.640275 69.264065 181.708205 1018655.0 8014.0 \n",
"178412 121910.827716 72.136766 201.586966 1018655.0 8014.0 \n",
"178413 121763.322478 43.276794 116.796274 1018651.0 8013.0 \n",
"178414 121758.418405 43.277184 116.797944 1018651.0 8013.0 \n",
"178415 121945.700714 16.399780 14.964642 1018655.0 8014.0 \n",
"178416 121946.778198 16.370630 14.885036 1018655.0 8014.0 \n",
"\n",
" ... n_corners panel_tilt best_align \\\n",
"0 ... 4 10 horizontal \n",
"1 ... 4 37 equal \n",
"2 ... 7 31 vertical \n",
"3 ... 4 37 horizontal \n",
"4 ... 4 28 horizontal \n",
"5 ... 3 27 horizontal \n",
"6 ... 3 27 horizontal \n",
"7 ... 4 31 horizontal \n",
"8 ... 4 31 horizontal \n",
"9 ... 5 26 vertical \n",
"10 ... 5 31 horizontal \n",
"11 ... 5 31 horizontal \n",
"12 ... 6 33 vertical \n",
"13 ... 5 32 vertical \n",
"14 ... 4 26 horizontal \n",
"15 ... 4 26 horizontal \n",
"16 ... 5 37 vertical \n",
"17 ... 4 32 vertical \n",
"18 ... 4 38 horizontal \n",
"19 ... 5 30 vertical \n",
"20 ... 4 28 horizontal \n",
"21 ... 4 7 horizontal \n",
"22 ... 5 18 vertical \n",
"23 ... 6 19 vertical \n",
"24 ... 5 35 horizontal \n",
"25 ... 5 34 vertical \n",
"26 ... 4 34 horizontal \n",
"27 ... 5 30 horizontal \n",
"28 ... 6 24 horizontal \n",
"29 ... 4 22 equal \n",
"... ... ... ... ... \n",
"178387 ... 4 11 horizontal \n",
"178388 ... 9 30 horizontal \n",
"178389 ... 9 30 horizontal \n",
"178390 ... 8 7 vertical \n",
"178391 ... 4 7 horizontal \n",
"178392 ... 6 30 equal \n",
"178393 ... 6 11 equal \n",
"178394 ... 5 21 vertical \n",
"178395 ... 4 19 vertical \n",
"178396 ... 8 17 equal \n",
"178397 ... 5 22 equal \n",
"178398 ... 7 22 equal \n",
"178399 ... 8 20 horizontal \n",
"178400 ... 4 15 vertical \n",
"178401 ... 4 16 vertical \n",
"178402 ... 5 29 horizontal \n",
"178403 ... 4 28 horizontal \n",
"178404 ... 6 23 horizontal \n",
"178405 ... 4 19 horizontal \n",
"178406 ... 4 17 vertical \n",
"178407 ... 4 13 horizontal \n",
"178408 ... 6 30 vertical \n",
"178409 ... 5 7 equal \n",
"178410 ... 5 25 horizontal \n",
"178411 ... 4 26 horizontal \n",
"178412 ... 6 25 horizontal \n",
"178413 ... 4 22 horizontal \n",
"178414 ... 4 22 horizontal \n",
"178415 ... 4 32 horizontal \n",
"178416 ... 4 33 horizontal \n",
"\n",
" panelled_area_ratio_ftr panelled_area_ratio_tgt \\\n",
"0 0.940030 0.805740 \n",
"1 0.607708 0.260446 \n",
"2 0.623370 0.187011 \n",
"3 0.607681 0.260435 \n",
"4 0.767938 0.708866 \n",
"5 0.561540 0.140385 \n",
"6 0.568262 0.000000 \n",
"7 0.898557 0.806868 \n",
"8 0.900589 0.808692 \n",
"9 0.878406 0.277391 \n",
"10 0.538993 0.479105 \n",
"11 0.553447 0.491953 \n",
"12 0.721316 0.240439 \n",
"13 0.710948 0.236983 \n",
"14 0.836678 0.664420 \n",
"15 0.860248 0.683138 \n",
"16 0.908707 0.673116 \n",
"17 0.811331 0.450739 \n",
"18 0.898733 0.641952 \n",
"19 0.219809 0.000000 \n",
"20 0.777960 0.457623 \n",
"21 0.720741 0.640659 \n",
"22 0.757581 0.454549 \n",
"23 0.748559 0.449135 \n",
"24 0.836550 0.697125 \n",
"25 0.917842 0.734273 \n",
"26 0.933330 0.834434 \n",
"27 0.927421 0.767733 \n",
"28 0.813026 0.478251 \n",
"29 0.803118 0.593609 \n",
"... ... ... \n",
"178387 0.853758 0.569172 \n",
"178388 0.918131 0.677122 \n",
"178389 0.930704 0.639859 \n",
"178390 0.898189 0.656369 \n",
"178391 0.871119 0.653339 \n",
"178392 0.219901 0.000000 \n",
"178393 0.453267 0.453267 \n",
"178394 0.870661 0.522396 \n",
"178395 0.884478 0.530687 \n",
"178396 0.777643 0.694324 \n",
"178397 0.801630 0.773988 \n",
"178398 0.802257 0.356559 \n",
"178399 0.926643 0.744948 \n",
"178400 0.943036 0.861033 \n",
"178401 0.949894 0.867294 \n",
"178402 0.848963 0.751939 \n",
"178403 0.815499 0.768899 \n",
"178404 0.685439 0.380799 \n",
"178405 0.891309 0.445654 \n",
"178406 0.767794 0.671820 \n",
"178407 0.922551 0.590432 \n",
"178408 0.398536 0.138057 \n",
"178409 0.743903 0.595122 \n",
"178410 0.673702 0.449135 \n",
"178411 0.938576 0.836042 \n",
"178412 0.887812 0.692926 \n",
"178413 0.974639 0.759459 \n",
"178414 0.974616 0.759441 \n",
"178415 0.811788 0.360795 \n",
"178416 0.814874 0.362166 \n",
"\n",
" shaded_area_ratio_ftr shaded_area_ratio_tgt tilt_cat \\\n",
"0 0.117647 0.166667 shallow_tilt \n",
"1 0.000000 0.386555 medium_tilt \n",
"2 0.000000 0.119318 medium_tilt \n",
"3 0.166667 0.322034 medium_tilt \n",
"4 0.333333 0.077193 medium_tilt \n",
"5 0.000000 0.075000 medium_tilt \n",
"6 0.000000 0.000000 medium_tilt \n",
"7 0.135135 0.020101 medium_tilt \n",
"8 0.131579 0.161345 medium_tilt \n",
"9 0.000000 0.060241 medium_tilt \n",
"10 0.000000 0.000000 medium_tilt \n",
"11 0.000000 0.000000 medium_tilt \n",
"12 0.000000 0.266667 medium_tilt \n",
"13 0.000000 0.000000 medium_tilt \n",
"14 0.900000 0.785106 medium_tilt \n",
"15 0.214286 0.556291 medium_tilt \n",
"16 0.800000 0.973510 medium_tilt \n",
"17 0.142857 0.725000 medium_tilt \n",
"18 0.900000 0.961538 medium_tilt \n",
"19 0.000000 0.461538 flat \n",
"20 0.125000 0.975610 medium_tilt \n",
"21 0.666667 0.925000 shallow_tilt \n",
"22 0.000000 0.506173 shallow_tilt \n",
"23 0.000000 0.543210 shallow_tilt \n",
"24 0.142857 0.053333 medium_tilt \n",
"25 0.100000 0.034682 medium_tilt \n",
"26 0.109091 0.030093 medium_tilt \n",
"27 0.035714 0.008869 medium_tilt \n",
"28 0.000000 0.008130 medium_tilt \n",
"29 0.000000 0.005952 medium_tilt \n",
"... ... ... ... \n",
"178387 0.000000 0.015152 shallow_tilt \n",
"178388 0.000000 0.004149 medium_tilt \n",
"178389 0.064516 0.041841 medium_tilt \n",
"178390 0.045455 0.147541 shallow_tilt \n",
"178391 0.000000 0.022857 shallow_tilt \n",
"178392 0.000000 0.115385 flat \n",
"178393 0.000000 0.071429 shallow_tilt \n",
"178394 0.000000 0.000000 medium_tilt \n",
"178395 0.000000 0.000000 shallow_tilt \n",
"178396 0.000000 0.105023 shallow_tilt \n",
"178397 0.076923 0.186916 medium_tilt \n",
"178398 0.000000 0.014493 medium_tilt \n",
"178399 0.052632 0.015291 medium_tilt \n",
"178400 0.000000 0.002212 shallow_tilt \n",
"178401 0.000000 0.000000 shallow_tilt \n",
"178402 0.033333 0.087146 medium_tilt \n",
"178403 0.000000 0.004124 medium_tilt \n",
"178404 0.000000 0.129870 medium_tilt \n",
"178405 0.000000 0.123457 shallow_tilt \n",
"178406 0.125000 0.570312 shallow_tilt \n",
"178407 0.000000 0.470588 shallow_tilt \n",
"178408 0.111111 0.231884 flat \n",
"178409 0.000000 0.375000 shallow_tilt \n",
"178410 0.500000 0.250000 medium_tilt \n",
"178411 0.022222 0.042582 medium_tilt \n",
"178412 0.102041 0.042131 medium_tilt \n",
"178413 0.035714 0.012876 medium_tilt \n",
"178414 0.000000 0.040598 medium_tilt \n",
"178415 0.000000 0.000000 medium_tilt \n",
"178416 0.000000 0.016393 medium_tilt \n",
"\n",
" orientation_cat available_area_ratio \n",
"0 N 0.671450 \n",
"1 SW 0.159769 \n",
"2 SE 0.164697 \n",
"3 N 0.176566 \n",
"4 N 0.654146 \n",
"5 N 0.129856 \n",
"6 SW 0.000000 \n",
"7 N 0.790649 \n",
"8 SW 0.678214 \n",
"9 SW 0.260681 \n",
"10 N 0.479105 \n",
"11 N 0.491953 \n",
"12 N 0.176322 \n",
"13 SE 0.236983 \n",
"14 N 0.142780 \n",
"15 SW 0.303114 \n",
"16 N 0.017831 \n",
"17 SW 0.123953 \n",
"18 SW 0.024690 \n",
"19 S 0.000000 \n",
"20 N 0.011162 \n",
"21 SW 0.048049 \n",
"22 N 0.224469 \n",
"23 SW 0.205161 \n",
"24 N 0.659945 \n",
"25 SW 0.708807 \n",
"26 N 0.809324 \n",
"27 SE 0.760923 \n",
"28 N 0.474363 \n",
"29 SW 0.590075 \n",
"... ... ... \n",
"178387 SW 0.560548 \n",
"178388 SE 0.674312 \n",
"178389 N 0.613087 \n",
"178390 N 0.559528 \n",
"178391 N 0.638405 \n",
"178392 S 0.000000 \n",
"178393 N 0.420890 \n",
"178394 N 0.522396 \n",
"178395 SE 0.530687 \n",
"178396 SE 0.621404 \n",
"178397 N 0.629317 \n",
"178398 N 0.351391 \n",
"178399 SW 0.733557 \n",
"178400 N 0.859128 \n",
"178401 SW 0.867294 \n",
"178402 N 0.686410 \n",
"178403 SE 0.765728 \n",
"178404 N 0.331345 \n",
"178405 SW 0.390635 \n",
"178406 SE 0.288673 \n",
"178407 N 0.312582 \n",
"178408 S 0.106044 \n",
"178409 SE 0.371951 \n",
"178410 N 0.336851 \n",
"178411 SE 0.800441 \n",
"178412 N 0.663732 \n",
"178413 N 0.749680 \n",
"178414 SE 0.728609 \n",
"178415 SE 0.360795 \n",
"178416 N 0.356229 \n",
"\n",
"[178417 rows x 28 columns]"
]
},
"execution_count": 100,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_roofs_shade_tgt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get additional info on number of BUILDINGS"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"GVA_roofs_w_panels_shp = gpd.read_file(\"/Users/alinawalch/Documents/EPFL/data/rooftops/SOLKAT_DACH_GVA/SOLKAT_DACH_GVA.shp\")\n",
"training_roofs_w_building = training_roofs.merge(GVA_roofs_w_panels_shp.loc[:,['DF_UID', 'SB_UUID']])"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of considered buildings in Geneva (by SB_UUID): 66108\n",
"Total number of considered buildings in Geneva (by GWR_EGID): 34417\n"
]
}
],
"source": [
"print('Total number of considered buildings in Geneva (by SB_UUID): %d' %len(training_roofs_w_building.SB_UUID.unique()) )\n",
"print('Total number of considered buildings in Geneva (by GWR_EGID): %d' %len(training_roofs_w_building.GWR_EGID.unique()) )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.5"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/Available_area/prepare_training_panelling.ipynb b/Available_area/prepare_training_panelling.ipynb
new file mode 100644
index 0000000..bc967c4
--- /dev/null
+++ b/Available_area/prepare_training_panelling.ipynb
@@ -0,0 +1,3788 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import xarray as xr\n",
+ "import os\n",
+ "import geopandas as gpd\n",
+ "\n",
+ "import matplotlib\n",
+ "%matplotlib notebook\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Load data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# General roof information\n",
+ "GVA_roofs_all = pd.read_csv(\"/Users/alinawalch/Documents/EPFL/data/rooftops/ROOFS_TRN_panels_replaced.csv\")\n",
+ "GVA_roof_corners = pd.read_csv(\"/Users/alinawalch/Documents/EPFL/data/rooftops/SOLKAT_DACH_GVA_ncorners.csv\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Roof shape information (to find roofs with superstructures)\n",
+ "gva_shp = gpd.read_file('/Users/alinawalch/Documents/EPFL/data/rooftops/SOLKAT_DACH_GVA/SOLKAT_DACH_GVA.shp')\n",
+ "gva_shp_noSP = gpd.read_file('/Users/alinawalch/Documents/EPFL/data/rooftops/SOLKAT_DACH_GVA_noSP/SOLKAT_CH_DACH_GVA_noSP.shp')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# panel fitting information\n",
+ "GVA_panels_tgt = pd.read_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/panel_stats_final/panelled_area_stats_GVA_best.csv')\n",
+ "CH_panels_ftr = pd.read_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/panel_stats_final/panelled_area_stats_CH_best.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Merge roofs with shading info and roofs with panelled area info"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 1: get roofs for training set\n",
+ "By merging the roofs_w_panels and the area of the gva_shp, we get a dataframe that contains all rooftops who's footprint overlaps with the SITG roof information for which superstructure information is available (all roofs where area_with_SP == area_without_SP are excluded!!!). To complement the superstructure information, all roof surfaces smaller than 8m^2 in SITG were also categorized as superstructures."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "training_roofs = pd.merge(GVA_roofs_all, GVA_roof_corners, how = 'inner', on = 'DF_UID')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>DF_UID</th>\n",
+ " <th>FLAECHE</th>\n",
+ " <th>NEIGUNG</th>\n",
+ " <th>AUSRICHTUNG</th>\n",
+ " <th>XCOORD</th>\n",
+ " <th>YCOORD</th>\n",
+ " <th>Shape_Length</th>\n",
+ " <th>Shape_Area</th>\n",
+ " <th>GWR_EGID</th>\n",
+ " <th>GBAUP</th>\n",
+ " <th>GKAT</th>\n",
+ " <th>GAREA</th>\n",
+ " <th>GASTW</th>\n",
+ " <th>GKODX</th>\n",
+ " <th>GKODY</th>\n",
+ " <th>Shape_Ratio</th>\n",
+ " <th>n_neighbors_100</th>\n",
+ " <th>Estim_build_area</th>\n",
+ " <th>n_corners</th>\n",
+ " </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
+ " <tr>\n",
+ " <th>0</th>\n",
+ " <td>4817410.0</td>\n",
+ " <td>71.487047</td>\n",
+ " <td>10.0</td>\n",
+ " <td>127.0</td>\n",
+ " <td>503491.325015</td>\n",
+ " <td>134197.490397</td>\n",
+ " <td>33.936595</td>\n",
+ " <td>70.390620</td>\n",
+ " <td>295070969.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>44.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503491.0</td>\n",
+ " <td>134198.0</td>\n",
+ " <td>0.474724</td>\n",
+ " <td>3.0</td>\n",
+ " <td>70.400998</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1</th>\n",
+ " <td>4817425.0</td>\n",
+ " <td>36.859836</td>\n",
+ " <td>37.0</td>\n",
+ " <td>33.0</td>\n",
+ " <td>503503.812619</td>\n",
+ " <td>134131.833522</td>\n",
+ " <td>28.208608</td>\n",
+ " <td>29.339500</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>152.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503507.0</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>0.765294</td>\n",
+ " <td>3.0</td>\n",
+ " <td>194.813319</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2</th>\n",
+ " <td>4817426.0</td>\n",
+ " <td>51.333864</td>\n",
+ " <td>31.0</td>\n",
+ " <td>-57.0</td>\n",
+ " <td>503509.783165</td>\n",
+ " <td>134135.282805</td>\n",
+ " <td>40.053428</td>\n",
+ " <td>44.043504</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>152.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503507.0</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>0.780254</td>\n",
+ " <td>3.0</td>\n",
+ " <td>194.813319</td>\n",
+ " <td>7</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>3</th>\n",
+ " <td>4817427.0</td>\n",
+ " <td>36.861447</td>\n",
+ " <td>37.0</td>\n",
+ " <td>-147.0</td>\n",
+ " <td>503510.594159</td>\n",
+ " <td>134142.188986</td>\n",
+ " <td>28.210273</td>\n",
+ " <td>29.341346</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>152.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503507.0</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>0.765306</td>\n",
+ " <td>3.0</td>\n",
+ " <td>194.813319</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>4</th>\n",
+ " <td>4817428.0</td>\n",
+ " <td>81.256555</td>\n",
+ " <td>28.0</td>\n",
+ " <td>123.0</td>\n",
+ " <td>503504.226918</td>\n",
+ " <td>134138.960671</td>\n",
+ " <td>37.840077</td>\n",
+ " <td>71.574129</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>152.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503507.0</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>0.465686</td>\n",
+ " <td>3.0</td>\n",
+ " <td>194.813319</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>5</th>\n",
+ " <td>4817429.0</td>\n",
+ " <td>11.397236</td>\n",
+ " <td>27.0</td>\n",
+ " <td>-144.0</td>\n",
+ " <td>503512.070989</td>\n",
+ " <td>134135.795686</td>\n",
+ " <td>15.417311</td>\n",
+ " <td>10.154872</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>152.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503507.0</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>1.352724</td>\n",
+ " <td>3.0</td>\n",
+ " <td>194.813319</td>\n",
+ " <td>3</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>6</th>\n",
+ " <td>4817430.0</td>\n",
+ " <td>11.262413</td>\n",
+ " <td>27.0</td>\n",
+ " <td>31.0</td>\n",
+ " <td>503510.350525</td>\n",
+ " <td>134133.126967</td>\n",
+ " <td>15.346288</td>\n",
+ " <td>10.045172</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>152.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503507.0</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>1.362611</td>\n",
+ " <td>3.0</td>\n",
+ " <td>194.813319</td>\n",
+ " <td>3</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>7</th>\n",
+ " <td>4817431.0</td>\n",
+ " <td>174.501987</td>\n",
+ " <td>31.0</td>\n",
+ " <td>-147.0</td>\n",
+ " <td>503503.978942</td>\n",
+ " <td>134181.171146</td>\n",
+ " <td>59.815925</td>\n",
+ " <td>149.165008</td>\n",
+ " <td>1004088.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>206.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503503.0</td>\n",
+ " <td>134179.0</td>\n",
+ " <td>0.342781</td>\n",
+ " <td>3.0</td>\n",
+ " <td>298.817334</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>8</th>\n",
+ " <td>4817432.0</td>\n",
+ " <td>174.108293</td>\n",
+ " <td>31.0</td>\n",
+ " <td>33.0</td>\n",
+ " <td>503500.517066</td>\n",
+ " <td>134175.889168</td>\n",
+ " <td>59.775896</td>\n",
+ " <td>148.702405</td>\n",
+ " <td>1004088.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>206.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503503.0</td>\n",
+ " <td>134179.0</td>\n",
+ " <td>0.343326</td>\n",
+ " <td>3.0</td>\n",
+ " <td>298.817334</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>9</th>\n",
+ " <td>4817433.0</td>\n",
+ " <td>69.216255</td>\n",
+ " <td>26.0</td>\n",
+ " <td>33.0</td>\n",
+ " <td>503510.917446</td>\n",
+ " <td>134191.713704</td>\n",
+ " <td>45.633223</td>\n",
+ " <td>61.997846</td>\n",
+ " <td>295084893.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>100.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503512.0</td>\n",
+ " <td>134193.0</td>\n",
+ " <td>0.659285</td>\n",
+ " <td>3.0</td>\n",
+ " <td>107.414054</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>10</th>\n",
+ " <td>4817434.0</td>\n",
+ " <td>26.716480</td>\n",
+ " <td>31.0</td>\n",
+ " <td>-147.0</td>\n",
+ " <td>503517.020358</td>\n",
+ " <td>134191.118711</td>\n",
+ " <td>23.687927</td>\n",
+ " <td>22.959133</td>\n",
+ " <td>295084893.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>100.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503512.0</td>\n",
+ " <td>134193.0</td>\n",
+ " <td>0.886641</td>\n",
+ " <td>3.0</td>\n",
+ " <td>107.414054</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>11</th>\n",
+ " <td>4817435.0</td>\n",
+ " <td>26.018729</td>\n",
+ " <td>31.0</td>\n",
+ " <td>-147.0</td>\n",
+ " <td>503507.806109</td>\n",
+ " <td>134197.114437</td>\n",
+ " <td>23.199036</td>\n",
+ " <td>22.360589</td>\n",
+ " <td>295084893.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>100.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503512.0</td>\n",
+ " <td>134193.0</td>\n",
+ " <td>0.891628</td>\n",
+ " <td>3.0</td>\n",
+ " <td>107.414054</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>12</th>\n",
+ " <td>4817436.0</td>\n",
+ " <td>13.309012</td>\n",
+ " <td>33.0</td>\n",
+ " <td>123.0</td>\n",
+ " <td>503512.471353</td>\n",
+ " <td>134196.622116</td>\n",
+ " <td>15.096068</td>\n",
+ " <td>11.164928</td>\n",
+ " <td>295084893.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>100.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503512.0</td>\n",
+ " <td>134193.0</td>\n",
+ " <td>1.134274</td>\n",
+ " <td>3.0</td>\n",
+ " <td>22.613146</td>\n",
+ " <td>6</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>13</th>\n",
+ " <td>4817437.0</td>\n",
+ " <td>13.503089</td>\n",
+ " <td>32.0</td>\n",
+ " <td>-57.0</td>\n",
+ " <td>503514.586126</td>\n",
+ " <td>134195.245953</td>\n",
+ " <td>15.198331</td>\n",
+ " <td>11.396747</td>\n",
+ " <td>295084893.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>100.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503512.0</td>\n",
+ " <td>134193.0</td>\n",
+ " <td>1.125545</td>\n",
+ " <td>3.0</td>\n",
+ " <td>22.613146</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>14</th>\n",
+ " <td>4817438.0</td>\n",
+ " <td>130.038144</td>\n",
+ " <td>26.0</td>\n",
+ " <td>-144.0</td>\n",
+ " <td>503951.193324</td>\n",
+ " <td>134195.306644</td>\n",
+ " <td>64.584475</td>\n",
+ " <td>117.365353</td>\n",
+ " <td>295084994.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>1030.0</td>\n",
+ " <td>213.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503949.0</td>\n",
+ " <td>134194.0</td>\n",
+ " <td>0.496658</td>\n",
+ " <td>5.0</td>\n",
+ " <td>230.552584</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>15</th>\n",
+ " <td>4817439.0</td>\n",
+ " <td>126.475108</td>\n",
+ " <td>26.0</td>\n",
+ " <td>36.0</td>\n",
+ " <td>503948.788882</td>\n",
+ " <td>134191.981218</td>\n",
+ " <td>64.301850</td>\n",
+ " <td>113.406403</td>\n",
+ " <td>295084994.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>1030.0</td>\n",
+ " <td>213.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503949.0</td>\n",
+ " <td>134194.0</td>\n",
+ " <td>0.508415</td>\n",
+ " <td>5.0</td>\n",
+ " <td>230.552584</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>16</th>\n",
+ " <td>4817440.0</td>\n",
+ " <td>47.540096</td>\n",
+ " <td>37.0</td>\n",
+ " <td>-144.0</td>\n",
+ " <td>503996.949571</td>\n",
+ " <td>134161.244934</td>\n",
+ " <td>27.081498</td>\n",
+ " <td>37.981483</td>\n",
+ " <td>1004076.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>66.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>504005.0</td>\n",
+ " <td>134153.0</td>\n",
+ " <td>0.569656</td>\n",
+ " <td>7.0</td>\n",
+ " <td>68.070576</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>17</th>\n",
+ " <td>4817441.0</td>\n",
+ " <td>35.497241</td>\n",
+ " <td>32.0</td>\n",
+ " <td>36.0</td>\n",
+ " <td>503994.863047</td>\n",
+ " <td>134158.375583</td>\n",
+ " <td>25.402378</td>\n",
+ " <td>29.945648</td>\n",
+ " <td>1004076.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>66.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>504005.0</td>\n",
+ " <td>134153.0</td>\n",
+ " <td>0.715616</td>\n",
+ " <td>7.0</td>\n",
+ " <td>68.070576</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>18</th>\n",
+ " <td>4817442.0</td>\n",
+ " <td>49.847956</td>\n",
+ " <td>38.0</td>\n",
+ " <td>36.0</td>\n",
+ " <td>504003.468131</td>\n",
+ " <td>134152.306087</td>\n",
+ " <td>29.835723</td>\n",
+ " <td>39.429900</td>\n",
+ " <td>1004076.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>66.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>504005.0</td>\n",
+ " <td>134153.0</td>\n",
+ " <td>0.598535</td>\n",
+ " <td>7.0</td>\n",
+ " <td>96.433564</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>19</th>\n",
+ " <td>4817443.0</td>\n",
+ " <td>74.607733</td>\n",
+ " <td>40.0</td>\n",
+ " <td>-144.0</td>\n",
+ " <td>504005.947778</td>\n",
+ " <td>134155.715627</td>\n",
+ " <td>32.967494</td>\n",
+ " <td>57.409186</td>\n",
+ " <td>1004076.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>66.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>504005.0</td>\n",
+ " <td>134153.0</td>\n",
+ " <td>0.441878</td>\n",
+ " <td>7.0</td>\n",
+ " <td>96.433564</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>20</th>\n",
+ " <td>4817444.0</td>\n",
+ " <td>12.607657</td>\n",
+ " <td>0.0</td>\n",
+ " <td>0.0</td>\n",
+ " <td>503991.439805</td>\n",
+ " <td>134163.317363</td>\n",
+ " <td>17.745074</td>\n",
+ " <td>12.607657</td>\n",
+ " <td>1004076.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>66.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>504005.0</td>\n",
+ " <td>134153.0</td>\n",
+ " <td>1.407484</td>\n",
+ " <td>7.0</td>\n",
+ " <td>12.607657</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>21</th>\n",
+ " <td>4817445.0</td>\n",
+ " <td>9.973655</td>\n",
+ " <td>29.0</td>\n",
+ " <td>-55.0</td>\n",
+ " <td>503926.571766</td>\n",
+ " <td>134212.338837</td>\n",
+ " <td>14.288661</td>\n",
+ " <td>8.760702</td>\n",
+ " <td>1004089.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>57.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503922.0</td>\n",
+ " <td>134215.0</td>\n",
+ " <td>1.432640</td>\n",
+ " <td>4.0</td>\n",
+ " <td>78.634747</td>\n",
+ " <td>3</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>22</th>\n",
+ " <td>4817446.0</td>\n",
+ " <td>34.666521</td>\n",
+ " <td>29.0</td>\n",
+ " <td>35.0</td>\n",
+ " <td>503921.018886</td>\n",
+ " <td>134214.298798</td>\n",
+ " <td>29.015856</td>\n",
+ " <td>30.403885</td>\n",
+ " <td>1004089.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>57.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503922.0</td>\n",
+ " <td>134215.0</td>\n",
+ " <td>0.836999</td>\n",
+ " <td>4.0</td>\n",
+ " <td>78.634747</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>23</th>\n",
+ " <td>4817447.0</td>\n",
+ " <td>9.971017</td>\n",
+ " <td>29.0</td>\n",
+ " <td>125.0</td>\n",
+ " <td>503917.347567</td>\n",
+ " <td>134218.902400</td>\n",
+ " <td>14.287157</td>\n",
+ " <td>8.757635</td>\n",
+ " <td>1004089.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>57.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503922.0</td>\n",
+ " <td>134215.0</td>\n",
+ " <td>1.432869</td>\n",
+ " <td>4.0</td>\n",
+ " <td>78.634747</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>24</th>\n",
+ " <td>4817448.0</td>\n",
+ " <td>34.963254</td>\n",
+ " <td>28.0</td>\n",
+ " <td>-145.0</td>\n",
+ " <td>503922.898105</td>\n",
+ " <td>134216.939359</td>\n",
+ " <td>29.062031</td>\n",
+ " <td>30.741322</td>\n",
+ " <td>1004089.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>57.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503922.0</td>\n",
+ " <td>134215.0</td>\n",
+ " <td>0.831216</td>\n",
+ " <td>4.0</td>\n",
+ " <td>78.634747</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>25</th>\n",
+ " <td>4817449.0</td>\n",
+ " <td>19.979434</td>\n",
+ " <td>7.0</td>\n",
+ " <td>35.0</td>\n",
+ " <td>503916.075512</td>\n",
+ " <td>134213.701005</td>\n",
+ " <td>17.895750</td>\n",
+ " <td>19.831984</td>\n",
+ " <td>1004089.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>57.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503922.0</td>\n",
+ " <td>134215.0</td>\n",
+ " <td>0.895709</td>\n",
+ " <td>4.0</td>\n",
+ " <td>19.830510</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>26</th>\n",
+ " <td>4817450.0</td>\n",
+ " <td>21.119847</td>\n",
+ " <td>18.0</td>\n",
+ " <td>-144.0</td>\n",
+ " <td>503936.461763</td>\n",
+ " <td>134203.761986</td>\n",
+ " <td>18.414721</td>\n",
+ " <td>20.066844</td>\n",
+ " <td>295084994.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>1030.0</td>\n",
+ " <td>213.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503949.0</td>\n",
+ " <td>134194.0</td>\n",
+ " <td>0.871915</td>\n",
+ " <td>5.0</td>\n",
+ " <td>40.296071</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>27</th>\n",
+ " <td>4817451.0</td>\n",
+ " <td>21.374411</td>\n",
+ " <td>19.0</td>\n",
+ " <td>36.0</td>\n",
+ " <td>503934.470464</td>\n",
+ " <td>134200.829905</td>\n",
+ " <td>19.727025</td>\n",
+ " <td>20.261942</td>\n",
+ " <td>295084994.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>1030.0</td>\n",
+ " <td>213.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>503949.0</td>\n",
+ " <td>134194.0</td>\n",
+ " <td>0.922927</td>\n",
+ " <td>5.0</td>\n",
+ " <td>40.296071</td>\n",
+ " <td>6</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>28</th>\n",
+ " <td>4817452.0</td>\n",
+ " <td>68.854261</td>\n",
+ " <td>35.0</td>\n",
+ " <td>-140.0</td>\n",
+ " <td>504222.101990</td>\n",
+ " <td>134017.187739</td>\n",
+ " <td>31.767443</td>\n",
+ " <td>56.268749</td>\n",
+ " <td>1004049.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>67.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>504220.0</td>\n",
+ " <td>134015.0</td>\n",
+ " <td>0.461372</td>\n",
+ " <td>25.0</td>\n",
+ " <td>99.757951</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>29</th>\n",
+ " <td>4817453.0</td>\n",
+ " <td>52.296595</td>\n",
+ " <td>34.0</td>\n",
+ " <td>40.0</td>\n",
+ " <td>504219.058562</td>\n",
+ " <td>134013.574920</td>\n",
+ " <td>29.327904</td>\n",
+ " <td>43.406040</td>\n",
+ " <td>1004049.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>67.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>504220.0</td>\n",
+ " <td>134015.0</td>\n",
+ " <td>0.560799</td>\n",
+ " <td>25.0</td>\n",
+ " <td>99.757951</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>...</th>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206432</th>\n",
+ " <td>5124497.0</td>\n",
+ " <td>139.413591</td>\n",
+ " <td>30.0</td>\n",
+ " <td>-60.0</td>\n",
+ " <td>512727.853591</td>\n",
+ " <td>121799.313992</td>\n",
+ " <td>54.005430</td>\n",
+ " <td>120.493402</td>\n",
+ " <td>1018653.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>153.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512725.0</td>\n",
+ " <td>121800.0</td>\n",
+ " <td>0.387376</td>\n",
+ " <td>3.0</td>\n",
+ " <td>239.840444</td>\n",
+ " <td>9</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206433</th>\n",
+ " <td>5124498.0</td>\n",
+ " <td>137.530298</td>\n",
+ " <td>30.0</td>\n",
+ " <td>120.0</td>\n",
+ " <td>512722.012941</td>\n",
+ " <td>121802.781737</td>\n",
+ " <td>53.905711</td>\n",
+ " <td>119.641777</td>\n",
+ " <td>1018653.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>153.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512725.0</td>\n",
+ " <td>121800.0</td>\n",
+ " <td>0.391955</td>\n",
+ " <td>3.0</td>\n",
+ " <td>239.840444</td>\n",
+ " <td>9</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206434</th>\n",
+ " <td>5124499.0</td>\n",
+ " <td>92.630815</td>\n",
+ " <td>7.0</td>\n",
+ " <td>-150.0</td>\n",
+ " <td>512731.300787</td>\n",
+ " <td>121811.881398</td>\n",
+ " <td>47.143675</td>\n",
+ " <td>91.927158</td>\n",
+ " <td>1018653.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>153.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512725.0</td>\n",
+ " <td>121800.0</td>\n",
+ " <td>0.508942</td>\n",
+ " <td>3.0</td>\n",
+ " <td>91.940359</td>\n",
+ " <td>8</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206435</th>\n",
+ " <td>5124500.0</td>\n",
+ " <td>44.081253</td>\n",
+ " <td>7.0</td>\n",
+ " <td>-148.0</td>\n",
+ " <td>512734.614676</td>\n",
+ " <td>121817.612632</td>\n",
+ " <td>28.618486</td>\n",
+ " <td>43.718502</td>\n",
+ " <td>1018653.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>153.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512725.0</td>\n",
+ " <td>121800.0</td>\n",
+ " <td>0.649221</td>\n",
+ " <td>3.0</td>\n",
+ " <td>43.752678</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206436</th>\n",
+ " <td>5124501.0</td>\n",
+ " <td>12.602429</td>\n",
+ " <td>0.0</td>\n",
+ " <td>0.0</td>\n",
+ " <td>512727.537367</td>\n",
+ " <td>121820.039977</td>\n",
+ " <td>14.885065</td>\n",
+ " <td>12.602429</td>\n",
+ " <td>1018653.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>153.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512725.0</td>\n",
+ " <td>121800.0</td>\n",
+ " <td>1.181127</td>\n",
+ " <td>3.0</td>\n",
+ " <td>26.462734</td>\n",
+ " <td>6</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206437</th>\n",
+ " <td>5124502.0</td>\n",
+ " <td>14.119724</td>\n",
+ " <td>11.0</td>\n",
+ " <td>-147.0</td>\n",
+ " <td>512729.165421</td>\n",
+ " <td>121822.382400</td>\n",
+ " <td>16.789635</td>\n",
+ " <td>13.863595</td>\n",
+ " <td>1018653.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>153.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512725.0</td>\n",
+ " <td>121800.0</td>\n",
+ " <td>1.189091</td>\n",
+ " <td>3.0</td>\n",
+ " <td>26.462734</td>\n",
+ " <td>6</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206438</th>\n",
+ " <td>5124503.0</td>\n",
+ " <td>36.753693</td>\n",
+ " <td>21.0</td>\n",
+ " <td>122.0</td>\n",
+ " <td>512683.971180</td>\n",
+ " <td>121769.079140</td>\n",
+ " <td>23.556753</td>\n",
+ " <td>34.231614</td>\n",
+ " <td>2040405.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>129.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512678.0</td>\n",
+ " <td>121753.0</td>\n",
+ " <td>0.640936</td>\n",
+ " <td>7.0</td>\n",
+ " <td>68.582316</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206439</th>\n",
+ " <td>5124504.0</td>\n",
+ " <td>0.064896</td>\n",
+ " <td>19.0</td>\n",
+ " <td>-58.0</td>\n",
+ " <td>512689.499215</td>\n",
+ " <td>121759.357413</td>\n",
+ " <td>8.350840</td>\n",
+ " <td>0.061348</td>\n",
+ " <td>2040405.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>129.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512678.0</td>\n",
+ " <td>121753.0</td>\n",
+ " <td>128.679441</td>\n",
+ " <td>7.0</td>\n",
+ " <td>68.582316</td>\n",
+ " <td>3</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206440</th>\n",
+ " <td>5124505.0</td>\n",
+ " <td>36.179539</td>\n",
+ " <td>19.0</td>\n",
+ " <td>-58.0</td>\n",
+ " <td>512689.565868</td>\n",
+ " <td>121765.612262</td>\n",
+ " <td>23.566963</td>\n",
+ " <td>34.201265</td>\n",
+ " <td>2040405.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>129.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512678.0</td>\n",
+ " <td>121753.0</td>\n",
+ " <td>0.651389</td>\n",
+ " <td>7.0</td>\n",
+ " <td>68.582316</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206441</th>\n",
+ " <td>5124506.0</td>\n",
+ " <td>57.609988</td>\n",
+ " <td>17.0</td>\n",
+ " <td>-57.0</td>\n",
+ " <td>512685.874412</td>\n",
+ " <td>121760.247993</td>\n",
+ " <td>37.797327</td>\n",
+ " <td>55.148314</td>\n",
+ " <td>2040405.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>129.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512678.0</td>\n",
+ " <td>121753.0</td>\n",
+ " <td>0.656090</td>\n",
+ " <td>7.0</td>\n",
+ " <td>108.760020</td>\n",
+ " <td>8</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206442</th>\n",
+ " <td>5124507.0</td>\n",
+ " <td>57.882063</td>\n",
+ " <td>22.0</td>\n",
+ " <td>122.0</td>\n",
+ " <td>512679.975021</td>\n",
+ " <td>121763.783138</td>\n",
+ " <td>29.386703</td>\n",
+ " <td>53.499302</td>\n",
+ " <td>2040405.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>129.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512678.0</td>\n",
+ " <td>121753.0</td>\n",
+ " <td>0.507700</td>\n",
+ " <td>7.0</td>\n",
+ " <td>108.760020</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206443</th>\n",
+ " <td>5124508.0</td>\n",
+ " <td>35.898733</td>\n",
+ " <td>22.0</td>\n",
+ " <td>-153.0</td>\n",
+ " <td>512676.571716</td>\n",
+ " <td>121745.126015</td>\n",
+ " <td>30.833490</td>\n",
+ " <td>33.393443</td>\n",
+ " <td>2040405.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>129.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512678.0</td>\n",
+ " <td>121753.0</td>\n",
+ " <td>0.858902</td>\n",
+ " <td>7.0</td>\n",
+ " <td>116.033907</td>\n",
+ " <td>7</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206444</th>\n",
+ " <td>5124509.0</td>\n",
+ " <td>88.059840</td>\n",
+ " <td>20.0</td>\n",
+ " <td>27.0</td>\n",
+ " <td>512674.020870</td>\n",
+ " <td>121740.921893</td>\n",
+ " <td>39.260540</td>\n",
+ " <td>82.722458</td>\n",
+ " <td>2040405.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>1021.0</td>\n",
+ " <td>129.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512678.0</td>\n",
+ " <td>121753.0</td>\n",
+ " <td>0.445839</td>\n",
+ " <td>7.0</td>\n",
+ " <td>116.033907</td>\n",
+ " <td>8</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206445</th>\n",
+ " <td>5124510.0</td>\n",
+ " <td>234.137426</td>\n",
+ " <td>15.0</td>\n",
+ " <td>-139.0</td>\n",
+ " <td>512576.260995</td>\n",
+ " <td>121776.663075</td>\n",
+ " <td>66.560300</td>\n",
+ " <td>226.093454</td>\n",
+ " <td>1018659.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1030.0</td>\n",
+ " <td>449.601882</td>\n",
+ " <td>2.0</td>\n",
+ " <td>512596.0</td>\n",
+ " <td>121754.0</td>\n",
+ " <td>0.284279</td>\n",
+ " <td>7.0</td>\n",
+ " <td>449.601882</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206446</th>\n",
+ " <td>5124511.0</td>\n",
+ " <td>232.447102</td>\n",
+ " <td>16.0</td>\n",
+ " <td>41.0</td>\n",
+ " <td>512570.079754</td>\n",
+ " <td>121769.520367</td>\n",
+ " <td>66.292584</td>\n",
+ " <td>222.913017</td>\n",
+ " <td>1018659.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1030.0</td>\n",
+ " <td>449.601882</td>\n",
+ " <td>2.0</td>\n",
+ " <td>512596.0</td>\n",
+ " <td>121754.0</td>\n",
+ " <td>0.285194</td>\n",
+ " <td>7.0</td>\n",
+ " <td>449.601882</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206447</th>\n",
+ " <td>5124512.0</td>\n",
+ " <td>131.925651</td>\n",
+ " <td>29.0</td>\n",
+ " <td>121.0</td>\n",
+ " <td>512861.419320</td>\n",
+ " <td>121844.774678</td>\n",
+ " <td>55.702429</td>\n",
+ " <td>114.847781</td>\n",
+ " <td>1018654.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>304.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>512862.0</td>\n",
+ " <td>121841.0</td>\n",
+ " <td>0.422226</td>\n",
+ " <td>2.0</td>\n",
+ " <td>236.648087</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206448</th>\n",
+ " <td>5124513.0</td>\n",
+ " <td>137.339196</td>\n",
+ " <td>28.0</td>\n",
+ " <td>-59.0</td>\n",
+ " <td>512865.854189</td>\n",
+ " <td>121842.120366</td>\n",
+ " <td>56.243851</td>\n",
+ " <td>121.027343</td>\n",
+ " <td>1018654.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>304.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>512862.0</td>\n",
+ " <td>121841.0</td>\n",
+ " <td>0.409525</td>\n",
+ " <td>2.0</td>\n",
+ " <td>236.648087</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206449</th>\n",
+ " <td>5124514.0</td>\n",
+ " <td>21.008432</td>\n",
+ " <td>23.0</td>\n",
+ " <td>-150.0</td>\n",
+ " <td>512862.686744</td>\n",
+ " <td>121857.263294</td>\n",
+ " <td>23.119281</td>\n",
+ " <td>19.328343</td>\n",
+ " <td>1018654.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>304.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>512862.0</td>\n",
+ " <td>121841.0</td>\n",
+ " <td>1.100476</td>\n",
+ " <td>2.0</td>\n",
+ " <td>39.706122</td>\n",
+ " <td>6</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206450</th>\n",
+ " <td>5124515.0</td>\n",
+ " <td>21.541363</td>\n",
+ " <td>19.0</td>\n",
+ " <td>30.0</td>\n",
+ " <td>512860.734800</td>\n",
+ " <td>121855.152708</td>\n",
+ " <td>19.585625</td>\n",
+ " <td>20.336518</td>\n",
+ " <td>1018654.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>304.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>512862.0</td>\n",
+ " <td>121841.0</td>\n",
+ " <td>0.909210</td>\n",
+ " <td>2.0</td>\n",
+ " <td>39.706122</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206451</th>\n",
+ " <td>5124516.0</td>\n",
+ " <td>33.342276</td>\n",
+ " <td>17.0</td>\n",
+ " <td>-58.0</td>\n",
+ " <td>512857.342542</td>\n",
+ " <td>121829.041410</td>\n",
+ " <td>24.377198</td>\n",
+ " <td>31.954253</td>\n",
+ " <td>1018654.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>304.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>512862.0</td>\n",
+ " <td>121841.0</td>\n",
+ " <td>0.731120</td>\n",
+ " <td>2.0</td>\n",
+ " <td>108.900435</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206452</th>\n",
+ " <td>5124517.0</td>\n",
+ " <td>43.358052</td>\n",
+ " <td>13.0</td>\n",
+ " <td>122.0</td>\n",
+ " <td>512853.537208</td>\n",
+ " <td>121831.368979</td>\n",
+ " <td>26.787103</td>\n",
+ " <td>42.321731</td>\n",
+ " <td>1018654.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>304.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>512862.0</td>\n",
+ " <td>121841.0</td>\n",
+ " <td>0.617811</td>\n",
+ " <td>2.0</td>\n",
+ " <td>108.900435</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206453</th>\n",
+ " <td>5124518.0</td>\n",
+ " <td>34.768271</td>\n",
+ " <td>0.0</td>\n",
+ " <td>0.0</td>\n",
+ " <td>512851.492252</td>\n",
+ " <td>121838.457750</td>\n",
+ " <td>29.085365</td>\n",
+ " <td>34.768271</td>\n",
+ " <td>1018654.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>304.000000</td>\n",
+ " <td>2.0</td>\n",
+ " <td>512862.0</td>\n",
+ " <td>121841.0</td>\n",
+ " <td>0.836549</td>\n",
+ " <td>2.0</td>\n",
+ " <td>108.900435</td>\n",
+ " <td>6</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206454</th>\n",
+ " <td>5124519.0</td>\n",
+ " <td>32.262272</td>\n",
+ " <td>7.0</td>\n",
+ " <td>-62.0</td>\n",
+ " <td>512889.292856</td>\n",
+ " <td>121962.982921</td>\n",
+ " <td>22.665441</td>\n",
+ " <td>32.006156</td>\n",
+ " <td>1018655.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>44.936338</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512908.0</td>\n",
+ " <td>121915.0</td>\n",
+ " <td>0.702537</td>\n",
+ " <td>1.0</td>\n",
+ " <td>44.936338</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206455</th>\n",
+ " <td>5124520.0</td>\n",
+ " <td>14.249623</td>\n",
+ " <td>25.0</td>\n",
+ " <td>118.0</td>\n",
+ " <td>512885.599017</td>\n",
+ " <td>121964.977036</td>\n",
+ " <td>15.514710</td>\n",
+ " <td>12.886922</td>\n",
+ " <td>1018655.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>44.936338</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512908.0</td>\n",
+ " <td>121915.0</td>\n",
+ " <td>1.088780</td>\n",
+ " <td>1.0</td>\n",
+ " <td>44.936338</td>\n",
+ " <td>5</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206456</th>\n",
+ " <td>5124523.0</td>\n",
+ " <td>202.860586</td>\n",
+ " <td>26.0</td>\n",
+ " <td>-65.0</td>\n",
+ " <td>512907.355343</td>\n",
+ " <td>121907.640275</td>\n",
+ " <td>69.264065</td>\n",
+ " <td>181.708205</td>\n",
+ " <td>1018655.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>148.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512908.0</td>\n",
+ " <td>121915.0</td>\n",
+ " <td>0.341437</td>\n",
+ " <td>1.0</td>\n",
+ " <td>383.229874</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206457</th>\n",
+ " <td>5124524.0</td>\n",
+ " <td>221.668609</td>\n",
+ " <td>25.0</td>\n",
+ " <td>115.0</td>\n",
+ " <td>512901.324171</td>\n",
+ " <td>121910.827716</td>\n",
+ " <td>72.136766</td>\n",
+ " <td>201.586966</td>\n",
+ " <td>1018655.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>148.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512908.0</td>\n",
+ " <td>121915.0</td>\n",
+ " <td>0.325426</td>\n",
+ " <td>1.0</td>\n",
+ " <td>383.229874</td>\n",
+ " <td>6</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206458</th>\n",
+ " <td>5124525.0</td>\n",
+ " <td>126.405824</td>\n",
+ " <td>22.0</td>\n",
+ " <td>118.0</td>\n",
+ " <td>512801.107921</td>\n",
+ " <td>121763.322478</td>\n",
+ " <td>43.276794</td>\n",
+ " <td>116.796274</td>\n",
+ " <td>1018651.0</td>\n",
+ " <td>8013.0</td>\n",
+ " <td>1030.0</td>\n",
+ " <td>181.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512806.0</td>\n",
+ " <td>121761.0</td>\n",
+ " <td>0.342364</td>\n",
+ " <td>2.0</td>\n",
+ " <td>234.405582</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206459</th>\n",
+ " <td>5124526.0</td>\n",
+ " <td>126.408740</td>\n",
+ " <td>22.0</td>\n",
+ " <td>-62.0</td>\n",
+ " <td>512810.176759</td>\n",
+ " <td>121758.418405</td>\n",
+ " <td>43.277184</td>\n",
+ " <td>116.797944</td>\n",
+ " <td>1018651.0</td>\n",
+ " <td>8013.0</td>\n",
+ " <td>1030.0</td>\n",
+ " <td>181.000000</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512806.0</td>\n",
+ " <td>121761.0</td>\n",
+ " <td>0.342359</td>\n",
+ " <td>2.0</td>\n",
+ " <td>234.405582</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206460</th>\n",
+ " <td>5124527.0</td>\n",
+ " <td>17.738624</td>\n",
+ " <td>32.0</td>\n",
+ " <td>-67.0</td>\n",
+ " <td>512895.656423</td>\n",
+ " <td>121945.700714</td>\n",
+ " <td>16.399780</td>\n",
+ " <td>14.964642</td>\n",
+ " <td>1018655.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>29.863731</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512908.0</td>\n",
+ " <td>121915.0</td>\n",
+ " <td>0.924524</td>\n",
+ " <td>1.0</td>\n",
+ " <td>29.863731</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>206461</th>\n",
+ " <td>5124528.0</td>\n",
+ " <td>17.671450</td>\n",
+ " <td>33.0</td>\n",
+ " <td>113.0</td>\n",
+ " <td>512893.143353</td>\n",
+ " <td>121946.778198</td>\n",
+ " <td>16.370630</td>\n",
+ " <td>14.885036</td>\n",
+ " <td>1018655.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>1025.0</td>\n",
+ " <td>29.863731</td>\n",
+ " <td>3.0</td>\n",
+ " <td>512908.0</td>\n",
+ " <td>121915.0</td>\n",
+ " <td>0.926389</td>\n",
+ " <td>1.0</td>\n",
+ " <td>29.863731</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " </tbody>\n",
+ "</table>\n",
+ "<p>206462 rows × 19 columns</p>\n",
+ "</div>"
+ ],
+ "text/plain": [
+ " DF_UID FLAECHE NEIGUNG AUSRICHTUNG XCOORD \\\n",
+ "0 4817410.0 71.487047 10.0 127.0 503491.325015 \n",
+ "1 4817425.0 36.859836 37.0 33.0 503503.812619 \n",
+ "2 4817426.0 51.333864 31.0 -57.0 503509.783165 \n",
+ "3 4817427.0 36.861447 37.0 -147.0 503510.594159 \n",
+ "4 4817428.0 81.256555 28.0 123.0 503504.226918 \n",
+ "5 4817429.0 11.397236 27.0 -144.0 503512.070989 \n",
+ "6 4817430.0 11.262413 27.0 31.0 503510.350525 \n",
+ "7 4817431.0 174.501987 31.0 -147.0 503503.978942 \n",
+ "8 4817432.0 174.108293 31.0 33.0 503500.517066 \n",
+ "9 4817433.0 69.216255 26.0 33.0 503510.917446 \n",
+ "10 4817434.0 26.716480 31.0 -147.0 503517.020358 \n",
+ "11 4817435.0 26.018729 31.0 -147.0 503507.806109 \n",
+ "12 4817436.0 13.309012 33.0 123.0 503512.471353 \n",
+ "13 4817437.0 13.503089 32.0 -57.0 503514.586126 \n",
+ "14 4817438.0 130.038144 26.0 -144.0 503951.193324 \n",
+ "15 4817439.0 126.475108 26.0 36.0 503948.788882 \n",
+ "16 4817440.0 47.540096 37.0 -144.0 503996.949571 \n",
+ "17 4817441.0 35.497241 32.0 36.0 503994.863047 \n",
+ "18 4817442.0 49.847956 38.0 36.0 504003.468131 \n",
+ "19 4817443.0 74.607733 40.0 -144.0 504005.947778 \n",
+ "20 4817444.0 12.607657 0.0 0.0 503991.439805 \n",
+ "21 4817445.0 9.973655 29.0 -55.0 503926.571766 \n",
+ "22 4817446.0 34.666521 29.0 35.0 503921.018886 \n",
+ "23 4817447.0 9.971017 29.0 125.0 503917.347567 \n",
+ "24 4817448.0 34.963254 28.0 -145.0 503922.898105 \n",
+ "25 4817449.0 19.979434 7.0 35.0 503916.075512 \n",
+ "26 4817450.0 21.119847 18.0 -144.0 503936.461763 \n",
+ "27 4817451.0 21.374411 19.0 36.0 503934.470464 \n",
+ "28 4817452.0 68.854261 35.0 -140.0 504222.101990 \n",
+ "29 4817453.0 52.296595 34.0 40.0 504219.058562 \n",
+ "... ... ... ... ... ... \n",
+ "206432 5124497.0 139.413591 30.0 -60.0 512727.853591 \n",
+ "206433 5124498.0 137.530298 30.0 120.0 512722.012941 \n",
+ "206434 5124499.0 92.630815 7.0 -150.0 512731.300787 \n",
+ "206435 5124500.0 44.081253 7.0 -148.0 512734.614676 \n",
+ "206436 5124501.0 12.602429 0.0 0.0 512727.537367 \n",
+ "206437 5124502.0 14.119724 11.0 -147.0 512729.165421 \n",
+ "206438 5124503.0 36.753693 21.0 122.0 512683.971180 \n",
+ "206439 5124504.0 0.064896 19.0 -58.0 512689.499215 \n",
+ "206440 5124505.0 36.179539 19.0 -58.0 512689.565868 \n",
+ "206441 5124506.0 57.609988 17.0 -57.0 512685.874412 \n",
+ "206442 5124507.0 57.882063 22.0 122.0 512679.975021 \n",
+ "206443 5124508.0 35.898733 22.0 -153.0 512676.571716 \n",
+ "206444 5124509.0 88.059840 20.0 27.0 512674.020870 \n",
+ "206445 5124510.0 234.137426 15.0 -139.0 512576.260995 \n",
+ "206446 5124511.0 232.447102 16.0 41.0 512570.079754 \n",
+ "206447 5124512.0 131.925651 29.0 121.0 512861.419320 \n",
+ "206448 5124513.0 137.339196 28.0 -59.0 512865.854189 \n",
+ "206449 5124514.0 21.008432 23.0 -150.0 512862.686744 \n",
+ "206450 5124515.0 21.541363 19.0 30.0 512860.734800 \n",
+ "206451 5124516.0 33.342276 17.0 -58.0 512857.342542 \n",
+ "206452 5124517.0 43.358052 13.0 122.0 512853.537208 \n",
+ "206453 5124518.0 34.768271 0.0 0.0 512851.492252 \n",
+ "206454 5124519.0 32.262272 7.0 -62.0 512889.292856 \n",
+ "206455 5124520.0 14.249623 25.0 118.0 512885.599017 \n",
+ "206456 5124523.0 202.860586 26.0 -65.0 512907.355343 \n",
+ "206457 5124524.0 221.668609 25.0 115.0 512901.324171 \n",
+ "206458 5124525.0 126.405824 22.0 118.0 512801.107921 \n",
+ "206459 5124526.0 126.408740 22.0 -62.0 512810.176759 \n",
+ "206460 5124527.0 17.738624 32.0 -67.0 512895.656423 \n",
+ "206461 5124528.0 17.671450 33.0 113.0 512893.143353 \n",
+ "\n",
+ " YCOORD Shape_Length Shape_Area GWR_EGID GBAUP GKAT \\\n",
+ "0 134197.490397 33.936595 70.390620 295070969.0 8011.0 1021.0 \n",
+ "1 134131.833522 28.208608 29.339500 1004090.0 8012.0 1021.0 \n",
+ "2 134135.282805 40.053428 44.043504 1004090.0 8012.0 1021.0 \n",
+ "3 134142.188986 28.210273 29.341346 1004090.0 8012.0 1021.0 \n",
+ "4 134138.960671 37.840077 71.574129 1004090.0 8012.0 1021.0 \n",
+ "5 134135.795686 15.417311 10.154872 1004090.0 8012.0 1021.0 \n",
+ "6 134133.126967 15.346288 10.045172 1004090.0 8012.0 1021.0 \n",
+ "7 134181.171146 59.815925 149.165008 1004088.0 8011.0 1021.0 \n",
+ "8 134175.889168 59.775896 148.702405 1004088.0 8011.0 1021.0 \n",
+ "9 134191.713704 45.633223 61.997846 295084893.0 8011.0 1021.0 \n",
+ "10 134191.118711 23.687927 22.959133 295084893.0 8011.0 1021.0 \n",
+ "11 134197.114437 23.199036 22.360589 295084893.0 8011.0 1021.0 \n",
+ "12 134196.622116 15.096068 11.164928 295084893.0 8011.0 1021.0 \n",
+ "13 134195.245953 15.198331 11.396747 295084893.0 8011.0 1021.0 \n",
+ "14 134195.306644 64.584475 117.365353 295084994.0 8014.0 1030.0 \n",
+ "15 134191.981218 64.301850 113.406403 295084994.0 8014.0 1030.0 \n",
+ "16 134161.244934 27.081498 37.981483 1004076.0 8012.0 1021.0 \n",
+ "17 134158.375583 25.402378 29.945648 1004076.0 8012.0 1021.0 \n",
+ "18 134152.306087 29.835723 39.429900 1004076.0 8012.0 1021.0 \n",
+ "19 134155.715627 32.967494 57.409186 1004076.0 8012.0 1021.0 \n",
+ "20 134163.317363 17.745074 12.607657 1004076.0 8012.0 1021.0 \n",
+ "21 134212.338837 14.288661 8.760702 1004089.0 8012.0 1021.0 \n",
+ "22 134214.298798 29.015856 30.403885 1004089.0 8012.0 1021.0 \n",
+ "23 134218.902400 14.287157 8.757635 1004089.0 8012.0 1021.0 \n",
+ "24 134216.939359 29.062031 30.741322 1004089.0 8012.0 1021.0 \n",
+ "25 134213.701005 17.895750 19.831984 1004089.0 8012.0 1021.0 \n",
+ "26 134203.761986 18.414721 20.066844 295084994.0 8014.0 1030.0 \n",
+ "27 134200.829905 19.727025 20.261942 295084994.0 8014.0 1030.0 \n",
+ "28 134017.187739 31.767443 56.268749 1004049.0 8011.0 1025.0 \n",
+ "29 134013.574920 29.327904 43.406040 1004049.0 8011.0 1025.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "206432 121799.313992 54.005430 120.493402 1018653.0 8012.0 1025.0 \n",
+ "206433 121802.781737 53.905711 119.641777 1018653.0 8012.0 1025.0 \n",
+ "206434 121811.881398 47.143675 91.927158 1018653.0 8012.0 1025.0 \n",
+ "206435 121817.612632 28.618486 43.718502 1018653.0 8012.0 1025.0 \n",
+ "206436 121820.039977 14.885065 12.602429 1018653.0 8012.0 1025.0 \n",
+ "206437 121822.382400 16.789635 13.863595 1018653.0 8012.0 1025.0 \n",
+ "206438 121769.079140 23.556753 34.231614 2040405.0 8012.0 1021.0 \n",
+ "206439 121759.357413 8.350840 0.061348 2040405.0 8012.0 1021.0 \n",
+ "206440 121765.612262 23.566963 34.201265 2040405.0 8012.0 1021.0 \n",
+ "206441 121760.247993 37.797327 55.148314 2040405.0 8012.0 1021.0 \n",
+ "206442 121763.783138 29.386703 53.499302 2040405.0 8012.0 1021.0 \n",
+ "206443 121745.126015 30.833490 33.393443 2040405.0 8012.0 1021.0 \n",
+ "206444 121740.921893 39.260540 82.722458 2040405.0 8012.0 1021.0 \n",
+ "206445 121776.663075 66.560300 226.093454 1018659.0 8011.0 1030.0 \n",
+ "206446 121769.520367 66.292584 222.913017 1018659.0 8011.0 1030.0 \n",
+ "206447 121844.774678 55.702429 114.847781 1018654.0 8011.0 1025.0 \n",
+ "206448 121842.120366 56.243851 121.027343 1018654.0 8011.0 1025.0 \n",
+ "206449 121857.263294 23.119281 19.328343 1018654.0 8011.0 1025.0 \n",
+ "206450 121855.152708 19.585625 20.336518 1018654.0 8011.0 1025.0 \n",
+ "206451 121829.041410 24.377198 31.954253 1018654.0 8011.0 1025.0 \n",
+ "206452 121831.368979 26.787103 42.321731 1018654.0 8011.0 1025.0 \n",
+ "206453 121838.457750 29.085365 34.768271 1018654.0 8011.0 1025.0 \n",
+ "206454 121962.982921 22.665441 32.006156 1018655.0 8014.0 1025.0 \n",
+ "206455 121964.977036 15.514710 12.886922 1018655.0 8014.0 1025.0 \n",
+ "206456 121907.640275 69.264065 181.708205 1018655.0 8014.0 1025.0 \n",
+ "206457 121910.827716 72.136766 201.586966 1018655.0 8014.0 1025.0 \n",
+ "206458 121763.322478 43.276794 116.796274 1018651.0 8013.0 1030.0 \n",
+ "206459 121758.418405 43.277184 116.797944 1018651.0 8013.0 1030.0 \n",
+ "206460 121945.700714 16.399780 14.964642 1018655.0 8014.0 1025.0 \n",
+ "206461 121946.778198 16.370630 14.885036 1018655.0 8014.0 1025.0 \n",
+ "\n",
+ " GAREA GASTW GKODX GKODY Shape_Ratio n_neighbors_100 \\\n",
+ "0 44.000000 2.0 503491.0 134198.0 0.474724 3.0 \n",
+ "1 152.000000 2.0 503507.0 134137.0 0.765294 3.0 \n",
+ "2 152.000000 2.0 503507.0 134137.0 0.780254 3.0 \n",
+ "3 152.000000 2.0 503507.0 134137.0 0.765306 3.0 \n",
+ "4 152.000000 2.0 503507.0 134137.0 0.465686 3.0 \n",
+ "5 152.000000 2.0 503507.0 134137.0 1.352724 3.0 \n",
+ "6 152.000000 2.0 503507.0 134137.0 1.362611 3.0 \n",
+ "7 206.000000 2.0 503503.0 134179.0 0.342781 3.0 \n",
+ "8 206.000000 2.0 503503.0 134179.0 0.343326 3.0 \n",
+ "9 100.000000 2.0 503512.0 134193.0 0.659285 3.0 \n",
+ "10 100.000000 2.0 503512.0 134193.0 0.886641 3.0 \n",
+ "11 100.000000 2.0 503512.0 134193.0 0.891628 3.0 \n",
+ "12 100.000000 2.0 503512.0 134193.0 1.134274 3.0 \n",
+ "13 100.000000 2.0 503512.0 134193.0 1.125545 3.0 \n",
+ "14 213.000000 2.0 503949.0 134194.0 0.496658 5.0 \n",
+ "15 213.000000 2.0 503949.0 134194.0 0.508415 5.0 \n",
+ "16 66.000000 3.0 504005.0 134153.0 0.569656 7.0 \n",
+ "17 66.000000 3.0 504005.0 134153.0 0.715616 7.0 \n",
+ "18 66.000000 3.0 504005.0 134153.0 0.598535 7.0 \n",
+ "19 66.000000 3.0 504005.0 134153.0 0.441878 7.0 \n",
+ "20 66.000000 3.0 504005.0 134153.0 1.407484 7.0 \n",
+ "21 57.000000 2.0 503922.0 134215.0 1.432640 4.0 \n",
+ "22 57.000000 2.0 503922.0 134215.0 0.836999 4.0 \n",
+ "23 57.000000 2.0 503922.0 134215.0 1.432869 4.0 \n",
+ "24 57.000000 2.0 503922.0 134215.0 0.831216 4.0 \n",
+ "25 57.000000 2.0 503922.0 134215.0 0.895709 4.0 \n",
+ "26 213.000000 2.0 503949.0 134194.0 0.871915 5.0 \n",
+ "27 213.000000 2.0 503949.0 134194.0 0.922927 5.0 \n",
+ "28 67.000000 3.0 504220.0 134015.0 0.461372 25.0 \n",
+ "29 67.000000 3.0 504220.0 134015.0 0.560799 25.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "206432 153.000000 3.0 512725.0 121800.0 0.387376 3.0 \n",
+ "206433 153.000000 3.0 512725.0 121800.0 0.391955 3.0 \n",
+ "206434 153.000000 3.0 512725.0 121800.0 0.508942 3.0 \n",
+ "206435 153.000000 3.0 512725.0 121800.0 0.649221 3.0 \n",
+ "206436 153.000000 3.0 512725.0 121800.0 1.181127 3.0 \n",
+ "206437 153.000000 3.0 512725.0 121800.0 1.189091 3.0 \n",
+ "206438 129.000000 3.0 512678.0 121753.0 0.640936 7.0 \n",
+ "206439 129.000000 3.0 512678.0 121753.0 128.679441 7.0 \n",
+ "206440 129.000000 3.0 512678.0 121753.0 0.651389 7.0 \n",
+ "206441 129.000000 3.0 512678.0 121753.0 0.656090 7.0 \n",
+ "206442 129.000000 3.0 512678.0 121753.0 0.507700 7.0 \n",
+ "206443 129.000000 3.0 512678.0 121753.0 0.858902 7.0 \n",
+ "206444 129.000000 3.0 512678.0 121753.0 0.445839 7.0 \n",
+ "206445 449.601882 2.0 512596.0 121754.0 0.284279 7.0 \n",
+ "206446 449.601882 2.0 512596.0 121754.0 0.285194 7.0 \n",
+ "206447 304.000000 2.0 512862.0 121841.0 0.422226 2.0 \n",
+ "206448 304.000000 2.0 512862.0 121841.0 0.409525 2.0 \n",
+ "206449 304.000000 2.0 512862.0 121841.0 1.100476 2.0 \n",
+ "206450 304.000000 2.0 512862.0 121841.0 0.909210 2.0 \n",
+ "206451 304.000000 2.0 512862.0 121841.0 0.731120 2.0 \n",
+ "206452 304.000000 2.0 512862.0 121841.0 0.617811 2.0 \n",
+ "206453 304.000000 2.0 512862.0 121841.0 0.836549 2.0 \n",
+ "206454 44.936338 3.0 512908.0 121915.0 0.702537 1.0 \n",
+ "206455 44.936338 3.0 512908.0 121915.0 1.088780 1.0 \n",
+ "206456 148.000000 3.0 512908.0 121915.0 0.341437 1.0 \n",
+ "206457 148.000000 3.0 512908.0 121915.0 0.325426 1.0 \n",
+ "206458 181.000000 3.0 512806.0 121761.0 0.342364 2.0 \n",
+ "206459 181.000000 3.0 512806.0 121761.0 0.342359 2.0 \n",
+ "206460 29.863731 3.0 512908.0 121915.0 0.924524 1.0 \n",
+ "206461 29.863731 3.0 512908.0 121915.0 0.926389 1.0 \n",
+ "\n",
+ " Estim_build_area n_corners \n",
+ "0 70.400998 4 \n",
+ "1 194.813319 4 \n",
+ "2 194.813319 7 \n",
+ "3 194.813319 4 \n",
+ "4 194.813319 4 \n",
+ "5 194.813319 3 \n",
+ "6 194.813319 3 \n",
+ "7 298.817334 4 \n",
+ "8 298.817334 4 \n",
+ "9 107.414054 5 \n",
+ "10 107.414054 5 \n",
+ "11 107.414054 5 \n",
+ "12 22.613146 6 \n",
+ "13 22.613146 5 \n",
+ "14 230.552584 4 \n",
+ "15 230.552584 4 \n",
+ "16 68.070576 5 \n",
+ "17 68.070576 4 \n",
+ "18 96.433564 4 \n",
+ "19 96.433564 4 \n",
+ "20 12.607657 5 \n",
+ "21 78.634747 3 \n",
+ "22 78.634747 4 \n",
+ "23 78.634747 4 \n",
+ "24 78.634747 4 \n",
+ "25 19.830510 4 \n",
+ "26 40.296071 5 \n",
+ "27 40.296071 6 \n",
+ "28 99.757951 5 \n",
+ "29 99.757951 5 \n",
+ "... ... ... \n",
+ "206432 239.840444 9 \n",
+ "206433 239.840444 9 \n",
+ "206434 91.940359 8 \n",
+ "206435 43.752678 4 \n",
+ "206436 26.462734 6 \n",
+ "206437 26.462734 6 \n",
+ "206438 68.582316 5 \n",
+ "206439 68.582316 3 \n",
+ "206440 68.582316 4 \n",
+ "206441 108.760020 8 \n",
+ "206442 108.760020 5 \n",
+ "206443 116.033907 7 \n",
+ "206444 116.033907 8 \n",
+ "206445 449.601882 4 \n",
+ "206446 449.601882 4 \n",
+ "206447 236.648087 5 \n",
+ "206448 236.648087 4 \n",
+ "206449 39.706122 6 \n",
+ "206450 39.706122 4 \n",
+ "206451 108.900435 4 \n",
+ "206452 108.900435 4 \n",
+ "206453 108.900435 6 \n",
+ "206454 44.936338 5 \n",
+ "206455 44.936338 5 \n",
+ "206456 383.229874 4 \n",
+ "206457 383.229874 6 \n",
+ "206458 234.405582 4 \n",
+ "206459 234.405582 4 \n",
+ "206460 29.863731 4 \n",
+ "206461 29.863731 4 \n",
+ "\n",
+ "[206462 rows x 19 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "training_roofs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 2: add panel information\n",
+ "Add information of panelled area for Sonnendach roof polygons (ftr) and roof polygons with excluded superstructures (tgt). Note that CH_panels_ftr contains ALL rooftops and their panel_count information. For all roofs where panel_count == 0, we know already that there cannot be any panels fitted (due to geometry/size), neither vertically nor horizontally, so any calculation of available area for these rooftops is obsolete, i.e. the panels are excluded from further analysis."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# merge panelled area ratio for features (no superstructure excluded)\n",
+ "training_roofs_panel_ftr = training_roofs.merge(CH_panels_ftr.loc[:,['DF_UID', 'panel_tilt', 'best_align', 'panelled_area_ratio']], how = 'left', on = 'DF_UID')\n",
+ "training_roofs_panel_ftr.rename( {'panelled_area_ratio' : 'panelled_area_ratio_ftr'}, axis = 1, inplace = True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# exclude all roofs that have a feature panel count (before subtracting superstructures) equal to 0\n",
+ "training_panels = training_roofs_panel_ftr[training_roofs_panel_ftr.panelled_area_ratio_ftr != 0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# merge panelled area ratio for training (GVA only, excluded superstrucutres)\n",
+ "training_panels = training_panels.merge(GVA_panels_tgt.loc[:,['DF_UID', 'panelled_area_ratio']], how = 'left', on = 'DF_UID')\n",
+ "training_panels.rename( {'panelled_area_ratio' : 'panelled_area_ratio_tgt'}, axis = 1, inplace = True)\n",
+ "training_panels.fillna(0, inplace = True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 3: Exclude roofs without superstructure data\n",
+ "The shapefiles of GVA 6 GVA_noSP can be use to check if the area was changed when superstructures were subtracted. In the cases where this was not the case, the respective roofs are removed from training - it is assumed that the dataset is incomplete and superstructures were not correctly registered rather than there are no superstructures that can be found on the roof. This may be a conservative estimate in some cases, which however is preferred to an overestimate. Uncertainty is to be quantified to assess the level of confidence"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# extract area information from shapefiles\n",
+ "gva_all = gva_shp.loc[:,['DF_UID']]\n",
+ "gva_all['area_full'] = gva_shp.area\n",
+ "\n",
+ "gva_noSP = gva_shp_noSP.loc[:,['DF_UID']]\n",
+ "gva_noSP['area_noSP'] = gva_shp_noSP.area"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Merge information of areas wih and without superstructures; areas not found in gva_noSP are given area = 0\n",
+ "gva_data = gva_all.merge(gva_noSP, on = 'DF_UID', how = 'left')\n",
+ "gva_data.fillna(0, inplace = True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "unequal_area = gva_data[np.round(gva_data.area_full,2) != np.round(gva_data.area_noSP,2)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of total roofs in Geneva: 206462\n",
+ "Number of roofs with some superstructure: 63225\n",
+ "Percentage of roofs with some superstructure: 30.62 percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Number of total roofs in Geneva: %d\" %len(gva_data))\n",
+ "print(\"Number of roofs with some superstructure: %d\" %len(unequal_area))\n",
+ "print(\"Percentage of roofs with some superstructure: %.2f percent\" %(100 * len(unequal_area) / len(gva_data)))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "TRN_data = training_panels[training_panels.DF_UID.isin(unequal_area.DF_UID)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>DF_UID</th>\n",
+ " <th>FLAECHE</th>\n",
+ " <th>NEIGUNG</th>\n",
+ " <th>AUSRICHTUNG</th>\n",
+ " <th>XCOORD</th>\n",
+ " <th>YCOORD</th>\n",
+ " <th>Shape_Length</th>\n",
+ " <th>Shape_Area</th>\n",
+ " <th>GWR_EGID</th>\n",
+ " <th>GBAUP</th>\n",
+ " <th>...</th>\n",
+ " <th>GKODX</th>\n",
+ " <th>GKODY</th>\n",
+ " <th>Shape_Ratio</th>\n",
+ " <th>n_neighbors_100</th>\n",
+ " <th>Estim_build_area</th>\n",
+ " <th>n_corners</th>\n",
+ " <th>panel_tilt</th>\n",
+ " <th>best_align</th>\n",
+ " <th>panelled_area_ratio_ftr</th>\n",
+ " <th>panelled_area_ratio_tgt</th>\n",
+ " </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
+ " <tr>\n",
+ " <th>1</th>\n",
+ " <td>4817425.0</td>\n",
+ " <td>36.859836</td>\n",
+ " <td>37.0</td>\n",
+ " <td>33.0</td>\n",
+ " <td>503503.812619</td>\n",
+ " <td>134131.833522</td>\n",
+ " <td>28.208608</td>\n",
+ " <td>29.339500</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>...</td>\n",
+ " <td>503507.0</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>0.765294</td>\n",
+ " <td>3.0</td>\n",
+ " <td>194.813319</td>\n",
+ " <td>4</td>\n",
+ " <td>37</td>\n",
+ " <td>equal</td>\n",
+ " <td>0.390669</td>\n",
+ " <td>0.173631</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>3</th>\n",
+ " <td>4817427.0</td>\n",
+ " <td>36.861447</td>\n",
+ " <td>37.0</td>\n",
+ " <td>-147.0</td>\n",
+ " <td>503510.594159</td>\n",
+ " <td>134142.188986</td>\n",
+ " <td>28.210273</td>\n",
+ " <td>29.341346</td>\n",
+ " <td>1004090.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>...</td>\n",
+ " <td>503507.0</td>\n",
+ " <td>134137.0</td>\n",
+ " <td>0.765306</td>\n",
+ " <td>3.0</td>\n",
+ " <td>194.813319</td>\n",
+ " <td>4</td>\n",
+ " <td>37</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.390652</td>\n",
+ " <td>0.217029</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>8</th>\n",
+ " <td>4817433.0</td>\n",
+ " <td>69.216255</td>\n",
+ " <td>26.0</td>\n",
+ " <td>33.0</td>\n",
+ " <td>503510.917446</td>\n",
+ " <td>134191.713704</td>\n",
+ " <td>45.633223</td>\n",
+ " <td>61.997846</td>\n",
+ " <td>295084893.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>503512.0</td>\n",
+ " <td>134193.0</td>\n",
+ " <td>0.659285</td>\n",
+ " <td>3.0</td>\n",
+ " <td>107.414054</td>\n",
+ " <td>5</td>\n",
+ " <td>26</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.508551</td>\n",
+ " <td>0.277391</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>19</th>\n",
+ " <td>4817445.0</td>\n",
+ " <td>9.973655</td>\n",
+ " <td>29.0</td>\n",
+ " <td>-55.0</td>\n",
+ " <td>503926.571766</td>\n",
+ " <td>134212.338837</td>\n",
+ " <td>14.288661</td>\n",
+ " <td>8.760702</td>\n",
+ " <td>1004089.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>...</td>\n",
+ " <td>503922.0</td>\n",
+ " <td>134215.0</td>\n",
+ " <td>1.432640</td>\n",
+ " <td>4.0</td>\n",
+ " <td>78.634747</td>\n",
+ " <td>3</td>\n",
+ " <td>29</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.160423</td>\n",
+ " <td>0.000000</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>26</th>\n",
+ " <td>4817452.0</td>\n",
+ " <td>68.854261</td>\n",
+ " <td>35.0</td>\n",
+ " <td>-140.0</td>\n",
+ " <td>504222.101990</td>\n",
+ " <td>134017.187739</td>\n",
+ " <td>31.767443</td>\n",
+ " <td>56.268749</td>\n",
+ " <td>1004049.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504220.0</td>\n",
+ " <td>134015.0</td>\n",
+ " <td>0.461372</td>\n",
+ " <td>25.0</td>\n",
+ " <td>99.757951</td>\n",
+ " <td>5</td>\n",
+ " <td>35</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.697125</td>\n",
+ " <td>0.697125</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>27</th>\n",
+ " <td>4817453.0</td>\n",
+ " <td>52.296595</td>\n",
+ " <td>34.0</td>\n",
+ " <td>40.0</td>\n",
+ " <td>504219.058562</td>\n",
+ " <td>134013.574920</td>\n",
+ " <td>29.327904</td>\n",
+ " <td>43.406040</td>\n",
+ " <td>1004049.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504220.0</td>\n",
+ " <td>134015.0</td>\n",
+ " <td>0.560799</td>\n",
+ " <td>25.0</td>\n",
+ " <td>99.757951</td>\n",
+ " <td>5</td>\n",
+ " <td>34</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.734273</td>\n",
+ " <td>0.673084</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>33</th>\n",
+ " <td>4817464.0</td>\n",
+ " <td>78.771912</td>\n",
+ " <td>31.0</td>\n",
+ " <td>130.0</td>\n",
+ " <td>504150.396646</td>\n",
+ " <td>134085.492644</td>\n",
+ " <td>32.609685</td>\n",
+ " <td>67.373176</td>\n",
+ " <td>1004073.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504151.0</td>\n",
+ " <td>134082.0</td>\n",
+ " <td>0.413976</td>\n",
+ " <td>17.0</td>\n",
+ " <td>140.790186</td>\n",
+ " <td>5</td>\n",
+ " <td>31</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.710913</td>\n",
+ " <td>0.406236</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>40</th>\n",
+ " <td>4817471.0</td>\n",
+ " <td>73.524780</td>\n",
+ " <td>35.0</td>\n",
+ " <td>34.0</td>\n",
+ " <td>504039.884935</td>\n",
+ " <td>134127.753162</td>\n",
+ " <td>40.713703</td>\n",
+ " <td>60.474674</td>\n",
+ " <td>1004075.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504040.0</td>\n",
+ " <td>134129.0</td>\n",
+ " <td>0.553741</td>\n",
+ " <td>7.0</td>\n",
+ " <td>119.554424</td>\n",
+ " <td>6</td>\n",
+ " <td>35</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.609318</td>\n",
+ " <td>0.652841</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>48</th>\n",
+ " <td>4817483.0</td>\n",
+ " <td>100.571828</td>\n",
+ " <td>27.0</td>\n",
+ " <td>140.0</td>\n",
+ " <td>504182.850754</td>\n",
+ " <td>134128.499894</td>\n",
+ " <td>41.247227</td>\n",
+ " <td>89.271304</td>\n",
+ " <td>1004060.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504185.0</td>\n",
+ " <td>134127.0</td>\n",
+ " <td>0.410127</td>\n",
+ " <td>13.0</td>\n",
+ " <td>170.407907</td>\n",
+ " <td>4</td>\n",
+ " <td>27</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.763633</td>\n",
+ " <td>0.493180</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>52</th>\n",
+ " <td>4817487.0</td>\n",
+ " <td>107.363169</td>\n",
+ " <td>26.0</td>\n",
+ " <td>-50.0</td>\n",
+ " <td>504164.499411</td>\n",
+ " <td>134085.908714</td>\n",
+ " <td>40.126227</td>\n",
+ " <td>96.811374</td>\n",
+ " <td>1004058.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504160.0</td>\n",
+ " <td>134089.0</td>\n",
+ " <td>0.373743</td>\n",
+ " <td>17.0</td>\n",
+ " <td>232.571656</td>\n",
+ " <td>4</td>\n",
+ " <td>26</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.834551</td>\n",
+ " <td>0.804745</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>69</th>\n",
+ " <td>4817506.0</td>\n",
+ " <td>338.194772</td>\n",
+ " <td>32.0</td>\n",
+ " <td>-57.0</td>\n",
+ " <td>504118.320342</td>\n",
+ " <td>134142.125054</td>\n",
+ " <td>89.124850</td>\n",
+ " <td>288.352570</td>\n",
+ " <td>1004078.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504101.0</td>\n",
+ " <td>134121.0</td>\n",
+ " <td>0.263531</td>\n",
+ " <td>12.0</td>\n",
+ " <td>1265.908399</td>\n",
+ " <td>6</td>\n",
+ " <td>32</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.794808</td>\n",
+ " <td>0.553527</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>74</th>\n",
+ " <td>4817511.0</td>\n",
+ " <td>20.907218</td>\n",
+ " <td>47.0</td>\n",
+ " <td>-147.0</td>\n",
+ " <td>504132.987332</td>\n",
+ " <td>134174.806150</td>\n",
+ " <td>20.892222</td>\n",
+ " <td>14.380937</td>\n",
+ " <td>1004078.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504101.0</td>\n",
+ " <td>134121.0</td>\n",
+ " <td>0.999283</td>\n",
+ " <td>12.0</td>\n",
+ " <td>1265.908399</td>\n",
+ " <td>3</td>\n",
+ " <td>47</td>\n",
+ " <td>equal</td>\n",
+ " <td>0.229586</td>\n",
+ " <td>0.076529</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>76</th>\n",
+ " <td>4817513.0</td>\n",
+ " <td>180.037771</td>\n",
+ " <td>33.0</td>\n",
+ " <td>-57.0</td>\n",
+ " <td>504131.757170</td>\n",
+ " <td>134165.089431</td>\n",
+ " <td>53.979078</td>\n",
+ " <td>150.181533</td>\n",
+ " <td>1004078.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504101.0</td>\n",
+ " <td>134121.0</td>\n",
+ " <td>0.299821</td>\n",
+ " <td>12.0</td>\n",
+ " <td>1265.908399</td>\n",
+ " <td>7</td>\n",
+ " <td>33</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.773171</td>\n",
+ " <td>0.479899</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>86</th>\n",
+ " <td>4817534.0</td>\n",
+ " <td>69.050433</td>\n",
+ " <td>37.0</td>\n",
+ " <td>-145.0</td>\n",
+ " <td>504232.555744</td>\n",
+ " <td>134035.586526</td>\n",
+ " <td>37.131477</td>\n",
+ " <td>55.112486</td>\n",
+ " <td>1004070.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504235.0</td>\n",
+ " <td>134032.0</td>\n",
+ " <td>0.537744</td>\n",
+ " <td>29.0</td>\n",
+ " <td>148.612823</td>\n",
+ " <td>8</td>\n",
+ " <td>37</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.625630</td>\n",
+ " <td>0.648801</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>95</th>\n",
+ " <td>4817543.0</td>\n",
+ " <td>136.154298</td>\n",
+ " <td>26.0</td>\n",
+ " <td>-58.0</td>\n",
+ " <td>504216.156462</td>\n",
+ " <td>134047.845046</td>\n",
+ " <td>46.060999</td>\n",
+ " <td>121.923272</td>\n",
+ " <td>1004071.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504213.0</td>\n",
+ " <td>134050.0</td>\n",
+ " <td>0.338300</td>\n",
+ " <td>27.0</td>\n",
+ " <td>260.007501</td>\n",
+ " <td>5</td>\n",
+ " <td>26</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.775591</td>\n",
+ " <td>0.587569</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>104</th>\n",
+ " <td>4817553.0</td>\n",
+ " <td>299.453663</td>\n",
+ " <td>28.0</td>\n",
+ " <td>-47.0</td>\n",
+ " <td>504213.418431</td>\n",
+ " <td>134081.933731</td>\n",
+ " <td>71.637039</td>\n",
+ " <td>265.577565</td>\n",
+ " <td>1004055.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504206.0</td>\n",
+ " <td>134087.0</td>\n",
+ " <td>0.239226</td>\n",
+ " <td>21.0</td>\n",
+ " <td>686.905610</td>\n",
+ " <td>14</td>\n",
+ " <td>28</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.774744</td>\n",
+ " <td>0.593080</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>108</th>\n",
+ " <td>4817558.0</td>\n",
+ " <td>232.507194</td>\n",
+ " <td>28.0</td>\n",
+ " <td>113.0</td>\n",
+ " <td>504140.745470</td>\n",
+ " <td>134060.379545</td>\n",
+ " <td>67.568369</td>\n",
+ " <td>205.428267</td>\n",
+ " <td>1004050.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504146.0</td>\n",
+ " <td>134056.0</td>\n",
+ " <td>0.290608</td>\n",
+ " <td>16.0</td>\n",
+ " <td>483.038711</td>\n",
+ " <td>10</td>\n",
+ " <td>28</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.729440</td>\n",
+ " <td>0.633099</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>117</th>\n",
+ " <td>4817569.0</td>\n",
+ " <td>46.645324</td>\n",
+ " <td>59.0</td>\n",
+ " <td>47.0</td>\n",
+ " <td>504383.212030</td>\n",
+ " <td>134038.490596</td>\n",
+ " <td>29.044821</td>\n",
+ " <td>23.861811</td>\n",
+ " <td>1004034.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504388.0</td>\n",
+ " <td>134043.0</td>\n",
+ " <td>0.622674</td>\n",
+ " <td>10.0</td>\n",
+ " <td>221.776847</td>\n",
+ " <td>3</td>\n",
+ " <td>59</td>\n",
+ " <td>equal</td>\n",
+ " <td>0.343014</td>\n",
+ " <td>0.171507</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>118</th>\n",
+ " <td>4817570.0</td>\n",
+ " <td>114.433767</td>\n",
+ " <td>40.0</td>\n",
+ " <td>-43.0</td>\n",
+ " <td>504390.817811</td>\n",
+ " <td>134040.491507</td>\n",
+ " <td>40.761920</td>\n",
+ " <td>87.041610</td>\n",
+ " <td>1004034.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504388.0</td>\n",
+ " <td>134043.0</td>\n",
+ " <td>0.356205</td>\n",
+ " <td>10.0</td>\n",
+ " <td>221.776847</td>\n",
+ " <td>4</td>\n",
+ " <td>40</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.727058</td>\n",
+ " <td>0.531312</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>119</th>\n",
+ " <td>4817571.0</td>\n",
+ " <td>46.644194</td>\n",
+ " <td>59.0</td>\n",
+ " <td>-133.0</td>\n",
+ " <td>504393.326128</td>\n",
+ " <td>134047.945689</td>\n",
+ " <td>29.044527</td>\n",
+ " <td>23.859602</td>\n",
+ " <td>1004034.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504388.0</td>\n",
+ " <td>134043.0</td>\n",
+ " <td>0.622683</td>\n",
+ " <td>10.0</td>\n",
+ " <td>221.776847</td>\n",
+ " <td>3</td>\n",
+ " <td>59</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.343022</td>\n",
+ " <td>0.102907</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>120</th>\n",
+ " <td>4817572.0</td>\n",
+ " <td>114.041009</td>\n",
+ " <td>41.0</td>\n",
+ " <td>137.0</td>\n",
+ " <td>504385.717010</td>\n",
+ " <td>134045.948402</td>\n",
+ " <td>40.689282</td>\n",
+ " <td>86.524609</td>\n",
+ " <td>1004034.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504388.0</td>\n",
+ " <td>134043.0</td>\n",
+ " <td>0.356795</td>\n",
+ " <td>10.0</td>\n",
+ " <td>221.776847</td>\n",
+ " <td>4</td>\n",
+ " <td>41</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.729562</td>\n",
+ " <td>0.505081</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>126</th>\n",
+ " <td>4817579.0</td>\n",
+ " <td>22.712083</td>\n",
+ " <td>31.0</td>\n",
+ " <td>135.0</td>\n",
+ " <td>504362.580721</td>\n",
+ " <td>134030.362133</td>\n",
+ " <td>23.779044</td>\n",
+ " <td>19.549695</td>\n",
+ " <td>1004033.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504369.0</td>\n",
+ " <td>134040.0</td>\n",
+ " <td>1.046978</td>\n",
+ " <td>16.0</td>\n",
+ " <td>39.954721</td>\n",
+ " <td>6</td>\n",
+ " <td>31</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.352235</td>\n",
+ " <td>0.352235</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>131</th>\n",
+ " <td>4817586.0</td>\n",
+ " <td>15.737103</td>\n",
+ " <td>52.0</td>\n",
+ " <td>-142.0</td>\n",
+ " <td>504292.267286</td>\n",
+ " <td>134012.035242</td>\n",
+ " <td>15.698669</td>\n",
+ " <td>9.582079</td>\n",
+ " <td>1004062.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504291.0</td>\n",
+ " <td>134005.0</td>\n",
+ " <td>0.997558</td>\n",
+ " <td>30.0</td>\n",
+ " <td>32.402196</td>\n",
+ " <td>5</td>\n",
+ " <td>52</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.203341</td>\n",
+ " <td>0.203341</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>133</th>\n",
+ " <td>4817590.0</td>\n",
+ " <td>107.805268</td>\n",
+ " <td>42.0</td>\n",
+ " <td>128.0</td>\n",
+ " <td>504291.857602</td>\n",
+ " <td>134007.238999</td>\n",
+ " <td>55.805688</td>\n",
+ " <td>79.525784</td>\n",
+ " <td>1004062.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504291.0</td>\n",
+ " <td>134005.0</td>\n",
+ " <td>0.517653</td>\n",
+ " <td>30.0</td>\n",
+ " <td>349.441134</td>\n",
+ " <td>11</td>\n",
+ " <td>42</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.400723</td>\n",
+ " <td>0.281990</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>135</th>\n",
+ " <td>4817592.0</td>\n",
+ " <td>166.696743</td>\n",
+ " <td>44.0</td>\n",
+ " <td>-52.0</td>\n",
+ " <td>504295.617156</td>\n",
+ " <td>134002.024478</td>\n",
+ " <td>56.562275</td>\n",
+ " <td>119.181308</td>\n",
+ " <td>1004062.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504291.0</td>\n",
+ " <td>134005.0</td>\n",
+ " <td>0.339312</td>\n",
+ " <td>30.0</td>\n",
+ " <td>349.441134</td>\n",
+ " <td>6</td>\n",
+ " <td>44</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.700674</td>\n",
+ " <td>0.508708</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>137</th>\n",
+ " <td>4817594.0</td>\n",
+ " <td>21.341327</td>\n",
+ " <td>44.0</td>\n",
+ " <td>-142.0</td>\n",
+ " <td>504285.546035</td>\n",
+ " <td>134006.535637</td>\n",
+ " <td>17.605523</td>\n",
+ " <td>15.460501</td>\n",
+ " <td>1004062.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504291.0</td>\n",
+ " <td>134005.0</td>\n",
+ " <td>0.824950</td>\n",
+ " <td>30.0</td>\n",
+ " <td>349.441134</td>\n",
+ " <td>5</td>\n",
+ " <td>44</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.449831</td>\n",
+ " <td>0.000000</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>138</th>\n",
+ " <td>4817595.0</td>\n",
+ " <td>7.320491</td>\n",
+ " <td>24.0</td>\n",
+ " <td>128.0</td>\n",
+ " <td>504287.311728</td>\n",
+ " <td>134009.157566</td>\n",
+ " <td>10.533612</td>\n",
+ " <td>6.664126</td>\n",
+ " <td>1004062.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504291.0</td>\n",
+ " <td>134005.0</td>\n",
+ " <td>1.438922</td>\n",
+ " <td>30.0</td>\n",
+ " <td>17.596906</td>\n",
+ " <td>4</td>\n",
+ " <td>24</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.437129</td>\n",
+ " <td>0.000000</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>139</th>\n",
+ " <td>4817596.0</td>\n",
+ " <td>11.941720</td>\n",
+ " <td>24.0</td>\n",
+ " <td>128.0</td>\n",
+ " <td>504292.697300</td>\n",
+ " <td>134016.015514</td>\n",
+ " <td>14.222427</td>\n",
+ " <td>10.871010</td>\n",
+ " <td>1004062.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504291.0</td>\n",
+ " <td>134005.0</td>\n",
+ " <td>1.190986</td>\n",
+ " <td>30.0</td>\n",
+ " <td>17.596906</td>\n",
+ " <td>4</td>\n",
+ " <td>24</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.535936</td>\n",
+ " <td>0.267968</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>144</th>\n",
+ " <td>4817604.0</td>\n",
+ " <td>28.995697</td>\n",
+ " <td>32.0</td>\n",
+ " <td>49.0</td>\n",
+ " <td>504248.714875</td>\n",
+ " <td>134022.816832</td>\n",
+ " <td>23.386408</td>\n",
+ " <td>24.560885</td>\n",
+ " <td>1004069.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504254.0</td>\n",
+ " <td>134015.0</td>\n",
+ " <td>0.806548</td>\n",
+ " <td>28.0</td>\n",
+ " <td>61.764345</td>\n",
+ " <td>6</td>\n",
+ " <td>32</td>\n",
+ " <td>equal</td>\n",
+ " <td>0.331084</td>\n",
+ " <td>0.275903</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>145</th>\n",
+ " <td>4817605.0</td>\n",
+ " <td>26.436872</td>\n",
+ " <td>34.0</td>\n",
+ " <td>-131.0</td>\n",
+ " <td>504251.675595</td>\n",
+ " <td>134025.521354</td>\n",
+ " <td>22.737006</td>\n",
+ " <td>21.871817</td>\n",
+ " <td>1004069.0</td>\n",
+ " <td>8012.0</td>\n",
+ " <td>...</td>\n",
+ " <td>504254.0</td>\n",
+ " <td>134015.0</td>\n",
+ " <td>0.860049</td>\n",
+ " <td>28.0</td>\n",
+ " <td>61.764345</td>\n",
+ " <td>5</td>\n",
+ " <td>34</td>\n",
+ " <td>equal</td>\n",
+ " <td>0.302608</td>\n",
+ " <td>0.302608</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>...</th>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " <td>...</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156361</th>\n",
+ " <td>5124081.0</td>\n",
+ " <td>266.605425</td>\n",
+ " <td>0.0</td>\n",
+ " <td>0.0</td>\n",
+ " <td>505205.617439</td>\n",
+ " <td>121850.298615</td>\n",
+ " <td>86.079619</td>\n",
+ " <td>266.605425</td>\n",
+ " <td>1007588.0</td>\n",
+ " <td>8013.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505200.0</td>\n",
+ " <td>121851.0</td>\n",
+ " <td>0.322873</td>\n",
+ " <td>11.0</td>\n",
+ " <td>266.605425</td>\n",
+ " <td>8</td>\n",
+ " <td>30</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.327433</td>\n",
+ " <td>0.311841</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156363</th>\n",
+ " <td>5124083.0</td>\n",
+ " <td>263.545062</td>\n",
+ " <td>0.0</td>\n",
+ " <td>0.0</td>\n",
+ " <td>505144.771970</td>\n",
+ " <td>121855.495639</td>\n",
+ " <td>86.673944</td>\n",
+ " <td>263.545062</td>\n",
+ " <td>1007482.0</td>\n",
+ " <td>8013.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505140.0</td>\n",
+ " <td>121857.0</td>\n",
+ " <td>0.328877</td>\n",
+ " <td>17.0</td>\n",
+ " <td>263.545062</td>\n",
+ " <td>8</td>\n",
+ " <td>30</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.325977</td>\n",
+ " <td>0.304947</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156368</th>\n",
+ " <td>5124091.0</td>\n",
+ " <td>75.980910</td>\n",
+ " <td>37.0</td>\n",
+ " <td>39.0</td>\n",
+ " <td>505015.098230</td>\n",
+ " <td>121962.536676</td>\n",
+ " <td>31.455957</td>\n",
+ " <td>60.994226</td>\n",
+ " <td>1007458.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505018.0</td>\n",
+ " <td>121966.0</td>\n",
+ " <td>0.413998</td>\n",
+ " <td>18.0</td>\n",
+ " <td>135.538642</td>\n",
+ " <td>6</td>\n",
+ " <td>37</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.694911</td>\n",
+ " <td>0.168463</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156369</th>\n",
+ " <td>5124092.0</td>\n",
+ " <td>75.983413</td>\n",
+ " <td>37.0</td>\n",
+ " <td>-141.0</td>\n",
+ " <td>505019.265222</td>\n",
+ " <td>121967.617780</td>\n",
+ " <td>31.456985</td>\n",
+ " <td>60.996623</td>\n",
+ " <td>1007458.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505018.0</td>\n",
+ " <td>121966.0</td>\n",
+ " <td>0.413998</td>\n",
+ " <td>18.0</td>\n",
+ " <td>135.538642</td>\n",
+ " <td>6</td>\n",
+ " <td>37</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.694889</td>\n",
+ " <td>0.189515</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156374</th>\n",
+ " <td>5124098.0</td>\n",
+ " <td>10.187720</td>\n",
+ " <td>23.0</td>\n",
+ " <td>-134.0</td>\n",
+ " <td>505136.048480</td>\n",
+ " <td>121823.092968</td>\n",
+ " <td>13.694789</td>\n",
+ " <td>9.378436</td>\n",
+ " <td>1007538.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505140.0</td>\n",
+ " <td>121816.0</td>\n",
+ " <td>1.344245</td>\n",
+ " <td>16.0</td>\n",
+ " <td>49.931162</td>\n",
+ " <td>5</td>\n",
+ " <td>23</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.157052</td>\n",
+ " <td>0.000000</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156388</th>\n",
+ " <td>5124117.0</td>\n",
+ " <td>116.551287</td>\n",
+ " <td>20.0</td>\n",
+ " <td>37.0</td>\n",
+ " <td>505212.306673</td>\n",
+ " <td>121944.341314</td>\n",
+ " <td>53.663493</td>\n",
+ " <td>109.837185</td>\n",
+ " <td>1007518.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505222.0</td>\n",
+ " <td>121943.0</td>\n",
+ " <td>0.460428</td>\n",
+ " <td>10.0</td>\n",
+ " <td>281.042520</td>\n",
+ " <td>7</td>\n",
+ " <td>20</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.658937</td>\n",
+ " <td>0.604026</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156399</th>\n",
+ " <td>5124132.0</td>\n",
+ " <td>97.474823</td>\n",
+ " <td>18.0</td>\n",
+ " <td>37.0</td>\n",
+ " <td>505154.911718</td>\n",
+ " <td>121992.092114</td>\n",
+ " <td>41.600238</td>\n",
+ " <td>92.691874</td>\n",
+ " <td>1007515.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505158.0</td>\n",
+ " <td>121996.0</td>\n",
+ " <td>0.426779</td>\n",
+ " <td>19.0</td>\n",
+ " <td>218.441718</td>\n",
+ " <td>9</td>\n",
+ " <td>18</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.689409</td>\n",
+ " <td>0.689409</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156401</th>\n",
+ " <td>5124138.0</td>\n",
+ " <td>30.082116</td>\n",
+ " <td>18.0</td>\n",
+ " <td>37.0</td>\n",
+ " <td>505156.643720</td>\n",
+ " <td>121986.481617</td>\n",
+ " <td>21.502608</td>\n",
+ " <td>28.604706</td>\n",
+ " <td>1007515.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505158.0</td>\n",
+ " <td>121996.0</td>\n",
+ " <td>0.714797</td>\n",
+ " <td>19.0</td>\n",
+ " <td>36.637903</td>\n",
+ " <td>5</td>\n",
+ " <td>18</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.585065</td>\n",
+ " <td>0.425502</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156407</th>\n",
+ " <td>5124145.0</td>\n",
+ " <td>249.308311</td>\n",
+ " <td>1.0</td>\n",
+ " <td>37.0</td>\n",
+ " <td>505199.255195</td>\n",
+ " <td>121922.503240</td>\n",
+ " <td>77.354537</td>\n",
+ " <td>249.294867</td>\n",
+ " <td>1007519.0</td>\n",
+ " <td>8015.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505199.0</td>\n",
+ " <td>121921.0</td>\n",
+ " <td>0.310277</td>\n",
+ " <td>12.0</td>\n",
+ " <td>249.270341</td>\n",
+ " <td>12</td>\n",
+ " <td>1</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.770131</td>\n",
+ " <td>0.718789</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156417</th>\n",
+ " <td>5124157.0</td>\n",
+ " <td>61.049862</td>\n",
+ " <td>35.0</td>\n",
+ " <td>38.0</td>\n",
+ " <td>505038.054617</td>\n",
+ " <td>121900.383583</td>\n",
+ " <td>31.229961</td>\n",
+ " <td>49.771623</td>\n",
+ " <td>3131586.0</td>\n",
+ " <td>8019.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505040.0</td>\n",
+ " <td>121901.0</td>\n",
+ " <td>0.511548</td>\n",
+ " <td>17.0</td>\n",
+ " <td>119.125599</td>\n",
+ " <td>8</td>\n",
+ " <td>35</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.524162</td>\n",
+ " <td>0.524162</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156442</th>\n",
+ " <td>5124184.0</td>\n",
+ " <td>152.955166</td>\n",
+ " <td>0.0</td>\n",
+ " <td>0.0</td>\n",
+ " <td>505138.741055</td>\n",
+ " <td>121751.371196</td>\n",
+ " <td>49.572093</td>\n",
+ " <td>152.955166</td>\n",
+ " <td>1007533.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>505119.0</td>\n",
+ " <td>121780.0</td>\n",
+ " <td>0.324096</td>\n",
+ " <td>15.0</td>\n",
+ " <td>152.955166</td>\n",
+ " <td>4</td>\n",
+ " <td>30</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.344247</td>\n",
+ " <td>0.235537</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156456</th>\n",
+ " <td>5124225.0</td>\n",
+ " <td>149.628056</td>\n",
+ " <td>24.0</td>\n",
+ " <td>118.0</td>\n",
+ " <td>507938.483195</td>\n",
+ " <td>121938.971036</td>\n",
+ " <td>47.207179</td>\n",
+ " <td>136.744127</td>\n",
+ " <td>1020465.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507934.0</td>\n",
+ " <td>121918.0</td>\n",
+ " <td>0.315497</td>\n",
+ " <td>8.0</td>\n",
+ " <td>229.185291</td>\n",
+ " <td>4</td>\n",
+ " <td>24</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.769909</td>\n",
+ " <td>0.727136</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156457</th>\n",
+ " <td>5124226.0</td>\n",
+ " <td>100.481013</td>\n",
+ " <td>23.0</td>\n",
+ " <td>-62.0</td>\n",
+ " <td>507945.991866</td>\n",
+ " <td>121934.251075</td>\n",
+ " <td>42.236335</td>\n",
+ " <td>92.428410</td>\n",
+ " <td>1020465.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507934.0</td>\n",
+ " <td>121918.0</td>\n",
+ " <td>0.420341</td>\n",
+ " <td>8.0</td>\n",
+ " <td>229.185291</td>\n",
+ " <td>6</td>\n",
+ " <td>23</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.684706</td>\n",
+ " <td>0.636936</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156495</th>\n",
+ " <td>5124268.0</td>\n",
+ " <td>69.521653</td>\n",
+ " <td>26.0</td>\n",
+ " <td>127.0</td>\n",
+ " <td>507988.872644</td>\n",
+ " <td>121923.898204</td>\n",
+ " <td>41.662072</td>\n",
+ " <td>62.694983</td>\n",
+ " <td>1020473.0</td>\n",
+ " <td>8016.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507988.0</td>\n",
+ " <td>121925.0</td>\n",
+ " <td>0.599268</td>\n",
+ " <td>5.0</td>\n",
+ " <td>138.925812</td>\n",
+ " <td>9</td>\n",
+ " <td>26</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.460288</td>\n",
+ " <td>0.460288</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156496</th>\n",
+ " <td>5124269.0</td>\n",
+ " <td>80.758005</td>\n",
+ " <td>26.0</td>\n",
+ " <td>-53.0</td>\n",
+ " <td>507992.817789</td>\n",
+ " <td>121921.257256</td>\n",
+ " <td>38.928120</td>\n",
+ " <td>72.825494</td>\n",
+ " <td>1020473.0</td>\n",
+ " <td>8016.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507988.0</td>\n",
+ " <td>121925.0</td>\n",
+ " <td>0.482034</td>\n",
+ " <td>5.0</td>\n",
+ " <td>138.925812</td>\n",
+ " <td>6</td>\n",
+ " <td>26</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.633993</td>\n",
+ " <td>0.614181</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156502</th>\n",
+ " <td>5124275.0</td>\n",
+ " <td>33.715366</td>\n",
+ " <td>25.0</td>\n",
+ " <td>-155.0</td>\n",
+ " <td>507851.862589</td>\n",
+ " <td>121897.816540</td>\n",
+ " <td>27.906534</td>\n",
+ " <td>30.670579</td>\n",
+ " <td>1020460.0</td>\n",
+ " <td>8015.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507851.0</td>\n",
+ " <td>121894.0</td>\n",
+ " <td>0.827710</td>\n",
+ " <td>6.0</td>\n",
+ " <td>256.684990</td>\n",
+ " <td>5</td>\n",
+ " <td>25</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.284737</td>\n",
+ " <td>0.237281</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156503</th>\n",
+ " <td>5124276.0</td>\n",
+ " <td>38.150126</td>\n",
+ " <td>25.0</td>\n",
+ " <td>25.0</td>\n",
+ " <td>507845.816019</td>\n",
+ " <td>121895.960950</td>\n",
+ " <td>28.228417</td>\n",
+ " <td>34.456133</td>\n",
+ " <td>1020460.0</td>\n",
+ " <td>8015.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507851.0</td>\n",
+ " <td>121894.0</td>\n",
+ " <td>0.739930</td>\n",
+ " <td>6.0</td>\n",
+ " <td>256.684990</td>\n",
+ " <td>4</td>\n",
+ " <td>25</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.419396</td>\n",
+ " <td>0.335517</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156507</th>\n",
+ " <td>5124280.0</td>\n",
+ " <td>13.260158</td>\n",
+ " <td>24.0</td>\n",
+ " <td>-19.0</td>\n",
+ " <td>507852.909926</td>\n",
+ " <td>121900.448859</td>\n",
+ " <td>19.454339</td>\n",
+ " <td>12.143164</td>\n",
+ " <td>1020460.0</td>\n",
+ " <td>8015.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507851.0</td>\n",
+ " <td>121894.0</td>\n",
+ " <td>1.467127</td>\n",
+ " <td>6.0</td>\n",
+ " <td>256.684990</td>\n",
+ " <td>4</td>\n",
+ " <td>24</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.120662</td>\n",
+ " <td>0.120662</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156508</th>\n",
+ " <td>5124281.0</td>\n",
+ " <td>12.849435</td>\n",
+ " <td>25.0</td>\n",
+ " <td>160.0</td>\n",
+ " <td>507852.228616</td>\n",
+ " <td>121902.124777</td>\n",
+ " <td>19.208987</td>\n",
+ " <td>11.620749</td>\n",
+ " <td>1020460.0</td>\n",
+ " <td>8015.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507851.0</td>\n",
+ " <td>121894.0</td>\n",
+ " <td>1.494929</td>\n",
+ " <td>6.0</td>\n",
+ " <td>256.684990</td>\n",
+ " <td>4</td>\n",
+ " <td>25</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.124519</td>\n",
+ " <td>0.000000</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156510</th>\n",
+ " <td>5124283.0</td>\n",
+ " <td>20.322154</td>\n",
+ " <td>30.0</td>\n",
+ " <td>-66.0</td>\n",
+ " <td>507863.633435</td>\n",
+ " <td>121905.138610</td>\n",
+ " <td>20.654033</td>\n",
+ " <td>17.628942</td>\n",
+ " <td>1020460.0</td>\n",
+ " <td>8015.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507851.0</td>\n",
+ " <td>121894.0</td>\n",
+ " <td>1.016331</td>\n",
+ " <td>6.0</td>\n",
+ " <td>58.327437</td>\n",
+ " <td>4</td>\n",
+ " <td>30</td>\n",
+ " <td>equal</td>\n",
+ " <td>0.236195</td>\n",
+ " <td>0.157464</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156512</th>\n",
+ " <td>5124285.0</td>\n",
+ " <td>23.152132</td>\n",
+ " <td>26.0</td>\n",
+ " <td>114.0</td>\n",
+ " <td>507860.241136</td>\n",
+ " <td>121906.680783</td>\n",
+ " <td>21.406529</td>\n",
+ " <td>20.826972</td>\n",
+ " <td>1020460.0</td>\n",
+ " <td>8015.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507851.0</td>\n",
+ " <td>121894.0</td>\n",
+ " <td>0.924603</td>\n",
+ " <td>6.0</td>\n",
+ " <td>58.327437</td>\n",
+ " <td>4</td>\n",
+ " <td>26</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.414649</td>\n",
+ " <td>0.345541</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156516</th>\n",
+ " <td>5124291.0</td>\n",
+ " <td>90.925022</td>\n",
+ " <td>35.0</td>\n",
+ " <td>44.0</td>\n",
+ " <td>507943.410921</td>\n",
+ " <td>121877.913753</td>\n",
+ " <td>37.434216</td>\n",
+ " <td>74.778700</td>\n",
+ " <td>1020458.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>507945.0</td>\n",
+ " <td>121879.0</td>\n",
+ " <td>0.411704</td>\n",
+ " <td>7.0</td>\n",
+ " <td>156.302014</td>\n",
+ " <td>6</td>\n",
+ " <td>35</td>\n",
+ " <td>equal</td>\n",
+ " <td>0.651086</td>\n",
+ " <td>0.580698</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156549</th>\n",
+ " <td>5124362.0</td>\n",
+ " <td>119.658477</td>\n",
+ " <td>25.0</td>\n",
+ " <td>132.0</td>\n",
+ " <td>509833.292224</td>\n",
+ " <td>121883.708346</td>\n",
+ " <td>41.864123</td>\n",
+ " <td>108.376924</td>\n",
+ " <td>1018455.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>509835.0</td>\n",
+ " <td>121889.0</td>\n",
+ " <td>0.349863</td>\n",
+ " <td>2.0</td>\n",
+ " <td>448.199438</td>\n",
+ " <td>4</td>\n",
+ " <td>25</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.802283</td>\n",
+ " <td>0.748798</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156553</th>\n",
+ " <td>5124372.0</td>\n",
+ " <td>21.508865</td>\n",
+ " <td>0.0</td>\n",
+ " <td>0.0</td>\n",
+ " <td>509830.542020</td>\n",
+ " <td>121890.939403</td>\n",
+ " <td>19.144630</td>\n",
+ " <td>21.508865</td>\n",
+ " <td>1018455.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>509835.0</td>\n",
+ " <td>121889.0</td>\n",
+ " <td>0.890081</td>\n",
+ " <td>2.0</td>\n",
+ " <td>28.198185</td>\n",
+ " <td>7</td>\n",
+ " <td>30</td>\n",
+ " <td>equal</td>\n",
+ " <td>0.128844</td>\n",
+ " <td>0.128844</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156597</th>\n",
+ " <td>5124422.0</td>\n",
+ " <td>118.827342</td>\n",
+ " <td>33.0</td>\n",
+ " <td>-44.0</td>\n",
+ " <td>509777.061068</td>\n",
+ " <td>121984.581143</td>\n",
+ " <td>39.984208</td>\n",
+ " <td>99.826972</td>\n",
+ " <td>1018454.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>509755.0</td>\n",
+ " <td>121973.0</td>\n",
+ " <td>0.336490</td>\n",
+ " <td>1.0</td>\n",
+ " <td>732.156993</td>\n",
+ " <td>5</td>\n",
+ " <td>33</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.807895</td>\n",
+ " <td>0.807895</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156601</th>\n",
+ " <td>5124426.0</td>\n",
+ " <td>64.747340</td>\n",
+ " <td>45.0</td>\n",
+ " <td>-138.0</td>\n",
+ " <td>509791.644236</td>\n",
+ " <td>121764.305896</td>\n",
+ " <td>28.417197</td>\n",
+ " <td>45.662025</td>\n",
+ " <td>1018487.0</td>\n",
+ " <td>8015.0</td>\n",
+ " <td>...</td>\n",
+ " <td>509796.0</td>\n",
+ " <td>121759.0</td>\n",
+ " <td>0.438894</td>\n",
+ " <td>3.0</td>\n",
+ " <td>103.624105</td>\n",
+ " <td>4</td>\n",
+ " <td>45</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.741343</td>\n",
+ " <td>0.247114</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156619</th>\n",
+ " <td>5124450.0</td>\n",
+ " <td>58.985735</td>\n",
+ " <td>19.0</td>\n",
+ " <td>141.0</td>\n",
+ " <td>509914.886217</td>\n",
+ " <td>121818.670138</td>\n",
+ " <td>37.958737</td>\n",
+ " <td>55.913928</td>\n",
+ " <td>1018456.0</td>\n",
+ " <td>8014.0</td>\n",
+ " <td>...</td>\n",
+ " <td>509954.0</td>\n",
+ " <td>121782.0</td>\n",
+ " <td>0.643524</td>\n",
+ " <td>7.0</td>\n",
+ " <td>68.927176</td>\n",
+ " <td>5</td>\n",
+ " <td>19</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.379753</td>\n",
+ " <td>0.352628</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156630</th>\n",
+ " <td>5124463.0</td>\n",
+ " <td>17.508327</td>\n",
+ " <td>34.0</td>\n",
+ " <td>-22.0</td>\n",
+ " <td>510037.013096</td>\n",
+ " <td>121760.096891</td>\n",
+ " <td>18.884070</td>\n",
+ " <td>14.575574</td>\n",
+ " <td>1018458.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>510019.0</td>\n",
+ " <td>121774.0</td>\n",
+ " <td>1.078577</td>\n",
+ " <td>7.0</td>\n",
+ " <td>24.601407</td>\n",
+ " <td>4</td>\n",
+ " <td>34</td>\n",
+ " <td>horizontal</td>\n",
+ " <td>0.365540</td>\n",
+ " <td>0.182770</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156671</th>\n",
+ " <td>5124512.0</td>\n",
+ " <td>131.925651</td>\n",
+ " <td>29.0</td>\n",
+ " <td>121.0</td>\n",
+ " <td>512861.419320</td>\n",
+ " <td>121844.774678</td>\n",
+ " <td>55.702429</td>\n",
+ " <td>114.847781</td>\n",
+ " <td>1018654.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>512862.0</td>\n",
+ " <td>121841.0</td>\n",
+ " <td>0.422226</td>\n",
+ " <td>2.0</td>\n",
+ " <td>236.648087</td>\n",
+ " <td>5</td>\n",
+ " <td>29</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.800451</td>\n",
+ " <td>0.739811</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>156677</th>\n",
+ " <td>5124518.0</td>\n",
+ " <td>34.768271</td>\n",
+ " <td>0.0</td>\n",
+ " <td>0.0</td>\n",
+ " <td>512851.492252</td>\n",
+ " <td>121838.457750</td>\n",
+ " <td>29.085365</td>\n",
+ " <td>34.768271</td>\n",
+ " <td>1018654.0</td>\n",
+ " <td>8011.0</td>\n",
+ " <td>...</td>\n",
+ " <td>512862.0</td>\n",
+ " <td>121841.0</td>\n",
+ " <td>0.836549</td>\n",
+ " <td>2.0</td>\n",
+ " <td>108.900435</td>\n",
+ " <td>6</td>\n",
+ " <td>30</td>\n",
+ " <td>vertical</td>\n",
+ " <td>0.119561</td>\n",
+ " <td>0.119561</td>\n",
+ " </tr>\n",
+ " </tbody>\n",
+ "</table>\n",
+ "<p>37729 rows × 23 columns</p>\n",
+ "</div>"
+ ],
+ "text/plain": [
+ " DF_UID FLAECHE NEIGUNG AUSRICHTUNG XCOORD \\\n",
+ "1 4817425.0 36.859836 37.0 33.0 503503.812619 \n",
+ "3 4817427.0 36.861447 37.0 -147.0 503510.594159 \n",
+ "8 4817433.0 69.216255 26.0 33.0 503510.917446 \n",
+ "19 4817445.0 9.973655 29.0 -55.0 503926.571766 \n",
+ "26 4817452.0 68.854261 35.0 -140.0 504222.101990 \n",
+ "27 4817453.0 52.296595 34.0 40.0 504219.058562 \n",
+ "33 4817464.0 78.771912 31.0 130.0 504150.396646 \n",
+ "40 4817471.0 73.524780 35.0 34.0 504039.884935 \n",
+ "48 4817483.0 100.571828 27.0 140.0 504182.850754 \n",
+ "52 4817487.0 107.363169 26.0 -50.0 504164.499411 \n",
+ "69 4817506.0 338.194772 32.0 -57.0 504118.320342 \n",
+ "74 4817511.0 20.907218 47.0 -147.0 504132.987332 \n",
+ "76 4817513.0 180.037771 33.0 -57.0 504131.757170 \n",
+ "86 4817534.0 69.050433 37.0 -145.0 504232.555744 \n",
+ "95 4817543.0 136.154298 26.0 -58.0 504216.156462 \n",
+ "104 4817553.0 299.453663 28.0 -47.0 504213.418431 \n",
+ "108 4817558.0 232.507194 28.0 113.0 504140.745470 \n",
+ "117 4817569.0 46.645324 59.0 47.0 504383.212030 \n",
+ "118 4817570.0 114.433767 40.0 -43.0 504390.817811 \n",
+ "119 4817571.0 46.644194 59.0 -133.0 504393.326128 \n",
+ "120 4817572.0 114.041009 41.0 137.0 504385.717010 \n",
+ "126 4817579.0 22.712083 31.0 135.0 504362.580721 \n",
+ "131 4817586.0 15.737103 52.0 -142.0 504292.267286 \n",
+ "133 4817590.0 107.805268 42.0 128.0 504291.857602 \n",
+ "135 4817592.0 166.696743 44.0 -52.0 504295.617156 \n",
+ "137 4817594.0 21.341327 44.0 -142.0 504285.546035 \n",
+ "138 4817595.0 7.320491 24.0 128.0 504287.311728 \n",
+ "139 4817596.0 11.941720 24.0 128.0 504292.697300 \n",
+ "144 4817604.0 28.995697 32.0 49.0 504248.714875 \n",
+ "145 4817605.0 26.436872 34.0 -131.0 504251.675595 \n",
+ "... ... ... ... ... ... \n",
+ "156361 5124081.0 266.605425 0.0 0.0 505205.617439 \n",
+ "156363 5124083.0 263.545062 0.0 0.0 505144.771970 \n",
+ "156368 5124091.0 75.980910 37.0 39.0 505015.098230 \n",
+ "156369 5124092.0 75.983413 37.0 -141.0 505019.265222 \n",
+ "156374 5124098.0 10.187720 23.0 -134.0 505136.048480 \n",
+ "156388 5124117.0 116.551287 20.0 37.0 505212.306673 \n",
+ "156399 5124132.0 97.474823 18.0 37.0 505154.911718 \n",
+ "156401 5124138.0 30.082116 18.0 37.0 505156.643720 \n",
+ "156407 5124145.0 249.308311 1.0 37.0 505199.255195 \n",
+ "156417 5124157.0 61.049862 35.0 38.0 505038.054617 \n",
+ "156442 5124184.0 152.955166 0.0 0.0 505138.741055 \n",
+ "156456 5124225.0 149.628056 24.0 118.0 507938.483195 \n",
+ "156457 5124226.0 100.481013 23.0 -62.0 507945.991866 \n",
+ "156495 5124268.0 69.521653 26.0 127.0 507988.872644 \n",
+ "156496 5124269.0 80.758005 26.0 -53.0 507992.817789 \n",
+ "156502 5124275.0 33.715366 25.0 -155.0 507851.862589 \n",
+ "156503 5124276.0 38.150126 25.0 25.0 507845.816019 \n",
+ "156507 5124280.0 13.260158 24.0 -19.0 507852.909926 \n",
+ "156508 5124281.0 12.849435 25.0 160.0 507852.228616 \n",
+ "156510 5124283.0 20.322154 30.0 -66.0 507863.633435 \n",
+ "156512 5124285.0 23.152132 26.0 114.0 507860.241136 \n",
+ "156516 5124291.0 90.925022 35.0 44.0 507943.410921 \n",
+ "156549 5124362.0 119.658477 25.0 132.0 509833.292224 \n",
+ "156553 5124372.0 21.508865 0.0 0.0 509830.542020 \n",
+ "156597 5124422.0 118.827342 33.0 -44.0 509777.061068 \n",
+ "156601 5124426.0 64.747340 45.0 -138.0 509791.644236 \n",
+ "156619 5124450.0 58.985735 19.0 141.0 509914.886217 \n",
+ "156630 5124463.0 17.508327 34.0 -22.0 510037.013096 \n",
+ "156671 5124512.0 131.925651 29.0 121.0 512861.419320 \n",
+ "156677 5124518.0 34.768271 0.0 0.0 512851.492252 \n",
+ "\n",
+ " YCOORD Shape_Length Shape_Area GWR_EGID GBAUP \\\n",
+ "1 134131.833522 28.208608 29.339500 1004090.0 8012.0 \n",
+ "3 134142.188986 28.210273 29.341346 1004090.0 8012.0 \n",
+ "8 134191.713704 45.633223 61.997846 295084893.0 8011.0 \n",
+ "19 134212.338837 14.288661 8.760702 1004089.0 8012.0 \n",
+ "26 134017.187739 31.767443 56.268749 1004049.0 8011.0 \n",
+ "27 134013.574920 29.327904 43.406040 1004049.0 8011.0 \n",
+ "33 134085.492644 32.609685 67.373176 1004073.0 8011.0 \n",
+ "40 134127.753162 40.713703 60.474674 1004075.0 8011.0 \n",
+ "48 134128.499894 41.247227 89.271304 1004060.0 8011.0 \n",
+ "52 134085.908714 40.126227 96.811374 1004058.0 8011.0 \n",
+ "69 134142.125054 89.124850 288.352570 1004078.0 8014.0 \n",
+ "74 134174.806150 20.892222 14.380937 1004078.0 8014.0 \n",
+ "76 134165.089431 53.979078 150.181533 1004078.0 8014.0 \n",
+ "86 134035.586526 37.131477 55.112486 1004070.0 8011.0 \n",
+ "95 134047.845046 46.060999 121.923272 1004071.0 8011.0 \n",
+ "104 134081.933731 71.637039 265.577565 1004055.0 8011.0 \n",
+ "108 134060.379545 67.568369 205.428267 1004050.0 8011.0 \n",
+ "117 134038.490596 29.044821 23.861811 1004034.0 8011.0 \n",
+ "118 134040.491507 40.761920 87.041610 1004034.0 8011.0 \n",
+ "119 134047.945689 29.044527 23.859602 1004034.0 8011.0 \n",
+ "120 134045.948402 40.689282 86.524609 1004034.0 8011.0 \n",
+ "126 134030.362133 23.779044 19.549695 1004033.0 8011.0 \n",
+ "131 134012.035242 15.698669 9.582079 1004062.0 8011.0 \n",
+ "133 134007.238999 55.805688 79.525784 1004062.0 8011.0 \n",
+ "135 134002.024478 56.562275 119.181308 1004062.0 8011.0 \n",
+ "137 134006.535637 17.605523 15.460501 1004062.0 8011.0 \n",
+ "138 134009.157566 10.533612 6.664126 1004062.0 8011.0 \n",
+ "139 134016.015514 14.222427 10.871010 1004062.0 8011.0 \n",
+ "144 134022.816832 23.386408 24.560885 1004069.0 8012.0 \n",
+ "145 134025.521354 22.737006 21.871817 1004069.0 8012.0 \n",
+ "... ... ... ... ... ... \n",
+ "156361 121850.298615 86.079619 266.605425 1007588.0 8013.0 \n",
+ "156363 121855.495639 86.673944 263.545062 1007482.0 8013.0 \n",
+ "156368 121962.536676 31.455957 60.994226 1007458.0 8014.0 \n",
+ "156369 121967.617780 31.456985 60.996623 1007458.0 8014.0 \n",
+ "156374 121823.092968 13.694789 9.378436 1007538.0 8014.0 \n",
+ "156388 121944.341314 53.663493 109.837185 1007518.0 8014.0 \n",
+ "156399 121992.092114 41.600238 92.691874 1007515.0 8014.0 \n",
+ "156401 121986.481617 21.502608 28.604706 1007515.0 8014.0 \n",
+ "156407 121922.503240 77.354537 249.294867 1007519.0 8015.0 \n",
+ "156417 121900.383583 31.229961 49.771623 3131586.0 8019.0 \n",
+ "156442 121751.371196 49.572093 152.955166 1007533.0 8014.0 \n",
+ "156456 121938.971036 47.207179 136.744127 1020465.0 8011.0 \n",
+ "156457 121934.251075 42.236335 92.428410 1020465.0 8011.0 \n",
+ "156495 121923.898204 41.662072 62.694983 1020473.0 8016.0 \n",
+ "156496 121921.257256 38.928120 72.825494 1020473.0 8016.0 \n",
+ "156502 121897.816540 27.906534 30.670579 1020460.0 8015.0 \n",
+ "156503 121895.960950 28.228417 34.456133 1020460.0 8015.0 \n",
+ "156507 121900.448859 19.454339 12.143164 1020460.0 8015.0 \n",
+ "156508 121902.124777 19.208987 11.620749 1020460.0 8015.0 \n",
+ "156510 121905.138610 20.654033 17.628942 1020460.0 8015.0 \n",
+ "156512 121906.680783 21.406529 20.826972 1020460.0 8015.0 \n",
+ "156516 121877.913753 37.434216 74.778700 1020458.0 8011.0 \n",
+ "156549 121883.708346 41.864123 108.376924 1018455.0 8011.0 \n",
+ "156553 121890.939403 19.144630 21.508865 1018455.0 8011.0 \n",
+ "156597 121984.581143 39.984208 99.826972 1018454.0 8011.0 \n",
+ "156601 121764.305896 28.417197 45.662025 1018487.0 8015.0 \n",
+ "156619 121818.670138 37.958737 55.913928 1018456.0 8014.0 \n",
+ "156630 121760.096891 18.884070 14.575574 1018458.0 8011.0 \n",
+ "156671 121844.774678 55.702429 114.847781 1018654.0 8011.0 \n",
+ "156677 121838.457750 29.085365 34.768271 1018654.0 8011.0 \n",
+ "\n",
+ " ... GKODX GKODY Shape_Ratio \\\n",
+ "1 ... 503507.0 134137.0 0.765294 \n",
+ "3 ... 503507.0 134137.0 0.765306 \n",
+ "8 ... 503512.0 134193.0 0.659285 \n",
+ "19 ... 503922.0 134215.0 1.432640 \n",
+ "26 ... 504220.0 134015.0 0.461372 \n",
+ "27 ... 504220.0 134015.0 0.560799 \n",
+ "33 ... 504151.0 134082.0 0.413976 \n",
+ "40 ... 504040.0 134129.0 0.553741 \n",
+ "48 ... 504185.0 134127.0 0.410127 \n",
+ "52 ... 504160.0 134089.0 0.373743 \n",
+ "69 ... 504101.0 134121.0 0.263531 \n",
+ "74 ... 504101.0 134121.0 0.999283 \n",
+ "76 ... 504101.0 134121.0 0.299821 \n",
+ "86 ... 504235.0 134032.0 0.537744 \n",
+ "95 ... 504213.0 134050.0 0.338300 \n",
+ "104 ... 504206.0 134087.0 0.239226 \n",
+ "108 ... 504146.0 134056.0 0.290608 \n",
+ "117 ... 504388.0 134043.0 0.622674 \n",
+ "118 ... 504388.0 134043.0 0.356205 \n",
+ "119 ... 504388.0 134043.0 0.622683 \n",
+ "120 ... 504388.0 134043.0 0.356795 \n",
+ "126 ... 504369.0 134040.0 1.046978 \n",
+ "131 ... 504291.0 134005.0 0.997558 \n",
+ "133 ... 504291.0 134005.0 0.517653 \n",
+ "135 ... 504291.0 134005.0 0.339312 \n",
+ "137 ... 504291.0 134005.0 0.824950 \n",
+ "138 ... 504291.0 134005.0 1.438922 \n",
+ "139 ... 504291.0 134005.0 1.190986 \n",
+ "144 ... 504254.0 134015.0 0.806548 \n",
+ "145 ... 504254.0 134015.0 0.860049 \n",
+ "... ... ... ... ... \n",
+ "156361 ... 505200.0 121851.0 0.322873 \n",
+ "156363 ... 505140.0 121857.0 0.328877 \n",
+ "156368 ... 505018.0 121966.0 0.413998 \n",
+ "156369 ... 505018.0 121966.0 0.413998 \n",
+ "156374 ... 505140.0 121816.0 1.344245 \n",
+ "156388 ... 505222.0 121943.0 0.460428 \n",
+ "156399 ... 505158.0 121996.0 0.426779 \n",
+ "156401 ... 505158.0 121996.0 0.714797 \n",
+ "156407 ... 505199.0 121921.0 0.310277 \n",
+ "156417 ... 505040.0 121901.0 0.511548 \n",
+ "156442 ... 505119.0 121780.0 0.324096 \n",
+ "156456 ... 507934.0 121918.0 0.315497 \n",
+ "156457 ... 507934.0 121918.0 0.420341 \n",
+ "156495 ... 507988.0 121925.0 0.599268 \n",
+ "156496 ... 507988.0 121925.0 0.482034 \n",
+ "156502 ... 507851.0 121894.0 0.827710 \n",
+ "156503 ... 507851.0 121894.0 0.739930 \n",
+ "156507 ... 507851.0 121894.0 1.467127 \n",
+ "156508 ... 507851.0 121894.0 1.494929 \n",
+ "156510 ... 507851.0 121894.0 1.016331 \n",
+ "156512 ... 507851.0 121894.0 0.924603 \n",
+ "156516 ... 507945.0 121879.0 0.411704 \n",
+ "156549 ... 509835.0 121889.0 0.349863 \n",
+ "156553 ... 509835.0 121889.0 0.890081 \n",
+ "156597 ... 509755.0 121973.0 0.336490 \n",
+ "156601 ... 509796.0 121759.0 0.438894 \n",
+ "156619 ... 509954.0 121782.0 0.643524 \n",
+ "156630 ... 510019.0 121774.0 1.078577 \n",
+ "156671 ... 512862.0 121841.0 0.422226 \n",
+ "156677 ... 512862.0 121841.0 0.836549 \n",
+ "\n",
+ " n_neighbors_100 Estim_build_area n_corners panel_tilt best_align \\\n",
+ "1 3.0 194.813319 4 37 equal \n",
+ "3 3.0 194.813319 4 37 horizontal \n",
+ "8 3.0 107.414054 5 26 horizontal \n",
+ "19 4.0 78.634747 3 29 horizontal \n",
+ "26 25.0 99.757951 5 35 horizontal \n",
+ "27 25.0 99.757951 5 34 horizontal \n",
+ "33 17.0 140.790186 5 31 vertical \n",
+ "40 7.0 119.554424 6 35 horizontal \n",
+ "48 13.0 170.407907 4 27 horizontal \n",
+ "52 17.0 232.571656 4 26 horizontal \n",
+ "69 12.0 1265.908399 6 32 horizontal \n",
+ "74 12.0 1265.908399 3 47 equal \n",
+ "76 12.0 1265.908399 7 33 horizontal \n",
+ "86 29.0 148.612823 8 37 horizontal \n",
+ "95 27.0 260.007501 5 26 vertical \n",
+ "104 21.0 686.905610 14 28 vertical \n",
+ "108 16.0 483.038711 10 28 horizontal \n",
+ "117 10.0 221.776847 3 59 equal \n",
+ "118 10.0 221.776847 4 40 vertical \n",
+ "119 10.0 221.776847 3 59 horizontal \n",
+ "120 10.0 221.776847 4 41 vertical \n",
+ "126 16.0 39.954721 6 31 horizontal \n",
+ "131 30.0 32.402196 5 52 vertical \n",
+ "133 30.0 349.441134 11 42 horizontal \n",
+ "135 30.0 349.441134 6 44 horizontal \n",
+ "137 30.0 349.441134 5 44 vertical \n",
+ "138 30.0 17.596906 4 24 vertical \n",
+ "139 30.0 17.596906 4 24 vertical \n",
+ "144 28.0 61.764345 6 32 equal \n",
+ "145 28.0 61.764345 5 34 equal \n",
+ "... ... ... ... ... ... \n",
+ "156361 11.0 266.605425 8 30 horizontal \n",
+ "156363 17.0 263.545062 8 30 horizontal \n",
+ "156368 18.0 135.538642 6 37 vertical \n",
+ "156369 18.0 135.538642 6 37 vertical \n",
+ "156374 16.0 49.931162 5 23 horizontal \n",
+ "156388 10.0 281.042520 7 20 vertical \n",
+ "156399 19.0 218.441718 9 18 vertical \n",
+ "156401 19.0 36.637903 5 18 vertical \n",
+ "156407 12.0 249.270341 12 1 horizontal \n",
+ "156417 17.0 119.125599 8 35 vertical \n",
+ "156442 15.0 152.955166 4 30 vertical \n",
+ "156456 8.0 229.185291 4 24 vertical \n",
+ "156457 8.0 229.185291 6 23 horizontal \n",
+ "156495 5.0 138.925812 9 26 horizontal \n",
+ "156496 5.0 138.925812 6 26 horizontal \n",
+ "156502 6.0 256.684990 5 25 horizontal \n",
+ "156503 6.0 256.684990 4 25 horizontal \n",
+ "156507 6.0 256.684990 4 24 horizontal \n",
+ "156508 6.0 256.684990 4 25 horizontal \n",
+ "156510 6.0 58.327437 4 30 equal \n",
+ "156512 6.0 58.327437 4 26 horizontal \n",
+ "156516 7.0 156.302014 6 35 equal \n",
+ "156549 2.0 448.199438 4 25 vertical \n",
+ "156553 2.0 28.198185 7 30 equal \n",
+ "156597 1.0 732.156993 5 33 vertical \n",
+ "156601 3.0 103.624105 4 45 horizontal \n",
+ "156619 7.0 68.927176 5 19 horizontal \n",
+ "156630 7.0 24.601407 4 34 horizontal \n",
+ "156671 2.0 236.648087 5 29 vertical \n",
+ "156677 2.0 108.900435 6 30 vertical \n",
+ "\n",
+ " panelled_area_ratio_ftr panelled_area_ratio_tgt \n",
+ "1 0.390669 0.173631 \n",
+ "3 0.390652 0.217029 \n",
+ "8 0.508551 0.277391 \n",
+ "19 0.160423 0.000000 \n",
+ "26 0.697125 0.697125 \n",
+ "27 0.734273 0.673084 \n",
+ "33 0.710913 0.406236 \n",
+ "40 0.609318 0.652841 \n",
+ "48 0.763633 0.493180 \n",
+ "52 0.834551 0.804745 \n",
+ "69 0.794808 0.553527 \n",
+ "74 0.229586 0.076529 \n",
+ "76 0.773171 0.479899 \n",
+ "86 0.625630 0.648801 \n",
+ "95 0.775591 0.587569 \n",
+ "104 0.774744 0.593080 \n",
+ "108 0.729440 0.633099 \n",
+ "117 0.343014 0.171507 \n",
+ "118 0.727058 0.531312 \n",
+ "119 0.343022 0.102907 \n",
+ "120 0.729562 0.505081 \n",
+ "126 0.352235 0.352235 \n",
+ "131 0.203341 0.203341 \n",
+ "133 0.400723 0.281990 \n",
+ "135 0.700674 0.508708 \n",
+ "137 0.449831 0.000000 \n",
+ "138 0.437129 0.000000 \n",
+ "139 0.535936 0.267968 \n",
+ "144 0.331084 0.275903 \n",
+ "145 0.302608 0.302608 \n",
+ "... ... ... \n",
+ "156361 0.327433 0.311841 \n",
+ "156363 0.325977 0.304947 \n",
+ "156368 0.694911 0.168463 \n",
+ "156369 0.694889 0.189515 \n",
+ "156374 0.157052 0.000000 \n",
+ "156388 0.658937 0.604026 \n",
+ "156399 0.689409 0.689409 \n",
+ "156401 0.585065 0.425502 \n",
+ "156407 0.770131 0.718789 \n",
+ "156417 0.524162 0.524162 \n",
+ "156442 0.344247 0.235537 \n",
+ "156456 0.769909 0.727136 \n",
+ "156457 0.684706 0.636936 \n",
+ "156495 0.460288 0.460288 \n",
+ "156496 0.633993 0.614181 \n",
+ "156502 0.284737 0.237281 \n",
+ "156503 0.419396 0.335517 \n",
+ "156507 0.120662 0.120662 \n",
+ "156508 0.124519 0.000000 \n",
+ "156510 0.236195 0.157464 \n",
+ "156512 0.414649 0.345541 \n",
+ "156516 0.651086 0.580698 \n",
+ "156549 0.802283 0.748798 \n",
+ "156553 0.128844 0.128844 \n",
+ "156597 0.807895 0.807895 \n",
+ "156601 0.741343 0.247114 \n",
+ "156619 0.379753 0.352628 \n",
+ "156630 0.365540 0.182770 \n",
+ "156671 0.800451 0.739811 \n",
+ "156677 0.119561 0.119561 \n",
+ "\n",
+ "[37729 rows x 23 columns]"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "TRN_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## SAVE AS CSV"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "TRN_data.to_csv('/Users/alinawalch/Documents/EPFL/data/rooftops/TRN_panelled_area.csv', index = False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Get additional info on number of BUILDINGS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "training_roofs_w_building = TRN_data.merge(gva_shp.loc[:,['DF_UID', 'SB_UUID']], on = 'DF_UID', how = 'left')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total number of considered buildings in Geneva (by SB_UUID): 19174\n",
+ "Total number of considered buildings in Geneva (by GWR_EGID): 15919\n"
+ ]
+ }
+ ],
+ "source": [
+ "print('Total number of considered buildings in Geneva (by SB_UUID): %d' %len(training_roofs_w_building.SB_UUID.unique()) )\n",
+ "print('Total number of considered buildings in Geneva (by GWR_EGID): %d' %len(training_roofs_w_building.GWR_EGID.unique()) )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Solar_Future/MeteoSwiss_daily.ipynb b/Solar_Future/MeteoSwiss_daily.ipynb
index 56448b7..025908c 100644
--- a/Solar_Future/MeteoSwiss_daily.ipynb
+++ b/Solar_Future/MeteoSwiss_daily.ipynb
@@ -1,7544 +1,7758 @@
{
"cells": [
{
"cell_type": "code",
- "execution_count": 41,
+ "execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import xarray as xr\n",
"import pandas as pd\n",
"import numpy as np\n",
"from rpy2.robjects import r, pandas2ri\n",
"\n",
"import os\n",
"import time\n",
"\n",
"# import gdal\n",
"\n",
"import matplotlib\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create yearly files of daily GHI projected to LV03\n",
"1. Aggregate data as yearly files with daily data\n",
"2. Load yearly GHI files in WSG94 (grass)\n",
"3. Project GHI files to CH_LV03 using XXXXX\n",
"4. Convert to 3D raster and export as netcdf\n",
"5. Drop data based on precipitation raster & adjust coordinates (in python)\n",
"6. Export and save on /work"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 1"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"year_hourly = xr.open_mfdataset('/Users/alinawalch/Downloads/MSG_SIS_H_2016/*.nc')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (lat: 103, lon: 241, time: 8784)\n",
"Coordinates:\n",
" * lon (lon) float32 5.75 5.7708335 ... 10.729167 10.75\n",
" * lat (lat) float32 45.75 45.770832 ... 47.854164 47.875\n",
" * time (time) datetime64[ns] 2016-01-01 ... 2016-12-31T23:00:00\n",
"Data variables:\n",
" geographic_projection (time) |S1 b'' b'' b'' b'' b'' ... b'' b'' b'' b''\n",
" SIS (time, lat, lon) float32 dask.array<shape=(8784, 103, 241), chunksize=(24, 103, 241)>\n",
"Attributes:\n",
" Title: The HelioMont Surface Solar Radiation Process...\n",
" Summary: Composited surface states, cloud properties a...\n",
" Institution: Federal Office of Meteorology and Climatology...\n",
" References: Reto Stockli (2013). The HelioMont Surface So...\n",
" Conventions: CF-1.5\n",
" Metadata_Conventions: Unidata Dataset Discovery v1.0\n",
" Digital_Object_Identifier: not assigned\n",
" Creator_Name: Reto Stockli\n",
" Creator_Email: reto.stoeckli@meteoswiss.ch\n",
" Creator_Url: http://www.meteoswiss.ch"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"year_hourly"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"year_daily = year_hourly['SIS'].resample(time = '1D').sum('time')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.DataArray 'geographic_projection' ()>\n",
"array(b'', dtype='|S1')\n",
"Coordinates:\n",
" time datetime64[ns] 2016-01-01\n",
"Attributes:\n",
" grid_mapping_name: latitude_longitude\n",
" datum: wgs84\n",
" semi_major_axis: 6378137.0\n",
" semi_minor_axis: 6356752.3\n",
" spatial_ref: GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",63...\n",
" version: 2.4.0"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"year_hourly.geographic_projection.isel(time = 0)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"year_ds = xr.Dataset({'SIS' : year_daily})\n",
"year_ds['geographic_projection'] = year_hourly.geographic_projection.isel(time = 0)\n",
"year_ds.attrs = year_hourly.attrs"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (lat: 103, lon: 241, time: 366)\n",
"Coordinates:\n",
" * time (time) datetime64[ns] 2016-01-01 ... 2016-12-31\n",
" * lon (lon) float32 5.75 5.7708335 ... 10.729167 10.75\n",
" * lat (lat) float32 45.75 45.770832 ... 47.854164 47.875\n",
"Data variables:\n",
" SIS (time, lat, lon) float32 dask.array<shape=(366, 103, 241), chunksize=(1, 103, 241)>\n",
" geographic_projection |S1 b''\n",
"Attributes:\n",
" Title: The HelioMont Surface Solar Radiation Process...\n",
" Summary: Composited surface states, cloud properties a...\n",
" Institution: Federal Office of Meteorology and Climatology...\n",
" References: Reto Stockli (2013). The HelioMont Surface So...\n",
" Conventions: CF-1.5\n",
" Metadata_Conventions: Unidata Dataset Discovery v1.0\n",
" Digital_Object_Identifier: not assigned\n",
" Creator_Name: Reto Stockli\n",
" Creator_Email: reto.stoeckli@meteoswiss.ch\n",
" Creator_Url: http://www.meteoswiss.ch"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"year_ds"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.DataArray 'geographic_projection' ()>\n",
"array(b'', dtype='|S1')\n",
"Attributes:\n",
" grid_mapping_name: latitude_longitude\n",
" datum: wgs84\n",
" semi_major_axis: 6378137.0\n",
" semi_minor_axis: 6356752.3\n",
" spatial_ref: GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",63...\n",
" version: 2.4.0"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"year_ds.geographic_projection"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"320\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"year_ds.SIS.isel(lon = 5, lat = 5).plot()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"year_ds.to_netcdf('/Users/alinawalch/Downloads/MSG_SIS_H_2016.nc')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"tst_ds = xr.open_dataset('/Users/alinawalch/Downloads/MSG_SIS_H_2011.nc')"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"320\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"tst_ds.SIS.isel(lon = 5, lat = 5).plot()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Steps 2-4: executed in GRASS - DONE in grass workspace_prepare_ML"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 5:\n",
"Still needs to be applied to all files in /scratch/walch/grassgis/scripts/executables/workspace_prepare_ML/yearly_files"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"YEAR = 2004"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Reference file:\n",
"ref = ('/Users/alinawalch/Downloads/RhiresD_ch01r.swisscors_%d01010000_%d12310000.nc' %(YEAR, YEAR))\n",
"ref = xr.open_dataset(ref)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"proj_ds = xr.open_dataset('/Users/alinawalch/Downloads/MSG_SIS_D_%d_nearest.nc' %YEAR)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (time: 366, x: 370, y: 240)\n",
"Coordinates:\n",
" * x (x) float32 474500.0 475500.0 476500.0 ... 842500.0 843500.0\n",
" * y (y) float32 303500.0 302500.0 301500.0 ... 65500.0 64500.0\n",
" * time (time) float32 0.5 1.5 2.5 3.5 4.5 ... 362.5 363.5 364.5 365.5\n",
"Data variables:\n",
" crs |S1 ...\n",
" SIS_D_2004 (time, y, x) float64 ...\n",
"Attributes:\n",
" Conventions: CF-1.5\n",
" history: GRASS GIS 7 netCDF export of r3.out.netcdf"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proj_ds.rename({ 'z' : 'time' }, inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"proj_ds.coords['time'] = ref.time"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"mask_array = ref.RhiresD.isel(time = 0).values * 0 + 1\n",
"CH_mask = xr.DataArray(np.flip(mask_array, axis = 0), coords = [proj_ds.y, proj_ds.x])\n",
"proj_ds['SIS_CH'] = proj_ds[('SIS_D_%d' %YEAR)].where(CH_mask == 1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"ds_out = proj_ds.drop('SIS_D_%d' %YEAR)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"proj_ds[('SIS_D_%d' %YEAR)].isel(time = 12).plot()\n",
"plt.axis('equal')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"320\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"CH_mask.plot()\n",
"plt.axis('equal')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"proj_ds.SIS_CH.isel(time = 12).plot()\n",
"plt.axis('equal')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"# save to netcdf\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### CHECK"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (lat: 103, lon: 241, time: 365)\n",
"Coordinates:\n",
" * time (time) datetime64[ns] 2010-01-01 ... 2010-12-31\n",
" * lon (lon) float32 5.75 5.7708335 ... 10.729167 10.75\n",
" * lat (lat) float32 45.75 45.770832 ... 47.854164 47.875\n",
"Data variables:\n",
" SIS (time, lat, lon) float64 ...\n",
" geographic_projection |S1 ..."
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xr.open_dataset('/Users/alinawalch/Downloads/MSG_SIS_H_2010.nc')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (time: 366, x: 370, y: 240)\n",
"Coordinates:\n",
" * x (x) float32 474500.0 475500.0 476500.0 ... 842500.0 843500.0\n",
" * y (y) float32 303500.0 302500.0 301500.0 ... 66500.0 65500.0 64500.0\n",
" * time (time) datetime64[ns] 2004-01-01 2004-01-02 ... 2004-12-31\n",
"Data variables:\n",
" crs |S1 ...\n",
" SIS_CH (time, y, x) float64 ...\n",
"Attributes:\n",
" Conventions: CF-1.5\n",
" history: GRASS GIS 7 netCDF export of r3.out.netcdf"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xr.open_dataset('/Users/alinawalch/Documents/MSG_SIS_D_2004_nearest.nc')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# SPIELWIESE"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Historic satellite data (Precipitation)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# Read test file of daily precipitation (year 1994):\n",
"RhiresD = '/Users/alinawalch/Downloads/RhiresD_ch01r.swisscors_199201010000_199212310000.nc'\n",
"RhiresD = xr.open_dataset(RhiresD)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (chx: 370, chy: 240, dummy: 1, time: 366)\n",
"Coordinates:\n",
" * dummy (dummy) float64 1.0\n",
" * chx (chx) float64 4.745e+05 4.755e+05 ... 8.425e+05 8.435e+05\n",
" * chy (chy) float64 6.45e+04 6.55e+04 ... 3.025e+05 3.035e+05\n",
" * time (time) datetime64[ns] 1992-01-01 ... 1992-12-31\n",
" lon (chy, chx) float32 ...\n",
" lat (chy, chx) float32 ...\n",
"Data variables:\n",
" swiss_coordinates (dummy) float64 ...\n",
" RhiresD (time, chy, chx) float32 ...\n",
"Attributes:\n",
" Conventions: CF-1.6\n",
" institution: Federal Office of Meteorology and Climatology MeteoSwiss\n",
" References: "
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"RhiresD"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.DataArray 'swiss_coordinates' (dummy: 1)>\n",
"array([1.])\n",
"Coordinates:\n",
" * dummy (dummy) float64 1.0\n",
"Attributes:\n",
" grid_mapping_name: Oblique Mercator (CH1903)\n",
" longitude_of_projection_center: 7.43958333\n",
" latitude_of_projection_center: 46.9524056\n",
" false_easting: 600000.0\n",
" false_northing: 200000.0\n",
" inverse_flattening: 299.1528128\n",
" semi_major_axis: 6377397.155"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"RhiresD.swiss_coordinates"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(474000.0, 844000.0, 64000.0, 304000.0)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d = 150\n",
"\n",
"plt.figure()\n",
"RhiresD.isel(time = d).RhiresD.plot()\n",
"plt.axis('equal')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Conclusion:\n",
"- 1x1km grid over Switzerland\n",
"- Daily resolution"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Historic satellite data (radiation)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"SIS_H_file = '/Users/alinawalch/Downloads/msg.SIS.H_ch02.lonlat_20151230000000.nc'\n",
"SIS_H = xr.open_dataset(SIS_H_file)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (lat: 103, lon: 241, time: 24)\n",
"Coordinates:\n",
" * lon (lon) float32 5.75 5.7708335 ... 10.729167 10.75\n",
" * lat (lat) float32 45.75 45.770832 ... 47.854164 47.875\n",
" * time (time) datetime64[ns] 2015-12-30 ... 2015-12-30T23:00:00\n",
"Data variables:\n",
" geographic_projection |S1 ...\n",
" SIS (time, lat, lon) float32 ...\n",
"Attributes:\n",
" Title: The HelioMont Surface Solar Radiation Process...\n",
" Summary: Composited surface states, cloud properties a...\n",
" Institution: Federal Office of Meteorology and Climatology...\n",
" References: Reto Stockli (2013). The HelioMont Surface So...\n",
" Conventions: CF-1.5\n",
" Metadata_Conventions: Unidata Dataset Discovery v1.0\n",
" Digital_Object_Identifier: not assigned\n",
" Creator_Name: Reto Stockli\n",
" Creator_Email: reto.stoeckli@meteoswiss.ch\n",
" Creator_Url: http://www.meteoswiss.ch"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SIS_H"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.DataArray 'geographic_projection' ()>\n",
"array(b'', dtype='|S1')\n",
"Attributes:\n",
" grid_mapping_name: latitude_longitude\n",
" datum: wgs84\n",
" semi_major_axis: 6378137.0\n",
" semi_minor_axis: 6356752.3\n",
" spatial_ref: GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",63...\n",
" version: 2.3.3 \n",
" prod_date: 2015-12-31 03:04:53"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SIS_H.geographic_projection"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"SIS_H_proj = '/Users/alinawalch/Downloads/SIS_20151230_3d.nc'"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"SIS_H_proj_ds = xr.open_dataset(SIS_H_proj)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"1000\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"t = 7\n",
"\n",
"plt.figure(figsize = (10,4))\n",
"ax = plt.subplot(121)\n",
"SIS_H.isel(time = t).SIS.plot(ax = ax)\n",
"plt.axis('equal')\n",
"\n",
"ax = plt.subplot(122)\n",
"SIS_H_proj_ds.isel(z = t).SIS_20151230.plot(ax = ax)\n",
"plt.axis('equal')\n",
"\n",
"plt.subplots_adjust(left = 0, hspace = 0.7, right = 1)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (lat: 103, lon: 241)\n",
"Coordinates:\n",
" * lon (lon) float32 5.75 5.7708335 5.791667 ... 10.708334 10.729167 10.75\n",
" * lat (lat) float32 45.75 45.770832 45.791664 ... 47.854164 47.875\n",
"Data variables:\n",
" SIS (lat, lon) float32 1871.074 1802.0314 ... 1656.8208 1648.7129"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# get daily sum:\n",
"SIS_H.sum('time')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Geographic projection using GDAL"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"SIS_H_file = '/Users/alinawalch/Downloads/MSG_SIS_H_2016/msg.SIS.H_ch02.lonlat_20160101000000.nc'\n",
"SIS_H_ds = gdal.Open('NETCDF:\"'+SIS_H_file+'\":SIS')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
- "scrolled": true
+ "scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'NC_GLOBAL#Conventions': 'CF-1.5',\n",
" 'NC_GLOBAL#Creator_Email': 'reto.stoeckli@meteoswiss.ch',\n",
" 'NC_GLOBAL#Creator_Name': 'Reto Stockli',\n",
" 'NC_GLOBAL#Creator_Url': 'http://www.meteoswiss.ch',\n",
" 'NC_GLOBAL#Digital_Object_Identifier': 'not assigned',\n",
" 'NC_GLOBAL#Institution': 'Federal Office of Meteorology and Climatology MeteoSwiss',\n",
" 'NC_GLOBAL#Metadata_Conventions': 'Unidata Dataset Discovery v1.0',\n",
" 'NC_GLOBAL#References': 'Reto Stockli (2013). The HelioMont Surface Solar Radiation Processing, Scientific Report MeteoSwiss, 93, 122 pp.',\n",
" 'NC_GLOBAL#Summary': 'Composited surface states, cloud properties and surface radiation fluxes from Meteteosat Second Generation SEVIRI data',\n",
" 'NC_GLOBAL#Title': 'The HelioMont Surface Solar Radiation Processing of MeteoSwiss (Composite File)',\n",
" 'NETCDF_DIM_EXTRA': '{time}',\n",
" 'NETCDF_DIM_time_DEF': '{24,6}',\n",
" 'NETCDF_DIM_time_VALUES': '{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23}',\n",
" 'SIS#_FillValue': '9.96921e+36',\n",
" 'SIS#grid_mapping': 'geographic_projection',\n",
" 'SIS#long_name': 'Global Radiation (hourly mean)',\n",
" 'SIS#prod_date': '2017-02-28 08:55:11',\n",
" 'SIS#units': 'W m-2',\n",
" 'SIS#version': '2.4.0',\n",
" 'geographic_projection#datum': 'wgs84',\n",
" 'geographic_projection#grid_mapping_name': 'latitude_longitude',\n",
" 'geographic_projection#prod_date': '2017-02-28 08:55:11',\n",
" 'geographic_projection#semi_major_axis': '6378137',\n",
" 'geographic_projection#semi_minor_axis': '6356752.3',\n",
" 'geographic_projection#spatial_ref': 'GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG\",7030]],TOWGS84[0,0,0,0,0,0,0],AUTHORITY[\"EPSG\",6326]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",8901]],UNIT[\"DMSH\",0.0174532925199433,AUTHORITY[\"EPSG\",9108]],AXIS[\"Lat\",NORTH],AXIS[\"Long\",EAST],AUTHORITY[\"EPSG\",4326]]',\n",
" 'geographic_projection#version': '2.4.0',\n",
" 'lat#long_name': 'latitude',\n",
" 'lat#units': 'degrees_north',\n",
" 'lon#long_name': 'longitude',\n",
" 'lon#units': 'degrees_east',\n",
" 'time#calendar': 'gregorian',\n",
" 'time#long_name': 'time',\n",
" 'time#units': 'hours since 2016-01-01 00:00:00'}"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"metadata = SIS_H_ds.GetMetadata()\n",
"metadata"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"SIS_H_proj = '/Users/alinawalch/Downloads/msg.SIS.H_ch02.lonlat_20160101000000_proj.tif'"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"SIS_H_projected = gdal.Warp(SIS_H_proj, SIS_H_ds, dstSRS='EPSG:2056', srcSRS='EPSG:4326')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"<osgeo.gdal.Dataset; proxy of <Swig Object of type 'GDALDatasetShadow *' at 0x324de52a0> >"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SIS_H_projected"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Future precipitation (from R)"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def load_r_to_array( filename, var_name ):\n",
" # Read RData file and convert data and meta-data into useful formats\n",
" data = r.load( filename , verbose = True)\n",
" df = r(data[0])\n",
" attributes = r('attributes(%s)' %(data[0]))\n",
" \n",
" # Convert data into dictionary for further use\n",
" df_dict = dict(zip(df.names, list(df)))\n",
" attr_dict = dict(zip(attributes.names, list(attributes)))\n",
" \n",
" # convert integers to datetime indices\n",
" dates = [ pd.to_datetime(0) + pd.Timedelta(val, unit='d') for val in df_dict['data.time'] ] \n",
" \n",
" # create data array and add metadata\n",
" data_array = xr.DataArray(data = df_dict['data.series'], coords = [dates], dims = 'time', name='precipitation')\n",
" data_array.coords['station'] = attr_dict['station'][0]\n",
" data_array.attrs['period'] = attr_dict['qm.period'][0]\n",
" data_array.attrs['calibration_period'] = attr_dict['calibration.period'][0]\n",
" data_array.attrs['modelchain'] = attr_dict['modelchain'][0]\n",
" data_array.attrs['version'] = attr_dict['qm.version'][0]\n",
" \n",
" data_df = pd.DataFrame( data = data_array.to_pandas(), columns = [attr_dict['station'][0]])\n",
" \n",
" return data_array, data_df"
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"pr = []\n",
"tas = []\n",
"rsds = []\n",
"\n",
"var_dict = {\n",
" 'pr' : pr ,\n",
" 'tas' : tas ,\n",
" 'rsds': rsds\n",
"}"
]
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
- "files = [ 'pr_SMHI-RCA-NORESM-EUR44-RCP85_ARO.Rdata' ]\n",
+ "files = [ 'tas_SMHI-RCA-IPSL-EUR44-RCP85_MVE.Rdata' ]\n",
"subdir = '/Users/alinawalch/Downloads'"
]
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading objects:\n",
"\n",
" \n",
"results.qm\n",
"\n",
- "Added /Users/alinawalch/Downloads/pr_SMHI-RCA-NORESM-EUR44-RCP85_ARO.Rdata\n",
- "Failed to convert and save tas: No objects to concatenate\n",
+ "Added /Users/alinawalch/Downloads/tas_SMHI-RCA-IPSL-EUR44-RCP85_MVE.Rdata\n",
"Failed to convert and save rsds: No objects to concatenate\n"
]
}
],
"source": [
"for file in files:\n",
" file_base = file.split('.')\n",
" if file_base[1] != 'Rdata': continue\n",
" \n",
" components = file_base[0].split('_')\n",
" var = components[0]\n",
" \n",
" fp = os.path.join( subdir, file )\n",
" arr, df = load_r_to_array( fp, var )\n",
" \n",
" var_dict[ var ].append( df )\n",
" \n",
" print(\"Added %s\" %fp)\n",
" \n",
"for key, df in var_dict.items():\n",
" try:\n",
" df = pd.concat(df)\n",
" # df.to_csv( '%s_%s.csv' %(subdir, key) )\n",
" \n",
" except Exception as e: print('Failed to convert and save %s: %s' %(key, e))"
]
},
{
"cell_type": "code",
- "execution_count": 4,
- "metadata": {},
+ "execution_count": 30,
+ "metadata": {
+ "scrolled": true
+ },
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading objects:\n",
"\n",
" \n",
"results.qm\n",
"\n"
]
}
],
"source": [
- "arr, df = load_r_to_array('/Users/alinawalch/Downloads/pr_SMHI-RCA-NORESM-EUR44-RCP85_ARO.Rdata', 'pr')\n",
+ "arr, df = load_r_to_array('/Users/alinawalch/Downloads/tas_SMHI-RCA-IPSL-EUR44-RCP85_MVE.Rdata', 'pr')\n",
"var_dict['pr'].append(df)"
]
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 26,
"metadata": {},
+ "outputs": [],
+ "source": [
+ "data_array = var_dict[ var ][0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>MVE</th>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>time</th>\n",
+ " <th></th>\n",
+ " </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
+ " <tr>\n",
+ " <th>1981-01-01</th>\n",
+ " <td>-4.371958</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-02</th>\n",
+ " <td>-0.002249</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-03</th>\n",
+ " <td>0.236144</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-04</th>\n",
+ " <td>1.885565</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-05</th>\n",
+ " <td>-5.835846</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-06</th>\n",
+ " <td>-3.525503</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-07</th>\n",
+ " <td>0.571968</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-08</th>\n",
+ " <td>1.999521</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-09</th>\n",
+ " <td>-3.294383</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-10</th>\n",
+ " <td>-3.735109</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-11</th>\n",
+ " <td>1.476163</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-12</th>\n",
+ " <td>2.044344</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-13</th>\n",
+ " <td>-2.412006</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-14</th>\n",
+ " <td>-0.140964</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-15</th>\n",
+ " <td>0.987091</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-16</th>\n",
+ " <td>-10.752150</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-17</th>\n",
+ " <td>-4.542454</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-18</th>\n",
+ " <td>-0.782648</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-19</th>\n",
+ " <td>-3.220550</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-20</th>\n",
+ " <td>1.800475</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-21</th>\n",
+ " <td>1.332688</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-22</th>\n",
+ " <td>-0.247258</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-23</th>\n",
+ " <td>1.385550</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-24</th>\n",
+ " <td>2.751176</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-25</th>\n",
+ " <td>3.088163</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-26</th>\n",
+ " <td>4.705993</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-27</th>\n",
+ " <td>2.000260</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-28</th>\n",
+ " <td>5.175273</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-29</th>\n",
+ " <td>5.930350</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1981-01-30</th>\n",
+ " <td>4.128995</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>...</th>\n",
+ " <td>...</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-02</th>\n",
+ " <td>4.860428</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-03</th>\n",
+ " <td>0.980967</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-04</th>\n",
+ " <td>-1.741642</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-05</th>\n",
+ " <td>-0.763729</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-06</th>\n",
+ " <td>2.265342</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-07</th>\n",
+ " <td>1.381251</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-08</th>\n",
+ " <td>3.923237</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-09</th>\n",
+ " <td>0.251265</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-10</th>\n",
+ " <td>1.954330</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-11</th>\n",
+ " <td>-1.761408</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-12</th>\n",
+ " <td>-1.646548</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-13</th>\n",
+ " <td>0.856254</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-14</th>\n",
+ " <td>3.792031</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-15</th>\n",
+ " <td>-2.407269</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-16</th>\n",
+ " <td>-2.861161</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-17</th>\n",
+ " <td>-3.505703</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-18</th>\n",
+ " <td>-1.090181</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-19</th>\n",
+ " <td>2.912887</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-20</th>\n",
+ " <td>-0.740709</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-21</th>\n",
+ " <td>3.218044</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-22</th>\n",
+ " <td>7.321482</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-23</th>\n",
+ " <td>6.233831</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-24</th>\n",
+ " <td>-0.670232</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-25</th>\n",
+ " <td>2.611472</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-26</th>\n",
+ " <td>6.587040</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-27</th>\n",
+ " <td>2.461331</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-28</th>\n",
+ " <td>-0.852884</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-29</th>\n",
+ " <td>1.852551</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-30</th>\n",
+ " <td>3.564370</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2099-12-31</th>\n",
+ " <td>-0.567975</td>\n",
+ " </tr>\n",
+ " </tbody>\n",
+ "</table>\n",
+ "<p>43464 rows × 1 columns</p>\n",
+ "</div>"
+ ],
+ "text/plain": [
+ " MVE\n",
+ "time \n",
+ "1981-01-01 -4.371958\n",
+ "1981-01-02 -0.002249\n",
+ "1981-01-03 0.236144\n",
+ "1981-01-04 1.885565\n",
+ "1981-01-05 -5.835846\n",
+ "1981-01-06 -3.525503\n",
+ "1981-01-07 0.571968\n",
+ "1981-01-08 1.999521\n",
+ "1981-01-09 -3.294383\n",
+ "1981-01-10 -3.735109\n",
+ "1981-01-11 1.476163\n",
+ "1981-01-12 2.044344\n",
+ "1981-01-13 -2.412006\n",
+ "1981-01-14 -0.140964\n",
+ "1981-01-15 0.987091\n",
+ "1981-01-16 -10.752150\n",
+ "1981-01-17 -4.542454\n",
+ "1981-01-18 -0.782648\n",
+ "1981-01-19 -3.220550\n",
+ "1981-01-20 1.800475\n",
+ "1981-01-21 1.332688\n",
+ "1981-01-22 -0.247258\n",
+ "1981-01-23 1.385550\n",
+ "1981-01-24 2.751176\n",
+ "1981-01-25 3.088163\n",
+ "1981-01-26 4.705993\n",
+ "1981-01-27 2.000260\n",
+ "1981-01-28 5.175273\n",
+ "1981-01-29 5.930350\n",
+ "1981-01-30 4.128995\n",
+ "... ...\n",
+ "2099-12-02 4.860428\n",
+ "2099-12-03 0.980967\n",
+ "2099-12-04 -1.741642\n",
+ "2099-12-05 -0.763729\n",
+ "2099-12-06 2.265342\n",
+ "2099-12-07 1.381251\n",
+ "2099-12-08 3.923237\n",
+ "2099-12-09 0.251265\n",
+ "2099-12-10 1.954330\n",
+ "2099-12-11 -1.761408\n",
+ "2099-12-12 -1.646548\n",
+ "2099-12-13 0.856254\n",
+ "2099-12-14 3.792031\n",
+ "2099-12-15 -2.407269\n",
+ "2099-12-16 -2.861161\n",
+ "2099-12-17 -3.505703\n",
+ "2099-12-18 -1.090181\n",
+ "2099-12-19 2.912887\n",
+ "2099-12-20 -0.740709\n",
+ "2099-12-21 3.218044\n",
+ "2099-12-22 7.321482\n",
+ "2099-12-23 6.233831\n",
+ "2099-12-24 -0.670232\n",
+ "2099-12-25 2.611472\n",
+ "2099-12-26 6.587040\n",
+ "2099-12-27 2.461331\n",
+ "2099-12-28 -0.852884\n",
+ "2099-12-29 1.852551\n",
+ "2099-12-30 3.564370\n",
+ "2099-12-31 -0.567975\n",
+ "\n",
+ "[43464 rows x 1 columns]"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data_array"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "scrolled": false
+ },
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
- "[<matplotlib.lines.Line2D at 0x319d562b0>]"
+ "<matplotlib.axes._subplots.AxesSubplot at 0x31898ee10>"
]
},
- "execution_count": 10,
+ "execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_array.plot()"
]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "('/Users/alinawalch', 'Downloads')"
- ]
- },
- "execution_count": 36,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "os.path.split(subdir)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {},
- "outputs": [],
- "source": [
- "SOURCE_DIR = '/Users/alinawalch/Downloads/SMHI-RCA-NORESM-EUR44-RCP85'"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 48,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Loading objects:\n",
- "\n",
- " \n",
- "results.qm\n",
- "\n",
- "Added /Users/alinawalch/Downloads/SMHI-RCA-NORESM-EUR44-RCP85/pr_SMHI-RCA-NORESM-EUR44-RCP85_WEF.Rdata\n",
- "Loop iteration time: 2.769235\n"
- ]
- }
- ],
- "source": [
- "for file in os.listdir( SOURCE_DIR ):\n",
- " fp = os.path.join( SOURCE_DIR, file )\n",
- " \n",
- " timer = time.time()\n",
- " \n",
- " try:\n",
- " # verify that the file ha the right extension:\n",
- " file_base = file.split('.')\n",
- " if file_base[1] != 'Rdata': continue\n",
- " \n",
- " # get the variable name of the current file\n",
- " components = file_base[0].split('_')\n",
- " var = components[0]\n",
- " loc = components[-1]\n",
- " \n",
- " # load the file into pandas dataframe and append to variable\n",
- " # arr, df = load_r_to_array( fp, var )\n",
- " data = r.load( fp , verbose = True)\n",
- " df = r(data[0])\n",
- " df_dict = dict(zip(df.names, list(df)))\n",
- " # convert integers to datetime indices\n",
- " dates = [ pd.to_datetime(0) + pd.Timedelta(val, unit='d') for val in df_dict['data.time'] ] \n",
- "\n",
- " df_vect = np.asarray(df_dict['data.series']).reshape(-1,1)\n",
- " # var_dict[ var ].append( df )\n",
- " \n",
- " print(\"Added %s\" %fp)\n",
- "\n",
- " except Exception as e: print('Failed to add %s: %s' %(fp, e))\n",
- "\n",
- " print('Loop iteration time: %f' %(time.time()-timer))\n",
- " \n",
- " break;"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {},
- "outputs": [],
- "source": [
- "df = pd.DataFrame( data = [], index = dates )"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {},
- "outputs": [],
- "source": [
- "df[loc] = df_vect"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 53,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'data.series': R object with classes: ('numeric',) mapped to:\n",
- " <FloatVector - Python:0x10f028a48 / R:0x110164000>\n",
- " [22.303866, 10.428082, 3.900465, 4.797065, ..., 11.212465, 13.718462, 0.000000, 0.000000],\n",
- " 'data.time': R object with classes: ('Date',) mapped to:\n",
- " <FloatVector - Python:0x10f028788 / R:0x11137d000>\n",
- " [4018.000000, 4019.000000, 4020.000000, 4021.000000, ..., 47478.000000, 47479.000000, 47480.000000, 47481.000000]}"
- ]
- },
- "execution_count": 53,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_dict"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 54,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array([[ 4018.],\n",
- " [ 4019.],\n",
- " [ 4020.],\n",
- " ...,\n",
- " [47479.],\n",
- " [47480.],\n",
- " [47481.]])"
- ]
- },
- "execution_count": 54,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "np.asarray(df_dict['data.time']).reshape(-1,1)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
diff --git a/libs/ELM_ensemble.py b/libs/ELM_ensemble.py
index 897354b..1c710e8 100644
--- a/libs/ELM_ensemble.py
+++ b/libs/ELM_ensemble.py
@@ -1,286 +1,386 @@
import numpy as np
import pandas as pd
import xarray as xr
import os
import sys
import time
import hpelm
import util
from ds import Dataset
from tables import open_file, Atom, Filters
import csv
from sklearn.metrics import mean_squared_error as mse
import h5py
+class ELM_Ensemble():
+# Extreme Learning Machine Ensemble without any acceleration, and using only in-memory matrices
+
+# not implmeneted: any other model structure selection than cross-validation
+# --> only valid option for structure_selection = 'CV'
+ def __init__(self, n_estimators, n_nodes, n_features, n_targets, t_nodes = 'sigm', structure_selection = None, k_CV = 5, bootstrap = True, oob = False, accelerator = None):
+ self.n_est = n_estimators
+ self.n_nodes = n_nodes
+ self.t_nodes = t_nodes
+ self.nf = n_features
+ self.nt = n_targets
+ self.bootstrap = bootstrap
+ self.oob = oob
+ self.accelerator = accelerator
+
+ self.structure_selection = structure_selection
+ self.k_CV = k_CV
+
+ self.estimators_ = []
+ for i in range(n_estimators):
+ self.estimators_.append(hpelm.ELM(n_features, n_targets, accelerator = accelerator))
+
+ def get_params(self, deep = False):
+ return {
+ 'n_estimators' : self.n_est,
+ 'n_nodes' : self.n_nodes,
+ 't_nodes' : self.t_nodes,
+ 'n_features' : self.nf,
+ 'n_targets' : self.nt,
+ 'bootstrap' : self.bootstrap,
+ 'oob' : self.oob,
+ 'structure_selection' : self.structure_selection,
+ 'k_CV' : self.k_CV,
+ 'accelerator' : self.accelerator
+ }
+
+ def fit(self, x, t):
+ # train ensemble of ELMs using bootstrapping
+ # path: path where auxilary files should be stored
+ # X, T, val_X, val_T --> files
+
+ MAX_ATTEMPTS_TRAIN = 10
+
+ if self.bootstrap:
+ # set up parameters for the fitting
+ n = x.shape[0]
+ self.oob_ds = None
+
+ # if out-of-bag error is to be computed laster, open a file to save the oob mask
+ if self.oob:
+ self.oob_ds = np.zeros(n, self.n_est)
+
+ # loop through all the estimators
+ for model, m in zip( self.estimators_, range(len(self.estimators_)) ):
+ # apply bootstrap:
+ if self.bootstrap:
+ x_tr, t_tr = self._bootstrap_iteration(m, n, x, t, self.oob_ds)
+
+ else:
+ x_tr = x
+ t_tr = t
+
+ model.add_neurons(self.n_nodes, self.t_nodes)
+ if self.structure_selection is None:
+ model.train(x_tr, t_tr)
+
+ else:
+ # train the model with structure selection
+ model.train(x_tr, t_tr, self.structure_selection, k = self.k_CV)
+
+ def predict(self, x):
+ # predict for ensemble of ELMs for a given dataset
+ # t: target --> used to calculate errors "on the fly"
+
+ y_pred = np.zeros((x.shape[0], self.nt))
+
+ for model, m in zip(self.estimators_, range(len(self.estimators_)) ):
+
+ y_pred_tmp = model.predict(x)
+ y_pred += y_pred_tmp
+
+ return (y_pred / self.n_est)
+
+ def _bootstrap_iteration(self, model_ID, n_samples, features, targets, oob_ds = None):
+ # boostrap the training data
+
+ # ind = np.random.randint(n, size = n)
+ ind = np.floor(np.random.rand(n_samples)*n_samples).astype(int)
+
+ if self.oob:
+ oob_vec = np.zeros(n_samples)
+ oob_vec[np.delete(range(n_samples), np.unique(ind))] = 1 # get out-of-bag indices and set to 1
+ self.oob_ds[:, model_ID] = oob_vec
+
+ train = features[ind,:]
+ train_t = targets[ind]
+
+ return train, train_t
+
+
class HPELM_Ensemble():
def __init__(self, path, n_estimators, n_nodes, n_features, n_targets, t_nodes = 'sigm', bootstrap = True, oob = False, precision = 'double', accelerator = None, save_model = False):
self.n_est = n_estimators
self.n_nodes = n_nodes
self.t_nodes = t_nodes
self.nf = n_features
self.nt = n_targets
self.bootstrap = bootstrap
self.oob = oob
self.save_model = save_model
self.model_path = path
if not os.path.exists(path): os.mkdir(path)
if not os.path.exists(os.path.join(path, 'tmp')): os.mkdir(os.path.join(path, 'tmp'))
if accelerator == 'GPU':
accel = 'GPU'
if precision is None: precision = 'single'
else:
accel = accelerator
if precision is None: precision = 'double'
self.estimators_ = []
for i in range(n_estimators):
self.estimators_.append(hpelm.HPELM(n_features, n_targets, accelerator = accel, precision = precision))
def fit(self, X, T, val = None, val_X = None, val_T = None, regularization = '', error_threshold = 1.0):
# path: path where auxilary files should be stored
# X, T, val_X, val_T --> files
MAX_ATTEMPTS_TRAIN = 10
self.train_times_ = []
print('\n\nTraining model')
logfile = util.find_name(os.path.join(self.model_path,('log_train.csv')))
with open(logfile, 'w') as csvfile:
w = csv.writer(csvfile, delimiter=',')
w.writerow(['model_ID', 'walltime', 'cputime'])
if self.bootstrap:
# load training features and targets from hdf5
x = util.get_matrix(X)
t = util.get_matrix(T)
# set up parameters for the fitting
n = x.shape[0]
oob_ds = None
# if out-of-bag error is to be computed laster, open a file to save the oob mask
if self.oob:
oob_file = os.path.join(self.model_path, 'OOB.hdf5')
f = h5py.File(oob_file, 'w')
oob_ds = f.create_dataset('data', (n, self.n_est), dtype='i')
t_cpu = []
t_wall = []
# loop through all the estimators
for model, m in zip( self.estimators_, range(len(self.estimators_)) ):
print('Fitting model %d' %m)
tt = util.Timer()
# apply bootstrap:
if self.bootstrap:
X_tr, T_tr = self._bootstrap_iteration(m, n, x, t, oob_ds)
else:
X_tr = X
T_tr = T
model.add_neurons(self.n_nodes, self.t_nodes)
if val is None:
model.train(X_tr, T_tr, regularization)
else:
# train the model as often as needed in order to achieve a low
recompute = True
count = 0
while(recompute and count < MAX_ATTEMPTS_TRAIN):
model.train(X_tr, T_tr, val, regularization, Xv = val_X, Tv = val_T)
if error_threshold is None:
recompute = False
else:
recompute = self._check_error(model, error_threshold, val_X, val_T)
if recompute:
print("Error exceeded threshold: re-training the model")
count += 1
self._bootstrap_iteration( m, n, x, t, oob_ds)
if self.save_model: model.save(os.path.join(self.model_path, ('model_%02d.hdf5' %(m))))
tt.stop(print_any = False)
with open(logfile, 'a') as csvfile:
w = csv.writer(csvfile, delimiter=',')
w.writerow([m, tt.walltime, tt.cputime])
self.train_times_.append([tt.cputime, tt.walltime])
if self.oob: f.close()
def load(self):
m = -1
for model in self.estimators_:
m += 1
try:
model.load(os.path.join(self.model_path, ('model_%02d.hdf5' %(m))))
except:
print('ERROR: could not load model in ' + os.path.join(self.model_path, ('model_%02d.hdf5' %(m))))
def predict(self, X, Y = None, t = None, eval = False, norm = None, label = ''):
# t: target --> used to calculate errors "on the fly"
print('\n\nPredicting for %s' %label)
self.prediction_times_ = []
if Y is None:
y_out = []
else:
path = os.path.split(Y)[0]
body = os.path.splitext(Y)[0]
name = os.path.split(body)[1]
logfile = util.find_name(os.path.join(self.model_path,('log_pred_%s.csv' %label)))
if t is not None:
y_pred = np.zeros(t.shape)
self.mse_ = np.zeros(self.n_est)
mse_models = np.zeros(self.n_est)
get_mse = True
else: get_mse = False
with open(logfile, 'w') as csvfile:
w = csv.writer(csvfile, delimiter=',')
if get_mse: w.writerow(['model_ID', 'mse', 'mse_model', 'walltime', 'cputime'])
else: w.writerow(['model_ID', 'walltime', 'cputime'])
for model, m in zip(self.estimators_, range(len(self.estimators_)) ):
print('Predicting on model %d' %m)
tt = util.Timer()
if Y is None:
y_pred_tmp = model.predict(X)
y_out.append(y_pred_tmp)
if get_mse:
y_pred += y_pred_tmp
self.mse_[m] = mse(t, y_pred/(m+1))
mse_models[m] = mse(t, y_pred_tmp)
else:
Y_pred = ('%s_%02d.hdf5' %(body,m))
model.predict(X, Y_pred)
tt.stop(print_any = False)
with open(logfile, 'a') as csvfile:
w = csv.writer(csvfile, delimiter=',')
if get_mse: w.writerow([m, self.mse_[m], mse_models[m], tt.walltime, tt.cputime])
else: w.writerow([m, tt.walltime, tt.cputime])
self.prediction_times_.append([tt.cputime, tt.walltime])
if Y is None:
if t is not None:
return y_pred/self.n_est, y_out
else:
return y_out
elif eval:
util.merge_files(Y, self.n_est, batches = True, norm = norm)
def oob_prediction(self, Y, norm = None):
# path: path where oob.hdf5 can be found
# FOR NOW NOT IN BATCHES (assumes ds to be small enough - necessary condition for bootstrap!)
body = os.path.splitext(Y)[0]
filepath = os.path.split(Y)[0]
name = os.path.split(body)[1]
oob_file = os.path.join(self.model_path, 'OOB.hdf5')
oob_inds = util.get_matrix(oob_file)
n = oob_inds.shape[0]
oob_count = np.zeros((n,1))
oob_sigma = np.zeros((n,self.nt))
y_sigma = np.zeros((n,self.nt))
y_sigma_sq = np.zeros((n,self.nt))
for m in range(self.n_est):
inds = oob_inds[:,m].reshape((-1,1))
oob_mask = np.repeat(inds,self.nt,axis = 1)
Y_pred = ('%s_%02d.hdf5' %(body,m))
y_tmp = util.get_matrix(Y_pred)
os.remove(Y_pred)
if norm is not None:
y_tmp = norm.rescale(y_tmp)
y_sigma += y_tmp
y_sigma_sq += y_tmp ** 2
oob_count += inds
oob_sigma += oob_mask * y_tmp
zero_inds = np.nonzero(oob_count == 0)
print('%d out of %d samples never out-of-bag' %(len(zero_inds), n))
print('-> substituted these samples with overall prediction')
oob_sigma[zero_inds,:] = y_sigma[zero_inds,:]
oob_count[zero_inds] = self.n_est
mean = y_sigma/self.n_est
var = 1.0/self.n_est*(y_sigma_sq-y_sigma**2/self.n_est)
oob = oob_sigma/oob_count
util.make_hdf5(mean, Y)
util.make_hdf5(var, body + '_var.hdf5')
util.make_hdf5(oob, os.path.join(filepath, 'oob_prediction.hdf5'))
return oob, var, mean
def _check_error(self, model, threshold, feature_file, target_file):
# get the matrix of target values
target = util.get_matrix(target_file)
# compute the prediction for the current model and the mean-squared-error
prediction = model.predict(feature_file)
current_mse = mse(target, prediction)
if current_mse >= threshold:
return True
else:
return False
def _bootstrap_iteration(self, model_ID, n_samples, features, targets, oob_ds = None):
# ind = np.random.randint(n, size = n)
ind = np.floor(np.random.rand(n_samples)*n_samples).astype(int)
if self.oob:
oob_vec = np.zeros(n_samples)
oob_vec[np.delete(range(n_samples), np.unique(ind))] = 1 # get out-of-bag indices and set to 1
oob_ds[:, model_ID] = oob_vec
train = features[ind,:]
train_t = targets[ind]
X_tr = os.path.join(self.model_path, 'tmp', 'train_x.hdf5')
T_tr = os.path.join(self.model_path, 'tmp', 'train_t.hdf5')
if os.path.exists(X_tr):
os.remove(X_tr)
if os.path.exists(T_tr):
os.remove(T_tr)
util.make_hdf5(train, X_tr)
util.make_hdf5(train_t, T_tr)
return X_tr, T_tr

Event Timeline