diff --git a/googlemock/test/gmock-matchers_test.cc b/googlemock/test/gmock-matchers_test.cc
index 37fcbfac..8b115cd8 100644
--- a/googlemock/test/gmock-matchers_test.cc
+++ b/googlemock/test/gmock-matchers_test.cc
@@ -1,6739 +1,6729 @@
 // Copyright 2007, Google Inc.
 // All rights reserved.
 //
 // Redistribution and use in source and binary forms, with or without
 // modification, are permitted provided that the following conditions are
 // met:
 //
 //     * Redistributions of source code must retain the above copyright
 // notice, this list of conditions and the following disclaimer.
 //     * Redistributions in binary form must reproduce the above
 // copyright notice, this list of conditions and the following disclaimer
 // in the documentation and/or other materials provided with the
 // distribution.
 //     * Neither the name of Google Inc. nor the names of its
 // contributors may be used to endorse or promote products derived from
 // this software without specific prior written permission.
 //
 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 //
 // Author: wan@google.com (Zhanyong Wan)
 
 // Google Mock - a framework for writing C++ mock classes.
 //
 // This file tests some commonly used argument matchers.
 
 #include "gmock/gmock-matchers.h"
 #include "gmock/gmock-more-matchers.h"
 
 #include <string.h>
 #include <time.h>
 #include <deque>
 #include <functional>
 #include <iostream>
 #include <iterator>
 #include <limits>
 #include <list>
 #include <map>
 #include <memory>
 #include <set>
 #include <sstream>
 #include <string>
 #include <utility>
 #include <vector>
 #include "gmock/gmock.h"
 #include "gtest/gtest.h"
 #include "gtest/gtest-spi.h"
 
 #if GTEST_HAS_STD_FORWARD_LIST_
 # include <forward_list>  // NOLINT
 #endif
 
 // Disable MSVC2015 warning for std::pair:
 // "decorated name length exceeded, name was truncated".
 #if defined _MSC_VER
 # pragma warning(push)
 # pragma warning(disable:4503)
 #endif
 
 #if GTEST_LANG_CXX11
 # include <type_traits>
 #endif
 
 namespace testing {
 namespace gmock_matchers_test {
 
 using std::greater;
 using std::less;
 using std::list;
 using std::make_pair;
 using std::map;
 using std::multimap;
 using std::multiset;
 using std::ostream;
 using std::pair;
 using std::set;
 using std::stringstream;
 using std::vector;
 using testing::A;
 using testing::AllArgs;
 using testing::AllOf;
 using testing::An;
 using testing::AnyOf;
 using testing::ByRef;
 using testing::ContainsRegex;
 using testing::DoubleEq;
 using testing::DoubleNear;
 using testing::EndsWith;
 using testing::Eq;
 using testing::ExplainMatchResult;
 using testing::Field;
 using testing::FloatEq;
 using testing::FloatNear;
 using testing::Ge;
 using testing::Gt;
 using testing::HasSubstr;
 using testing::IsEmpty;
 using testing::IsNull;
 using testing::Key;
 using testing::Le;
 using testing::Lt;
 using testing::MakeMatcher;
 using testing::MakePolymorphicMatcher;
 using testing::MatchResultListener;
 using testing::Matcher;
 using testing::MatcherCast;
 using testing::MatcherInterface;
 using testing::Matches;
 using testing::MatchesRegex;
 using testing::NanSensitiveDoubleEq;
 using testing::NanSensitiveDoubleNear;
 using testing::NanSensitiveFloatEq;
 using testing::NanSensitiveFloatNear;
 using testing::Ne;
 using testing::Not;
 using testing::NotNull;
 using testing::Pair;
 using testing::Pointee;
 using testing::Pointwise;
 using testing::PolymorphicMatcher;
 using testing::Property;
 using testing::Ref;
 using testing::ResultOf;
 using testing::SizeIs;
 using testing::StartsWith;
 using testing::StrCaseEq;
 using testing::StrCaseNe;
 using testing::StrEq;
 using testing::StrNe;
 using testing::StringMatchResultListener;
 using testing::Truly;
 using testing::TypedEq;
 using testing::UnorderedPointwise;
 using testing::Value;
 using testing::WhenSorted;
 using testing::WhenSortedBy;
 using testing::_;
 using testing::get;
 using testing::internal::DummyMatchResultListener;
 using testing::internal::ElementMatcherPair;
 using testing::internal::ElementMatcherPairs;
 using testing::internal::ExplainMatchFailureTupleTo;
 using testing::internal::FloatingEqMatcher;
 using testing::internal::FormatMatcherDescription;
 using testing::internal::IsReadableTypeName;
 using testing::internal::linked_ptr;
 using testing::internal::MatchMatrix;
 using testing::internal::RE;
 using testing::internal::scoped_ptr;
 using testing::internal::StreamMatchResultListener;
 using testing::internal::Strings;
 using testing::internal::linked_ptr;
 using testing::internal::scoped_ptr;
 using testing::internal::string;
 using testing::make_tuple;
 using testing::tuple;
 
 // For testing ExplainMatchResultTo().
 class GreaterThanMatcher : public MatcherInterface<int> {
  public:
   explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {}
 
   virtual void DescribeTo(ostream* os) const {
     *os << "is > " << rhs_;
   }
 
   virtual bool MatchAndExplain(int lhs,
                                MatchResultListener* listener) const {
     const int diff = lhs - rhs_;
     if (diff > 0) {
       *listener << "which is " << diff << " more than " << rhs_;
     } else if (diff == 0) {
       *listener << "which is the same as " << rhs_;
     } else {
       *listener << "which is " << -diff << " less than " << rhs_;
     }
 
     return lhs > rhs_;
   }
 
  private:
   int rhs_;
 };
 
 Matcher<int> GreaterThan(int n) {
   return MakeMatcher(new GreaterThanMatcher(n));
 }
 
 std::string OfType(const std::string& type_name) {
 #if GTEST_HAS_RTTI
   return " (of type " + type_name + ")";
 #else
   return "";
 #endif
 }
 
 // Returns the description of the given matcher.
 template <typename T>
 std::string Describe(const Matcher<T>& m) {
   return DescribeMatcher<T>(m);
 }
 
 // Returns the description of the negation of the given matcher.
 template <typename T>
 std::string DescribeNegation(const Matcher<T>& m) {
   return DescribeMatcher<T>(m, true);
 }
 
 // Returns the reason why x matches, or doesn't match, m.
 template <typename MatcherType, typename Value>
 std::string Explain(const MatcherType& m, const Value& x) {
   StringMatchResultListener listener;
   ExplainMatchResult(m, x, &listener);
   return listener.str();
 }
 
 TEST(MonotonicMatcherTest, IsPrintable) {
   stringstream ss;
   ss << GreaterThan(5);
   EXPECT_EQ("is > 5", ss.str());
 }
 
 TEST(MatchResultListenerTest, StreamingWorks) {
   StringMatchResultListener listener;
   listener << "hi" << 5;
   EXPECT_EQ("hi5", listener.str());
 
   listener.Clear();
   EXPECT_EQ("", listener.str());
 
   listener << 42;
   EXPECT_EQ("42", listener.str());
 
   // Streaming shouldn't crash when the underlying ostream is NULL.
   DummyMatchResultListener dummy;
   dummy << "hi" << 5;
 }
 
 TEST(MatchResultListenerTest, CanAccessUnderlyingStream) {
   EXPECT_TRUE(DummyMatchResultListener().stream() == NULL);
   EXPECT_TRUE(StreamMatchResultListener(NULL).stream() == NULL);
 
   EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream());
 }
 
 TEST(MatchResultListenerTest, IsInterestedWorks) {
   EXPECT_TRUE(StringMatchResultListener().IsInterested());
   EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested());
 
   EXPECT_FALSE(DummyMatchResultListener().IsInterested());
   EXPECT_FALSE(StreamMatchResultListener(NULL).IsInterested());
 }
 
 // Makes sure that the MatcherInterface<T> interface doesn't
 // change.
 class EvenMatcherImpl : public MatcherInterface<int> {
  public:
   virtual bool MatchAndExplain(int x,
                                MatchResultListener* /* listener */) const {
     return x % 2 == 0;
   }
 
   virtual void DescribeTo(ostream* os) const {
     *os << "is an even number";
   }
 
   // We deliberately don't define DescribeNegationTo() and
   // ExplainMatchResultTo() here, to make sure the definition of these
   // two methods is optional.
 };
 
 // Makes sure that the MatcherInterface API doesn't change.
 TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) {
   EvenMatcherImpl m;
 }
 
 // Tests implementing a monomorphic matcher using MatchAndExplain().
 
 class NewEvenMatcherImpl : public MatcherInterface<int> {
  public:
   virtual bool MatchAndExplain(int x, MatchResultListener* listener) const {
     const bool match = x % 2 == 0;
     // Verifies that we can stream to a listener directly.
     *listener << "value % " << 2;
     if (listener->stream() != NULL) {
       // Verifies that we can stream to a listener's underlying stream
       // too.
       *listener->stream() << " == " << (x % 2);
     }
     return match;
   }
 
   virtual void DescribeTo(ostream* os) const {
     *os << "is an even number";
   }
 };
 
 TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) {
   Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl);
   EXPECT_TRUE(m.Matches(2));
   EXPECT_FALSE(m.Matches(3));
   EXPECT_EQ("value % 2 == 0", Explain(m, 2));
   EXPECT_EQ("value % 2 == 1", Explain(m, 3));
 }
 
 // Tests default-constructing a matcher.
 TEST(MatcherTest, CanBeDefaultConstructed) {
   Matcher<double> m;
 }
 
 // Tests that Matcher<T> can be constructed from a MatcherInterface<T>*.
 TEST(MatcherTest, CanBeConstructedFromMatcherInterface) {
   const MatcherInterface<int>* impl = new EvenMatcherImpl;
   Matcher<int> m(impl);
   EXPECT_TRUE(m.Matches(4));
   EXPECT_FALSE(m.Matches(5));
 }
 
 // Tests that value can be used in place of Eq(value).
 TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) {
   Matcher<int> m1 = 5;
   EXPECT_TRUE(m1.Matches(5));
   EXPECT_FALSE(m1.Matches(6));
 }
 
 // Tests that NULL can be used in place of Eq(NULL).
 TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) {
   Matcher<int*> m1 = NULL;
   EXPECT_TRUE(m1.Matches(NULL));
   int n = 0;
   EXPECT_FALSE(m1.Matches(&n));
 }
 
 // Tests that matchers can be constructed from a variable that is not properly
 // defined. This should be illegal, but many users rely on this accidentally.
 struct Undefined {
   virtual ~Undefined() = 0;
   static const int kInt = 1;
 };
 
 TEST(MatcherTest, CanBeConstructedFromUndefinedVariable) {
   Matcher<int> m1 = Undefined::kInt;
   EXPECT_TRUE(m1.Matches(1));
   EXPECT_FALSE(m1.Matches(2));
 }
 
 // Test that a matcher parameterized with an abstract class compiles.
 TEST(MatcherTest, CanAcceptAbstractClass) { Matcher<const Undefined&> m = _; }
 
 // Tests that matchers are copyable.
 TEST(MatcherTest, IsCopyable) {
   // Tests the copy constructor.
   Matcher<bool> m1 = Eq(false);
   EXPECT_TRUE(m1.Matches(false));
   EXPECT_FALSE(m1.Matches(true));
 
   // Tests the assignment operator.
   m1 = Eq(true);
   EXPECT_TRUE(m1.Matches(true));
   EXPECT_FALSE(m1.Matches(false));
 }
 
 // Tests that Matcher<T>::DescribeTo() calls
 // MatcherInterface<T>::DescribeTo().
 TEST(MatcherTest, CanDescribeItself) {
   EXPECT_EQ("is an even number",
             Describe(Matcher<int>(new EvenMatcherImpl)));
 }
 
 // Tests Matcher<T>::MatchAndExplain().
 TEST(MatcherTest, MatchAndExplain) {
   Matcher<int> m = GreaterThan(0);
   StringMatchResultListener listener1;
   EXPECT_TRUE(m.MatchAndExplain(42, &listener1));
   EXPECT_EQ("which is 42 more than 0", listener1.str());
 
   StringMatchResultListener listener2;
   EXPECT_FALSE(m.MatchAndExplain(-9, &listener2));
   EXPECT_EQ("which is 9 less than 0", listener2.str());
 }
 
 // Tests that a C-string literal can be implicitly converted to a
 // Matcher<std::string> or Matcher<const std::string&>.
 TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
   Matcher<std::string> m1 = "hi";
   EXPECT_TRUE(m1.Matches("hi"));
   EXPECT_FALSE(m1.Matches("hello"));
 
   Matcher<const std::string&> m2 = "hi";
   EXPECT_TRUE(m2.Matches("hi"));
   EXPECT_FALSE(m2.Matches("hello"));
 }
 
 // Tests that a string object can be implicitly converted to a
 // Matcher<std::string> or Matcher<const std::string&>.
 TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) {
   Matcher<std::string> m1 = std::string("hi");
   EXPECT_TRUE(m1.Matches("hi"));
   EXPECT_FALSE(m1.Matches("hello"));
 
   Matcher<const std::string&> m2 = std::string("hi");
   EXPECT_TRUE(m2.Matches("hi"));
   EXPECT_FALSE(m2.Matches("hello"));
 }
 
 #if GTEST_HAS_GLOBAL_STRING
 // Tests that a ::string object can be implicitly converted to a
 // Matcher<std::string> or Matcher<const std::string&>.
 TEST(StringMatcherTest, CanBeImplicitlyConstructedFromGlobalString) {
   Matcher<std::string> m1 = ::string("hi");
   EXPECT_TRUE(m1.Matches("hi"));
   EXPECT_FALSE(m1.Matches("hello"));
 
   Matcher<const std::string&> m2 = ::string("hi");
   EXPECT_TRUE(m2.Matches("hi"));
   EXPECT_FALSE(m2.Matches("hello"));
 }
 #endif  // GTEST_HAS_GLOBAL_STRING
 
 #if GTEST_HAS_GLOBAL_STRING
 // Tests that a C-string literal can be implicitly converted to a
 // Matcher<::string> or Matcher<const ::string&>.
 TEST(GlobalStringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
   Matcher< ::string> m1 = "hi";
   EXPECT_TRUE(m1.Matches("hi"));
   EXPECT_FALSE(m1.Matches("hello"));
 
   Matcher<const ::string&> m2 = "hi";
   EXPECT_TRUE(m2.Matches("hi"));
   EXPECT_FALSE(m2.Matches("hello"));
 }
 
 // Tests that a std::string object can be implicitly converted to a
 // Matcher<::string> or Matcher<const ::string&>.
 TEST(GlobalStringMatcherTest, CanBeImplicitlyConstructedFromString) {
   Matcher< ::string> m1 = std::string("hi");
   EXPECT_TRUE(m1.Matches("hi"));
   EXPECT_FALSE(m1.Matches("hello"));
 
   Matcher<const ::string&> m2 = std::string("hi");
   EXPECT_TRUE(m2.Matches("hi"));
   EXPECT_FALSE(m2.Matches("hello"));
 }
 
 // Tests that a ::string object can be implicitly converted to a
 // Matcher<::string> or Matcher<const ::string&>.
 TEST(GlobalStringMatcherTest, CanBeImplicitlyConstructedFromGlobalString) {
   Matcher< ::string> m1 = ::string("hi");
   EXPECT_TRUE(m1.Matches("hi"));
   EXPECT_FALSE(m1.Matches("hello"));
 
   Matcher<const ::string&> m2 = ::string("hi");
   EXPECT_TRUE(m2.Matches("hi"));
   EXPECT_FALSE(m2.Matches("hello"));
 }
 #endif  // GTEST_HAS_GLOBAL_STRING
 
 #if GTEST_HAS_ABSL
 // Tests that a C-string literal can be implicitly converted to a
 // Matcher<absl::string_view> or Matcher<const absl::string_view&>.
 TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
   Matcher<absl::string_view> m1 = "cats";
   EXPECT_TRUE(m1.Matches("cats"));
   EXPECT_FALSE(m1.Matches("dogs"));
 
   Matcher<const absl::string_view&> m2 = "cats";
   EXPECT_TRUE(m2.Matches("cats"));
   EXPECT_FALSE(m2.Matches("dogs"));
 }
 
 // Tests that a std::string object can be implicitly converted to a
 // Matcher<absl::string_view> or Matcher<const absl::string_view&>.
 TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromString) {
   Matcher<absl::string_view> m1 = std::string("cats");
   EXPECT_TRUE(m1.Matches("cats"));
   EXPECT_FALSE(m1.Matches("dogs"));
 
   Matcher<const absl::string_view&> m2 = std::string("cats");
   EXPECT_TRUE(m2.Matches("cats"));
   EXPECT_FALSE(m2.Matches("dogs"));
 }
 
 #if GTEST_HAS_GLOBAL_STRING
 // Tests that a ::string object can be implicitly converted to a
 // Matcher<absl::string_view> or Matcher<const absl::string_view&>.
 TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromGlobalString) {
   Matcher<absl::string_view> m1 = ::string("cats");
   EXPECT_TRUE(m1.Matches("cats"));
   EXPECT_FALSE(m1.Matches("dogs"));
 
   Matcher<const absl::string_view&> m2 = ::string("cats");
   EXPECT_TRUE(m2.Matches("cats"));
   EXPECT_FALSE(m2.Matches("dogs"));
 }
 #endif  // GTEST_HAS_GLOBAL_STRING
 
 // Tests that a absl::string_view object can be implicitly converted to a
 // Matcher<absl::string_view> or Matcher<const absl::string_view&>.
 TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromStringView) {
   Matcher<absl::string_view> m1 = absl::string_view("cats");
   EXPECT_TRUE(m1.Matches("cats"));
   EXPECT_FALSE(m1.Matches("dogs"));
 
   Matcher<const absl::string_view&> m2 = absl::string_view("cats");
   EXPECT_TRUE(m2.Matches("cats"));
   EXPECT_FALSE(m2.Matches("dogs"));
 }
 #endif  // GTEST_HAS_ABSL
 
 // Tests that MakeMatcher() constructs a Matcher<T> from a
 // MatcherInterface* without requiring the user to explicitly
 // write the type.
 TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) {
   const MatcherInterface<int>* dummy_impl = NULL;
   Matcher<int> m = MakeMatcher(dummy_impl);
 }
 
 // Tests that MakePolymorphicMatcher() can construct a polymorphic
 // matcher from its implementation using the old API.
 const int g_bar = 1;
 class ReferencesBarOrIsZeroImpl {
  public:
   template <typename T>
   bool MatchAndExplain(const T& x,
                        MatchResultListener* /* listener */) const {
     const void* p = &x;
     return p == &g_bar || x == 0;
   }
 
   void DescribeTo(ostream* os) const { *os << "g_bar or zero"; }
 
   void DescribeNegationTo(ostream* os) const {
     *os << "doesn't reference g_bar and is not zero";
   }
 };
 
 // This function verifies that MakePolymorphicMatcher() returns a
 // PolymorphicMatcher<T> where T is the argument's type.
 PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() {
   return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl());
 }
 
 TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) {
   // Using a polymorphic matcher to match a reference type.
   Matcher<const int&> m1 = ReferencesBarOrIsZero();
   EXPECT_TRUE(m1.Matches(0));
   // Verifies that the identity of a by-reference argument is preserved.
   EXPECT_TRUE(m1.Matches(g_bar));
   EXPECT_FALSE(m1.Matches(1));
   EXPECT_EQ("g_bar or zero", Describe(m1));
 
   // Using a polymorphic matcher to match a value type.
   Matcher<double> m2 = ReferencesBarOrIsZero();
   EXPECT_TRUE(m2.Matches(0.0));
   EXPECT_FALSE(m2.Matches(0.1));
   EXPECT_EQ("g_bar or zero", Describe(m2));
 }
 
 // Tests implementing a polymorphic matcher using MatchAndExplain().
 
 class PolymorphicIsEvenImpl {
  public:
   void DescribeTo(ostream* os) const { *os << "is even"; }
 
   void DescribeNegationTo(ostream* os) const {
     *os << "is odd";
   }
 
   template <typename T>
   bool MatchAndExplain(const T& x, MatchResultListener* listener) const {
     // Verifies that we can stream to the listener directly.
     *listener << "% " << 2;
     if (listener->stream() != NULL) {
       // Verifies that we can stream to the listener's underlying stream
       // too.
       *listener->stream() << " == " << (x % 2);
     }
     return (x % 2) == 0;
   }
 };
 
 PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() {
   return MakePolymorphicMatcher(PolymorphicIsEvenImpl());
 }
 
 TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) {
   // Using PolymorphicIsEven() as a Matcher<int>.
   const Matcher<int> m1 = PolymorphicIsEven();
   EXPECT_TRUE(m1.Matches(42));
   EXPECT_FALSE(m1.Matches(43));
   EXPECT_EQ("is even", Describe(m1));
 
   const Matcher<int> not_m1 = Not(m1);
   EXPECT_EQ("is odd", Describe(not_m1));
 
   EXPECT_EQ("% 2 == 0", Explain(m1, 42));
 
   // Using PolymorphicIsEven() as a Matcher<char>.
   const Matcher<char> m2 = PolymorphicIsEven();
   EXPECT_TRUE(m2.Matches('\x42'));
   EXPECT_FALSE(m2.Matches('\x43'));
   EXPECT_EQ("is even", Describe(m2));
 
   const Matcher<char> not_m2 = Not(m2);
   EXPECT_EQ("is odd", Describe(not_m2));
 
   EXPECT_EQ("% 2 == 0", Explain(m2, '\x42'));
 }
 
 // Tests that MatcherCast<T>(m) works when m is a polymorphic matcher.
 TEST(MatcherCastTest, FromPolymorphicMatcher) {
   Matcher<int> m = MatcherCast<int>(Eq(5));
   EXPECT_TRUE(m.Matches(5));
   EXPECT_FALSE(m.Matches(6));
 }
 
 // For testing casting matchers between compatible types.
 class IntValue {
  public:
   // An int can be statically (although not implicitly) cast to a
   // IntValue.
   explicit IntValue(int a_value) : value_(a_value) {}
 
   int value() const { return value_; }
  private:
   int value_;
 };
 
 // For testing casting matchers between compatible types.
 bool IsPositiveIntValue(const IntValue& foo) {
   return foo.value() > 0;
 }
 
 // Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T
 // can be statically converted to U.
 TEST(MatcherCastTest, FromCompatibleType) {
   Matcher<double> m1 = Eq(2.0);
   Matcher<int> m2 = MatcherCast<int>(m1);
   EXPECT_TRUE(m2.Matches(2));
   EXPECT_FALSE(m2.Matches(3));
 
   Matcher<IntValue> m3 = Truly(IsPositiveIntValue);
   Matcher<int> m4 = MatcherCast<int>(m3);
   // In the following, the arguments 1 and 0 are statically converted
   // to IntValue objects, and then tested by the IsPositiveIntValue()
   // predicate.
   EXPECT_TRUE(m4.Matches(1));
   EXPECT_FALSE(m4.Matches(0));
 }
 
 // Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>.
 TEST(MatcherCastTest, FromConstReferenceToNonReference) {
   Matcher<const int&> m1 = Eq(0);
   Matcher<int> m2 = MatcherCast<int>(m1);
   EXPECT_TRUE(m2.Matches(0));
   EXPECT_FALSE(m2.Matches(1));
 }
 
 // Tests that MatcherCast<T>(m) works when m is a Matcher<T&>.
 TEST(MatcherCastTest, FromReferenceToNonReference) {
   Matcher<int&> m1 = Eq(0);
   Matcher<int> m2 = MatcherCast<int>(m1);
   EXPECT_TRUE(m2.Matches(0));
   EXPECT_FALSE(m2.Matches(1));
 }
 
 // Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
 TEST(MatcherCastTest, FromNonReferenceToConstReference) {
   Matcher<int> m1 = Eq(0);
   Matcher<const int&> m2 = MatcherCast<const int&>(m1);
   EXPECT_TRUE(m2.Matches(0));
   EXPECT_FALSE(m2.Matches(1));
 }
 
 // Tests that MatcherCast<T&>(m) works when m is a Matcher<T>.
 TEST(MatcherCastTest, FromNonReferenceToReference) {
   Matcher<int> m1 = Eq(0);
   Matcher<int&> m2 = MatcherCast<int&>(m1);
   int n = 0;
   EXPECT_TRUE(m2.Matches(n));
   n = 1;
   EXPECT_FALSE(m2.Matches(n));
 }
 
 // Tests that MatcherCast<T>(m) works when m is a Matcher<T>.
 TEST(MatcherCastTest, FromSameType) {
   Matcher<int> m1 = Eq(0);
   Matcher<int> m2 = MatcherCast<int>(m1);
   EXPECT_TRUE(m2.Matches(0));
   EXPECT_FALSE(m2.Matches(1));
 }
 
 // Tests that MatcherCast<T>(m) works when m is a value of the same type as the
 // value type of the Matcher.
 TEST(MatcherCastTest, FromAValue) {
   Matcher<int> m = MatcherCast<int>(42);
   EXPECT_TRUE(m.Matches(42));
   EXPECT_FALSE(m.Matches(239));
 }
 
 // Tests that MatcherCast<T>(m) works when m is a value of the type implicitly
 // convertible to the value type of the Matcher.
 TEST(MatcherCastTest, FromAnImplicitlyConvertibleValue) {
   const int kExpected = 'c';
   Matcher<int> m = MatcherCast<int>('c');
   EXPECT_TRUE(m.Matches(kExpected));
   EXPECT_FALSE(m.Matches(kExpected + 1));
 }
 
 struct NonImplicitlyConstructibleTypeWithOperatorEq {
   friend bool operator==(
       const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */,
       int rhs) {
     return 42 == rhs;
   }
   friend bool operator==(
       int lhs,
       const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */) {
     return lhs == 42;
   }
 };
 
 // Tests that MatcherCast<T>(m) works when m is a neither a matcher nor
 // implicitly convertible to the value type of the Matcher, but the value type
 // of the matcher has operator==() overload accepting m.
 TEST(MatcherCastTest, NonImplicitlyConstructibleTypeWithOperatorEq) {
   Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m1 =
       MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(42);
   EXPECT_TRUE(m1.Matches(NonImplicitlyConstructibleTypeWithOperatorEq()));
 
   Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m2 =
       MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(239);
   EXPECT_FALSE(m2.Matches(NonImplicitlyConstructibleTypeWithOperatorEq()));
 
   // When updating the following lines please also change the comment to
   // namespace convertible_from_any.
   Matcher<int> m3 =
       MatcherCast<int>(NonImplicitlyConstructibleTypeWithOperatorEq());
   EXPECT_TRUE(m3.Matches(42));
   EXPECT_FALSE(m3.Matches(239));
 }
 
-// ConvertibleFromAny does not work with MSVC. resulting in
-// error C2440: 'initializing': cannot convert from 'Eq' to 'M'
-// No constructor could take the source type, or constructor overload
-// resolution was ambiguous
-
 // The below ConvertibleFromAny struct is implicitly constructible from anything
 // and when in the same namespace can interact with other tests. In particular,
 // if it is in the same namespace as other tests and one removes
 //   NonImplicitlyConstructibleTypeWithOperatorEq::operator==(int lhs, ...);
 // then the corresponding test still compiles (and it should not!) by implicitly
 // converting NonImplicitlyConstructibleTypeWithOperatorEq to ConvertibleFromAny
 // in m3.Matcher().
 namespace convertible_from_any {
 // Implicitly convertible from any type.
 struct ConvertibleFromAny {
-explicit  ConvertibleFromAny(int a_value) : value(a_value) {}
+  ConvertibleFromAny(int a_value) : value(a_value) {}
   template <typename T>
-  ConvertibleFromAny(const T& /*a_value*/) : value(-1) {
+  explicit ConvertibleFromAny(const T& /*a_value*/) : value(-1) {
     ADD_FAILURE() << "Conversion constructor called";
   }
   int value;
 };
 
 bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) {
   return a.value == b.value;
 }
 
 ostream& operator<<(ostream& os, const ConvertibleFromAny& a) {
   return os << a.value;
 }
 
 TEST(MatcherCastTest, ConversionConstructorIsUsed) {
   Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1);
   EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
   EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
 }
 
 TEST(MatcherCastTest, FromConvertibleFromAny) {
   Matcher<ConvertibleFromAny> m =
       MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
   EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
   EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
 }
 }  // namespace convertible_from_any
 
-
 struct IntReferenceWrapper {
   IntReferenceWrapper(const int& a_value) : value(&a_value) {}
   const int* value;
 };
 
 bool operator==(const IntReferenceWrapper& a, const IntReferenceWrapper& b) {
   return a.value == b.value;
 }
 
 TEST(MatcherCastTest, ValueIsNotCopied) {
   int n = 42;
   Matcher<IntReferenceWrapper> m = MatcherCast<IntReferenceWrapper>(n);
   // Verify that the matcher holds a reference to n, not to its temporary copy.
   EXPECT_TRUE(m.Matches(n));
 }
 
 class Base {
  public:
   virtual ~Base() {}
   Base() {}
  private:
   GTEST_DISALLOW_COPY_AND_ASSIGN_(Base);
 };
 
 class Derived : public Base {
  public:
   Derived() : Base() {}
   int i;
 };
 
 class OtherDerived : public Base {};
 
 // Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher.
 TEST(SafeMatcherCastTest, FromPolymorphicMatcher) {
   Matcher<char> m2 = SafeMatcherCast<char>(Eq(32));
   EXPECT_TRUE(m2.Matches(' '));
   EXPECT_FALSE(m2.Matches('\n'));
 }
 
 // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where
 // T and U are arithmetic types and T can be losslessly converted to
 // U.
 TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) {
   Matcher<double> m1 = DoubleEq(1.0);
   Matcher<float> m2 = SafeMatcherCast<float>(m1);
   EXPECT_TRUE(m2.Matches(1.0f));
   EXPECT_FALSE(m2.Matches(2.0f));
 
   Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a'));
   EXPECT_TRUE(m3.Matches('a'));
   EXPECT_FALSE(m3.Matches('b'));
 }
 
 // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U
 // are pointers or references to a derived and a base class, correspondingly.
 TEST(SafeMatcherCastTest, FromBaseClass) {
   Derived d, d2;
   Matcher<Base*> m1 = Eq(&d);
   Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1);
   EXPECT_TRUE(m2.Matches(&d));
   EXPECT_FALSE(m2.Matches(&d2));
 
   Matcher<Base&> m3 = Ref(d);
   Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3);
   EXPECT_TRUE(m4.Matches(d));
   EXPECT_FALSE(m4.Matches(d2));
 }
 
 // Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>.
 TEST(SafeMatcherCastTest, FromConstReferenceToReference) {
   int n = 0;
   Matcher<const int&> m1 = Ref(n);
   Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
   int n1 = 0;
   EXPECT_TRUE(m2.Matches(n));
   EXPECT_FALSE(m2.Matches(n1));
 }
 
 // Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
 TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) {
   Matcher<int> m1 = Eq(0);
   Matcher<const int&> m2 = SafeMatcherCast<const int&>(m1);
   EXPECT_TRUE(m2.Matches(0));
   EXPECT_FALSE(m2.Matches(1));
 }
 
 // Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>.
 TEST(SafeMatcherCastTest, FromNonReferenceToReference) {
   Matcher<int> m1 = Eq(0);
   Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
   int n = 0;
   EXPECT_TRUE(m2.Matches(n));
   n = 1;
   EXPECT_FALSE(m2.Matches(n));
 }
 
 // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>.
 TEST(SafeMatcherCastTest, FromSameType) {
   Matcher<int> m1 = Eq(0);
   Matcher<int> m2 = SafeMatcherCast<int>(m1);
   EXPECT_TRUE(m2.Matches(0));
   EXPECT_FALSE(m2.Matches(1));
 }
 
-#if !defined _MSC_VER
-
 namespace convertible_from_any {
 TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) {
   Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1);
   EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
   EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
 }
 
 TEST(SafeMatcherCastTest, FromConvertibleFromAny) {
   Matcher<ConvertibleFromAny> m =
       SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
   EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
   EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
 }
 }  // namespace convertible_from_any
 
-#endif  // !defined _MSC_VER
-
 TEST(SafeMatcherCastTest, ValueIsNotCopied) {
   int n = 42;
   Matcher<IntReferenceWrapper> m = SafeMatcherCast<IntReferenceWrapper>(n);
   // Verify that the matcher holds a reference to n, not to its temporary copy.
   EXPECT_TRUE(m.Matches(n));
 }
 
 TEST(ExpectThat, TakesLiterals) {
   EXPECT_THAT(1, 1);
   EXPECT_THAT(1.0, 1.0);
   EXPECT_THAT(std::string(), "");
 }
 
 TEST(ExpectThat, TakesFunctions) {
   struct Helper {
     static void Func() {}
   };
   void (*func)() = Helper::Func;
   EXPECT_THAT(func, Helper::Func);
   EXPECT_THAT(func, &Helper::Func);
 }
 
 // Tests that A<T>() matches any value of type T.
 TEST(ATest, MatchesAnyValue) {
   // Tests a matcher for a value type.
   Matcher<double> m1 = A<double>();
   EXPECT_TRUE(m1.Matches(91.43));
   EXPECT_TRUE(m1.Matches(-15.32));
 
   // Tests a matcher for a reference type.
   int a = 2;
   int b = -6;
   Matcher<int&> m2 = A<int&>();
   EXPECT_TRUE(m2.Matches(a));
   EXPECT_TRUE(m2.Matches(b));
 }
 
 TEST(ATest, WorksForDerivedClass) {
   Base base;
   Derived derived;
   EXPECT_THAT(&base, A<Base*>());
   // This shouldn't compile: EXPECT_THAT(&base, A<Derived*>());
   EXPECT_THAT(&derived, A<Base*>());
   EXPECT_THAT(&derived, A<Derived*>());
 }
 
 // Tests that A<T>() describes itself properly.
 TEST(ATest, CanDescribeSelf) {
   EXPECT_EQ("is anything", Describe(A<bool>()));
 }
 
 // Tests that An<T>() matches any value of type T.
 TEST(AnTest, MatchesAnyValue) {
   // Tests a matcher for a value type.
   Matcher<int> m1 = An<int>();
   EXPECT_TRUE(m1.Matches(9143));
   EXPECT_TRUE(m1.Matches(-1532));
 
   // Tests a matcher for a reference type.
   int a = 2;
   int b = -6;
   Matcher<int&> m2 = An<int&>();
   EXPECT_TRUE(m2.Matches(a));
   EXPECT_TRUE(m2.Matches(b));
 }
 
 // Tests that An<T>() describes itself properly.
 TEST(AnTest, CanDescribeSelf) {
   EXPECT_EQ("is anything", Describe(An<int>()));
 }
 
 // Tests that _ can be used as a matcher for any type and matches any
 // value of that type.
 TEST(UnderscoreTest, MatchesAnyValue) {
   // Uses _ as a matcher for a value type.
   Matcher<int> m1 = _;
   EXPECT_TRUE(m1.Matches(123));
   EXPECT_TRUE(m1.Matches(-242));
 
   // Uses _ as a matcher for a reference type.
   bool a = false;
   const bool b = true;
   Matcher<const bool&> m2 = _;
   EXPECT_TRUE(m2.Matches(a));
   EXPECT_TRUE(m2.Matches(b));
 }
 
 // Tests that _ describes itself properly.
 TEST(UnderscoreTest, CanDescribeSelf) {
   Matcher<int> m = _;
   EXPECT_EQ("is anything", Describe(m));
 }
 
 // Tests that Eq(x) matches any value equal to x.
 TEST(EqTest, MatchesEqualValue) {
   // 2 C-strings with same content but different addresses.
   const char a1[] = "hi";
   const char a2[] = "hi";
 
   Matcher<const char*> m1 = Eq(a1);
   EXPECT_TRUE(m1.Matches(a1));
   EXPECT_FALSE(m1.Matches(a2));
 }
 
 // Tests that Eq(v) describes itself properly.
 
 class Unprintable {
  public:
   Unprintable() : c_('a') {}
 
   bool operator==(const Unprintable& /* rhs */) const { return true; }
  private:
   char c_;
 };
 
 TEST(EqTest, CanDescribeSelf) {
   Matcher<Unprintable> m = Eq(Unprintable());
   EXPECT_EQ("is equal to 1-byte object <61>", Describe(m));
 }
 
 // Tests that Eq(v) can be used to match any type that supports
 // comparing with type T, where T is v's type.
 TEST(EqTest, IsPolymorphic) {
   Matcher<int> m1 = Eq(1);
   EXPECT_TRUE(m1.Matches(1));
   EXPECT_FALSE(m1.Matches(2));
 
   Matcher<char> m2 = Eq(1);
   EXPECT_TRUE(m2.Matches('\1'));
   EXPECT_FALSE(m2.Matches('a'));
 }
 
 // Tests that TypedEq<T>(v) matches values of type T that's equal to v.
 TEST(TypedEqTest, ChecksEqualityForGivenType) {
   Matcher<char> m1 = TypedEq<char>('a');
   EXPECT_TRUE(m1.Matches('a'));
   EXPECT_FALSE(m1.Matches('b'));
 
   Matcher<int> m2 = TypedEq<int>(6);
   EXPECT_TRUE(m2.Matches(6));
   EXPECT_FALSE(m2.Matches(7));
 }
 
 // Tests that TypedEq(v) describes itself properly.
 TEST(TypedEqTest, CanDescribeSelf) {
   EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2)));
 }
 
 // Tests that TypedEq<T>(v) has type Matcher<T>.
 
 // Type<T>::IsTypeOf(v) compiles iff the type of value v is T, where T
 // is a "bare" type (i.e. not in the form of const U or U&).  If v's
 // type is not T, the compiler will generate a message about
 // "undefined reference".
 template <typename T>
 struct Type {
   static bool IsTypeOf(const T& /* v */) { return true; }
 
   template <typename T2>
   static void IsTypeOf(T2 v);
 };
 
 TEST(TypedEqTest, HasSpecifiedType) {
   // Verfies that the type of TypedEq<T>(v) is Matcher<T>.
   Type<Matcher<int> >::IsTypeOf(TypedEq<int>(5));
   Type<Matcher<double> >::IsTypeOf(TypedEq<double>(5));
 }
 
 // Tests that Ge(v) matches anything >= v.
 TEST(GeTest, ImplementsGreaterThanOrEqual) {
   Matcher<int> m1 = Ge(0);
   EXPECT_TRUE(m1.Matches(1));
   EXPECT_TRUE(m1.Matches(0));
   EXPECT_FALSE(m1.Matches(-1));
 }
 
 // Tests that Ge(v) describes itself properly.
 TEST(GeTest, CanDescribeSelf) {
   Matcher<int> m = Ge(5);
   EXPECT_EQ("is >= 5", Describe(m));
 }
 
 // Tests that Gt(v) matches anything > v.
 TEST(GtTest, ImplementsGreaterThan) {
   Matcher<double> m1 = Gt(0);
   EXPECT_TRUE(m1.Matches(1.0));
   EXPECT_FALSE(m1.Matches(0.0));
   EXPECT_FALSE(m1.Matches(-1.0));
 }
 
 // Tests that Gt(v) describes itself properly.
 TEST(GtTest, CanDescribeSelf) {
   Matcher<int> m = Gt(5);
   EXPECT_EQ("is > 5", Describe(m));
 }
 
 // Tests that Le(v) matches anything <= v.
 TEST(LeTest, ImplementsLessThanOrEqual) {
   Matcher<char> m1 = Le('b');
   EXPECT_TRUE(m1.Matches('a'));
   EXPECT_TRUE(m1.Matches('b'));
   EXPECT_FALSE(m1.Matches('c'));
 }
 
 // Tests that Le(v) describes itself properly.
 TEST(LeTest, CanDescribeSelf) {
   Matcher<int> m = Le(5);
   EXPECT_EQ("is <= 5", Describe(m));
 }
 
 // Tests that Lt(v) matches anything < v.
 TEST(LtTest, ImplementsLessThan) {
   Matcher<const std::string&> m1 = Lt("Hello");
   EXPECT_TRUE(m1.Matches("Abc"));
   EXPECT_FALSE(m1.Matches("Hello"));
   EXPECT_FALSE(m1.Matches("Hello, world!"));
 }
 
 // Tests that Lt(v) describes itself properly.
 TEST(LtTest, CanDescribeSelf) {
   Matcher<int> m = Lt(5);
   EXPECT_EQ("is < 5", Describe(m));
 }
 
 // Tests that Ne(v) matches anything != v.
 TEST(NeTest, ImplementsNotEqual) {
   Matcher<int> m1 = Ne(0);
   EXPECT_TRUE(m1.Matches(1));
   EXPECT_TRUE(m1.Matches(-1));
   EXPECT_FALSE(m1.Matches(0));
 }
 
 // Tests that Ne(v) describes itself properly.
 TEST(NeTest, CanDescribeSelf) {
   Matcher<int> m = Ne(5);
   EXPECT_EQ("isn't equal to 5", Describe(m));
 }
 
 // Tests that IsNull() matches any NULL pointer of any type.
 TEST(IsNullTest, MatchesNullPointer) {
   Matcher<int*> m1 = IsNull();
   int* p1 = NULL;
   int n = 0;
   EXPECT_TRUE(m1.Matches(p1));
   EXPECT_FALSE(m1.Matches(&n));
 
   Matcher<const char*> m2 = IsNull();
   const char* p2 = NULL;
   EXPECT_TRUE(m2.Matches(p2));
   EXPECT_FALSE(m2.Matches("hi"));
 
 #if !GTEST_OS_SYMBIAN
   // Nokia's Symbian compiler generates:
   // gmock-matchers.h: ambiguous access to overloaded function
   // gmock-matchers.h: 'testing::Matcher<void *>::Matcher(void *)'
   // gmock-matchers.h: 'testing::Matcher<void *>::Matcher(const testing::
   //     MatcherInterface<void *> *)'
   // gmock-matchers.h:  (point of instantiation: 'testing::
   //     gmock_matchers_test::IsNullTest_MatchesNullPointer_Test::TestBody()')
   // gmock-matchers.h:   (instantiating: 'testing::PolymorphicMatc
   Matcher<void*> m3 = IsNull();
   void* p3 = NULL;
   EXPECT_TRUE(m3.Matches(p3));
   EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef)));
 #endif
 }
 
 TEST(IsNullTest, LinkedPtr) {
   const Matcher<linked_ptr<int> > m = IsNull();
   const linked_ptr<int> null_p;
   const linked_ptr<int> non_null_p(new int);
 
   EXPECT_TRUE(m.Matches(null_p));
   EXPECT_FALSE(m.Matches(non_null_p));
 }
 
 TEST(IsNullTest, ReferenceToConstLinkedPtr) {
   const Matcher<const linked_ptr<double>&> m = IsNull();
   const linked_ptr<double> null_p;
   const linked_ptr<double> non_null_p(new double);
 
   EXPECT_TRUE(m.Matches(null_p));
   EXPECT_FALSE(m.Matches(non_null_p));
 }
 
 #if GTEST_LANG_CXX11
 TEST(IsNullTest, StdFunction) {
   const Matcher<std::function<void()>> m = IsNull();
 
   EXPECT_TRUE(m.Matches(std::function<void()>()));
   EXPECT_FALSE(m.Matches([]{}));
 }
 #endif  // GTEST_LANG_CXX11
 
 // Tests that IsNull() describes itself properly.
 TEST(IsNullTest, CanDescribeSelf) {
   Matcher<int*> m = IsNull();
   EXPECT_EQ("is NULL", Describe(m));
   EXPECT_EQ("isn't NULL", DescribeNegation(m));
 }
 
 // Tests that NotNull() matches any non-NULL pointer of any type.
 TEST(NotNullTest, MatchesNonNullPointer) {
   Matcher<int*> m1 = NotNull();
   int* p1 = NULL;
   int n = 0;
   EXPECT_FALSE(m1.Matches(p1));
   EXPECT_TRUE(m1.Matches(&n));
 
   Matcher<const char*> m2 = NotNull();
   const char* p2 = NULL;
   EXPECT_FALSE(m2.Matches(p2));
   EXPECT_TRUE(m2.Matches("hi"));
 }
 
 TEST(NotNullTest, LinkedPtr) {
   const Matcher<linked_ptr<int> > m = NotNull();
   const linked_ptr<int> null_p;
   const linked_ptr<int> non_null_p(new int);
 
   EXPECT_FALSE(m.Matches(null_p));
   EXPECT_TRUE(m.Matches(non_null_p));
 }
 
 TEST(NotNullTest, ReferenceToConstLinkedPtr) {
   const Matcher<const linked_ptr<double>&> m = NotNull();
   const linked_ptr<double> null_p;
   const linked_ptr<double> non_null_p(new double);
 
   EXPECT_FALSE(m.Matches(null_p));
   EXPECT_TRUE(m.Matches(non_null_p));
 }
 
 #if GTEST_LANG_CXX11
 TEST(NotNullTest, StdFunction) {
   const Matcher<std::function<void()>> m = NotNull();
 
   EXPECT_TRUE(m.Matches([]{}));
   EXPECT_FALSE(m.Matches(std::function<void()>()));
 }
 #endif  // GTEST_LANG_CXX11
 
 // Tests that NotNull() describes itself properly.
 TEST(NotNullTest, CanDescribeSelf) {
   Matcher<int*> m = NotNull();
   EXPECT_EQ("isn't NULL", Describe(m));
 }
 
 // Tests that Ref(variable) matches an argument that references
 // 'variable'.
 TEST(RefTest, MatchesSameVariable) {
   int a = 0;
   int b = 0;
   Matcher<int&> m = Ref(a);
   EXPECT_TRUE(m.Matches(a));
   EXPECT_FALSE(m.Matches(b));
 }
 
 // Tests that Ref(variable) describes itself properly.
 TEST(RefTest, CanDescribeSelf) {
   int n = 5;
   Matcher<int&> m = Ref(n);
   stringstream ss;
   ss << "references the variable @" << &n << " 5";
   EXPECT_EQ(ss.str(), Describe(m));
 }
 
 // Test that Ref(non_const_varialbe) can be used as a matcher for a
 // const reference.
 TEST(RefTest, CanBeUsedAsMatcherForConstReference) {
   int a = 0;
   int b = 0;
   Matcher<const int&> m = Ref(a);
   EXPECT_TRUE(m.Matches(a));
   EXPECT_FALSE(m.Matches(b));
 }
 
 // Tests that Ref(variable) is covariant, i.e. Ref(derived) can be
 // used wherever Ref(base) can be used (Ref(derived) is a sub-type
 // of Ref(base), but not vice versa.
 
 TEST(RefTest, IsCovariant) {
   Base base, base2;
   Derived derived;
   Matcher<const Base&> m1 = Ref(base);
   EXPECT_TRUE(m1.Matches(base));
   EXPECT_FALSE(m1.Matches(base2));
   EXPECT_FALSE(m1.Matches(derived));
 
   m1 = Ref(derived);
   EXPECT_TRUE(m1.Matches(derived));
   EXPECT_FALSE(m1.Matches(base));
   EXPECT_FALSE(m1.Matches(base2));
 }
 
 TEST(RefTest, ExplainsResult) {
   int n = 0;
   EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n),
               StartsWith("which is located @"));
 
   int m = 0;
   EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m),
               StartsWith("which is located @"));
 }
 
 // Tests string comparison matchers.
 
 TEST(StrEqTest, MatchesEqualString) {
   Matcher<const char*> m = StrEq(std::string("Hello"));
   EXPECT_TRUE(m.Matches("Hello"));
   EXPECT_FALSE(m.Matches("hello"));
   EXPECT_FALSE(m.Matches(NULL));
 
   Matcher<const std::string&> m2 = StrEq("Hello");
   EXPECT_TRUE(m2.Matches("Hello"));
   EXPECT_FALSE(m2.Matches("Hi"));
 
 #if GTEST_HAS_ABSL
   Matcher<const absl::string_view&> m3 = StrEq("Hello");
   EXPECT_TRUE(m3.Matches(absl::string_view("Hello")));
   EXPECT_FALSE(m3.Matches(absl::string_view("hello")));
   EXPECT_FALSE(m3.Matches(absl::string_view()));
 #endif  // GTEST_HAS_ABSL
 }
 
 TEST(StrEqTest, CanDescribeSelf) {
   Matcher<std::string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3");
   EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"",
       Describe(m));
 
   std::string str("01204500800");
   str[3] = '\0';
   Matcher<std::string> m2 = StrEq(str);
   EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2));
   str[0] = str[6] = str[7] = str[9] = str[10] = '\0';
   Matcher<std::string> m3 = StrEq(str);
   EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3));
 }
 
 TEST(StrNeTest, MatchesUnequalString) {
   Matcher<const char*> m = StrNe("Hello");
   EXPECT_TRUE(m.Matches(""));
   EXPECT_TRUE(m.Matches(NULL));
   EXPECT_FALSE(m.Matches("Hello"));
 
   Matcher<std::string> m2 = StrNe(std::string("Hello"));
   EXPECT_TRUE(m2.Matches("hello"));
   EXPECT_FALSE(m2.Matches("Hello"));
 
 #if GTEST_HAS_ABSL
   Matcher<const absl::string_view> m3 = StrNe("Hello");
   EXPECT_TRUE(m3.Matches(absl::string_view("")));
   EXPECT_TRUE(m3.Matches(absl::string_view()));
   EXPECT_FALSE(m3.Matches(absl::string_view("Hello")));
 #endif  // GTEST_HAS_ABSL
 }
 
 TEST(StrNeTest, CanDescribeSelf) {
   Matcher<const char*> m = StrNe("Hi");
   EXPECT_EQ("isn't equal to \"Hi\"", Describe(m));
 }
 
 TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) {
   Matcher<const char*> m = StrCaseEq(std::string("Hello"));
   EXPECT_TRUE(m.Matches("Hello"));
   EXPECT_TRUE(m.Matches("hello"));
   EXPECT_FALSE(m.Matches("Hi"));
   EXPECT_FALSE(m.Matches(NULL));
 
   Matcher<const std::string&> m2 = StrCaseEq("Hello");
   EXPECT_TRUE(m2.Matches("hello"));
   EXPECT_FALSE(m2.Matches("Hi"));
 
 #if GTEST_HAS_ABSL
   Matcher<const absl::string_view&> m3 = StrCaseEq(std::string("Hello"));
   EXPECT_TRUE(m3.Matches(absl::string_view("Hello")));
   EXPECT_TRUE(m3.Matches(absl::string_view("hello")));
   EXPECT_FALSE(m3.Matches(absl::string_view("Hi")));
   EXPECT_FALSE(m3.Matches(absl::string_view()));
 #endif  // GTEST_HAS_ABSL
 }
 
 TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
   std::string str1("oabocdooeoo");
   std::string str2("OABOCDOOEOO");
   Matcher<const std::string&> m0 = StrCaseEq(str1);
   EXPECT_FALSE(m0.Matches(str2 + std::string(1, '\0')));
 
   str1[3] = str2[3] = '\0';
   Matcher<const std::string&> m1 = StrCaseEq(str1);
   EXPECT_TRUE(m1.Matches(str2));
 
   str1[0] = str1[6] = str1[7] = str1[10] = '\0';
   str2[0] = str2[6] = str2[7] = str2[10] = '\0';
   Matcher<const std::string&> m2 = StrCaseEq(str1);
   str1[9] = str2[9] = '\0';
   EXPECT_FALSE(m2.Matches(str2));
 
   Matcher<const std::string&> m3 = StrCaseEq(str1);
   EXPECT_TRUE(m3.Matches(str2));
 
   EXPECT_FALSE(m3.Matches(str2 + "x"));
   str2.append(1, '\0');
   EXPECT_FALSE(m3.Matches(str2));
   EXPECT_FALSE(m3.Matches(std::string(str2, 0, 9)));
 }
 
 TEST(StrCaseEqTest, CanDescribeSelf) {
   Matcher<std::string> m = StrCaseEq("Hi");
   EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m));
 }
 
 TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) {
   Matcher<const char*> m = StrCaseNe("Hello");
   EXPECT_TRUE(m.Matches("Hi"));
   EXPECT_TRUE(m.Matches(NULL));
   EXPECT_FALSE(m.Matches("Hello"));
   EXPECT_FALSE(m.Matches("hello"));
 
   Matcher<std::string> m2 = StrCaseNe(std::string("Hello"));
   EXPECT_TRUE(m2.Matches(""));
   EXPECT_FALSE(m2.Matches("Hello"));
 
 #if GTEST_HAS_ABSL
   Matcher<const absl::string_view> m3 = StrCaseNe("Hello");
   EXPECT_TRUE(m3.Matches(absl::string_view("Hi")));
   EXPECT_TRUE(m3.Matches(absl::string_view()));
   EXPECT_FALSE(m3.Matches(absl::string_view("Hello")));
   EXPECT_FALSE(m3.Matches(absl::string_view("hello")));
 #endif  // GTEST_HAS_ABSL
 }
 
 TEST(StrCaseNeTest, CanDescribeSelf) {
   Matcher<const char*> m = StrCaseNe("Hi");
   EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m));
 }
 
 // Tests that HasSubstr() works for matching string-typed values.
 TEST(HasSubstrTest, WorksForStringClasses) {
   const Matcher<std::string> m1 = HasSubstr("foo");
   EXPECT_TRUE(m1.Matches(std::string("I love food.")));
   EXPECT_FALSE(m1.Matches(std::string("tofo")));
 
   const Matcher<const std::string&> m2 = HasSubstr("foo");
   EXPECT_TRUE(m2.Matches(std::string("I love food.")));
   EXPECT_FALSE(m2.Matches(std::string("tofo")));
 }
 
 // Tests that HasSubstr() works for matching C-string-typed values.
 TEST(HasSubstrTest, WorksForCStrings) {
   const Matcher<char*> m1 = HasSubstr("foo");
   EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food.")));
   EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo")));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const char*> m2 = HasSubstr("foo");
   EXPECT_TRUE(m2.Matches("I love food."));
   EXPECT_FALSE(m2.Matches("tofo"));
   EXPECT_FALSE(m2.Matches(NULL));
 }
 
 #if GTEST_HAS_ABSL
 // Tests that HasSubstr() works for matching absl::string_view-typed values.
 TEST(HasSubstrTest, WorksForStringViewClasses) {
   const Matcher<absl::string_view> m1 = HasSubstr("foo");
   EXPECT_TRUE(m1.Matches(absl::string_view("I love food.")));
   EXPECT_FALSE(m1.Matches(absl::string_view("tofo")));
   EXPECT_FALSE(m1.Matches(absl::string_view()));
 
   const Matcher<const absl::string_view&> m2 = HasSubstr("foo");
   EXPECT_TRUE(m2.Matches(absl::string_view("I love food.")));
   EXPECT_FALSE(m2.Matches(absl::string_view("tofo")));
   EXPECT_FALSE(m2.Matches(absl::string_view()));
 
   const Matcher<const absl::string_view&> m3 = HasSubstr("");
   EXPECT_TRUE(m3.Matches(absl::string_view("foo")));
   EXPECT_FALSE(m3.Matches(absl::string_view()));
 }
 #endif  // GTEST_HAS_ABSL
 
 // Tests that HasSubstr(s) describes itself properly.
 TEST(HasSubstrTest, CanDescribeSelf) {
   Matcher<std::string> m = HasSubstr("foo\n\"");
   EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m));
 }
 
 TEST(KeyTest, CanDescribeSelf) {
   Matcher<const pair<std::string, int>&> m = Key("foo");
   EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m));
   EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m));
 }
 
 TEST(KeyTest, ExplainsResult) {
   Matcher<pair<int, bool> > m = Key(GreaterThan(10));
   EXPECT_EQ("whose first field is a value which is 5 less than 10",
             Explain(m, make_pair(5, true)));
   EXPECT_EQ("whose first field is a value which is 5 more than 10",
             Explain(m, make_pair(15, true)));
 }
 
 TEST(KeyTest, MatchesCorrectly) {
   pair<int, std::string> p(25, "foo");
   EXPECT_THAT(p, Key(25));
   EXPECT_THAT(p, Not(Key(42)));
   EXPECT_THAT(p, Key(Ge(20)));
   EXPECT_THAT(p, Not(Key(Lt(25))));
 }
 
 #if GTEST_LANG_CXX11
 template <size_t I>
 struct Tag {};
 
 struct PairWithGet {
   int member_1;
   string member_2;
   using first_type = int;
   using second_type = string;
 
   const int& GetImpl(Tag<0>) const { return member_1; }
   const string& GetImpl(Tag<1>) const { return member_2; }
 };
 template <size_t I>
 auto get(const PairWithGet& value) -> decltype(value.GetImpl(Tag<I>())) {
   return value.GetImpl(Tag<I>());
 }
 TEST(PairTest, MatchesPairWithGetCorrectly) {
   PairWithGet p{25, "foo"};
   EXPECT_THAT(p, Key(25));
   EXPECT_THAT(p, Not(Key(42)));
   EXPECT_THAT(p, Key(Ge(20)));
   EXPECT_THAT(p, Not(Key(Lt(25))));
 
   std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}};
   EXPECT_THAT(v, Contains(Key(29)));
 }
 #endif  // GTEST_LANG_CXX11
 
 TEST(KeyTest, SafelyCastsInnerMatcher) {
   Matcher<int> is_positive = Gt(0);
   Matcher<int> is_negative = Lt(0);
   pair<char, bool> p('a', true);
   EXPECT_THAT(p, Key(is_positive));
   EXPECT_THAT(p, Not(Key(is_negative)));
 }
 
 TEST(KeyTest, InsideContainsUsingMap) {
   map<int, char> container;
   container.insert(make_pair(1, 'a'));
   container.insert(make_pair(2, 'b'));
   container.insert(make_pair(4, 'c'));
   EXPECT_THAT(container, Contains(Key(1)));
   EXPECT_THAT(container, Not(Contains(Key(3))));
 }
 
 TEST(KeyTest, InsideContainsUsingMultimap) {
   multimap<int, char> container;
   container.insert(make_pair(1, 'a'));
   container.insert(make_pair(2, 'b'));
   container.insert(make_pair(4, 'c'));
 
   EXPECT_THAT(container, Not(Contains(Key(25))));
   container.insert(make_pair(25, 'd'));
   EXPECT_THAT(container, Contains(Key(25)));
   container.insert(make_pair(25, 'e'));
   EXPECT_THAT(container, Contains(Key(25)));
 
   EXPECT_THAT(container, Contains(Key(1)));
   EXPECT_THAT(container, Not(Contains(Key(3))));
 }
 
 TEST(PairTest, Typing) {
   // Test verifies the following type conversions can be compiled.
   Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42);
   Matcher<const pair<const char*, int> > m2 = Pair("foo", 42);
   Matcher<pair<const char*, int> > m3 = Pair("foo", 42);
 
   Matcher<pair<int, const std::string> > m4 = Pair(25, "42");
   Matcher<pair<const std::string, int> > m5 = Pair("25", 42);
 }
 
 TEST(PairTest, CanDescribeSelf) {
   Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42);
   EXPECT_EQ("has a first field that is equal to \"foo\""
             ", and has a second field that is equal to 42",
             Describe(m1));
   EXPECT_EQ("has a first field that isn't equal to \"foo\""
             ", or has a second field that isn't equal to 42",
             DescribeNegation(m1));
   // Double and triple negation (1 or 2 times not and description of negation).
   Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42));
   EXPECT_EQ("has a first field that isn't equal to 13"
             ", and has a second field that is equal to 42",
             DescribeNegation(m2));
 }
 
 TEST(PairTest, CanExplainMatchResultTo) {
   // If neither field matches, Pair() should explain about the first
   // field.
   const Matcher<pair<int, int> > m = Pair(GreaterThan(0), GreaterThan(0));
   EXPECT_EQ("whose first field does not match, which is 1 less than 0",
             Explain(m, make_pair(-1, -2)));
 
   // If the first field matches but the second doesn't, Pair() should
   // explain about the second field.
   EXPECT_EQ("whose second field does not match, which is 2 less than 0",
             Explain(m, make_pair(1, -2)));
 
   // If the first field doesn't match but the second does, Pair()
   // should explain about the first field.
   EXPECT_EQ("whose first field does not match, which is 1 less than 0",
             Explain(m, make_pair(-1, 2)));
 
   // If both fields match, Pair() should explain about them both.
   EXPECT_EQ("whose both fields match, where the first field is a value "
             "which is 1 more than 0, and the second field is a value "
             "which is 2 more than 0",
             Explain(m, make_pair(1, 2)));
 
   // If only the first match has an explanation, only this explanation should
   // be printed.
   const Matcher<pair<int, int> > explain_first = Pair(GreaterThan(0), 0);
   EXPECT_EQ("whose both fields match, where the first field is a value "
             "which is 1 more than 0",
             Explain(explain_first, make_pair(1, 0)));
 
   // If only the second match has an explanation, only this explanation should
   // be printed.
   const Matcher<pair<int, int> > explain_second = Pair(0, GreaterThan(0));
   EXPECT_EQ("whose both fields match, where the second field is a value "
             "which is 1 more than 0",
             Explain(explain_second, make_pair(0, 1)));
 }
 
 TEST(PairTest, MatchesCorrectly) {
   pair<int, std::string> p(25, "foo");
 
   // Both fields match.
   EXPECT_THAT(p, Pair(25, "foo"));
   EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o")));
 
   // 'first' doesnt' match, but 'second' matches.
   EXPECT_THAT(p, Not(Pair(42, "foo")));
   EXPECT_THAT(p, Not(Pair(Lt(25), "foo")));
 
   // 'first' matches, but 'second' doesn't match.
   EXPECT_THAT(p, Not(Pair(25, "bar")));
   EXPECT_THAT(p, Not(Pair(25, Not("foo"))));
 
   // Neither field matches.
   EXPECT_THAT(p, Not(Pair(13, "bar")));
   EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a"))));
 }
 
 TEST(PairTest, SafelyCastsInnerMatchers) {
   Matcher<int> is_positive = Gt(0);
   Matcher<int> is_negative = Lt(0);
   pair<char, bool> p('a', true);
   EXPECT_THAT(p, Pair(is_positive, _));
   EXPECT_THAT(p, Not(Pair(is_negative, _)));
   EXPECT_THAT(p, Pair(_, is_positive));
   EXPECT_THAT(p, Not(Pair(_, is_negative)));
 }
 
 TEST(PairTest, InsideContainsUsingMap) {
   map<int, char> container;
   container.insert(make_pair(1, 'a'));
   container.insert(make_pair(2, 'b'));
   container.insert(make_pair(4, 'c'));
   EXPECT_THAT(container, Contains(Pair(1, 'a')));
   EXPECT_THAT(container, Contains(Pair(1, _)));
   EXPECT_THAT(container, Contains(Pair(_, 'a')));
   EXPECT_THAT(container, Not(Contains(Pair(3, _))));
 }
 
 #if GTEST_LANG_CXX11
 TEST(PairTest, UseGetInsteadOfMembers) {
   PairWithGet pair{7, "ABC"};
   EXPECT_THAT(pair, Pair(7, "ABC"));
   EXPECT_THAT(pair, Pair(Ge(7), HasSubstr("AB")));
   EXPECT_THAT(pair, Not(Pair(Lt(7), "ABC")));
 
   std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}};
   EXPECT_THAT(v, ElementsAre(Pair(11, string("Foo")), Pair(Ge(10), Not(""))));
 }
 #endif  // GTEST_LANG_CXX11
 
 // Tests StartsWith(s).
 
 TEST(StartsWithTest, MatchesStringWithGivenPrefix) {
   const Matcher<const char*> m1 = StartsWith(std::string(""));
   EXPECT_TRUE(m1.Matches("Hi"));
   EXPECT_TRUE(m1.Matches(""));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const std::string&> m2 = StartsWith("Hi");
   EXPECT_TRUE(m2.Matches("Hi"));
   EXPECT_TRUE(m2.Matches("Hi Hi!"));
   EXPECT_TRUE(m2.Matches("High"));
   EXPECT_FALSE(m2.Matches("H"));
   EXPECT_FALSE(m2.Matches(" Hi"));
 }
 
 TEST(StartsWithTest, CanDescribeSelf) {
   Matcher<const std::string> m = StartsWith("Hi");
   EXPECT_EQ("starts with \"Hi\"", Describe(m));
 }
 
 // Tests EndsWith(s).
 
 TEST(EndsWithTest, MatchesStringWithGivenSuffix) {
   const Matcher<const char*> m1 = EndsWith("");
   EXPECT_TRUE(m1.Matches("Hi"));
   EXPECT_TRUE(m1.Matches(""));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const std::string&> m2 = EndsWith(std::string("Hi"));
   EXPECT_TRUE(m2.Matches("Hi"));
   EXPECT_TRUE(m2.Matches("Wow Hi Hi"));
   EXPECT_TRUE(m2.Matches("Super Hi"));
   EXPECT_FALSE(m2.Matches("i"));
   EXPECT_FALSE(m2.Matches("Hi "));
 
 #if GTEST_HAS_GLOBAL_STRING
   const Matcher<const ::string&> m3 = EndsWith(::string("Hi"));
   EXPECT_TRUE(m3.Matches("Hi"));
   EXPECT_TRUE(m3.Matches("Wow Hi Hi"));
   EXPECT_TRUE(m3.Matches("Super Hi"));
   EXPECT_FALSE(m3.Matches("i"));
   EXPECT_FALSE(m3.Matches("Hi "));
 #endif  // GTEST_HAS_GLOBAL_STRING
 
 #if GTEST_HAS_ABSL
   const Matcher<const absl::string_view&> m4 = EndsWith("");
   EXPECT_TRUE(m4.Matches("Hi"));
   EXPECT_TRUE(m4.Matches(""));
   // Default-constructed absl::string_view should not match anything, in order
   // to distinguish it from an empty string.
   EXPECT_FALSE(m4.Matches(absl::string_view()));
 #endif  // GTEST_HAS_ABSL
 }
 
 TEST(EndsWithTest, CanDescribeSelf) {
   Matcher<const std::string> m = EndsWith("Hi");
   EXPECT_EQ("ends with \"Hi\"", Describe(m));
 }
 
 // Tests MatchesRegex().
 
 TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) {
   const Matcher<const char*> m1 = MatchesRegex("a.*z");
   EXPECT_TRUE(m1.Matches("az"));
   EXPECT_TRUE(m1.Matches("abcz"));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const std::string&> m2 = MatchesRegex(new RE("a.*z"));
   EXPECT_TRUE(m2.Matches("azbz"));
   EXPECT_FALSE(m2.Matches("az1"));
   EXPECT_FALSE(m2.Matches("1az"));
 
 #if GTEST_HAS_ABSL
   const Matcher<const absl::string_view&> m3 = MatchesRegex("a.*z");
   EXPECT_TRUE(m3.Matches(absl::string_view("az")));
   EXPECT_TRUE(m3.Matches(absl::string_view("abcz")));
   EXPECT_FALSE(m3.Matches(absl::string_view("1az")));
   // Default-constructed absl::string_view should not match anything, in order
   // to distinguish it from an empty string.
   EXPECT_FALSE(m3.Matches(absl::string_view()));
   const Matcher<const absl::string_view&> m4 = MatchesRegex("");
   EXPECT_FALSE(m4.Matches(absl::string_view()));
 #endif  // GTEST_HAS_ABSL
 }
 
 TEST(MatchesRegexTest, CanDescribeSelf) {
   Matcher<const std::string> m1 = MatchesRegex(std::string("Hi.*"));
   EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1));
 
   Matcher<const char*> m2 = MatchesRegex(new RE("a.*"));
   EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2));
 
 #if GTEST_HAS_ABSL
   Matcher<const absl::string_view> m3 = MatchesRegex(new RE("0.*"));
   EXPECT_EQ("matches regular expression \"0.*\"", Describe(m3));
 #endif  // GTEST_HAS_ABSL
 }
 
 // Tests ContainsRegex().
 
 TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) {
   const Matcher<const char*> m1 = ContainsRegex(std::string("a.*z"));
   EXPECT_TRUE(m1.Matches("az"));
   EXPECT_TRUE(m1.Matches("0abcz1"));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const std::string&> m2 = ContainsRegex(new RE("a.*z"));
   EXPECT_TRUE(m2.Matches("azbz"));
   EXPECT_TRUE(m2.Matches("az1"));
   EXPECT_FALSE(m2.Matches("1a"));
 
 #if GTEST_HAS_ABSL
   const Matcher<const absl::string_view&> m3 = ContainsRegex(new RE("a.*z"));
   EXPECT_TRUE(m3.Matches(absl::string_view("azbz")));
   EXPECT_TRUE(m3.Matches(absl::string_view("az1")));
   EXPECT_FALSE(m3.Matches(absl::string_view("1a")));
   // Default-constructed absl::string_view should not match anything, in order
   // to distinguish it from an empty string.
   EXPECT_FALSE(m3.Matches(absl::string_view()));
   const Matcher<const absl::string_view&> m4 = ContainsRegex("");
   EXPECT_FALSE(m4.Matches(absl::string_view()));
 #endif  // GTEST_HAS_ABSL
 }
 
 TEST(ContainsRegexTest, CanDescribeSelf) {
   Matcher<const std::string> m1 = ContainsRegex("Hi.*");
   EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1));
 
   Matcher<const char*> m2 = ContainsRegex(new RE("a.*"));
   EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2));
 
 #if GTEST_HAS_ABSL
   Matcher<const absl::string_view> m3 = ContainsRegex(new RE("0.*"));
   EXPECT_EQ("contains regular expression \"0.*\"", Describe(m3));
 #endif  // GTEST_HAS_ABSL
 }
 
 // Tests for wide strings.
 #if GTEST_HAS_STD_WSTRING
 TEST(StdWideStrEqTest, MatchesEqual) {
   Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello"));
   EXPECT_TRUE(m.Matches(L"Hello"));
   EXPECT_FALSE(m.Matches(L"hello"));
   EXPECT_FALSE(m.Matches(NULL));
 
   Matcher<const ::std::wstring&> m2 = StrEq(L"Hello");
   EXPECT_TRUE(m2.Matches(L"Hello"));
   EXPECT_FALSE(m2.Matches(L"Hi"));
 
   Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
   EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
   EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
 
   ::std::wstring str(L"01204500800");
   str[3] = L'\0';
   Matcher<const ::std::wstring&> m4 = StrEq(str);
   EXPECT_TRUE(m4.Matches(str));
   str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
   Matcher<const ::std::wstring&> m5 = StrEq(str);
   EXPECT_TRUE(m5.Matches(str));
 }
 
 TEST(StdWideStrEqTest, CanDescribeSelf) {
   Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
   EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
     Describe(m));
 
   Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
   EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"",
     Describe(m2));
 
   ::std::wstring str(L"01204500800");
   str[3] = L'\0';
   Matcher<const ::std::wstring&> m4 = StrEq(str);
   EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
   str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
   Matcher<const ::std::wstring&> m5 = StrEq(str);
   EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
 }
 
 TEST(StdWideStrNeTest, MatchesUnequalString) {
   Matcher<const wchar_t*> m = StrNe(L"Hello");
   EXPECT_TRUE(m.Matches(L""));
   EXPECT_TRUE(m.Matches(NULL));
   EXPECT_FALSE(m.Matches(L"Hello"));
 
   Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello"));
   EXPECT_TRUE(m2.Matches(L"hello"));
   EXPECT_FALSE(m2.Matches(L"Hello"));
 }
 
 TEST(StdWideStrNeTest, CanDescribeSelf) {
   Matcher<const wchar_t*> m = StrNe(L"Hi");
   EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
 }
 
 TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
   Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello"));
   EXPECT_TRUE(m.Matches(L"Hello"));
   EXPECT_TRUE(m.Matches(L"hello"));
   EXPECT_FALSE(m.Matches(L"Hi"));
   EXPECT_FALSE(m.Matches(NULL));
 
   Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello");
   EXPECT_TRUE(m2.Matches(L"hello"));
   EXPECT_FALSE(m2.Matches(L"Hi"));
 }
 
 TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
   ::std::wstring str1(L"oabocdooeoo");
   ::std::wstring str2(L"OABOCDOOEOO");
   Matcher<const ::std::wstring&> m0 = StrCaseEq(str1);
   EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0')));
 
   str1[3] = str2[3] = L'\0';
   Matcher<const ::std::wstring&> m1 = StrCaseEq(str1);
   EXPECT_TRUE(m1.Matches(str2));
 
   str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
   str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
   Matcher<const ::std::wstring&> m2 = StrCaseEq(str1);
   str1[9] = str2[9] = L'\0';
   EXPECT_FALSE(m2.Matches(str2));
 
   Matcher<const ::std::wstring&> m3 = StrCaseEq(str1);
   EXPECT_TRUE(m3.Matches(str2));
 
   EXPECT_FALSE(m3.Matches(str2 + L"x"));
   str2.append(1, L'\0');
   EXPECT_FALSE(m3.Matches(str2));
   EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9)));
 }
 
 TEST(StdWideStrCaseEqTest, CanDescribeSelf) {
   Matcher< ::std::wstring> m = StrCaseEq(L"Hi");
   EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
 }
 
 TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
   Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
   EXPECT_TRUE(m.Matches(L"Hi"));
   EXPECT_TRUE(m.Matches(NULL));
   EXPECT_FALSE(m.Matches(L"Hello"));
   EXPECT_FALSE(m.Matches(L"hello"));
 
   Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello"));
   EXPECT_TRUE(m2.Matches(L""));
   EXPECT_FALSE(m2.Matches(L"Hello"));
 }
 
 TEST(StdWideStrCaseNeTest, CanDescribeSelf) {
   Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
   EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
 }
 
 // Tests that HasSubstr() works for matching wstring-typed values.
 TEST(StdWideHasSubstrTest, WorksForStringClasses) {
   const Matcher< ::std::wstring> m1 = HasSubstr(L"foo");
   EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food.")));
   EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo")));
 
   const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo");
   EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food.")));
   EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo")));
 }
 
 // Tests that HasSubstr() works for matching C-wide-string-typed values.
 TEST(StdWideHasSubstrTest, WorksForCStrings) {
   const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
   EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
   EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
   EXPECT_TRUE(m2.Matches(L"I love food."));
   EXPECT_FALSE(m2.Matches(L"tofo"));
   EXPECT_FALSE(m2.Matches(NULL));
 }
 
 // Tests that HasSubstr(s) describes itself properly.
 TEST(StdWideHasSubstrTest, CanDescribeSelf) {
   Matcher< ::std::wstring> m = HasSubstr(L"foo\n\"");
   EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
 }
 
 // Tests StartsWith(s).
 
 TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) {
   const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L""));
   EXPECT_TRUE(m1.Matches(L"Hi"));
   EXPECT_TRUE(m1.Matches(L""));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi");
   EXPECT_TRUE(m2.Matches(L"Hi"));
   EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
   EXPECT_TRUE(m2.Matches(L"High"));
   EXPECT_FALSE(m2.Matches(L"H"));
   EXPECT_FALSE(m2.Matches(L" Hi"));
 }
 
 TEST(StdWideStartsWithTest, CanDescribeSelf) {
   Matcher<const ::std::wstring> m = StartsWith(L"Hi");
   EXPECT_EQ("starts with L\"Hi\"", Describe(m));
 }
 
 // Tests EndsWith(s).
 
 TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) {
   const Matcher<const wchar_t*> m1 = EndsWith(L"");
   EXPECT_TRUE(m1.Matches(L"Hi"));
   EXPECT_TRUE(m1.Matches(L""));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi"));
   EXPECT_TRUE(m2.Matches(L"Hi"));
   EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
   EXPECT_TRUE(m2.Matches(L"Super Hi"));
   EXPECT_FALSE(m2.Matches(L"i"));
   EXPECT_FALSE(m2.Matches(L"Hi "));
 }
 
 TEST(StdWideEndsWithTest, CanDescribeSelf) {
   Matcher<const ::std::wstring> m = EndsWith(L"Hi");
   EXPECT_EQ("ends with L\"Hi\"", Describe(m));
 }
 
 #endif  // GTEST_HAS_STD_WSTRING
 
 #if GTEST_HAS_GLOBAL_WSTRING
 TEST(GlobalWideStrEqTest, MatchesEqual) {
   Matcher<const wchar_t*> m = StrEq(::wstring(L"Hello"));
   EXPECT_TRUE(m.Matches(L"Hello"));
   EXPECT_FALSE(m.Matches(L"hello"));
   EXPECT_FALSE(m.Matches(NULL));
 
   Matcher<const ::wstring&> m2 = StrEq(L"Hello");
   EXPECT_TRUE(m2.Matches(L"Hello"));
   EXPECT_FALSE(m2.Matches(L"Hi"));
 
   Matcher<const ::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
   EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
   EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
 
   ::wstring str(L"01204500800");
   str[3] = L'\0';
   Matcher<const ::wstring&> m4 = StrEq(str);
   EXPECT_TRUE(m4.Matches(str));
   str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
   Matcher<const ::wstring&> m5 = StrEq(str);
   EXPECT_TRUE(m5.Matches(str));
 }
 
 TEST(GlobalWideStrEqTest, CanDescribeSelf) {
   Matcher< ::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
   EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
     Describe(m));
 
   Matcher< ::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
   EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"",
     Describe(m2));
 
   ::wstring str(L"01204500800");
   str[3] = L'\0';
   Matcher<const ::wstring&> m4 = StrEq(str);
   EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
   str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
   Matcher<const ::wstring&> m5 = StrEq(str);
   EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
 }
 
 TEST(GlobalWideStrNeTest, MatchesUnequalString) {
   Matcher<const wchar_t*> m = StrNe(L"Hello");
   EXPECT_TRUE(m.Matches(L""));
   EXPECT_TRUE(m.Matches(NULL));
   EXPECT_FALSE(m.Matches(L"Hello"));
 
   Matcher< ::wstring> m2 = StrNe(::wstring(L"Hello"));
   EXPECT_TRUE(m2.Matches(L"hello"));
   EXPECT_FALSE(m2.Matches(L"Hello"));
 }
 
 TEST(GlobalWideStrNeTest, CanDescribeSelf) {
   Matcher<const wchar_t*> m = StrNe(L"Hi");
   EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
 }
 
 TEST(GlobalWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
   Matcher<const wchar_t*> m = StrCaseEq(::wstring(L"Hello"));
   EXPECT_TRUE(m.Matches(L"Hello"));
   EXPECT_TRUE(m.Matches(L"hello"));
   EXPECT_FALSE(m.Matches(L"Hi"));
   EXPECT_FALSE(m.Matches(NULL));
 
   Matcher<const ::wstring&> m2 = StrCaseEq(L"Hello");
   EXPECT_TRUE(m2.Matches(L"hello"));
   EXPECT_FALSE(m2.Matches(L"Hi"));
 }
 
 TEST(GlobalWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
   ::wstring str1(L"oabocdooeoo");
   ::wstring str2(L"OABOCDOOEOO");
   Matcher<const ::wstring&> m0 = StrCaseEq(str1);
   EXPECT_FALSE(m0.Matches(str2 + ::wstring(1, L'\0')));
 
   str1[3] = str2[3] = L'\0';
   Matcher<const ::wstring&> m1 = StrCaseEq(str1);
   EXPECT_TRUE(m1.Matches(str2));
 
   str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
   str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
   Matcher<const ::wstring&> m2 = StrCaseEq(str1);
   str1[9] = str2[9] = L'\0';
   EXPECT_FALSE(m2.Matches(str2));
 
   Matcher<const ::wstring&> m3 = StrCaseEq(str1);
   EXPECT_TRUE(m3.Matches(str2));
 
   EXPECT_FALSE(m3.Matches(str2 + L"x"));
   str2.append(1, L'\0');
   EXPECT_FALSE(m3.Matches(str2));
   EXPECT_FALSE(m3.Matches(::wstring(str2, 0, 9)));
 }
 
 TEST(GlobalWideStrCaseEqTest, CanDescribeSelf) {
   Matcher< ::wstring> m = StrCaseEq(L"Hi");
   EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
 }
 
 TEST(GlobalWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
   Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
   EXPECT_TRUE(m.Matches(L"Hi"));
   EXPECT_TRUE(m.Matches(NULL));
   EXPECT_FALSE(m.Matches(L"Hello"));
   EXPECT_FALSE(m.Matches(L"hello"));
 
   Matcher< ::wstring> m2 = StrCaseNe(::wstring(L"Hello"));
   EXPECT_TRUE(m2.Matches(L""));
   EXPECT_FALSE(m2.Matches(L"Hello"));
 }
 
 TEST(GlobalWideStrCaseNeTest, CanDescribeSelf) {
   Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
   EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
 }
 
 // Tests that HasSubstr() works for matching wstring-typed values.
 TEST(GlobalWideHasSubstrTest, WorksForStringClasses) {
   const Matcher< ::wstring> m1 = HasSubstr(L"foo");
   EXPECT_TRUE(m1.Matches(::wstring(L"I love food.")));
   EXPECT_FALSE(m1.Matches(::wstring(L"tofo")));
 
   const Matcher<const ::wstring&> m2 = HasSubstr(L"foo");
   EXPECT_TRUE(m2.Matches(::wstring(L"I love food.")));
   EXPECT_FALSE(m2.Matches(::wstring(L"tofo")));
 }
 
 // Tests that HasSubstr() works for matching C-wide-string-typed values.
 TEST(GlobalWideHasSubstrTest, WorksForCStrings) {
   const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
   EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
   EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
   EXPECT_TRUE(m2.Matches(L"I love food."));
   EXPECT_FALSE(m2.Matches(L"tofo"));
   EXPECT_FALSE(m2.Matches(NULL));
 }
 
 // Tests that HasSubstr(s) describes itself properly.
 TEST(GlobalWideHasSubstrTest, CanDescribeSelf) {
   Matcher< ::wstring> m = HasSubstr(L"foo\n\"");
   EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
 }
 
 // Tests StartsWith(s).
 
 TEST(GlobalWideStartsWithTest, MatchesStringWithGivenPrefix) {
   const Matcher<const wchar_t*> m1 = StartsWith(::wstring(L""));
   EXPECT_TRUE(m1.Matches(L"Hi"));
   EXPECT_TRUE(m1.Matches(L""));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const ::wstring&> m2 = StartsWith(L"Hi");
   EXPECT_TRUE(m2.Matches(L"Hi"));
   EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
   EXPECT_TRUE(m2.Matches(L"High"));
   EXPECT_FALSE(m2.Matches(L"H"));
   EXPECT_FALSE(m2.Matches(L" Hi"));
 }
 
 TEST(GlobalWideStartsWithTest, CanDescribeSelf) {
   Matcher<const ::wstring> m = StartsWith(L"Hi");
   EXPECT_EQ("starts with L\"Hi\"", Describe(m));
 }
 
 // Tests EndsWith(s).
 
 TEST(GlobalWideEndsWithTest, MatchesStringWithGivenSuffix) {
   const Matcher<const wchar_t*> m1 = EndsWith(L"");
   EXPECT_TRUE(m1.Matches(L"Hi"));
   EXPECT_TRUE(m1.Matches(L""));
   EXPECT_FALSE(m1.Matches(NULL));
 
   const Matcher<const ::wstring&> m2 = EndsWith(::wstring(L"Hi"));
   EXPECT_TRUE(m2.Matches(L"Hi"));
   EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
   EXPECT_TRUE(m2.Matches(L"Super Hi"));
   EXPECT_FALSE(m2.Matches(L"i"));
   EXPECT_FALSE(m2.Matches(L"Hi "));
 }
 
 TEST(GlobalWideEndsWithTest, CanDescribeSelf) {
   Matcher<const ::wstring> m = EndsWith(L"Hi");
   EXPECT_EQ("ends with L\"Hi\"", Describe(m));
 }
 
 #endif  // GTEST_HAS_GLOBAL_WSTRING
 
 
 typedef ::testing::tuple<long, int> Tuple2;  // NOLINT
 
 // Tests that Eq() matches a 2-tuple where the first field == the
 // second field.
 TEST(Eq2Test, MatchesEqualArguments) {
   Matcher<const Tuple2&> m = Eq();
   EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
   EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
 }
 
 // Tests that Eq() describes itself properly.
 TEST(Eq2Test, CanDescribeSelf) {
   Matcher<const Tuple2&> m = Eq();
   EXPECT_EQ("are an equal pair", Describe(m));
 }
 
 // Tests that Ge() matches a 2-tuple where the first field >= the
 // second field.
 TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) {
   Matcher<const Tuple2&> m = Ge();
   EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
   EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
   EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
 }
 
 // Tests that Ge() describes itself properly.
 TEST(Ge2Test, CanDescribeSelf) {
   Matcher<const Tuple2&> m = Ge();
   EXPECT_EQ("are a pair where the first >= the second", Describe(m));
 }
 
 // Tests that Gt() matches a 2-tuple where the first field > the
 // second field.
 TEST(Gt2Test, MatchesGreaterThanArguments) {
   Matcher<const Tuple2&> m = Gt();
   EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
   EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
   EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
 }
 
 // Tests that Gt() describes itself properly.
 TEST(Gt2Test, CanDescribeSelf) {
   Matcher<const Tuple2&> m = Gt();
   EXPECT_EQ("are a pair where the first > the second", Describe(m));
 }
 
 // Tests that Le() matches a 2-tuple where the first field <= the
 // second field.
 TEST(Le2Test, MatchesLessThanOrEqualArguments) {
   Matcher<const Tuple2&> m = Le();
   EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
   EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
   EXPECT_FALSE(m.Matches(Tuple2(5L, 4)));
 }
 
 // Tests that Le() describes itself properly.
 TEST(Le2Test, CanDescribeSelf) {
   Matcher<const Tuple2&> m = Le();
   EXPECT_EQ("are a pair where the first <= the second", Describe(m));
 }
 
 // Tests that Lt() matches a 2-tuple where the first field < the
 // second field.
 TEST(Lt2Test, MatchesLessThanArguments) {
   Matcher<const Tuple2&> m = Lt();
   EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
   EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
   EXPECT_FALSE(m.Matches(Tuple2(5L, 4)));
 }
 
 // Tests that Lt() describes itself properly.
 TEST(Lt2Test, CanDescribeSelf) {
   Matcher<const Tuple2&> m = Lt();
   EXPECT_EQ("are a pair where the first < the second", Describe(m));
 }
 
 // Tests that Ne() matches a 2-tuple where the first field != the
 // second field.
 TEST(Ne2Test, MatchesUnequalArguments) {
   Matcher<const Tuple2&> m = Ne();
   EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
   EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
   EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
 }
 
 // Tests that Ne() describes itself properly.
 TEST(Ne2Test, CanDescribeSelf) {
   Matcher<const Tuple2&> m = Ne();
   EXPECT_EQ("are an unequal pair", Describe(m));
 }
 
 // Tests that FloatEq() matches a 2-tuple where
 // FloatEq(first field) matches the second field.
 TEST(FloatEq2Test, MatchesEqualArguments) {
   typedef ::testing::tuple<float, float> Tpl;
   Matcher<const Tpl&> m = FloatEq();
   EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
   EXPECT_TRUE(m.Matches(Tpl(0.3f, 0.1f + 0.1f + 0.1f)));
   EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f)));
 }
 
 // Tests that FloatEq() describes itself properly.
 TEST(FloatEq2Test, CanDescribeSelf) {
   Matcher<const ::testing::tuple<float, float>&> m = FloatEq();
   EXPECT_EQ("are an almost-equal pair", Describe(m));
 }
 
 // Tests that NanSensitiveFloatEq() matches a 2-tuple where
 // NanSensitiveFloatEq(first field) matches the second field.
 TEST(NanSensitiveFloatEqTest, MatchesEqualArgumentsWithNaN) {
   typedef ::testing::tuple<float, float> Tpl;
   Matcher<const Tpl&> m = NanSensitiveFloatEq();
   EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
   EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(),
                             std::numeric_limits<float>::quiet_NaN())));
   EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f)));
   EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN())));
   EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f)));
 }
 
 // Tests that NanSensitiveFloatEq() describes itself properly.
 TEST(NanSensitiveFloatEqTest, CanDescribeSelfWithNaNs) {
   Matcher<const ::testing::tuple<float, float>&> m = NanSensitiveFloatEq();
   EXPECT_EQ("are an almost-equal pair", Describe(m));
 }
 
 // Tests that DoubleEq() matches a 2-tuple where
 // DoubleEq(first field) matches the second field.
 TEST(DoubleEq2Test, MatchesEqualArguments) {
   typedef ::testing::tuple<double, double> Tpl;
   Matcher<const Tpl&> m = DoubleEq();
   EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0)));
   EXPECT_TRUE(m.Matches(Tpl(0.3, 0.1 + 0.1 + 0.1)));
   EXPECT_FALSE(m.Matches(Tpl(1.1, 1.0)));
 }
 
 // Tests that DoubleEq() describes itself properly.
 TEST(DoubleEq2Test, CanDescribeSelf) {
   Matcher<const ::testing::tuple<double, double>&> m = DoubleEq();
   EXPECT_EQ("are an almost-equal pair", Describe(m));
 }
 
 // Tests that NanSensitiveDoubleEq() matches a 2-tuple where
 // NanSensitiveDoubleEq(first field) matches the second field.
 TEST(NanSensitiveDoubleEqTest, MatchesEqualArgumentsWithNaN) {
   typedef ::testing::tuple<double, double> Tpl;
   Matcher<const Tpl&> m = NanSensitiveDoubleEq();
   EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
   EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(),
                             std::numeric_limits<double>::quiet_NaN())));
   EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f)));
   EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN())));
   EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f)));
 }
 
 // Tests that DoubleEq() describes itself properly.
 TEST(NanSensitiveDoubleEqTest, CanDescribeSelfWithNaNs) {
   Matcher<const ::testing::tuple<double, double>&> m = NanSensitiveDoubleEq();
   EXPECT_EQ("are an almost-equal pair", Describe(m));
 }
 
 // Tests that FloatEq() matches a 2-tuple where
 // FloatNear(first field, max_abs_error) matches the second field.
 TEST(FloatNear2Test, MatchesEqualArguments) {
   typedef ::testing::tuple<float, float> Tpl;
   Matcher<const Tpl&> m = FloatNear(0.5f);
   EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
   EXPECT_TRUE(m.Matches(Tpl(1.3f, 1.0f)));
   EXPECT_FALSE(m.Matches(Tpl(1.8f, 1.0f)));
 }
 
 // Tests that FloatNear() describes itself properly.
 TEST(FloatNear2Test, CanDescribeSelf) {
   Matcher<const ::testing::tuple<float, float>&> m = FloatNear(0.5f);
   EXPECT_EQ("are an almost-equal pair", Describe(m));
 }
 
 // Tests that NanSensitiveFloatNear() matches a 2-tuple where
 // NanSensitiveFloatNear(first field) matches the second field.
 TEST(NanSensitiveFloatNearTest, MatchesNearbyArgumentsWithNaN) {
   typedef ::testing::tuple<float, float> Tpl;
   Matcher<const Tpl&> m = NanSensitiveFloatNear(0.5f);
   EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
   EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f)));
   EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(),
                             std::numeric_limits<float>::quiet_NaN())));
   EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f)));
   EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN())));
   EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f)));
 }
 
 // Tests that NanSensitiveFloatNear() describes itself properly.
 TEST(NanSensitiveFloatNearTest, CanDescribeSelfWithNaNs) {
   Matcher<const ::testing::tuple<float, float>&> m =
       NanSensitiveFloatNear(0.5f);
   EXPECT_EQ("are an almost-equal pair", Describe(m));
 }
 
 // Tests that FloatEq() matches a 2-tuple where
 // DoubleNear(first field, max_abs_error) matches the second field.
 TEST(DoubleNear2Test, MatchesEqualArguments) {
   typedef ::testing::tuple<double, double> Tpl;
   Matcher<const Tpl&> m = DoubleNear(0.5);
   EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0)));
   EXPECT_TRUE(m.Matches(Tpl(1.3, 1.0)));
   EXPECT_FALSE(m.Matches(Tpl(1.8, 1.0)));
 }
 
 // Tests that DoubleNear() describes itself properly.
 TEST(DoubleNear2Test, CanDescribeSelf) {
   Matcher<const ::testing::tuple<double, double>&> m = DoubleNear(0.5);
   EXPECT_EQ("are an almost-equal pair", Describe(m));
 }
 
 // Tests that NanSensitiveDoubleNear() matches a 2-tuple where
 // NanSensitiveDoubleNear(first field) matches the second field.
 TEST(NanSensitiveDoubleNearTest, MatchesNearbyArgumentsWithNaN) {
   typedef ::testing::tuple<double, double> Tpl;
   Matcher<const Tpl&> m = NanSensitiveDoubleNear(0.5f);
   EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f)));
   EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f)));
   EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(),
                             std::numeric_limits<double>::quiet_NaN())));
   EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f)));
   EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN())));
   EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f)));
 }
 
 // Tests that NanSensitiveDoubleNear() describes itself properly.
 TEST(NanSensitiveDoubleNearTest, CanDescribeSelfWithNaNs) {
   Matcher<const ::testing::tuple<double, double>&> m =
       NanSensitiveDoubleNear(0.5f);
   EXPECT_EQ("are an almost-equal pair", Describe(m));
 }
 
 // Tests that Not(m) matches any value that doesn't match m.
 TEST(NotTest, NegatesMatcher) {
   Matcher<int> m;
   m = Not(Eq(2));
   EXPECT_TRUE(m.Matches(3));
   EXPECT_FALSE(m.Matches(2));
 }
 
 // Tests that Not(m) describes itself properly.
 TEST(NotTest, CanDescribeSelf) {
   Matcher<int> m = Not(Eq(5));
   EXPECT_EQ("isn't equal to 5", Describe(m));
 }
 
 // Tests that monomorphic matchers are safely cast by the Not matcher.
 TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) {
   // greater_than_5 is a monomorphic matcher.
   Matcher<int> greater_than_5 = Gt(5);
 
   Matcher<const int&> m = Not(greater_than_5);
   Matcher<int&> m2 = Not(greater_than_5);
   Matcher<int&> m3 = Not(m);
 }
 
 // Helper to allow easy testing of AllOf matchers with num parameters.
 void AllOfMatches(int num, const Matcher<int>& m) {
   SCOPED_TRACE(Describe(m));
   EXPECT_TRUE(m.Matches(0));
   for (int i = 1; i <= num; ++i) {
     EXPECT_FALSE(m.Matches(i));
   }
   EXPECT_TRUE(m.Matches(num + 1));
 }
 
 // Tests that AllOf(m1, ..., mn) matches any value that matches all of
 // the given matchers.
 TEST(AllOfTest, MatchesWhenAllMatch) {
   Matcher<int> m;
   m = AllOf(Le(2), Ge(1));
   EXPECT_TRUE(m.Matches(1));
   EXPECT_TRUE(m.Matches(2));
   EXPECT_FALSE(m.Matches(0));
   EXPECT_FALSE(m.Matches(3));
 
   m = AllOf(Gt(0), Ne(1), Ne(2));
   EXPECT_TRUE(m.Matches(3));
   EXPECT_FALSE(m.Matches(2));
   EXPECT_FALSE(m.Matches(1));
   EXPECT_FALSE(m.Matches(0));
 
   m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
   EXPECT_TRUE(m.Matches(4));
   EXPECT_FALSE(m.Matches(3));
   EXPECT_FALSE(m.Matches(2));
   EXPECT_FALSE(m.Matches(1));
   EXPECT_FALSE(m.Matches(0));
 
   m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
   EXPECT_TRUE(m.Matches(0));
   EXPECT_TRUE(m.Matches(1));
   EXPECT_FALSE(m.Matches(3));
 
   // The following tests for varying number of sub-matchers. Due to the way
   // the sub-matchers are handled it is enough to test every sub-matcher once
   // with sub-matchers using the same matcher type. Varying matcher types are
   // checked for above.
   AllOfMatches(2, AllOf(Ne(1), Ne(2)));
   AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3)));
   AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4)));
   AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5)));
   AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6)));
   AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7)));
   AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7),
                         Ne(8)));
   AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7),
                         Ne(8), Ne(9)));
   AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
                          Ne(9), Ne(10)));
 }
 
 #if GTEST_LANG_CXX11
 // Tests the variadic version of the AllOfMatcher.
 TEST(AllOfTest, VariadicMatchesWhenAllMatch) {
   // Make sure AllOf is defined in the right namespace and does not depend on
   // ADL.
   ::testing::AllOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
   Matcher<int> m = AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
                          Ne(9), Ne(10), Ne(11));
   EXPECT_THAT(Describe(m), EndsWith("and (isn't equal to 11))))))))))"));
   AllOfMatches(11, m);
   AllOfMatches(50, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
                          Ne(9), Ne(10), Ne(11), Ne(12), Ne(13), Ne(14), Ne(15),
                          Ne(16), Ne(17), Ne(18), Ne(19), Ne(20), Ne(21), Ne(22),
                          Ne(23), Ne(24), Ne(25), Ne(26), Ne(27), Ne(28), Ne(29),
                          Ne(30), Ne(31), Ne(32), Ne(33), Ne(34), Ne(35), Ne(36),
                          Ne(37), Ne(38), Ne(39), Ne(40), Ne(41), Ne(42), Ne(43),
                          Ne(44), Ne(45), Ne(46), Ne(47), Ne(48), Ne(49),
                          Ne(50)));
 }
 
 #endif  // GTEST_LANG_CXX11
 
 // Tests that AllOf(m1, ..., mn) describes itself properly.
 TEST(AllOfTest, CanDescribeSelf) {
   Matcher<int> m;
   m = AllOf(Le(2), Ge(1));
   EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m));
 
   m = AllOf(Gt(0), Ne(1), Ne(2));
   EXPECT_EQ("(is > 0) and "
             "((isn't equal to 1) and "
             "(isn't equal to 2))",
             Describe(m));
 
 
   m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
   EXPECT_EQ("((is > 0) and "
             "(isn't equal to 1)) and "
             "((isn't equal to 2) and "
             "(isn't equal to 3))",
             Describe(m));
 
 
   m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
   EXPECT_EQ("((is >= 0) and "
             "(is < 10)) and "
             "((isn't equal to 3) and "
             "((isn't equal to 5) and "
             "(isn't equal to 7)))",
             Describe(m));
 }
 
 // Tests that AllOf(m1, ..., mn) describes its negation properly.
 TEST(AllOfTest, CanDescribeNegation) {
   Matcher<int> m;
   m = AllOf(Le(2), Ge(1));
   EXPECT_EQ("(isn't <= 2) or "
             "(isn't >= 1)",
             DescribeNegation(m));
 
   m = AllOf(Gt(0), Ne(1), Ne(2));
   EXPECT_EQ("(isn't > 0) or "
             "((is equal to 1) or "
             "(is equal to 2))",
             DescribeNegation(m));
 
 
   m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
   EXPECT_EQ("((isn't > 0) or "
             "(is equal to 1)) or "
             "((is equal to 2) or "
             "(is equal to 3))",
             DescribeNegation(m));
 
 
   m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
   EXPECT_EQ("((isn't >= 0) or "
             "(isn't < 10)) or "
             "((is equal to 3) or "
             "((is equal to 5) or "
             "(is equal to 7)))",
             DescribeNegation(m));
 }
 
 // Tests that monomorphic matchers are safely cast by the AllOf matcher.
 TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) {
   // greater_than_5 and less_than_10 are monomorphic matchers.
   Matcher<int> greater_than_5 = Gt(5);
   Matcher<int> less_than_10 = Lt(10);
 
   Matcher<const int&> m = AllOf(greater_than_5, less_than_10);
   Matcher<int&> m2 = AllOf(greater_than_5, less_than_10);
   Matcher<int&> m3 = AllOf(greater_than_5, m2);
 
   // Tests that BothOf works when composing itself.
   Matcher<const int&> m4 = AllOf(greater_than_5, less_than_10, less_than_10);
   Matcher<int&> m5 = AllOf(greater_than_5, less_than_10, less_than_10);
 }
 
 TEST(AllOfTest, ExplainsResult) {
   Matcher<int> m;
 
   // Successful match.  Both matchers need to explain.  The second
   // matcher doesn't give an explanation, so only the first matcher's
   // explanation is printed.
   m = AllOf(GreaterThan(10), Lt(30));
   EXPECT_EQ("which is 15 more than 10", Explain(m, 25));
 
   // Successful match.  Both matchers need to explain.
   m = AllOf(GreaterThan(10), GreaterThan(20));
   EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20",
             Explain(m, 30));
 
   // Successful match.  All matchers need to explain.  The second
   // matcher doesn't given an explanation.
   m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20));
   EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20",
             Explain(m, 25));
 
   // Successful match.  All matchers need to explain.
   m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30));
   EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, "
             "and which is 10 more than 30",
             Explain(m, 40));
 
   // Failed match.  The first matcher, which failed, needs to
   // explain.
   m = AllOf(GreaterThan(10), GreaterThan(20));
   EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
 
   // Failed match.  The second matcher, which failed, needs to
   // explain.  Since it doesn't given an explanation, nothing is
   // printed.
   m = AllOf(GreaterThan(10), Lt(30));
   EXPECT_EQ("", Explain(m, 40));
 
   // Failed match.  The second matcher, which failed, needs to
   // explain.
   m = AllOf(GreaterThan(10), GreaterThan(20));
   EXPECT_EQ("which is 5 less than 20", Explain(m, 15));
 }
 
 // Helper to allow easy testing of AnyOf matchers with num parameters.
 void AnyOfMatches(int num, const Matcher<int>& m) {
   SCOPED_TRACE(Describe(m));
   EXPECT_FALSE(m.Matches(0));
   for (int i = 1; i <= num; ++i) {
     EXPECT_TRUE(m.Matches(i));
   }
   EXPECT_FALSE(m.Matches(num + 1));
 }
 
 // Tests that AnyOf(m1, ..., mn) matches any value that matches at
 // least one of the given matchers.
 TEST(AnyOfTest, MatchesWhenAnyMatches) {
   Matcher<int> m;
   m = AnyOf(Le(1), Ge(3));
   EXPECT_TRUE(m.Matches(1));
   EXPECT_TRUE(m.Matches(4));
   EXPECT_FALSE(m.Matches(2));
 
   m = AnyOf(Lt(0), Eq(1), Eq(2));
   EXPECT_TRUE(m.Matches(-1));
   EXPECT_TRUE(m.Matches(1));
   EXPECT_TRUE(m.Matches(2));
   EXPECT_FALSE(m.Matches(0));
 
   m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
   EXPECT_TRUE(m.Matches(-1));
   EXPECT_TRUE(m.Matches(1));
   EXPECT_TRUE(m.Matches(2));
   EXPECT_TRUE(m.Matches(3));
   EXPECT_FALSE(m.Matches(0));
 
   m = AnyOf(Le(0), Gt(10), 3, 5, 7);
   EXPECT_TRUE(m.Matches(0));
   EXPECT_TRUE(m.Matches(11));
   EXPECT_TRUE(m.Matches(3));
   EXPECT_FALSE(m.Matches(2));
 
   // The following tests for varying number of sub-matchers. Due to the way
   // the sub-matchers are handled it is enough to test every sub-matcher once
   // with sub-matchers using the same matcher type. Varying matcher types are
   // checked for above.
   AnyOfMatches(2, AnyOf(1, 2));
   AnyOfMatches(3, AnyOf(1, 2, 3));
   AnyOfMatches(4, AnyOf(1, 2, 3, 4));
   AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5));
   AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6));
   AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7));
   AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8));
   AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9));
   AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
 }
 
 #if GTEST_LANG_CXX11
 // Tests the variadic version of the AnyOfMatcher.
 TEST(AnyOfTest, VariadicMatchesWhenAnyMatches) {
   // Also make sure AnyOf is defined in the right namespace and does not depend
   // on ADL.
   Matcher<int> m = ::testing::AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
 
   EXPECT_THAT(Describe(m), EndsWith("or (is equal to 11))))))))))"));
   AnyOfMatches(11, m);
   AnyOfMatches(50, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
                          11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
                          21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
                          31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
                          41, 42, 43, 44, 45, 46, 47, 48, 49, 50));
 }
 
 // Tests the variadic version of the ElementsAreMatcher
 TEST(ElementsAreTest, HugeMatcher) {
   vector<int> test_vector{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
 
   EXPECT_THAT(test_vector,
               ElementsAre(Eq(1), Eq(2), Lt(13), Eq(4), Eq(5), Eq(6), Eq(7),
                           Eq(8), Eq(9), Eq(10), Gt(1), Eq(12)));
 }
 
 // Tests the variadic version of the UnorderedElementsAreMatcher
 TEST(ElementsAreTest, HugeMatcherStr) {
   vector<string> test_vector{
       "literal_string", "", "", "", "", "", "", "", "", "", "", ""};
 
   EXPECT_THAT(test_vector, UnorderedElementsAre("literal_string", _, _, _, _, _,
                                                 _, _, _, _, _, _));
 }
 
 // Tests the variadic version of the UnorderedElementsAreMatcher
 TEST(ElementsAreTest, HugeMatcherUnordered) {
   vector<int> test_vector{2, 1, 8, 5, 4, 6, 7, 3, 9, 12, 11, 10};
 
   EXPECT_THAT(test_vector, UnorderedElementsAre(
                                Eq(2), Eq(1), Gt(7), Eq(5), Eq(4), Eq(6), Eq(7),
                                Eq(3), Eq(9), Eq(12), Eq(11), Ne(122)));
 }
 
 #endif  // GTEST_LANG_CXX11
 
 // Tests that AnyOf(m1, ..., mn) describes itself properly.
 TEST(AnyOfTest, CanDescribeSelf) {
   Matcher<int> m;
   m = AnyOf(Le(1), Ge(3));
   EXPECT_EQ("(is <= 1) or (is >= 3)",
             Describe(m));
 
   m = AnyOf(Lt(0), Eq(1), Eq(2));
   EXPECT_EQ("(is < 0) or "
             "((is equal to 1) or (is equal to 2))",
             Describe(m));
 
   m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
   EXPECT_EQ("((is < 0) or "
             "(is equal to 1)) or "
             "((is equal to 2) or "
             "(is equal to 3))",
             Describe(m));
 
   m = AnyOf(Le(0), Gt(10), 3, 5, 7);
   EXPECT_EQ("((is <= 0) or "
             "(is > 10)) or "
             "((is equal to 3) or "
             "((is equal to 5) or "
             "(is equal to 7)))",
             Describe(m));
 }
 
 // Tests that AnyOf(m1, ..., mn) describes its negation properly.
 TEST(AnyOfTest, CanDescribeNegation) {
   Matcher<int> m;
   m = AnyOf(Le(1), Ge(3));
   EXPECT_EQ("(isn't <= 1) and (isn't >= 3)",
             DescribeNegation(m));
 
   m = AnyOf(Lt(0), Eq(1), Eq(2));
   EXPECT_EQ("(isn't < 0) and "
             "((isn't equal to 1) and (isn't equal to 2))",
             DescribeNegation(m));
 
   m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
   EXPECT_EQ("((isn't < 0) and "
             "(isn't equal to 1)) and "
             "((isn't equal to 2) and "
             "(isn't equal to 3))",
             DescribeNegation(m));
 
   m = AnyOf(Le(0), Gt(10), 3, 5, 7);
   EXPECT_EQ("((isn't <= 0) and "
             "(isn't > 10)) and "
             "((isn't equal to 3) and "
             "((isn't equal to 5) and "
             "(isn't equal to 7)))",
             DescribeNegation(m));
 }
 
 // Tests that monomorphic matchers are safely cast by the AnyOf matcher.
 TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) {
   // greater_than_5 and less_than_10 are monomorphic matchers.
   Matcher<int> greater_than_5 = Gt(5);
   Matcher<int> less_than_10 = Lt(10);
 
   Matcher<const int&> m = AnyOf(greater_than_5, less_than_10);
   Matcher<int&> m2 = AnyOf(greater_than_5, less_than_10);
   Matcher<int&> m3 = AnyOf(greater_than_5, m2);
 
   // Tests that EitherOf works when composing itself.
   Matcher<const int&> m4 = AnyOf(greater_than_5, less_than_10, less_than_10);
   Matcher<int&> m5 = AnyOf(greater_than_5, less_than_10, less_than_10);
 }
 
 TEST(AnyOfTest, ExplainsResult) {
   Matcher<int> m;
 
   // Failed match.  Both matchers need to explain.  The second
   // matcher doesn't give an explanation, so only the first matcher's
   // explanation is printed.
   m = AnyOf(GreaterThan(10), Lt(0));
   EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
 
   // Failed match.  Both matchers need to explain.
   m = AnyOf(GreaterThan(10), GreaterThan(20));
   EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20",
             Explain(m, 5));
 
   // Failed match.  All matchers need to explain.  The second
   // matcher doesn't given an explanation.
   m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30));
   EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30",
             Explain(m, 5));
 
   // Failed match.  All matchers need to explain.
   m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30));
   EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, "
             "and which is 25 less than 30",
             Explain(m, 5));
 
   // Successful match.  The first matcher, which succeeded, needs to
   // explain.
   m = AnyOf(GreaterThan(10), GreaterThan(20));
   EXPECT_EQ("which is 5 more than 10", Explain(m, 15));
 
   // Successful match.  The second matcher, which succeeded, needs to
   // explain.  Since it doesn't given an explanation, nothing is
   // printed.
   m = AnyOf(GreaterThan(10), Lt(30));
   EXPECT_EQ("", Explain(m, 0));
 
   // Successful match.  The second matcher, which succeeded, needs to
   // explain.
   m = AnyOf(GreaterThan(30), GreaterThan(20));
   EXPECT_EQ("which is 5 more than 20", Explain(m, 25));
 }
 
 // The following predicate function and predicate functor are for
 // testing the Truly(predicate) matcher.
 
 // Returns non-zero if the input is positive.  Note that the return
 // type of this function is not bool.  It's OK as Truly() accepts any
 // unary function or functor whose return type can be implicitly
 // converted to bool.
 int IsPositive(double x) {
   return x > 0 ? 1 : 0;
 }
 
 // This functor returns true if the input is greater than the given
 // number.
 class IsGreaterThan {
  public:
   explicit IsGreaterThan(int threshold) : threshold_(threshold) {}
 
   bool operator()(int n) const { return n > threshold_; }
 
  private:
   int threshold_;
 };
 
 // For testing Truly().
 const int foo = 0;
 
 // This predicate returns true iff the argument references foo and has
 // a zero value.
 bool ReferencesFooAndIsZero(const int& n) {
   return (&n == &foo) && (n == 0);
 }
 
 // Tests that Truly(predicate) matches what satisfies the given
 // predicate.
 TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) {
   Matcher<double> m = Truly(IsPositive);
   EXPECT_TRUE(m.Matches(2.0));
   EXPECT_FALSE(m.Matches(-1.5));
 }
 
 // Tests that Truly(predicate_functor) works too.
 TEST(TrulyTest, CanBeUsedWithFunctor) {
   Matcher<int> m = Truly(IsGreaterThan(5));
   EXPECT_TRUE(m.Matches(6));
   EXPECT_FALSE(m.Matches(4));
 }
 
 // A class that can be implicitly converted to bool.
 class ConvertibleToBool {
  public:
   explicit ConvertibleToBool(int number) : number_(number) {}
   operator bool() const { return number_ != 0; }
 
  private:
   int number_;
 };
 
 ConvertibleToBool IsNotZero(int number) {
   return ConvertibleToBool(number);
 }
 
 // Tests that the predicate used in Truly() may return a class that's
 // implicitly convertible to bool, even when the class has no
 // operator!().
 TEST(TrulyTest, PredicateCanReturnAClassConvertibleToBool) {
   Matcher<int> m = Truly(IsNotZero);
   EXPECT_TRUE(m.Matches(1));
   EXPECT_FALSE(m.Matches(0));
 }
 
 // Tests that Truly(predicate) can describe itself properly.
 TEST(TrulyTest, CanDescribeSelf) {
   Matcher<double> m = Truly(IsPositive);
   EXPECT_EQ("satisfies the given predicate",
             Describe(m));
 }
 
 // Tests that Truly(predicate) works when the matcher takes its
 // argument by reference.
 TEST(TrulyTest, WorksForByRefArguments) {
   Matcher<const int&> m = Truly(ReferencesFooAndIsZero);
   EXPECT_TRUE(m.Matches(foo));
   int n = 0;
   EXPECT_FALSE(m.Matches(n));
 }
 
 // Tests that Matches(m) is a predicate satisfied by whatever that
 // matches matcher m.
 TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) {
   EXPECT_TRUE(Matches(Ge(0))(1));
   EXPECT_FALSE(Matches(Eq('a'))('b'));
 }
 
 // Tests that Matches(m) works when the matcher takes its argument by
 // reference.
 TEST(MatchesTest, WorksOnByRefArguments) {
   int m = 0, n = 0;
   EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n));
   EXPECT_FALSE(Matches(Ref(m))(n));
 }
 
 // Tests that a Matcher on non-reference type can be used in
 // Matches().
 TEST(MatchesTest, WorksWithMatcherOnNonRefType) {
   Matcher<int> eq5 = Eq(5);
   EXPECT_TRUE(Matches(eq5)(5));
   EXPECT_FALSE(Matches(eq5)(2));
 }
 
 // Tests Value(value, matcher).  Since Value() is a simple wrapper for
 // Matches(), which has been tested already, we don't spend a lot of
 // effort on testing Value().
 TEST(ValueTest, WorksWithPolymorphicMatcher) {
   EXPECT_TRUE(Value("hi", StartsWith("h")));
   EXPECT_FALSE(Value(5, Gt(10)));
 }
 
 TEST(ValueTest, WorksWithMonomorphicMatcher) {
   const Matcher<int> is_zero = Eq(0);
   EXPECT_TRUE(Value(0, is_zero));
   EXPECT_FALSE(Value('a', is_zero));
 
   int n = 0;
   const Matcher<const int&> ref_n = Ref(n);
   EXPECT_TRUE(Value(n, ref_n));
   EXPECT_FALSE(Value(1, ref_n));
 }
 
 TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) {
   StringMatchResultListener listener1;
   EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1));
   EXPECT_EQ("% 2 == 0", listener1.str());
 
   StringMatchResultListener listener2;
   EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2));
   EXPECT_EQ("", listener2.str());
 }
 
 TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) {
   const Matcher<int> is_even = PolymorphicIsEven();
   StringMatchResultListener listener1;
   EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1));
   EXPECT_EQ("% 2 == 0", listener1.str());
 
   const Matcher<const double&> is_zero = Eq(0);
   StringMatchResultListener listener2;
   EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2));
   EXPECT_EQ("", listener2.str());
 }
 
 MATCHER_P(Really, inner_matcher, "") {
   return ExplainMatchResult(inner_matcher, arg, result_listener);
 }
 
 TEST(ExplainMatchResultTest, WorksInsideMATCHER) {
   EXPECT_THAT(0, Really(Eq(0)));
 }
 
 TEST(DescribeMatcherTest, WorksWithValue) {
   EXPECT_EQ("is equal to 42", DescribeMatcher<int>(42));
   EXPECT_EQ("isn't equal to 42", DescribeMatcher<int>(42, true));
 }
 
 TEST(DescribeMatcherTest, WorksWithMonomorphicMatcher) {
   const Matcher<int> monomorphic = Le(0);
   EXPECT_EQ("is <= 0", DescribeMatcher<int>(monomorphic));
   EXPECT_EQ("isn't <= 0", DescribeMatcher<int>(monomorphic, true));
 }
 
 TEST(DescribeMatcherTest, WorksWithPolymorphicMatcher) {
   EXPECT_EQ("is even", DescribeMatcher<int>(PolymorphicIsEven()));
   EXPECT_EQ("is odd", DescribeMatcher<int>(PolymorphicIsEven(), true));
 }
 
 TEST(AllArgsTest, WorksForTuple) {
   EXPECT_THAT(make_tuple(1, 2L), AllArgs(Lt()));
   EXPECT_THAT(make_tuple(2L, 1), Not(AllArgs(Lt())));
 }
 
 TEST(AllArgsTest, WorksForNonTuple) {
   EXPECT_THAT(42, AllArgs(Gt(0)));
   EXPECT_THAT('a', Not(AllArgs(Eq('b'))));
 }
 
 class AllArgsHelper {
  public:
   AllArgsHelper() {}
 
   MOCK_METHOD2(Helper, int(char x, int y));
 
  private:
   GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper);
 };
 
 TEST(AllArgsTest, WorksInWithClause) {
   AllArgsHelper helper;
   ON_CALL(helper, Helper(_, _))
       .With(AllArgs(Lt()))
       .WillByDefault(Return(1));
   EXPECT_CALL(helper, Helper(_, _));
   EXPECT_CALL(helper, Helper(_, _))
       .With(AllArgs(Gt()))
       .WillOnce(Return(2));
 
   EXPECT_EQ(1, helper.Helper('\1', 2));
   EXPECT_EQ(2, helper.Helper('a', 1));
 }
 
 // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value
 // matches the matcher.
 TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) {
   ASSERT_THAT(5, Ge(2)) << "This should succeed.";
   ASSERT_THAT("Foo", EndsWith("oo"));
   EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too.";
   EXPECT_THAT("Hello", StartsWith("Hell"));
 }
 
 // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value
 // doesn't match the matcher.
 TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) {
   // 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(),
   // which cannot reference auto variables.
   static unsigned short n;  // NOLINT
   n = 5;
 
   // VC++ prior to version 8.0 SP1 has a bug where it will not see any
   // functions declared in the namespace scope from within nested classes.
   // EXPECT/ASSERT_(NON)FATAL_FAILURE macros use nested classes so that all
   // namespace-level functions invoked inside them need to be explicitly
   // resolved.
   EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Gt(10)),
                        "Value of: n\n"
                        "Expected: is > 10\n"
                        "  Actual: 5" + OfType("unsigned short"));
   n = 0;
   EXPECT_NONFATAL_FAILURE(
       EXPECT_THAT(n, ::testing::AllOf(::testing::Le(7), ::testing::Ge(5))),
       "Value of: n\n"
       "Expected: (is <= 7) and (is >= 5)\n"
       "  Actual: 0" + OfType("unsigned short"));
 }
 
 // Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument
 // has a reference type.
 TEST(MatcherAssertionTest, WorksForByRefArguments) {
   // We use a static variable here as EXPECT_FATAL_FAILURE() cannot
   // reference auto variables.
   static int n;
   n = 0;
   EXPECT_THAT(n, AllOf(Le(7), Ref(n)));
   EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))),
                        "Value of: n\n"
                        "Expected: does not reference the variable @");
   // Tests the "Actual" part.
   EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))),
                        "Actual: 0" + OfType("int") + ", which is located @");
 }
 
 #if !GTEST_OS_SYMBIAN
 // Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is
 // monomorphic.
 
 // ASSERT_THAT("hello", starts_with_he) fails to compile with Nokia's
 // Symbian compiler: it tries to compile
 // template<T, U> class MatcherCastImpl { ...
 //   virtual bool MatchAndExplain(T x, ...) const {
 //     return source_matcher_.MatchAndExplain(static_cast<U>(x), ...);
 // with U == string and T == const char*
 // With ASSERT_THAT("hello"...) changed to ASSERT_THAT(string("hello") ... )
 // the compiler silently crashes with no output.
 // If MatcherCastImpl is changed to use U(x) instead of static_cast<U>(x)
 // the code compiles but the converted string is bogus.
 TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) {
   Matcher<const char*> starts_with_he = StartsWith("he");
   ASSERT_THAT("hello", starts_with_he);
 
   Matcher<const std::string&> ends_with_ok = EndsWith("ok");
   ASSERT_THAT("book", ends_with_ok);
   const std::string bad = "bad";
   EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok),
                           "Value of: bad\n"
                           "Expected: ends with \"ok\"\n"
                           "  Actual: \"bad\"");
   Matcher<int> is_greater_than_5 = Gt(5);
   EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5),
                           "Value of: 5\n"
                           "Expected: is > 5\n"
                           "  Actual: 5" + OfType("int"));
 }
 #endif  // !GTEST_OS_SYMBIAN
 
 // Tests floating-point matchers.
 template <typename RawType>
 class FloatingPointTest : public testing::Test {
  protected:
   typedef testing::internal::FloatingPoint<RawType> Floating;
   typedef typename Floating::Bits Bits;
 
   FloatingPointTest()
       : max_ulps_(Floating::kMaxUlps),
         zero_bits_(Floating(0).bits()),
         one_bits_(Floating(1).bits()),
         infinity_bits_(Floating(Floating::Infinity()).bits()),
         close_to_positive_zero_(
             Floating::ReinterpretBits(zero_bits_ + max_ulps_/2)),
         close_to_negative_zero_(
             -Floating::ReinterpretBits(zero_bits_ + max_ulps_ - max_ulps_/2)),
         further_from_negative_zero_(-Floating::ReinterpretBits(
             zero_bits_ + max_ulps_ + 1 - max_ulps_/2)),
         close_to_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_)),
         further_from_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_ + 1)),
         infinity_(Floating::Infinity()),
         close_to_infinity_(
             Floating::ReinterpretBits(infinity_bits_ - max_ulps_)),
         further_from_infinity_(
             Floating::ReinterpretBits(infinity_bits_ - max_ulps_ - 1)),
         max_(Floating::Max()),
         nan1_(Floating::ReinterpretBits(Floating::kExponentBitMask | 1)),
         nan2_(Floating::ReinterpretBits(Floating::kExponentBitMask | 200)) {
   }
 
   void TestSize() {
     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
   }
 
   // A battery of tests for FloatingEqMatcher::Matches.
   // matcher_maker is a pointer to a function which creates a FloatingEqMatcher.
   void TestMatches(
       testing::internal::FloatingEqMatcher<RawType> (*matcher_maker)(RawType)) {
     Matcher<RawType> m1 = matcher_maker(0.0);
     EXPECT_TRUE(m1.Matches(-0.0));
     EXPECT_TRUE(m1.Matches(close_to_positive_zero_));
     EXPECT_TRUE(m1.Matches(close_to_negative_zero_));
     EXPECT_FALSE(m1.Matches(1.0));
 
     Matcher<RawType> m2 = matcher_maker(close_to_positive_zero_);
     EXPECT_FALSE(m2.Matches(further_from_negative_zero_));
 
     Matcher<RawType> m3 = matcher_maker(1.0);
     EXPECT_TRUE(m3.Matches(close_to_one_));
     EXPECT_FALSE(m3.Matches(further_from_one_));
 
     // Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above.
     EXPECT_FALSE(m3.Matches(0.0));
 
     Matcher<RawType> m4 = matcher_maker(-infinity_);
     EXPECT_TRUE(m4.Matches(-close_to_infinity_));
 
     Matcher<RawType> m5 = matcher_maker(infinity_);
     EXPECT_TRUE(m5.Matches(close_to_infinity_));
 
     // This is interesting as the representations of infinity_ and nan1_
     // are only 1 DLP apart.
     EXPECT_FALSE(m5.Matches(nan1_));
 
     // matcher_maker can produce a Matcher<const RawType&>, which is needed in
     // some cases.
     Matcher<const RawType&> m6 = matcher_maker(0.0);
     EXPECT_TRUE(m6.Matches(-0.0));
     EXPECT_TRUE(m6.Matches(close_to_positive_zero_));
     EXPECT_FALSE(m6.Matches(1.0));
 
     // matcher_maker can produce a Matcher<RawType&>, which is needed in some
     // cases.
     Matcher<RawType&> m7 = matcher_maker(0.0);
     RawType x = 0.0;
     EXPECT_TRUE(m7.Matches(x));
     x = 0.01f;
     EXPECT_FALSE(m7.Matches(x));
   }
 
   // Pre-calculated numbers to be used by the tests.
 
   const Bits max_ulps_;
 
   const Bits zero_bits_;  // The bits that represent 0.0.
   const Bits one_bits_;  // The bits that represent 1.0.
   const Bits infinity_bits_;  // The bits that represent +infinity.
 
   // Some numbers close to 0.0.
   const RawType close_to_positive_zero_;
   const RawType close_to_negative_zero_;
   const RawType further_from_negative_zero_;
 
   // Some numbers close to 1.0.
   const RawType close_to_one_;
   const RawType further_from_one_;
 
   // Some numbers close to +infinity.
   const RawType infinity_;
   const RawType close_to_infinity_;
   const RawType further_from_infinity_;
 
   // Maximum representable value that's not infinity.
   const RawType max_;
 
   // Some NaNs.
   const RawType nan1_;
   const RawType nan2_;
 };
 
 // Tests floating-point matchers with fixed epsilons.
 template <typename RawType>
 class FloatingPointNearTest : public FloatingPointTest<RawType> {
  protected:
   typedef FloatingPointTest<RawType> ParentType;
 
   // A battery of tests for FloatingEqMatcher::Matches with a fixed epsilon.
   // matcher_maker is a pointer to a function which creates a FloatingEqMatcher.
   void TestNearMatches(
       testing::internal::FloatingEqMatcher<RawType>
           (*matcher_maker)(RawType, RawType)) {
     Matcher<RawType> m1 = matcher_maker(0.0, 0.0);
     EXPECT_TRUE(m1.Matches(0.0));
     EXPECT_TRUE(m1.Matches(-0.0));
     EXPECT_FALSE(m1.Matches(ParentType::close_to_positive_zero_));
     EXPECT_FALSE(m1.Matches(ParentType::close_to_negative_zero_));
     EXPECT_FALSE(m1.Matches(1.0));
 
     Matcher<RawType> m2 = matcher_maker(0.0, 1.0);
     EXPECT_TRUE(m2.Matches(0.0));
     EXPECT_TRUE(m2.Matches(-0.0));
     EXPECT_TRUE(m2.Matches(1.0));
     EXPECT_TRUE(m2.Matches(-1.0));
     EXPECT_FALSE(m2.Matches(ParentType::close_to_one_));
     EXPECT_FALSE(m2.Matches(-ParentType::close_to_one_));
 
     // Check that inf matches inf, regardless of the of the specified max
     // absolute error.
     Matcher<RawType> m3 = matcher_maker(ParentType::infinity_, 0.0);
     EXPECT_TRUE(m3.Matches(ParentType::infinity_));
     EXPECT_FALSE(m3.Matches(ParentType::close_to_infinity_));
     EXPECT_FALSE(m3.Matches(-ParentType::infinity_));
 
     Matcher<RawType> m4 = matcher_maker(-ParentType::infinity_, 0.0);
     EXPECT_TRUE(m4.Matches(-ParentType::infinity_));
     EXPECT_FALSE(m4.Matches(-ParentType::close_to_infinity_));
     EXPECT_FALSE(m4.Matches(ParentType::infinity_));
 
     // Test various overflow scenarios.
     Matcher<RawType> m5 = matcher_maker(ParentType::max_, ParentType::max_);
     EXPECT_TRUE(m5.Matches(ParentType::max_));
     EXPECT_FALSE(m5.Matches(-ParentType::max_));
 
     Matcher<RawType> m6 = matcher_maker(-ParentType::max_, ParentType::max_);
     EXPECT_FALSE(m6.Matches(ParentType::max_));
     EXPECT_TRUE(m6.Matches(-ParentType::max_));
 
     Matcher<RawType> m7 = matcher_maker(ParentType::max_, 0);
     EXPECT_TRUE(m7.Matches(ParentType::max_));
     EXPECT_FALSE(m7.Matches(-ParentType::max_));
 
     Matcher<RawType> m8 = matcher_maker(-ParentType::max_, 0);
     EXPECT_FALSE(m8.Matches(ParentType::max_));
     EXPECT_TRUE(m8.Matches(-ParentType::max_));
 
     // The difference between max() and -max() normally overflows to infinity,
     // but it should still match if the max_abs_error is also infinity.
     Matcher<RawType> m9 = matcher_maker(
         ParentType::max_, ParentType::infinity_);
     EXPECT_TRUE(m8.Matches(-ParentType::max_));
 
     // matcher_maker can produce a Matcher<const RawType&>, which is needed in
     // some cases.
     Matcher<const RawType&> m10 = matcher_maker(0.0, 1.0);
     EXPECT_TRUE(m10.Matches(-0.0));
     EXPECT_TRUE(m10.Matches(ParentType::close_to_positive_zero_));
     EXPECT_FALSE(m10.Matches(ParentType::close_to_one_));
 
     // matcher_maker can produce a Matcher<RawType&>, which is needed in some
     // cases.
     Matcher<RawType&> m11 = matcher_maker(0.0, 1.0);
     RawType x = 0.0;
     EXPECT_TRUE(m11.Matches(x));
     x = 1.0f;
     EXPECT_TRUE(m11.Matches(x));
     x = -1.0f;
     EXPECT_TRUE(m11.Matches(x));
     x = 1.1f;
     EXPECT_FALSE(m11.Matches(x));
     x = -1.1f;
     EXPECT_FALSE(m11.Matches(x));
   }
 };
 
 // Instantiate FloatingPointTest for testing floats.
 typedef FloatingPointTest<float> FloatTest;
 
 TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) {
   TestMatches(&FloatEq);
 }
 
 TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) {
   TestMatches(&NanSensitiveFloatEq);
 }
 
 TEST_F(FloatTest, FloatEqCannotMatchNaN) {
   // FloatEq never matches NaN.
   Matcher<float> m = FloatEq(nan1_);
   EXPECT_FALSE(m.Matches(nan1_));
   EXPECT_FALSE(m.Matches(nan2_));
   EXPECT_FALSE(m.Matches(1.0));
 }
 
 TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) {
   // NanSensitiveFloatEq will match NaN.
   Matcher<float> m = NanSensitiveFloatEq(nan1_);
   EXPECT_TRUE(m.Matches(nan1_));
   EXPECT_TRUE(m.Matches(nan2_));
   EXPECT_FALSE(m.Matches(1.0));
 }
 
 TEST_F(FloatTest, FloatEqCanDescribeSelf) {
   Matcher<float> m1 = FloatEq(2.0f);
   EXPECT_EQ("is approximately 2", Describe(m1));
   EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
 
   Matcher<float> m2 = FloatEq(0.5f);
   EXPECT_EQ("is approximately 0.5", Describe(m2));
   EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
 
   Matcher<float> m3 = FloatEq(nan1_);
   EXPECT_EQ("never matches", Describe(m3));
   EXPECT_EQ("is anything", DescribeNegation(m3));
 }
 
 TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) {
   Matcher<float> m1 = NanSensitiveFloatEq(2.0f);
   EXPECT_EQ("is approximately 2", Describe(m1));
   EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
 
   Matcher<float> m2 = NanSensitiveFloatEq(0.5f);
   EXPECT_EQ("is approximately 0.5", Describe(m2));
   EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
 
   Matcher<float> m3 = NanSensitiveFloatEq(nan1_);
   EXPECT_EQ("is NaN", Describe(m3));
   EXPECT_EQ("isn't NaN", DescribeNegation(m3));
 }
 
 // Instantiate FloatingPointTest for testing floats with a user-specified
 // max absolute error.
 typedef FloatingPointNearTest<float> FloatNearTest;
 
 TEST_F(FloatNearTest, FloatNearMatches) {
   TestNearMatches(&FloatNear);
 }
 
 TEST_F(FloatNearTest, NanSensitiveFloatNearApproximatelyMatchesFloats) {
   TestNearMatches(&NanSensitiveFloatNear);
 }
 
 TEST_F(FloatNearTest, FloatNearCanDescribeSelf) {
   Matcher<float> m1 = FloatNear(2.0f, 0.5f);
   EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1));
   EXPECT_EQ(
       "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
 
   Matcher<float> m2 = FloatNear(0.5f, 0.5f);
   EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2));
   EXPECT_EQ(
       "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
 
   Matcher<float> m3 = FloatNear(nan1_, 0.0);
   EXPECT_EQ("never matches", Describe(m3));
   EXPECT_EQ("is anything", DescribeNegation(m3));
 }
 
 TEST_F(FloatNearTest, NanSensitiveFloatNearCanDescribeSelf) {
   Matcher<float> m1 = NanSensitiveFloatNear(2.0f, 0.5f);
   EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1));
   EXPECT_EQ(
       "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
 
   Matcher<float> m2 = NanSensitiveFloatNear(0.5f, 0.5f);
   EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2));
   EXPECT_EQ(
       "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
 
   Matcher<float> m3 = NanSensitiveFloatNear(nan1_, 0.1f);
   EXPECT_EQ("is NaN", Describe(m3));
   EXPECT_EQ("isn't NaN", DescribeNegation(m3));
 }
 
 TEST_F(FloatNearTest, FloatNearCannotMatchNaN) {
   // FloatNear never matches NaN.
   Matcher<float> m = FloatNear(ParentType::nan1_, 0.1f);
   EXPECT_FALSE(m.Matches(nan1_));
   EXPECT_FALSE(m.Matches(nan2_));
   EXPECT_FALSE(m.Matches(1.0));
 }
 
 TEST_F(FloatNearTest, NanSensitiveFloatNearCanMatchNaN) {
   // NanSensitiveFloatNear will match NaN.
   Matcher<float> m = NanSensitiveFloatNear(nan1_, 0.1f);
   EXPECT_TRUE(m.Matches(nan1_));
   EXPECT_TRUE(m.Matches(nan2_));
   EXPECT_FALSE(m.Matches(1.0));
 }
 
 // Instantiate FloatingPointTest for testing doubles.
 typedef FloatingPointTest<double> DoubleTest;
 
 TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) {
   TestMatches(&DoubleEq);
 }
 
 TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) {
   TestMatches(&NanSensitiveDoubleEq);
 }
 
 TEST_F(DoubleTest, DoubleEqCannotMatchNaN) {
   // DoubleEq never matches NaN.
   Matcher<double> m = DoubleEq(nan1_);
   EXPECT_FALSE(m.Matches(nan1_));
   EXPECT_FALSE(m.Matches(nan2_));
   EXPECT_FALSE(m.Matches(1.0));
 }
 
 TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) {
   // NanSensitiveDoubleEq will match NaN.
   Matcher<double> m = NanSensitiveDoubleEq(nan1_);
   EXPECT_TRUE(m.Matches(nan1_));
   EXPECT_TRUE(m.Matches(nan2_));
   EXPECT_FALSE(m.Matches(1.0));
 }
 
 TEST_F(DoubleTest, DoubleEqCanDescribeSelf) {
   Matcher<double> m1 = DoubleEq(2.0);
   EXPECT_EQ("is approximately 2", Describe(m1));
   EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
 
   Matcher<double> m2 = DoubleEq(0.5);
   EXPECT_EQ("is approximately 0.5", Describe(m2));
   EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
 
   Matcher<double> m3 = DoubleEq(nan1_);
   EXPECT_EQ("never matches", Describe(m3));
   EXPECT_EQ("is anything", DescribeNegation(m3));
 }
 
 TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) {
   Matcher<double> m1 = NanSensitiveDoubleEq(2.0);
   EXPECT_EQ("is approximately 2", Describe(m1));
   EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
 
   Matcher<double> m2 = NanSensitiveDoubleEq(0.5);
   EXPECT_EQ("is approximately 0.5", Describe(m2));
   EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
 
   Matcher<double> m3 = NanSensitiveDoubleEq(nan1_);
   EXPECT_EQ("is NaN", Describe(m3));
   EXPECT_EQ("isn't NaN", DescribeNegation(m3));
 }
 
 // Instantiate FloatingPointTest for testing floats with a user-specified
 // max absolute error.
 typedef FloatingPointNearTest<double> DoubleNearTest;
 
 TEST_F(DoubleNearTest, DoubleNearMatches) {
   TestNearMatches(&DoubleNear);
 }
 
 TEST_F(DoubleNearTest, NanSensitiveDoubleNearApproximatelyMatchesDoubles) {
   TestNearMatches(&NanSensitiveDoubleNear);
 }
 
 TEST_F(DoubleNearTest, DoubleNearCanDescribeSelf) {
   Matcher<double> m1 = DoubleNear(2.0, 0.5);
   EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1));
   EXPECT_EQ(
       "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
 
   Matcher<double> m2 = DoubleNear(0.5, 0.5);
   EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2));
   EXPECT_EQ(
       "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
 
   Matcher<double> m3 = DoubleNear(nan1_, 0.0);
   EXPECT_EQ("never matches", Describe(m3));
   EXPECT_EQ("is anything", DescribeNegation(m3));
 }
 
 TEST_F(DoubleNearTest, ExplainsResultWhenMatchFails) {
   EXPECT_EQ("", Explain(DoubleNear(2.0, 0.1), 2.05));
   EXPECT_EQ("which is 0.2 from 2", Explain(DoubleNear(2.0, 0.1), 2.2));
   EXPECT_EQ("which is -0.3 from 2", Explain(DoubleNear(2.0, 0.1), 1.7));
 
   const std::string explanation =
       Explain(DoubleNear(2.1, 1e-10), 2.1 + 1.2e-10);
   // Different C++ implementations may print floating-point numbers
   // slightly differently.
   EXPECT_TRUE(explanation == "which is 1.2e-10 from 2.1" ||  // GCC
               explanation == "which is 1.2e-010 from 2.1")   // MSVC
       << " where explanation is \"" << explanation << "\".";
 }
 
 TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanDescribeSelf) {
   Matcher<double> m1 = NanSensitiveDoubleNear(2.0, 0.5);
   EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1));
   EXPECT_EQ(
       "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
 
   Matcher<double> m2 = NanSensitiveDoubleNear(0.5, 0.5);
   EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2));
   EXPECT_EQ(
       "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
 
   Matcher<double> m3 = NanSensitiveDoubleNear(nan1_, 0.1);
   EXPECT_EQ("is NaN", Describe(m3));
   EXPECT_EQ("isn't NaN", DescribeNegation(m3));
 }
 
 TEST_F(DoubleNearTest, DoubleNearCannotMatchNaN) {
   // DoubleNear never matches NaN.
   Matcher<double> m = DoubleNear(ParentType::nan1_, 0.1);
   EXPECT_FALSE(m.Matches(nan1_));
   EXPECT_FALSE(m.Matches(nan2_));
   EXPECT_FALSE(m.Matches(1.0));
 }
 
 TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanMatchNaN) {
   // NanSensitiveDoubleNear will match NaN.
   Matcher<double> m = NanSensitiveDoubleNear(nan1_, 0.1);
   EXPECT_TRUE(m.Matches(nan1_));
   EXPECT_TRUE(m.Matches(nan2_));
   EXPECT_FALSE(m.Matches(1.0));
 }
 
 TEST(PointeeTest, RawPointer) {
   const Matcher<int*> m = Pointee(Ge(0));
 
   int n = 1;
   EXPECT_TRUE(m.Matches(&n));
   n = -1;
   EXPECT_FALSE(m.Matches(&n));
   EXPECT_FALSE(m.Matches(NULL));
 }
 
 TEST(PointeeTest, RawPointerToConst) {
   const Matcher<const double*> m = Pointee(Ge(0));
 
   double x = 1;
   EXPECT_TRUE(m.Matches(&x));
   x = -1;
   EXPECT_FALSE(m.Matches(&x));
   EXPECT_FALSE(m.Matches(NULL));
 }
 
 TEST(PointeeTest, ReferenceToConstRawPointer) {
   const Matcher<int* const &> m = Pointee(Ge(0));
 
   int n = 1;
   EXPECT_TRUE(m.Matches(&n));
   n = -1;
   EXPECT_FALSE(m.Matches(&n));
   EXPECT_FALSE(m.Matches(NULL));
 }
 
 TEST(PointeeTest, ReferenceToNonConstRawPointer) {
   const Matcher<double* &> m = Pointee(Ge(0));
 
   double x = 1.0;
   double* p = &x;
   EXPECT_TRUE(m.Matches(p));
   x = -1;
   EXPECT_FALSE(m.Matches(p));
   p = NULL;
   EXPECT_FALSE(m.Matches(p));
 }
 
 MATCHER_P(FieldIIs, inner_matcher, "") {
   return ExplainMatchResult(inner_matcher, arg.i, result_listener);
 }
 
 TEST(WhenDynamicCastToTest, SameType) {
   Derived derived;
   derived.i = 4;
 
   // Right type. A pointer is passed down.
   Base* as_base_ptr = &derived;
   EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Not(IsNull())));
   EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(4))));
   EXPECT_THAT(as_base_ptr,
               Not(WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(5)))));
 }
 
 TEST(WhenDynamicCastToTest, WrongTypes) {
   Base base;
   Derived derived;
   OtherDerived other_derived;
 
   // Wrong types. NULL is passed.
   EXPECT_THAT(&base, Not(WhenDynamicCastTo<Derived*>(Pointee(_))));
   EXPECT_THAT(&base, WhenDynamicCastTo<Derived*>(IsNull()));
   Base* as_base_ptr = &derived;
   EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<OtherDerived*>(Pointee(_))));
   EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<OtherDerived*>(IsNull()));
   as_base_ptr = &other_derived;
   EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<Derived*>(Pointee(_))));
   EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull()));
 }
 
 TEST(WhenDynamicCastToTest, AlreadyNull) {
   // Already NULL.
   Base* as_base_ptr = NULL;
   EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull()));
 }
 
 struct AmbiguousCastTypes {
   class VirtualDerived : public virtual Base {};
   class DerivedSub1 : public VirtualDerived {};
   class DerivedSub2 : public VirtualDerived {};
   class ManyDerivedInHierarchy : public DerivedSub1, public DerivedSub2 {};
 };
 
 TEST(WhenDynamicCastToTest, AmbiguousCast) {
   AmbiguousCastTypes::DerivedSub1 sub1;
   AmbiguousCastTypes::ManyDerivedInHierarchy many_derived;
   // Multiply derived from Base. dynamic_cast<> returns NULL.
   Base* as_base_ptr =
       static_cast<AmbiguousCastTypes::DerivedSub1*>(&many_derived);
   EXPECT_THAT(as_base_ptr,
               WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(IsNull()));
   as_base_ptr = &sub1;
   EXPECT_THAT(
       as_base_ptr,
       WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(Not(IsNull())));
 }
 
 TEST(WhenDynamicCastToTest, Describe) {
   Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_));
 #if GTEST_HAS_RTTI
   const std::string prefix =
       "when dynamic_cast to " + internal::GetTypeName<Derived*>() + ", ";
 #else  // GTEST_HAS_RTTI
   const std::string prefix = "when dynamic_cast, ";
 #endif  // GTEST_HAS_RTTI
   EXPECT_EQ(prefix + "points to a value that is anything", Describe(matcher));
   EXPECT_EQ(prefix + "does not point to a value that is anything",
             DescribeNegation(matcher));
 }
 
 TEST(WhenDynamicCastToTest, Explain) {
   Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_));
   Base* null = NULL;
   EXPECT_THAT(Explain(matcher, null), HasSubstr("NULL"));
   Derived derived;
   EXPECT_TRUE(matcher.Matches(&derived));
   EXPECT_THAT(Explain(matcher, &derived), HasSubstr("which points to "));
 
   // With references, the matcher itself can fail. Test for that one.
   Matcher<const Base&> ref_matcher = WhenDynamicCastTo<const OtherDerived&>(_);
   EXPECT_THAT(Explain(ref_matcher, derived),
               HasSubstr("which cannot be dynamic_cast"));
 }
 
 TEST(WhenDynamicCastToTest, GoodReference) {
   Derived derived;
   derived.i = 4;
   Base& as_base_ref = derived;
   EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(FieldIIs(4)));
   EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(Not(FieldIIs(5))));
 }
 
 TEST(WhenDynamicCastToTest, BadReference) {
   Derived derived;
   Base& as_base_ref = derived;
   EXPECT_THAT(as_base_ref, Not(WhenDynamicCastTo<const OtherDerived&>(_)));
 }
 
 // Minimal const-propagating pointer.
 template <typename T>
 class ConstPropagatingPtr {
  public:
   typedef T element_type;
 
   ConstPropagatingPtr() : val_() {}
   explicit ConstPropagatingPtr(T* t) : val_(t) {}
   ConstPropagatingPtr(const ConstPropagatingPtr& other) : val_(other.val_) {}
 
   T* get() { return val_; }
   T& operator*() { return *val_; }
   // Most smart pointers return non-const T* and T& from the next methods.
   const T* get() const { return val_; }
   const T& operator*() const { return *val_; }
 
  private:
   T* val_;
 };
 
 TEST(PointeeTest, WorksWithConstPropagatingPointers) {
   const Matcher< ConstPropagatingPtr<int> > m = Pointee(Lt(5));
   int three = 3;
   const ConstPropagatingPtr<int> co(&three);
   ConstPropagatingPtr<int> o(&three);
   EXPECT_TRUE(m.Matches(o));
   EXPECT_TRUE(m.Matches(co));
   *o = 6;
   EXPECT_FALSE(m.Matches(o));
   EXPECT_FALSE(m.Matches(ConstPropagatingPtr<int>()));
 }
 
 TEST(PointeeTest, NeverMatchesNull) {
   const Matcher<const char*> m = Pointee(_);
   EXPECT_FALSE(m.Matches(NULL));
 }
 
 // Tests that we can write Pointee(value) instead of Pointee(Eq(value)).
 TEST(PointeeTest, MatchesAgainstAValue) {
   const Matcher<int*> m = Pointee(5);
 
   int n = 5;
   EXPECT_TRUE(m.Matches(&n));
   n = -1;
   EXPECT_FALSE(m.Matches(&n));
   EXPECT_FALSE(m.Matches(NULL));
 }
 
 TEST(PointeeTest, CanDescribeSelf) {
   const Matcher<int*> m = Pointee(Gt(3));
   EXPECT_EQ("points to a value that is > 3", Describe(m));
   EXPECT_EQ("does not point to a value that is > 3",
             DescribeNegation(m));
 }
 
 TEST(PointeeTest, CanExplainMatchResult) {
   const Matcher<const std::string*> m = Pointee(StartsWith("Hi"));
 
   EXPECT_EQ("", Explain(m, static_cast<const std::string*>(NULL)));
 
   const Matcher<long*> m2 = Pointee(GreaterThan(1));  // NOLINT
   long n = 3;  // NOLINT
   EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1",
             Explain(m2, &n));
 }
 
 TEST(PointeeTest, AlwaysExplainsPointee) {
   const Matcher<int*> m = Pointee(0);
   int n = 42;
   EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n));
 }
 
 // An uncopyable class.
 class Uncopyable {
  public:
   Uncopyable() : value_(-1) {}
   explicit Uncopyable(int a_value) : value_(a_value) {}
 
   int value() const { return value_; }
   void set_value(int i) { value_ = i; }
 
  private:
   int value_;
   GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable);
 };
 
 // Returns true iff x.value() is positive.
 bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; }
 
 MATCHER_P(UncopyableIs, inner_matcher, "") {
   return ExplainMatchResult(inner_matcher, arg.value(), result_listener);
 }
 
 // A user-defined struct for testing Field().
 struct AStruct {
   AStruct() : x(0), y(1.0), z(5), p(NULL) {}
   AStruct(const AStruct& rhs)
       : x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {}
 
   int x;           // A non-const field.
   const double y;  // A const field.
   Uncopyable z;    // An uncopyable field.
   const char* p;   // A pointer field.
 
  private:
   GTEST_DISALLOW_ASSIGN_(AStruct);
 };
 
 // A derived struct for testing Field().
 struct DerivedStruct : public AStruct {
   char ch;
 
  private:
   GTEST_DISALLOW_ASSIGN_(DerivedStruct);
 };
 
 // Tests that Field(&Foo::field, ...) works when field is non-const.
 TEST(FieldTest, WorksForNonConstField) {
   Matcher<AStruct> m = Field(&AStruct::x, Ge(0));
   Matcher<AStruct> m_with_name = Field("x", &AStruct::x, Ge(0));
 
   AStruct a;
   EXPECT_TRUE(m.Matches(a));
   EXPECT_TRUE(m_with_name.Matches(a));
   a.x = -1;
   EXPECT_FALSE(m.Matches(a));
   EXPECT_FALSE(m_with_name.Matches(a));
 }
 
 // Tests that Field(&Foo::field, ...) works when field is const.
 TEST(FieldTest, WorksForConstField) {
   AStruct a;
 
   Matcher<AStruct> m = Field(&AStruct::y, Ge(0.0));
   Matcher<AStruct> m_with_name = Field("y", &AStruct::y, Ge(0.0));
   EXPECT_TRUE(m.Matches(a));
   EXPECT_TRUE(m_with_name.Matches(a));
   m = Field(&AStruct::y, Le(0.0));
   m_with_name = Field("y", &AStruct::y, Le(0.0));
   EXPECT_FALSE(m.Matches(a));
   EXPECT_FALSE(m_with_name.Matches(a));
 }
 
 // Tests that Field(&Foo::field, ...) works when field is not copyable.
 TEST(FieldTest, WorksForUncopyableField) {
   AStruct a;
 
   Matcher<AStruct> m = Field(&AStruct::z, Truly(ValueIsPositive));
   EXPECT_TRUE(m.Matches(a));
   m = Field(&AStruct::z, Not(Truly(ValueIsPositive)));
   EXPECT_FALSE(m.Matches(a));
 }
 
 // Tests that Field(&Foo::field, ...) works when field is a pointer.
 TEST(FieldTest, WorksForPointerField) {
   // Matching against NULL.
   Matcher<AStruct> m = Field(&AStruct::p, static_cast<const char*>(NULL));
   AStruct a;
   EXPECT_TRUE(m.Matches(a));
   a.p = "hi";
   EXPECT_FALSE(m.Matches(a));
 
   // Matching a pointer that is not NULL.
   m = Field(&AStruct::p, StartsWith("hi"));
   a.p = "hill";
   EXPECT_TRUE(m.Matches(a));
   a.p = "hole";
   EXPECT_FALSE(m.Matches(a));
 }
 
 // Tests that Field() works when the object is passed by reference.
 TEST(FieldTest, WorksForByRefArgument) {
   Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
 
   AStruct a;
   EXPECT_TRUE(m.Matches(a));
   a.x = -1;
   EXPECT_FALSE(m.Matches(a));
 }
 
 // Tests that Field(&Foo::field, ...) works when the argument's type
 // is a sub-type of Foo.
 TEST(FieldTest, WorksForArgumentOfSubType) {
   // Note that the matcher expects DerivedStruct but we say AStruct
   // inside Field().
   Matcher<const DerivedStruct&> m = Field(&AStruct::x, Ge(0));
 
   DerivedStruct d;
   EXPECT_TRUE(m.Matches(d));
   d.x = -1;
   EXPECT_FALSE(m.Matches(d));
 }
 
 // Tests that Field(&Foo::field, m) works when field's type and m's
 // argument type are compatible but not the same.
 TEST(FieldTest, WorksForCompatibleMatcherType) {
   // The field is an int, but the inner matcher expects a signed char.
   Matcher<const AStruct&> m = Field(&AStruct::x,
                                     Matcher<signed char>(Ge(0)));
 
   AStruct a;
   EXPECT_TRUE(m.Matches(a));
   a.x = -1;
   EXPECT_FALSE(m.Matches(a));
 }
 
 // Tests that Field() can describe itself.
 TEST(FieldTest, CanDescribeSelf) {
   Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
 
   EXPECT_EQ("is an object whose given field is >= 0", Describe(m));
   EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m));
 }
 
 TEST(FieldTest, CanDescribeSelfWithFieldName) {
   Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0));
 
   EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m));
   EXPECT_EQ("is an object whose field `field_name` isn't >= 0",
             DescribeNegation(m));
 }
 
 // Tests that Field() can explain the match result.
 TEST(FieldTest, CanExplainMatchResult) {
   Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
 
   AStruct a;
   a.x = 1;
   EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a));
 
   m = Field(&AStruct::x, GreaterThan(0));
   EXPECT_EQ(
       "whose given field is 1" + OfType("int") + ", which is 1 more than 0",
       Explain(m, a));
 }
 
 TEST(FieldTest, CanExplainMatchResultWithFieldName) {
   Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0));
 
   AStruct a;
   a.x = 1;
   EXPECT_EQ("whose field `field_name` is 1" + OfType("int"), Explain(m, a));
 
   m = Field("field_name", &AStruct::x, GreaterThan(0));
   EXPECT_EQ("whose field `field_name` is 1" + OfType("int") +
                 ", which is 1 more than 0",
             Explain(m, a));
 }
 
 // Tests that Field() works when the argument is a pointer to const.
 TEST(FieldForPointerTest, WorksForPointerToConst) {
   Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
 
   AStruct a;
   EXPECT_TRUE(m.Matches(&a));
   a.x = -1;
   EXPECT_FALSE(m.Matches(&a));
 }
 
 // Tests that Field() works when the argument is a pointer to non-const.
 TEST(FieldForPointerTest, WorksForPointerToNonConst) {
   Matcher<AStruct*> m = Field(&AStruct::x, Ge(0));
 
   AStruct a;
   EXPECT_TRUE(m.Matches(&a));
   a.x = -1;
   EXPECT_FALSE(m.Matches(&a));
 }
 
 // Tests that Field() works when the argument is a reference to a const pointer.
 TEST(FieldForPointerTest, WorksForReferenceToConstPointer) {
   Matcher<AStruct* const&> m = Field(&AStruct::x, Ge(0));
 
   AStruct a;
   EXPECT_TRUE(m.Matches(&a));
   a.x = -1;
   EXPECT_FALSE(m.Matches(&a));
 }
 
 // Tests that Field() does not match the NULL pointer.
 TEST(FieldForPointerTest, DoesNotMatchNull) {
   Matcher<const AStruct*> m = Field(&AStruct::x, _);
   EXPECT_FALSE(m.Matches(NULL));
 }
 
 // Tests that Field(&Foo::field, ...) works when the argument's type
 // is a sub-type of const Foo*.
 TEST(FieldForPointerTest, WorksForArgumentOfSubType) {
   // Note that the matcher expects DerivedStruct but we say AStruct
   // inside Field().
   Matcher<DerivedStruct*> m = Field(&AStruct::x, Ge(0));
 
   DerivedStruct d;
   EXPECT_TRUE(m.Matches(&d));
   d.x = -1;
   EXPECT_FALSE(m.Matches(&d));
 }
 
 // Tests that Field() can describe itself when used to match a pointer.
 TEST(FieldForPointerTest, CanDescribeSelf) {
   Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
 
   EXPECT_EQ("is an object whose given field is >= 0", Describe(m));
   EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m));
 }
 
 TEST(FieldForPointerTest, CanDescribeSelfWithFieldName) {
   Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0));
 
   EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m));
   EXPECT_EQ("is an object whose field `field_name` isn't >= 0",
             DescribeNegation(m));
 }
 
 // Tests that Field() can explain the result of matching a pointer.
 TEST(FieldForPointerTest, CanExplainMatchResult) {
   Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
 
   AStruct a;
   a.x = 1;
   EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(NULL)));
   EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"),
             Explain(m, &a));
 
   m = Field(&AStruct::x, GreaterThan(0));
   EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") +
             ", which is 1 more than 0", Explain(m, &a));
 }
 
 TEST(FieldForPointerTest, CanExplainMatchResultWithFieldName) {
   Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0));
 
   AStruct a;
   a.x = 1;
   EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(NULL)));
   EXPECT_EQ(
       "which points to an object whose field `field_name` is 1" + OfType("int"),
       Explain(m, &a));
 
   m = Field("field_name", &AStruct::x, GreaterThan(0));
   EXPECT_EQ("which points to an object whose field `field_name` is 1" +
                 OfType("int") + ", which is 1 more than 0",
             Explain(m, &a));
 }
 
 // A user-defined class for testing Property().
 class AClass {
  public:
   AClass() : n_(0) {}
 
   // A getter that returns a non-reference.
   int n() const { return n_; }
 
   void set_n(int new_n) { n_ = new_n; }
 
   // A getter that returns a reference to const.
   const std::string& s() const { return s_; }
 
 #if GTEST_LANG_CXX11
   const std::string& s_ref() const & { return s_; }
 #endif
 
   void set_s(const std::string& new_s) { s_ = new_s; }
 
   // A getter that returns a reference to non-const.
   double& x() const { return x_; }
 
  private:
   int n_;
   std::string s_;
 
   static double x_;
 };
 
 double AClass::x_ = 0.0;
 
 // A derived class for testing Property().
 class DerivedClass : public AClass {
  public:
   int k() const { return k_; }
  private:
   int k_;
 };
 
 // Tests that Property(&Foo::property, ...) works when property()
 // returns a non-reference.
 TEST(PropertyTest, WorksForNonReferenceProperty) {
   Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
   Matcher<const AClass&> m_with_name = Property("n", &AClass::n, Ge(0));
 
   AClass a;
   a.set_n(1);
   EXPECT_TRUE(m.Matches(a));
   EXPECT_TRUE(m_with_name.Matches(a));
 
   a.set_n(-1);
   EXPECT_FALSE(m.Matches(a));
   EXPECT_FALSE(m_with_name.Matches(a));
 }
 
 // Tests that Property(&Foo::property, ...) works when property()
 // returns a reference to const.
 TEST(PropertyTest, WorksForReferenceToConstProperty) {
   Matcher<const AClass&> m = Property(&AClass::s, StartsWith("hi"));
   Matcher<const AClass&> m_with_name =
       Property("s", &AClass::s, StartsWith("hi"));
 
   AClass a;
   a.set_s("hill");
   EXPECT_TRUE(m.Matches(a));
   EXPECT_TRUE(m_with_name.Matches(a));
 
   a.set_s("hole");
   EXPECT_FALSE(m.Matches(a));
   EXPECT_FALSE(m_with_name.Matches(a));
 }
 
 #if GTEST_LANG_CXX11
 // Tests that Property(&Foo::property, ...) works when property() is
 // ref-qualified.
 TEST(PropertyTest, WorksForRefQualifiedProperty) {
   Matcher<const AClass&> m = Property(&AClass::s_ref, StartsWith("hi"));
 
   AClass a;
   a.set_s("hill");
   EXPECT_TRUE(m.Matches(a));
 
   a.set_s("hole");
   EXPECT_FALSE(m.Matches(a));
 }
 #endif
 
 // Tests that Property(&Foo::property, ...) works when property()
 // returns a reference to non-const.
 TEST(PropertyTest, WorksForReferenceToNonConstProperty) {
   double x = 0.0;
   AClass a;
 
   Matcher<const AClass&> m = Property(&AClass::x, Ref(x));
   EXPECT_FALSE(m.Matches(a));
 
   m = Property(&AClass::x, Not(Ref(x)));
   EXPECT_TRUE(m.Matches(a));
 }
 
 // Tests that Property(&Foo::property, ...) works when the argument is
 // passed by value.
 TEST(PropertyTest, WorksForByValueArgument) {
   Matcher<AClass> m = Property(&AClass::s, StartsWith("hi"));
 
   AClass a;
   a.set_s("hill");
   EXPECT_TRUE(m.Matches(a));
 
   a.set_s("hole");
   EXPECT_FALSE(m.Matches(a));
 }
 
 // Tests that Property(&Foo::property, ...) works when the argument's
 // type is a sub-type of Foo.
 TEST(PropertyTest, WorksForArgumentOfSubType) {
   // The matcher expects a DerivedClass, but inside the Property() we
   // say AClass.
   Matcher<const DerivedClass&> m = Property(&AClass::n, Ge(0));
 
   DerivedClass d;
   d.set_n(1);
   EXPECT_TRUE(m.Matches(d));
 
   d.set_n(-1);
   EXPECT_FALSE(m.Matches(d));
 }
 
 // Tests that Property(&Foo::property, m) works when property()'s type
 // and m's argument type are compatible but different.
 TEST(PropertyTest, WorksForCompatibleMatcherType) {
   // n() returns an int but the inner matcher expects a signed char.
   Matcher<const AClass&> m = Property(&AClass::n,
                                       Matcher<signed char>(Ge(0)));
 
   Matcher<const AClass&> m_with_name =
       Property("n", &AClass::n, Matcher<signed char>(Ge(0)));
 
   AClass a;
   EXPECT_TRUE(m.Matches(a));
   EXPECT_TRUE(m_with_name.Matches(a));
   a.set_n(-1);
   EXPECT_FALSE(m.Matches(a));
   EXPECT_FALSE(m_with_name.Matches(a));
 }
 
 // Tests that Property() can describe itself.
 TEST(PropertyTest, CanDescribeSelf) {
   Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
 
   EXPECT_EQ("is an object whose given property is >= 0", Describe(m));
   EXPECT_EQ("is an object whose given property isn't >= 0",
             DescribeNegation(m));
 }
 
 TEST(PropertyTest, CanDescribeSelfWithPropertyName) {
   Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0));
 
   EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m));
   EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0",
             DescribeNegation(m));
 }
 
 // Tests that Property() can explain the match result.
 TEST(PropertyTest, CanExplainMatchResult) {
   Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
 
   AClass a;
   a.set_n(1);
   EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a));
 
   m = Property(&AClass::n, GreaterThan(0));
   EXPECT_EQ(
       "whose given property is 1" + OfType("int") + ", which is 1 more than 0",
       Explain(m, a));
 }
 
 TEST(PropertyTest, CanExplainMatchResultWithPropertyName) {
   Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0));
 
   AClass a;
   a.set_n(1);
   EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int"), Explain(m, a));
 
   m = Property("fancy_name", &AClass::n, GreaterThan(0));
   EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int") +
                 ", which is 1 more than 0",
             Explain(m, a));
 }
 
 // Tests that Property() works when the argument is a pointer to const.
 TEST(PropertyForPointerTest, WorksForPointerToConst) {
   Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
 
   AClass a;
   a.set_n(1);
   EXPECT_TRUE(m.Matches(&a));
 
   a.set_n(-1);
   EXPECT_FALSE(m.Matches(&a));
 }
 
 // Tests that Property() works when the argument is a pointer to non-const.
 TEST(PropertyForPointerTest, WorksForPointerToNonConst) {
   Matcher<AClass*> m = Property(&AClass::s, StartsWith("hi"));
 
   AClass a;
   a.set_s("hill");
   EXPECT_TRUE(m.Matches(&a));
 
   a.set_s("hole");
   EXPECT_FALSE(m.Matches(&a));
 }
 
 // Tests that Property() works when the argument is a reference to a
 // const pointer.
 TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) {
   Matcher<AClass* const&> m = Property(&AClass::s, StartsWith("hi"));
 
   AClass a;
   a.set_s("hill");
   EXPECT_TRUE(m.Matches(&a));
 
   a.set_s("hole");
   EXPECT_FALSE(m.Matches(&a));
 }
 
 // Tests that Property() does not match the NULL pointer.
 TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) {
   Matcher<const AClass*> m = Property(&AClass::x, _);
   EXPECT_FALSE(m.Matches(NULL));
 }
 
 // Tests that Property(&Foo::property, ...) works when the argument's
 // type is a sub-type of const Foo*.
 TEST(PropertyForPointerTest, WorksForArgumentOfSubType) {
   // The matcher expects a DerivedClass, but inside the Property() we
   // say AClass.
   Matcher<const DerivedClass*> m = Property(&AClass::n, Ge(0));
 
   DerivedClass d;
   d.set_n(1);
   EXPECT_TRUE(m.Matches(&d));
 
   d.set_n(-1);
   EXPECT_FALSE(m.Matches(&d));
 }
 
 // Tests that Property() can describe itself when used to match a pointer.
 TEST(PropertyForPointerTest, CanDescribeSelf) {
   Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
 
   EXPECT_EQ("is an object whose given property is >= 0", Describe(m));
   EXPECT_EQ("is an object whose given property isn't >= 0",
             DescribeNegation(m));
 }
 
 TEST(PropertyForPointerTest, CanDescribeSelfWithPropertyDescription) {
   Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0));
 
   EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m));
   EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0",
             DescribeNegation(m));
 }
 
 // Tests that Property() can explain the result of matching a pointer.
 TEST(PropertyForPointerTest, CanExplainMatchResult) {
   Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
 
   AClass a;
   a.set_n(1);
   EXPECT_EQ("", Explain(m, static_cast<const AClass*>(NULL)));
   EXPECT_EQ(
       "which points to an object whose given property is 1" + OfType("int"),
       Explain(m, &a));
 
   m = Property(&AClass::n, GreaterThan(0));
   EXPECT_EQ("which points to an object whose given property is 1" +
             OfType("int") + ", which is 1 more than 0",
             Explain(m, &a));
 }
 
 TEST(PropertyForPointerTest, CanExplainMatchResultWithPropertyName) {
   Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0));
 
   AClass a;
   a.set_n(1);
   EXPECT_EQ("", Explain(m, static_cast<const AClass*>(NULL)));
   EXPECT_EQ("which points to an object whose property `fancy_name` is 1" +
                 OfType("int"),
             Explain(m, &a));
 
   m = Property("fancy_name", &AClass::n, GreaterThan(0));
   EXPECT_EQ("which points to an object whose property `fancy_name` is 1" +
                 OfType("int") + ", which is 1 more than 0",
             Explain(m, &a));
 }
 
 // Tests ResultOf.
 
 // Tests that ResultOf(f, ...) compiles and works as expected when f is a
 // function pointer.
 std::string IntToStringFunction(int input) {
   return input == 1 ? "foo" : "bar";
 }
 
 TEST(ResultOfTest, WorksForFunctionPointers) {
   Matcher<int> matcher = ResultOf(&IntToStringFunction, Eq(std::string("foo")));
 
   EXPECT_TRUE(matcher.Matches(1));
   EXPECT_FALSE(matcher.Matches(2));
 }
 
 // Tests that ResultOf() can describe itself.
 TEST(ResultOfTest, CanDescribeItself) {
   Matcher<int> matcher = ResultOf(&IntToStringFunction, StrEq("foo"));
 
   EXPECT_EQ("is mapped by the given callable to a value that "
             "is equal to \"foo\"", Describe(matcher));
   EXPECT_EQ("is mapped by the given callable to a value that "
             "isn't equal to \"foo\"", DescribeNegation(matcher));
 }
 
 // Tests that ResultOf() can explain the match result.
 int IntFunction(int input) { return input == 42 ? 80 : 90; }
 
 TEST(ResultOfTest, CanExplainMatchResult) {
   Matcher<int> matcher = ResultOf(&IntFunction, Ge(85));
   EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"),
             Explain(matcher, 36));
 
   matcher = ResultOf(&IntFunction, GreaterThan(85));
   EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") +
             ", which is 5 more than 85", Explain(matcher, 36));
 }
 
 // Tests that ResultOf(f, ...) compiles and works as expected when f(x)
 // returns a non-reference.
 TEST(ResultOfTest, WorksForNonReferenceResults) {
   Matcher<int> matcher = ResultOf(&IntFunction, Eq(80));
 
   EXPECT_TRUE(matcher.Matches(42));
   EXPECT_FALSE(matcher.Matches(36));
 }
 
 // Tests that ResultOf(f, ...) compiles and works as expected when f(x)
 // returns a reference to non-const.
 double& DoubleFunction(double& input) { return input; }  // NOLINT
 
 Uncopyable& RefUncopyableFunction(Uncopyable& obj) {  // NOLINT
   return obj;
 }
 
 TEST(ResultOfTest, WorksForReferenceToNonConstResults) {
   double x = 3.14;
   double x2 = x;
   Matcher<double&> matcher = ResultOf(&DoubleFunction, Ref(x));
 
   EXPECT_TRUE(matcher.Matches(x));
   EXPECT_FALSE(matcher.Matches(x2));
 
   // Test that ResultOf works with uncopyable objects
   Uncopyable obj(0);
   Uncopyable obj2(0);
   Matcher<Uncopyable&> matcher2 =
       ResultOf(&RefUncopyableFunction, Ref(obj));
 
   EXPECT_TRUE(matcher2.Matches(obj));
   EXPECT_FALSE(matcher2.Matches(obj2));
 }
 
 // Tests that ResultOf(f, ...) compiles and works as expected when f(x)
 // returns a reference to const.
 const std::string& StringFunction(const std::string& input) { return input; }
 
 TEST(ResultOfTest, WorksForReferenceToConstResults) {
   std::string s = "foo";
   std::string s2 = s;
   Matcher<const std::string&> matcher = ResultOf(&StringFunction, Ref(s));
 
   EXPECT_TRUE(matcher.Matches(s));
   EXPECT_FALSE(matcher.Matches(s2));
 }
 
 // Tests that ResultOf(f, m) works when f(x) and m's
 // argument types are compatible but different.
 TEST(ResultOfTest, WorksForCompatibleMatcherTypes) {
   // IntFunction() returns int but the inner matcher expects a signed char.
   Matcher<int> matcher = ResultOf(IntFunction, Matcher<signed char>(Ge(85)));
 
   EXPECT_TRUE(matcher.Matches(36));
   EXPECT_FALSE(matcher.Matches(42));
 }
 
 // Tests that the program aborts when ResultOf is passed
 // a NULL function pointer.
 TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) {
   EXPECT_DEATH_IF_SUPPORTED(
       ResultOf(static_cast<std::string (*)(int dummy)>(NULL),
                Eq(std::string("foo"))),
       "NULL function pointer is passed into ResultOf\\(\\)\\.");
 }
 
 // Tests that ResultOf(f, ...) compiles and works as expected when f is a
 // function reference.
 TEST(ResultOfTest, WorksForFunctionReferences) {
   Matcher<int> matcher = ResultOf(IntToStringFunction, StrEq("foo"));
   EXPECT_TRUE(matcher.Matches(1));
   EXPECT_FALSE(matcher.Matches(2));
 }
 
 // Tests that ResultOf(f, ...) compiles and works as expected when f is a
 // function object.
 struct Functor : public ::std::unary_function<int, std::string> {
   result_type operator()(argument_type input) const {
     return IntToStringFunction(input);
   }
 };
 
 TEST(ResultOfTest, WorksForFunctors) {
   Matcher<int> matcher = ResultOf(Functor(), Eq(std::string("foo")));
 
   EXPECT_TRUE(matcher.Matches(1));
   EXPECT_FALSE(matcher.Matches(2));
 }
 
 // Tests that ResultOf(f, ...) compiles and works as expected when f is a
 // functor with more then one operator() defined. ResultOf() must work
 // for each defined operator().
 struct PolymorphicFunctor {
   typedef int result_type;
   int operator()(int n) { return n; }
   int operator()(const char* s) { return static_cast<int>(strlen(s)); }
 };
 
 TEST(ResultOfTest, WorksForPolymorphicFunctors) {
   Matcher<int> matcher_int = ResultOf(PolymorphicFunctor(), Ge(5));
 
   EXPECT_TRUE(matcher_int.Matches(10));
   EXPECT_FALSE(matcher_int.Matches(2));
 
   Matcher<const char*> matcher_string = ResultOf(PolymorphicFunctor(), Ge(5));
 
   EXPECT_TRUE(matcher_string.Matches("long string"));
   EXPECT_FALSE(matcher_string.Matches("shrt"));
 }
 
 const int* ReferencingFunction(const int& n) { return &n; }
 
 struct ReferencingFunctor {
   typedef const int* result_type;
   result_type operator()(const int& n) { return &n; }
 };
 
 TEST(ResultOfTest, WorksForReferencingCallables) {
   const int n = 1;
   const int n2 = 1;
   Matcher<const int&> matcher2 = ResultOf(ReferencingFunction, Eq(&n));
   EXPECT_TRUE(matcher2.Matches(n));
   EXPECT_FALSE(matcher2.Matches(n2));
 
   Matcher<const int&> matcher3 = ResultOf(ReferencingFunctor(), Eq(&n));
   EXPECT_TRUE(matcher3.Matches(n));
   EXPECT_FALSE(matcher3.Matches(n2));
 }
 
 class DivisibleByImpl {
  public:
   explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {}
 
   // For testing using ExplainMatchResultTo() with polymorphic matchers.
   template <typename T>
   bool MatchAndExplain(const T& n, MatchResultListener* listener) const {
     *listener << "which is " << (n % divider_) << " modulo "
               << divider_;
     return (n % divider_) == 0;
   }
 
   void DescribeTo(ostream* os) const {
     *os << "is divisible by " << divider_;
   }
 
   void DescribeNegationTo(ostream* os) const {
     *os << "is not divisible by " << divider_;
   }
 
   void set_divider(int a_divider) { divider_ = a_divider; }
   int divider() const { return divider_; }
 
  private:
   int divider_;
 };
 
 PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) {
   return MakePolymorphicMatcher(DivisibleByImpl(n));
 }
 
 // Tests that when AllOf() fails, only the first failing matcher is
 // asked to explain why.
 TEST(ExplainMatchResultTest, AllOf_False_False) {
   const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
   EXPECT_EQ("which is 1 modulo 4", Explain(m, 5));
 }
 
 // Tests that when AllOf() fails, only the first failing matcher is
 // asked to explain why.
 TEST(ExplainMatchResultTest, AllOf_False_True) {
   const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
   EXPECT_EQ("which is 2 modulo 4", Explain(m, 6));
 }
 
 // Tests that when AllOf() fails, only the first failing matcher is
 // asked to explain why.
 TEST(ExplainMatchResultTest, AllOf_True_False) {
   const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3));
   EXPECT_EQ("which is 2 modulo 3", Explain(m, 5));
 }
 
 // Tests that when AllOf() succeeds, all matchers are asked to explain
 // why.
 TEST(ExplainMatchResultTest, AllOf_True_True) {
   const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3));
   EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6));
 }
 
 TEST(ExplainMatchResultTest, AllOf_True_True_2) {
   const Matcher<int> m = AllOf(Ge(2), Le(3));
   EXPECT_EQ("", Explain(m, 2));
 }
 
 TEST(ExplainmatcherResultTest, MonomorphicMatcher) {
   const Matcher<int> m = GreaterThan(5);
   EXPECT_EQ("which is 1 more than 5", Explain(m, 6));
 }
 
 // The following two tests verify that values without a public copy
 // ctor can be used as arguments to matchers like Eq(), Ge(), and etc
 // with the help of ByRef().
 
 class NotCopyable {
  public:
   explicit NotCopyable(int a_value) : value_(a_value) {}
 
   int value() const { return value_; }
 
   bool operator==(const NotCopyable& rhs) const {
     return value() == rhs.value();
   }
 
   bool operator>=(const NotCopyable& rhs) const {
     return value() >= rhs.value();
   }
  private:
   int value_;
 
   GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable);
 };
 
 TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) {
   const NotCopyable const_value1(1);
   const Matcher<const NotCopyable&> m = Eq(ByRef(const_value1));
 
   const NotCopyable n1(1), n2(2);
   EXPECT_TRUE(m.Matches(n1));
   EXPECT_FALSE(m.Matches(n2));
 }
 
 TEST(ByRefTest, AllowsNotCopyableValueInMatchers) {
   NotCopyable value2(2);
   const Matcher<NotCopyable&> m = Ge(ByRef(value2));
 
   NotCopyable n1(1), n2(2);
   EXPECT_FALSE(m.Matches(n1));
   EXPECT_TRUE(m.Matches(n2));
 }
 
 TEST(IsEmptyTest, ImplementsIsEmpty) {
   vector<int> container;
   EXPECT_THAT(container, IsEmpty());
   container.push_back(0);
   EXPECT_THAT(container, Not(IsEmpty()));
   container.push_back(1);
   EXPECT_THAT(container, Not(IsEmpty()));
 }
 
 TEST(IsEmptyTest, WorksWithString) {
   std::string text;
   EXPECT_THAT(text, IsEmpty());
   text = "foo";
   EXPECT_THAT(text, Not(IsEmpty()));
   text = std::string("\0", 1);
   EXPECT_THAT(text, Not(IsEmpty()));
 }
 
 TEST(IsEmptyTest, CanDescribeSelf) {
   Matcher<vector<int> > m = IsEmpty();
   EXPECT_EQ("is empty", Describe(m));
   EXPECT_EQ("isn't empty", DescribeNegation(m));
 }
 
 TEST(IsEmptyTest, ExplainsResult) {
   Matcher<vector<int> > m = IsEmpty();
   vector<int> container;
   EXPECT_EQ("", Explain(m, container));
   container.push_back(0);
   EXPECT_EQ("whose size is 1", Explain(m, container));
 }
 
 TEST(IsTrueTest, IsTrueIsFalse) {
   EXPECT_THAT(true, IsTrue());
   EXPECT_THAT(false, IsFalse());
   EXPECT_THAT(true, Not(IsFalse()));
   EXPECT_THAT(false, Not(IsTrue()));
   EXPECT_THAT(0, Not(IsTrue()));
   EXPECT_THAT(0, IsFalse());
   EXPECT_THAT(NULL, Not(IsTrue()));
   EXPECT_THAT(NULL, IsFalse());
   EXPECT_THAT(-1, IsTrue());
   EXPECT_THAT(-1, Not(IsFalse()));
   EXPECT_THAT(1, IsTrue());
   EXPECT_THAT(1, Not(IsFalse()));
   EXPECT_THAT(2, IsTrue());
   EXPECT_THAT(2, Not(IsFalse()));
   int a = 42;
   EXPECT_THAT(a, IsTrue());
   EXPECT_THAT(a, Not(IsFalse()));
   EXPECT_THAT(&a, IsTrue());
   EXPECT_THAT(&a, Not(IsFalse()));
   EXPECT_THAT(false, Not(IsTrue()));
   EXPECT_THAT(true, Not(IsFalse()));
 #if GTEST_LANG_CXX11
   EXPECT_THAT(std::true_type(), IsTrue());
   EXPECT_THAT(std::true_type(), Not(IsFalse()));
   EXPECT_THAT(std::false_type(), IsFalse());
   EXPECT_THAT(std::false_type(), Not(IsTrue()));
   EXPECT_THAT(nullptr, Not(IsTrue()));
   EXPECT_THAT(nullptr, IsFalse());
   std::unique_ptr<int> null_unique;
   std::unique_ptr<int> nonnull_unique(new int(0));
   EXPECT_THAT(null_unique, Not(IsTrue()));
   EXPECT_THAT(null_unique, IsFalse());
   EXPECT_THAT(nonnull_unique, IsTrue());
   EXPECT_THAT(nonnull_unique, Not(IsFalse()));
 #endif  // GTEST_LANG_CXX11
 }
 
 TEST(SizeIsTest, ImplementsSizeIs) {
   vector<int> container;
   EXPECT_THAT(container, SizeIs(0));
   EXPECT_THAT(container, Not(SizeIs(1)));
   container.push_back(0);
   EXPECT_THAT(container, Not(SizeIs(0)));
   EXPECT_THAT(container, SizeIs(1));
   container.push_back(0);
   EXPECT_THAT(container, Not(SizeIs(0)));
   EXPECT_THAT(container, SizeIs(2));
 }
 
 TEST(SizeIsTest, WorksWithMap) {
   map<std::string, int> container;
   EXPECT_THAT(container, SizeIs(0));
   EXPECT_THAT(container, Not(SizeIs(1)));
   container.insert(make_pair("foo", 1));
   EXPECT_THAT(container, Not(SizeIs(0)));
   EXPECT_THAT(container, SizeIs(1));
   container.insert(make_pair("bar", 2));
   EXPECT_THAT(container, Not(SizeIs(0)));
   EXPECT_THAT(container, SizeIs(2));
 }
 
 TEST(SizeIsTest, WorksWithReferences) {
   vector<int> container;
   Matcher<const vector<int>&> m = SizeIs(1);
   EXPECT_THAT(container, Not(m));
   container.push_back(0);
   EXPECT_THAT(container, m);
 }
 
 TEST(SizeIsTest, CanDescribeSelf) {
   Matcher<vector<int> > m = SizeIs(2);
   EXPECT_EQ("size is equal to 2", Describe(m));
   EXPECT_EQ("size isn't equal to 2", DescribeNegation(m));
 }
 
 TEST(SizeIsTest, ExplainsResult) {
   Matcher<vector<int> > m1 = SizeIs(2);
   Matcher<vector<int> > m2 = SizeIs(Lt(2u));
   Matcher<vector<int> > m3 = SizeIs(AnyOf(0, 3));
   Matcher<vector<int> > m4 = SizeIs(GreaterThan(1));
   vector<int> container;
   EXPECT_EQ("whose size 0 doesn't match", Explain(m1, container));
   EXPECT_EQ("whose size 0 matches", Explain(m2, container));
   EXPECT_EQ("whose size 0 matches", Explain(m3, container));
   EXPECT_EQ("whose size 0 doesn't match, which is 1 less than 1",
             Explain(m4, container));
   container.push_back(0);
   container.push_back(0);
   EXPECT_EQ("whose size 2 matches", Explain(m1, container));
   EXPECT_EQ("whose size 2 doesn't match", Explain(m2, container));
   EXPECT_EQ("whose size 2 doesn't match", Explain(m3, container));
   EXPECT_EQ("whose size 2 matches, which is 1 more than 1",
             Explain(m4, container));
 }
 
 #if GTEST_HAS_TYPED_TEST
 // Tests ContainerEq with different container types, and
 // different element types.
 
 template <typename T>
 class ContainerEqTest : public testing::Test {};
 
 typedef testing::Types<
     set<int>,
     vector<size_t>,
     multiset<size_t>,
     list<int> >
     ContainerEqTestTypes;
 
 TYPED_TEST_CASE(ContainerEqTest, ContainerEqTestTypes);
 
 // Tests that the filled container is equal to itself.
 TYPED_TEST(ContainerEqTest, EqualsSelf) {
   static const int vals[] = {1, 1, 2, 3, 5, 8};
   TypeParam my_set(vals, vals + 6);
   const Matcher<TypeParam> m = ContainerEq(my_set);
   EXPECT_TRUE(m.Matches(my_set));
   EXPECT_EQ("", Explain(m, my_set));
 }
 
 // Tests that missing values are reported.
 TYPED_TEST(ContainerEqTest, ValueMissing) {
   static const int vals[] = {1, 1, 2, 3, 5, 8};
   static const int test_vals[] = {2, 1, 8, 5};
   TypeParam my_set(vals, vals + 6);
   TypeParam test_set(test_vals, test_vals + 4);
   const Matcher<TypeParam> m = ContainerEq(my_set);
   EXPECT_FALSE(m.Matches(test_set));
   EXPECT_EQ("which doesn't have these expected elements: 3",
             Explain(m, test_set));
 }
 
 // Tests that added values are reported.
 TYPED_TEST(ContainerEqTest, ValueAdded) {
   static const int vals[] = {1, 1, 2, 3, 5, 8};
   static const int test_vals[] = {1, 2, 3, 5, 8, 46};
   TypeParam my_set(vals, vals + 6);
   TypeParam test_set(test_vals, test_vals + 6);
   const Matcher<const TypeParam&> m = ContainerEq(my_set);
   EXPECT_FALSE(m.Matches(test_set));
   EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set));
 }
 
 // Tests that added and missing values are reported together.
 TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) {
   static const int vals[] = {1, 1, 2, 3, 5, 8};
   static const int test_vals[] = {1, 2, 3, 8, 46};
   TypeParam my_set(vals, vals + 6);
   TypeParam test_set(test_vals, test_vals + 5);
   const Matcher<TypeParam> m = ContainerEq(my_set);
   EXPECT_FALSE(m.Matches(test_set));
   EXPECT_EQ("which has these unexpected elements: 46,\n"
             "and doesn't have these expected elements: 5",
             Explain(m, test_set));
 }
 
 // Tests duplicated value -- expect no explanation.
 TYPED_TEST(ContainerEqTest, DuplicateDifference) {
   static const int vals[] = {1, 1, 2, 3, 5, 8};
   static const int test_vals[] = {1, 2, 3, 5, 8};
   TypeParam my_set(vals, vals + 6);
   TypeParam test_set(test_vals, test_vals + 5);
   const Matcher<const TypeParam&> m = ContainerEq(my_set);
   // Depending on the container, match may be true or false
   // But in any case there should be no explanation.
   EXPECT_EQ("", Explain(m, test_set));
 }
 #endif  // GTEST_HAS_TYPED_TEST
 
 // Tests that mutliple missing values are reported.
 // Using just vector here, so order is predictable.
 TEST(ContainerEqExtraTest, MultipleValuesMissing) {
   static const int vals[] = {1, 1, 2, 3, 5, 8};
   static const int test_vals[] = {2, 1, 5};
   vector<int> my_set(vals, vals + 6);
   vector<int> test_set(test_vals, test_vals + 3);
   const Matcher<vector<int> > m = ContainerEq(my_set);
   EXPECT_FALSE(m.Matches(test_set));
   EXPECT_EQ("which doesn't have these expected elements: 3, 8",
             Explain(m, test_set));
 }
 
 // Tests that added values are reported.
 // Using just vector here, so order is predictable.
 TEST(ContainerEqExtraTest, MultipleValuesAdded) {
   static const int vals[] = {1, 1, 2, 3, 5, 8};
   static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46};
   list<size_t> my_set(vals, vals + 6);
   list<size_t> test_set(test_vals, test_vals + 7);
   const Matcher<const list<size_t>&> m = ContainerEq(my_set);
   EXPECT_FALSE(m.Matches(test_set));
   EXPECT_EQ("which has these unexpected elements: 92, 46",
             Explain(m, test_set));
 }
 
 // Tests that added and missing values are reported together.
 TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) {
   static const int vals[] = {1, 1, 2, 3, 5, 8};
   static const int test_vals[] = {1, 2, 3, 92, 46};
   list<size_t> my_set(vals, vals + 6);
   list<size_t> test_set(test_vals, test_vals + 5);
   const Matcher<const list<size_t> > m = ContainerEq(my_set);
   EXPECT_FALSE(m.Matches(test_set));
   EXPECT_EQ("which has these unexpected elements: 92, 46,\n"
             "and doesn't have these expected elements: 5, 8",
             Explain(m, test_set));
 }
 
 // Tests to see that duplicate elements are detected,
 // but (as above) not reported in the explanation.
 TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) {
   static const int vals[] = {1, 1, 2, 3, 5, 8};
   static const int test_vals[] = {1, 2, 3, 5, 8};
   vector<int> my_set(vals, vals + 6);
   vector<int> test_set(test_vals, test_vals + 5);
   const Matcher<vector<int> > m = ContainerEq(my_set);
   EXPECT_TRUE(m.Matches(my_set));
   EXPECT_FALSE(m.Matches(test_set));
   // There is nothing to report when both sets contain all the same values.
   EXPECT_EQ("", Explain(m, test_set));
 }
 
 // Tests that ContainerEq works for non-trivial associative containers,
 // like maps.
 TEST(ContainerEqExtraTest, WorksForMaps) {
   map<int, std::string> my_map;
   my_map[0] = "a";
   my_map[1] = "b";
 
   map<int, std::string> test_map;
   test_map[0] = "aa";
   test_map[1] = "b";
 
   const Matcher<const map<int, std::string>&> m = ContainerEq(my_map);
   EXPECT_TRUE(m.Matches(my_map));
   EXPECT_FALSE(m.Matches(test_map));
 
   EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n"
             "and doesn't have these expected elements: (0, \"a\")",
             Explain(m, test_map));
 }
 
 TEST(ContainerEqExtraTest, WorksForNativeArray) {
   int a1[] = {1, 2, 3};
   int a2[] = {1, 2, 3};
   int b[] = {1, 2, 4};
 
   EXPECT_THAT(a1, ContainerEq(a2));
   EXPECT_THAT(a1, Not(ContainerEq(b)));
 }
 
 TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) {
   const char a1[][3] = {"hi", "lo"};
   const char a2[][3] = {"hi", "lo"};
   const char b[][3] = {"lo", "hi"};
 
   // Tests using ContainerEq() in the first dimension.
   EXPECT_THAT(a1, ContainerEq(a2));
   EXPECT_THAT(a1, Not(ContainerEq(b)));
 
   // Tests using ContainerEq() in the second dimension.
   EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1])));
   EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1])));
 }
 
 TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) {
   const int a1[] = {1, 2, 3};
   const int a2[] = {1, 2, 3};
   const int b[] = {1, 2, 3, 4};
 
   const int* const p1 = a1;
   EXPECT_THAT(make_tuple(p1, 3), ContainerEq(a2));
   EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(b)));
 
   const int c[] = {1, 3, 2};
   EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(c)));
 }
 
 TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) {
   std::string a1[][3] = {
     {"hi", "hello", "ciao"},
     {"bye", "see you", "ciao"}
   };
 
   std::string a2[][3] = {
     {"hi", "hello", "ciao"},
     {"bye", "see you", "ciao"}
   };
 
   const Matcher<const std::string(&)[2][3]> m = ContainerEq(a2);
   EXPECT_THAT(a1, m);
 
   a2[0][0] = "ha";
   EXPECT_THAT(a1, m);
 }
 
 TEST(WhenSortedByTest, WorksForEmptyContainer) {
   const vector<int> numbers;
   EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre()));
   EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1))));
 }
 
 TEST(WhenSortedByTest, WorksForNonEmptyContainer) {
   vector<unsigned> numbers;
   numbers.push_back(3);
   numbers.push_back(1);
   numbers.push_back(2);
   numbers.push_back(2);
   EXPECT_THAT(numbers, WhenSortedBy(greater<unsigned>(),
                                     ElementsAre(3, 2, 2, 1)));
   EXPECT_THAT(numbers, Not(WhenSortedBy(greater<unsigned>(),
                                         ElementsAre(1, 2, 2, 3))));
 }
 
 TEST(WhenSortedByTest, WorksForNonVectorContainer) {
   list<std::string> words;
   words.push_back("say");
   words.push_back("hello");
   words.push_back("world");
   EXPECT_THAT(words, WhenSortedBy(less<std::string>(),
                                   ElementsAre("hello", "say", "world")));
   EXPECT_THAT(words, Not(WhenSortedBy(less<std::string>(),
                                       ElementsAre("say", "hello", "world"))));
 }
 
 TEST(WhenSortedByTest, WorksForNativeArray) {
   const int numbers[] = {1, 3, 2, 4};
   const int sorted_numbers[] = {1, 2, 3, 4};
   EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre(1, 2, 3, 4)));
   EXPECT_THAT(numbers, WhenSortedBy(less<int>(),
                                     ElementsAreArray(sorted_numbers)));
   EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1, 3, 2, 4))));
 }
 
 TEST(WhenSortedByTest, CanDescribeSelf) {
   const Matcher<vector<int> > m = WhenSortedBy(less<int>(), ElementsAre(1, 2));
   EXPECT_EQ("(when sorted) has 2 elements where\n"
             "element #0 is equal to 1,\n"
             "element #1 is equal to 2",
             Describe(m));
   EXPECT_EQ("(when sorted) doesn't have 2 elements, or\n"
             "element #0 isn't equal to 1, or\n"
             "element #1 isn't equal to 2",
             DescribeNegation(m));
 }
 
 TEST(WhenSortedByTest, ExplainsMatchResult) {
   const int a[] = {2, 1};
   EXPECT_EQ("which is { 1, 2 } when sorted, whose element #0 doesn't match",
             Explain(WhenSortedBy(less<int>(), ElementsAre(2, 3)), a));
   EXPECT_EQ("which is { 1, 2 } when sorted",
             Explain(WhenSortedBy(less<int>(), ElementsAre(1, 2)), a));
 }
 
 // WhenSorted() is a simple wrapper on WhenSortedBy().  Hence we don't
 // need to test it as exhaustively as we test the latter.
 
 TEST(WhenSortedTest, WorksForEmptyContainer) {
   const vector<int> numbers;
   EXPECT_THAT(numbers, WhenSorted(ElementsAre()));
   EXPECT_THAT(numbers, Not(WhenSorted(ElementsAre(1))));
 }
 
 TEST(WhenSortedTest, WorksForNonEmptyContainer) {
   list<std::string> words;
   words.push_back("3");
   words.push_back("1");
   words.push_back("2");
   words.push_back("2");
   EXPECT_THAT(words, WhenSorted(ElementsAre("1", "2", "2", "3")));
   EXPECT_THAT(words, Not(WhenSorted(ElementsAre("3", "1", "2", "2"))));
 }
 
 TEST(WhenSortedTest, WorksForMapTypes) {
   map<std::string, int> word_counts;
   word_counts["and"] = 1;
   word_counts["the"] = 1;
   word_counts["buffalo"] = 2;
   EXPECT_THAT(word_counts,
               WhenSorted(ElementsAre(Pair("and", 1), Pair("buffalo", 2),
                                      Pair("the", 1))));
   EXPECT_THAT(word_counts,
               Not(WhenSorted(ElementsAre(Pair("and", 1), Pair("the", 1),
                                          Pair("buffalo", 2)))));
 }
 
 TEST(WhenSortedTest, WorksForMultiMapTypes) {
     multimap<int, int> ifib;
     ifib.insert(make_pair(8, 6));
     ifib.insert(make_pair(2, 3));
     ifib.insert(make_pair(1, 1));
     ifib.insert(make_pair(3, 4));
     ifib.insert(make_pair(1, 2));
     ifib.insert(make_pair(5, 5));
     EXPECT_THAT(ifib, WhenSorted(ElementsAre(Pair(1, 1),
                                              Pair(1, 2),
                                              Pair(2, 3),
                                              Pair(3, 4),
                                              Pair(5, 5),
                                              Pair(8, 6))));
     EXPECT_THAT(ifib, Not(WhenSorted(ElementsAre(Pair(8, 6),
                                                  Pair(2, 3),
                                                  Pair(1, 1),
                                                  Pair(3, 4),
                                                  Pair(1, 2),
                                                  Pair(5, 5)))));
 }
 
 TEST(WhenSortedTest, WorksForPolymorphicMatcher) {
     std::deque<int> d;
     d.push_back(2);
     d.push_back(1);
     EXPECT_THAT(d, WhenSorted(ElementsAre(1, 2)));
     EXPECT_THAT(d, Not(WhenSorted(ElementsAre(2, 1))));
 }
 
 TEST(WhenSortedTest, WorksForVectorConstRefMatcher) {
     std::deque<int> d;
     d.push_back(2);
     d.push_back(1);
     Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2);
     EXPECT_THAT(d, WhenSorted(vector_match));
     Matcher<const std::vector<int>&> not_vector_match = ElementsAre(2, 1);
     EXPECT_THAT(d, Not(WhenSorted(not_vector_match)));
 }
 
 // Deliberately bare pseudo-container.
 // Offers only begin() and end() accessors, yielding InputIterator.
 template <typename T>
 class Streamlike {
  private:
   class ConstIter;
  public:
   typedef ConstIter const_iterator;
   typedef T value_type;
 
   template <typename InIter>
   Streamlike(InIter first, InIter last) : remainder_(first, last) {}
 
   const_iterator begin() const {
     return const_iterator(this, remainder_.begin());
   }
   const_iterator end() const {
     return const_iterator(this, remainder_.end());
   }
 
  private:
   class ConstIter : public std::iterator<std::input_iterator_tag,
                                          value_type,
                                          ptrdiff_t,
                                          const value_type*,
                                          const value_type&> {
    public:
     ConstIter(const Streamlike* s,
               typename std::list<value_type>::iterator pos)
         : s_(s), pos_(pos) {}
 
     const value_type& operator*() const { return *pos_; }
     const value_type* operator->() const { return &*pos_; }
     ConstIter& operator++() {
       s_->remainder_.erase(pos_++);
       return *this;
     }
 
     // *iter++ is required to work (see std::istreambuf_iterator).
     // (void)iter++ is also required to work.
     class PostIncrProxy {
      public:
       explicit PostIncrProxy(const value_type& value) : value_(value) {}
       value_type operator*() const { return value_; }
      private:
       value_type value_;
     };
     PostIncrProxy operator++(int) {
       PostIncrProxy proxy(**this);
       ++(*this);
       return proxy;
     }
 
     friend bool operator==(const ConstIter& a, const ConstIter& b) {
       return a.s_ == b.s_ && a.pos_ == b.pos_;
     }
     friend bool operator!=(const ConstIter& a, const ConstIter& b) {
       return !(a == b);
     }
 
    private:
     const Streamlike* s_;
     typename std::list<value_type>::iterator pos_;
   };
 
   friend std::ostream& operator<<(std::ostream& os, const Streamlike& s) {
     os << "[";
     typedef typename std::list<value_type>::const_iterator Iter;
     const char* sep = "";
     for (Iter it = s.remainder_.begin(); it != s.remainder_.end(); ++it) {
       os << sep << *it;
       sep = ",";
     }
     os << "]";
     return os;
   }
 
   mutable std::list<value_type> remainder_;  // modified by iteration
 };
 
 TEST(StreamlikeTest, Iteration) {
   const int a[5] = {2, 1, 4, 5, 3};
   Streamlike<int> s(a, a + 5);
   Streamlike<int>::const_iterator it = s.begin();
   const int* ip = a;
   while (it != s.end()) {
     SCOPED_TRACE(ip - a);
     EXPECT_EQ(*ip++, *it++);
   }
 }
 
 #if GTEST_HAS_STD_FORWARD_LIST_
 TEST(BeginEndDistanceIsTest, WorksWithForwardList) {
   std::forward_list<int> container;
   EXPECT_THAT(container, BeginEndDistanceIs(0));
   EXPECT_THAT(container, Not(BeginEndDistanceIs(1)));
   container.push_front(0);
   EXPECT_THAT(container, Not(BeginEndDistanceIs(0)));
   EXPECT_THAT(container, BeginEndDistanceIs(1));
   container.push_front(0);
   EXPECT_THAT(container, Not(BeginEndDistanceIs(0)));
   EXPECT_THAT(container, BeginEndDistanceIs(2));
 }
 #endif  // GTEST_HAS_STD_FORWARD_LIST_
 
 TEST(BeginEndDistanceIsTest, WorksWithNonStdList) {
   const int a[5] = {1, 2, 3, 4, 5};
   Streamlike<int> s(a, a + 5);
   EXPECT_THAT(s, BeginEndDistanceIs(5));
 }
 
 TEST(BeginEndDistanceIsTest, CanDescribeSelf) {
   Matcher<vector<int> > m = BeginEndDistanceIs(2);
   EXPECT_EQ("distance between begin() and end() is equal to 2", Describe(m));
   EXPECT_EQ("distance between begin() and end() isn't equal to 2",
             DescribeNegation(m));
 }
 
 TEST(BeginEndDistanceIsTest, ExplainsResult) {
   Matcher<vector<int> > m1 = BeginEndDistanceIs(2);
   Matcher<vector<int> > m2 = BeginEndDistanceIs(Lt(2));
   Matcher<vector<int> > m3 = BeginEndDistanceIs(AnyOf(0, 3));
   Matcher<vector<int> > m4 = BeginEndDistanceIs(GreaterThan(1));
   vector<int> container;
   EXPECT_EQ("whose distance between begin() and end() 0 doesn't match",
             Explain(m1, container));
   EXPECT_EQ("whose distance between begin() and end() 0 matches",
             Explain(m2, container));
   EXPECT_EQ("whose distance between begin() and end() 0 matches",
             Explain(m3, container));
   EXPECT_EQ(
       "whose distance between begin() and end() 0 doesn't match, which is 1 "
       "less than 1",
       Explain(m4, container));
   container.push_back(0);
   container.push_back(0);
   EXPECT_EQ("whose distance between begin() and end() 2 matches",
             Explain(m1, container));
   EXPECT_EQ("whose distance between begin() and end() 2 doesn't match",
             Explain(m2, container));
   EXPECT_EQ("whose distance between begin() and end() 2 doesn't match",
             Explain(m3, container));
   EXPECT_EQ(
       "whose distance between begin() and end() 2 matches, which is 1 more "
       "than 1",
       Explain(m4, container));
 }
 
 TEST(WhenSortedTest, WorksForStreamlike) {
   // Streamlike 'container' provides only minimal iterator support.
   // Its iterators are tagged with input_iterator_tag.
   const int a[5] = {2, 1, 4, 5, 3};
   Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
   EXPECT_THAT(s, WhenSorted(ElementsAre(1, 2, 3, 4, 5)));
   EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3))));
 }
 
 TEST(WhenSortedTest, WorksForVectorConstRefMatcherOnStreamlike) {
   const int a[] = {2, 1, 4, 5, 3};
   Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
   Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2, 3, 4, 5);
   EXPECT_THAT(s, WhenSorted(vector_match));
   EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3))));
 }
 
 TEST(IsSupersetOfTest, WorksForNativeArray) {
   const int subset[] = {1, 4};
   const int superset[] = {1, 2, 4};
   const int disjoint[] = {1, 0, 3};
   EXPECT_THAT(subset, IsSupersetOf(subset));
   EXPECT_THAT(subset, Not(IsSupersetOf(superset)));
   EXPECT_THAT(superset, IsSupersetOf(subset));
   EXPECT_THAT(subset, Not(IsSupersetOf(disjoint)));
   EXPECT_THAT(disjoint, Not(IsSupersetOf(subset)));
 }
 
 TEST(IsSupersetOfTest, WorksWithDuplicates) {
   const int not_enough[] = {1, 2};
   const int enough[] = {1, 1, 2};
   const int expected[] = {1, 1};
   EXPECT_THAT(not_enough, Not(IsSupersetOf(expected)));
   EXPECT_THAT(enough, IsSupersetOf(expected));
 }
 
 TEST(IsSupersetOfTest, WorksForEmpty) {
   vector<int> numbers;
   vector<int> expected;
   EXPECT_THAT(numbers, IsSupersetOf(expected));
   expected.push_back(1);
   EXPECT_THAT(numbers, Not(IsSupersetOf(expected)));
   expected.clear();
   numbers.push_back(1);
   numbers.push_back(2);
   EXPECT_THAT(numbers, IsSupersetOf(expected));
   expected.push_back(1);
   EXPECT_THAT(numbers, IsSupersetOf(expected));
   expected.push_back(2);
   EXPECT_THAT(numbers, IsSupersetOf(expected));
   expected.push_back(3);
   EXPECT_THAT(numbers, Not(IsSupersetOf(expected)));
 }
 
 TEST(IsSupersetOfTest, WorksForStreamlike) {
   const int a[5] = {1, 2, 3, 4, 5};
   Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 
   vector<int> expected;
   expected.push_back(1);
   expected.push_back(2);
   expected.push_back(5);
   EXPECT_THAT(s, IsSupersetOf(expected));
 
   expected.push_back(0);
   EXPECT_THAT(s, Not(IsSupersetOf(expected)));
 }
 
 TEST(IsSupersetOfTest, TakesStlContainer) {
   const int actual[] = {3, 1, 2};
 
   ::std::list<int> expected;
   expected.push_back(1);
   expected.push_back(3);
   EXPECT_THAT(actual, IsSupersetOf(expected));
 
   expected.push_back(4);
   EXPECT_THAT(actual, Not(IsSupersetOf(expected)));
 }
 
 TEST(IsSupersetOfTest, Describe) {
   typedef std::vector<int> IntVec;
   IntVec expected;
   expected.push_back(111);
   expected.push_back(222);
   expected.push_back(333);
   EXPECT_THAT(
       Describe<IntVec>(IsSupersetOf(expected)),
       Eq("a surjection from elements to requirements exists such that:\n"
          " - an element is equal to 111\n"
          " - an element is equal to 222\n"
          " - an element is equal to 333"));
 }
 
 TEST(IsSupersetOfTest, DescribeNegation) {
   typedef std::vector<int> IntVec;
   IntVec expected;
   expected.push_back(111);
   expected.push_back(222);
   expected.push_back(333);
   EXPECT_THAT(
       DescribeNegation<IntVec>(IsSupersetOf(expected)),
       Eq("no surjection from elements to requirements exists such that:\n"
          " - an element is equal to 111\n"
          " - an element is equal to 222\n"
          " - an element is equal to 333"));
 }
 
 TEST(IsSupersetOfTest, MatchAndExplain) {
   std::vector<int> v;
   v.push_back(2);
   v.push_back(3);
   std::vector<int> expected;
   expected.push_back(1);
   expected.push_back(2);
   StringMatchResultListener listener;
   ASSERT_FALSE(ExplainMatchResult(IsSupersetOf(expected), v, &listener))
       << listener.str();
   EXPECT_THAT(listener.str(),
               Eq("where the following matchers don't match any elements:\n"
                  "matcher #0: is equal to 1"));
 
   v.push_back(1);
   listener.Clear();
   ASSERT_TRUE(ExplainMatchResult(IsSupersetOf(expected), v, &listener))
       << listener.str();
   EXPECT_THAT(listener.str(), Eq("where:\n"
                                  " - element #0 is matched by matcher #1,\n"
                                  " - element #2 is matched by matcher #0"));
 }
 
 #if GTEST_HAS_STD_INITIALIZER_LIST_
 TEST(IsSupersetOfTest, WorksForRhsInitializerList) {
   const int numbers[] = {1, 3, 6, 2, 4, 5};
   EXPECT_THAT(numbers, IsSupersetOf({1, 2}));
   EXPECT_THAT(numbers, Not(IsSupersetOf({3, 0})));
 }
 #endif
 
 TEST(IsSubsetOfTest, WorksForNativeArray) {
   const int subset[] = {1, 4};
   const int superset[] = {1, 2, 4};
   const int disjoint[] = {1, 0, 3};
   EXPECT_THAT(subset, IsSubsetOf(subset));
   EXPECT_THAT(subset, IsSubsetOf(superset));
   EXPECT_THAT(superset, Not(IsSubsetOf(subset)));
   EXPECT_THAT(subset, Not(IsSubsetOf(disjoint)));
   EXPECT_THAT(disjoint, Not(IsSubsetOf(subset)));
 }
 
 TEST(IsSubsetOfTest, WorksWithDuplicates) {
   const int not_enough[] = {1, 2};
   const int enough[] = {1, 1, 2};
   const int actual[] = {1, 1};
   EXPECT_THAT(actual, Not(IsSubsetOf(not_enough)));
   EXPECT_THAT(actual, IsSubsetOf(enough));
 }
 
 TEST(IsSubsetOfTest, WorksForEmpty) {
   vector<int> numbers;
   vector<int> expected;
   EXPECT_THAT(numbers, IsSubsetOf(expected));
   expected.push_back(1);
   EXPECT_THAT(numbers, IsSubsetOf(expected));
   expected.clear();
   numbers.push_back(1);
   numbers.push_back(2);
   EXPECT_THAT(numbers, Not(IsSubsetOf(expected)));
   expected.push_back(1);
   EXPECT_THAT(numbers, Not(IsSubsetOf(expected)));
   expected.push_back(2);
   EXPECT_THAT(numbers, IsSubsetOf(expected));
   expected.push_back(3);
   EXPECT_THAT(numbers, IsSubsetOf(expected));
 }
 
 TEST(IsSubsetOfTest, WorksForStreamlike) {
   const int a[5] = {1, 2};
   Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 
   vector<int> expected;
   expected.push_back(1);
   EXPECT_THAT(s, Not(IsSubsetOf(expected)));
   expected.push_back(2);
   expected.push_back(5);
   EXPECT_THAT(s, IsSubsetOf(expected));
 }
 
 TEST(IsSubsetOfTest, TakesStlContainer) {
   const int actual[] = {3, 1, 2};
 
   ::std::list<int> expected;
   expected.push_back(1);
   expected.push_back(3);
   EXPECT_THAT(actual, Not(IsSubsetOf(expected)));
 
   expected.push_back(2);
   expected.push_back(4);
   EXPECT_THAT(actual, IsSubsetOf(expected));
 }
 
 TEST(IsSubsetOfTest, Describe) {
   typedef std::vector<int> IntVec;
   IntVec expected;
   expected.push_back(111);
   expected.push_back(222);
   expected.push_back(333);
 
   EXPECT_THAT(
       Describe<IntVec>(IsSubsetOf(expected)),
       Eq("an injection from elements to requirements exists such that:\n"
          " - an element is equal to 111\n"
          " - an element is equal to 222\n"
          " - an element is equal to 333"));
 }
 
 TEST(IsSubsetOfTest, DescribeNegation) {
   typedef std::vector<int> IntVec;
   IntVec expected;
   expected.push_back(111);
   expected.push_back(222);
   expected.push_back(333);
   EXPECT_THAT(
       DescribeNegation<IntVec>(IsSubsetOf(expected)),
       Eq("no injection from elements to requirements exists such that:\n"
          " - an element is equal to 111\n"
          " - an element is equal to 222\n"
          " - an element is equal to 333"));
 }
 
 TEST(IsSubsetOfTest, MatchAndExplain) {
   std::vector<int> v;
   v.push_back(2);
   v.push_back(3);
   std::vector<int> expected;
   expected.push_back(1);
   expected.push_back(2);
   StringMatchResultListener listener;
   ASSERT_FALSE(ExplainMatchResult(IsSubsetOf(expected), v, &listener))
       << listener.str();
   EXPECT_THAT(listener.str(),
               Eq("where the following elements don't match any matchers:\n"
                  "element #1: 3"));
 
   expected.push_back(3);
   listener.Clear();
   ASSERT_TRUE(ExplainMatchResult(IsSubsetOf(expected), v, &listener))
       << listener.str();
   EXPECT_THAT(listener.str(), Eq("where:\n"
                                  " - element #0 is matched by matcher #1,\n"
                                  " - element #1 is matched by matcher #2"));
 }
 
 #if GTEST_HAS_STD_INITIALIZER_LIST_
 TEST(IsSubsetOfTest, WorksForRhsInitializerList) {
   const int numbers[] = {1, 2, 3};
   EXPECT_THAT(numbers, IsSubsetOf({1, 2, 3, 4}));
   EXPECT_THAT(numbers, Not(IsSubsetOf({1, 2})));
 }
 #endif
 
 // Tests using ElementsAre() and ElementsAreArray() with stream-like
 // "containers".
 
 TEST(ElemensAreStreamTest, WorksForStreamlike) {
   const int a[5] = {1, 2, 3, 4, 5};
   Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
   EXPECT_THAT(s, ElementsAre(1, 2, 3, 4, 5));
   EXPECT_THAT(s, Not(ElementsAre(2, 1, 4, 5, 3)));
 }
 
 TEST(ElemensAreArrayStreamTest, WorksForStreamlike) {
   const int a[5] = {1, 2, 3, 4, 5};
   Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 
   vector<int> expected;
   expected.push_back(1);
   expected.push_back(2);
   expected.push_back(3);
   expected.push_back(4);
   expected.push_back(5);
   EXPECT_THAT(s, ElementsAreArray(expected));
 
   expected[3] = 0;
   EXPECT_THAT(s, Not(ElementsAreArray(expected)));
 }
 
 TEST(ElementsAreTest, WorksWithUncopyable) {
   Uncopyable objs[2];
   objs[0].set_value(-3);
   objs[1].set_value(1);
   EXPECT_THAT(objs, ElementsAre(UncopyableIs(-3), Truly(ValueIsPositive)));
 }
 
 TEST(ElementsAreTest, TakesStlContainer) {
   const int actual[] = {3, 1, 2};
 
   ::std::list<int> expected;
   expected.push_back(3);
   expected.push_back(1);
   expected.push_back(2);
   EXPECT_THAT(actual, ElementsAreArray(expected));
 
   expected.push_back(4);
   EXPECT_THAT(actual, Not(ElementsAreArray(expected)));
 }
 
 // Tests for UnorderedElementsAreArray()
 
 TEST(UnorderedElementsAreArrayTest, SucceedsWhenExpected) {
   const int a[] = {0, 1, 2, 3, 4};
   std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a));
   do {
     StringMatchResultListener listener;
     EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(a),
                                    s, &listener)) << listener.str();
   } while (std::next_permutation(s.begin(), s.end()));
 }
 
 TEST(UnorderedElementsAreArrayTest, VectorBool) {
   const bool a[] = {0, 1, 0, 1, 1};
   const bool b[] = {1, 0, 1, 1, 0};
   std::vector<bool> expected(a, a + GTEST_ARRAY_SIZE_(a));
   std::vector<bool> actual(b, b + GTEST_ARRAY_SIZE_(b));
   StringMatchResultListener listener;
   EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(expected),
                                  actual, &listener)) << listener.str();
 }
 
 TEST(UnorderedElementsAreArrayTest, WorksForStreamlike) {
   // Streamlike 'container' provides only minimal iterator support.
   // Its iterators are tagged with input_iterator_tag, and it has no
   // size() or empty() methods.
   const int a[5] = {2, 1, 4, 5, 3};
   Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 
   ::std::vector<int> expected;
   expected.push_back(1);
   expected.push_back(2);
   expected.push_back(3);
   expected.push_back(4);
   expected.push_back(5);
   EXPECT_THAT(s, UnorderedElementsAreArray(expected));
 
   expected.push_back(6);
   EXPECT_THAT(s, Not(UnorderedElementsAreArray(expected)));
 }
 
 TEST(UnorderedElementsAreArrayTest, TakesStlContainer) {
   const int actual[] = {3, 1, 2};
 
   ::std::list<int> expected;
   expected.push_back(1);
   expected.push_back(2);
   expected.push_back(3);
   EXPECT_THAT(actual, UnorderedElementsAreArray(expected));
 
   expected.push_back(4);
   EXPECT_THAT(actual, Not(UnorderedElementsAreArray(expected)));
 }
 
 #if GTEST_HAS_STD_INITIALIZER_LIST_
 
 TEST(UnorderedElementsAreArrayTest, TakesInitializerList) {
   const int a[5] = {2, 1, 4, 5, 3};
   EXPECT_THAT(a, UnorderedElementsAreArray({1, 2, 3, 4, 5}));
   EXPECT_THAT(a, Not(UnorderedElementsAreArray({1, 2, 3, 4, 6})));
 }
 
 TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfCStrings) {
   const std::string a[5] = {"a", "b", "c", "d", "e"};
   EXPECT_THAT(a, UnorderedElementsAreArray({"a", "b", "c", "d", "e"}));
   EXPECT_THAT(a, Not(UnorderedElementsAreArray({"a", "b", "c", "d", "ef"})));
 }
 
 TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) {
   const int a[5] = {2, 1, 4, 5, 3};
   EXPECT_THAT(a, UnorderedElementsAreArray(
       {Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)}));
   EXPECT_THAT(a, Not(UnorderedElementsAreArray(
       {Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)})));
 }
 
 TEST(UnorderedElementsAreArrayTest,
      TakesInitializerListOfDifferentTypedMatchers) {
   const int a[5] = {2, 1, 4, 5, 3};
   // The compiler cannot infer the type of the initializer list if its
   // elements have different types.  We must explicitly specify the
   // unified element type in this case.
   EXPECT_THAT(a, UnorderedElementsAreArray<Matcher<int> >(
       {Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)}));
   EXPECT_THAT(a, Not(UnorderedElementsAreArray<Matcher<int> >(
       {Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)})));
 }
 
 #endif  // GTEST_HAS_STD_INITIALIZER_LIST_
 
 class UnorderedElementsAreTest : public testing::Test {
  protected:
   typedef std::vector<int> IntVec;
 };
 
 TEST_F(UnorderedElementsAreTest, WorksWithUncopyable) {
   Uncopyable objs[2];
   objs[0].set_value(-3);
   objs[1].set_value(1);
   EXPECT_THAT(objs,
               UnorderedElementsAre(Truly(ValueIsPositive), UncopyableIs(-3)));
 }
 
 TEST_F(UnorderedElementsAreTest, SucceedsWhenExpected) {
   const int a[] = {1, 2, 3};
   std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a));
   do {
     StringMatchResultListener listener;
     EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3),
                                    s, &listener)) << listener.str();
   } while (std::next_permutation(s.begin(), s.end()));
 }
 
 TEST_F(UnorderedElementsAreTest, FailsWhenAnElementMatchesNoMatcher) {
   const int a[] = {1, 2, 3};
   std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a));
   std::vector<Matcher<int> > mv;
   mv.push_back(1);
   mv.push_back(2);
   mv.push_back(2);
   // The element with value '3' matches nothing: fail fast.
   StringMatchResultListener listener;
   EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAreArray(mv),
                                   s, &listener)) << listener.str();
 }
 
 TEST_F(UnorderedElementsAreTest, WorksForStreamlike) {
   // Streamlike 'container' provides only minimal iterator support.
   // Its iterators are tagged with input_iterator_tag, and it has no
   // size() or empty() methods.
   const int a[5] = {2, 1, 4, 5, 3};
   Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
 
   EXPECT_THAT(s, UnorderedElementsAre(1, 2, 3, 4, 5));
   EXPECT_THAT(s, Not(UnorderedElementsAre(2, 2, 3, 4, 5)));
 }
 
 // One naive implementation of the matcher runs in O(N!) time, which is too
 // slow for many real-world inputs. This test shows that our matcher can match
 // 100 inputs very quickly (a few milliseconds).  An O(100!) is 10^158
 // iterations and obviously effectively incomputable.
 // [ RUN      ] UnorderedElementsAreTest.Performance
 // [       OK ] UnorderedElementsAreTest.Performance (4 ms)
 TEST_F(UnorderedElementsAreTest, Performance) {
   std::vector<int> s;
   std::vector<Matcher<int> > mv;
   for (int i = 0; i < 100; ++i) {
     s.push_back(i);
     mv.push_back(_);
   }
   mv[50] = Eq(0);
   StringMatchResultListener listener;
   EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv),
                                  s, &listener)) << listener.str();
 }
 
 // Another variant of 'Performance' with similar expectations.
 // [ RUN      ] UnorderedElementsAreTest.PerformanceHalfStrict
 // [       OK ] UnorderedElementsAreTest.PerformanceHalfStrict (4 ms)
 TEST_F(UnorderedElementsAreTest, PerformanceHalfStrict) {
   std::vector<int> s;
   std::vector<Matcher<int> > mv;
   for (int i = 0; i < 100; ++i) {
     s.push_back(i);
     if (i & 1) {
       mv.push_back(_);
     } else {
       mv.push_back(i);
     }
   }
   StringMatchResultListener listener;
   EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv),
                                  s, &listener)) << listener.str();
 }
 
 TEST_F(UnorderedElementsAreTest, FailMessageCountWrong) {
   std::vector<int> v;
   v.push_back(4);
   StringMatchResultListener listener;
   EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3),
                                   v, &listener)) << listener.str();
   EXPECT_THAT(listener.str(), Eq("which has 1 element"));
 }
 
 TEST_F(UnorderedElementsAreTest, FailMessageCountWrongZero) {
   std::vector<int> v;
   StringMatchResultListener listener;
   EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3),
                                   v, &listener)) << listener.str();
   EXPECT_THAT(listener.str(), Eq(""));
 }
 
 TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatchers) {
   std::vector<int> v;
   v.push_back(1);
   v.push_back(1);
   StringMatchResultListener listener;
   EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2),
                                   v, &listener)) << listener.str();
   EXPECT_THAT(
       listener.str(),
       Eq("where the following matchers don't match any elements:\n"
          "matcher #1: is equal to 2"));
 }
 
 TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedElements) {
   std::vector<int> v;
   v.push_back(1);
   v.push_back(2);
   StringMatchResultListener listener;
   EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 1),
                                   v, &listener)) << listener.str();
   EXPECT_THAT(
       listener.str(),
       Eq("where the following elements don't match any matchers:\n"
          "element #1: 2"));
 }
 
 TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatcherAndElement) {
   std::vector<int> v;
   v.push_back(2);
   v.push_back(3);
   StringMatchResultListener listener;
   EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2),
                                   v, &listener)) << listener.str();
   EXPECT_THAT(
       listener.str(),
       Eq("where"
          " the following matchers don't match any elements:\n"
          "matcher #0: is equal to 1\n"
          "and"
          " where"
          " the following elements don't match any matchers:\n"
          "element #1: 3"));
 }
 
 // Test helper for formatting element, matcher index pairs in expectations.
 static std::string EMString(int element, int matcher) {
   stringstream ss;
   ss << "(element #" << element << ", matcher #" << matcher << ")";
   return ss.str();
 }
 
 TEST_F(UnorderedElementsAreTest, FailMessageImperfectMatchOnly) {
   // A situation where all elements and matchers have a match
   // associated with them, but the max matching is not perfect.
   std::vector<std::string> v;
   v.push_back("a");
   v.push_back("b");
   v.push_back("c");
   StringMatchResultListener listener;
   EXPECT_FALSE(ExplainMatchResult(
       UnorderedElementsAre("a", "a", AnyOf("b", "c")), v, &listener))
       << listener.str();
 
   std::string prefix =
       "where no permutation of the elements can satisfy all matchers, "
       "and the closest match is 2 of 3 matchers with the "
       "pairings:\n";
 
   // We have to be a bit loose here, because there are 4 valid max matches.
   EXPECT_THAT(
       listener.str(),
       AnyOf(prefix + "{\n  " + EMString(0, 0) +
                      ",\n  " + EMString(1, 2) + "\n}",
             prefix + "{\n  " + EMString(0, 1) +
                      ",\n  " + EMString(1, 2) + "\n}",
             prefix + "{\n  " + EMString(0, 0) +
                      ",\n  " + EMString(2, 2) + "\n}",
             prefix + "{\n  " + EMString(0, 1) +
                      ",\n  " + EMString(2, 2) + "\n}"));
 }
 
 TEST_F(UnorderedElementsAreTest, Describe) {
   EXPECT_THAT(Describe<IntVec>(UnorderedElementsAre()),
               Eq("is empty"));
   EXPECT_THAT(
       Describe<IntVec>(UnorderedElementsAre(345)),
       Eq("has 1 element and that element is equal to 345"));
   EXPECT_THAT(
       Describe<IntVec>(UnorderedElementsAre(111, 222, 333)),
       Eq("has 3 elements and there exists some permutation "
          "of elements such that:\n"
          " - element #0 is equal to 111, and\n"
          " - element #1 is equal to 222, and\n"
          " - element #2 is equal to 333"));
 }
 
 TEST_F(UnorderedElementsAreTest, DescribeNegation) {
   EXPECT_THAT(DescribeNegation<IntVec>(UnorderedElementsAre()),
               Eq("isn't empty"));
   EXPECT_THAT(
       DescribeNegation<IntVec>(UnorderedElementsAre(345)),
       Eq("doesn't have 1 element, or has 1 element that isn't equal to 345"));
   EXPECT_THAT(
       DescribeNegation<IntVec>(UnorderedElementsAre(123, 234, 345)),
       Eq("doesn't have 3 elements, or there exists no permutation "
          "of elements such that:\n"
          " - element #0 is equal to 123, and\n"
          " - element #1 is equal to 234, and\n"
          " - element #2 is equal to 345"));
 }
 
 namespace {
 
 // Used as a check on the more complex max flow method used in the
 // real testing::internal::FindMaxBipartiteMatching. This method is
 // compatible but runs in worst-case factorial time, so we only
 // use it in testing for small problem sizes.
 template <typename Graph>
 class BacktrackingMaxBPMState {
  public:
   // Does not take ownership of 'g'.
   explicit BacktrackingMaxBPMState(const Graph* g) : graph_(g) { }
 
   ElementMatcherPairs Compute() {
     if (graph_->LhsSize() == 0 || graph_->RhsSize() == 0) {
       return best_so_far_;
     }
     lhs_used_.assign(graph_->LhsSize(), kUnused);
     rhs_used_.assign(graph_->RhsSize(), kUnused);
     for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
       matches_.clear();
       RecurseInto(irhs);
       if (best_so_far_.size() == graph_->RhsSize())
         break;
     }
     return best_so_far_;
   }
 
  private:
   static const size_t kUnused = static_cast<size_t>(-1);
 
   void PushMatch(size_t lhs, size_t rhs) {
     matches_.push_back(ElementMatcherPair(lhs, rhs));
     lhs_used_[lhs] = rhs;
     rhs_used_[rhs] = lhs;
     if (matches_.size() > best_so_far_.size()) {
       best_so_far_ = matches_;
     }
   }
 
   void PopMatch() {
     const ElementMatcherPair& back = matches_.back();
     lhs_used_[back.first] = kUnused;
     rhs_used_[back.second] = kUnused;
     matches_.pop_back();
   }
 
   bool RecurseInto(size_t irhs) {
     if (rhs_used_[irhs] != kUnused) {
       return true;
     }
     for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
       if (lhs_used_[ilhs] != kUnused) {
         continue;
       }
       if (!graph_->HasEdge(ilhs, irhs)) {
         continue;
       }
       PushMatch(ilhs, irhs);
       if (best_so_far_.size() == graph_->RhsSize()) {
         return false;
       }
       for (size_t mi = irhs + 1; mi < graph_->RhsSize(); ++mi) {
         if (!RecurseInto(mi)) return false;
       }
       PopMatch();
     }
     return true;
   }
 
   const Graph* graph_;  // not owned
   std::vector<size_t> lhs_used_;
   std::vector<size_t> rhs_used_;
   ElementMatcherPairs matches_;
   ElementMatcherPairs best_so_far_;
 };
 
 template <typename Graph>
 const size_t BacktrackingMaxBPMState<Graph>::kUnused;
 
 }  // namespace
 
 // Implement a simple backtracking algorithm to determine if it is possible
 // to find one element per matcher, without reusing elements.
 template <typename Graph>
 ElementMatcherPairs
 FindBacktrackingMaxBPM(const Graph& g) {
   return BacktrackingMaxBPMState<Graph>(&g).Compute();
 }
 
 class BacktrackingBPMTest : public ::testing::Test { };
 
 // Tests the MaxBipartiteMatching algorithm with square matrices.
 // The single int param is the # of nodes on each of the left and right sides.
 class BipartiteTest : public ::testing::TestWithParam<int> { };
 
 // Verify all match graphs up to some moderate number of edges.
 TEST_P(BipartiteTest, Exhaustive) {
   int nodes = GetParam();
   MatchMatrix graph(nodes, nodes);
   do {
     ElementMatcherPairs matches =
         internal::FindMaxBipartiteMatching(graph);
     EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), matches.size())
         << "graph: " << graph.DebugString();
     // Check that all elements of matches are in the graph.
     // Check that elements of first and second are unique.
     std::vector<bool> seen_element(graph.LhsSize());
     std::vector<bool> seen_matcher(graph.RhsSize());
     SCOPED_TRACE(PrintToString(matches));
     for (size_t i = 0; i < matches.size(); ++i) {
       size_t ilhs = matches[i].first;
       size_t irhs = matches[i].second;
       EXPECT_TRUE(graph.HasEdge(ilhs, irhs));
       EXPECT_FALSE(seen_element[ilhs]);
       EXPECT_FALSE(seen_matcher[irhs]);
       seen_element[ilhs] = true;
       seen_matcher[irhs] = true;
     }
   } while (graph.NextGraph());
 }
 
 INSTANTIATE_TEST_CASE_P(AllGraphs, BipartiteTest,
                         ::testing::Range(0, 5));
 
 // Parameterized by a pair interpreted as (LhsSize, RhsSize).
 class BipartiteNonSquareTest
     : public ::testing::TestWithParam<std::pair<size_t, size_t> > {
 };
 
 TEST_F(BipartiteNonSquareTest, SimpleBacktracking) {
   //   .......
   // 0:-----\ :
   // 1:---\ | :
   // 2:---\ | :
   // 3:-\ | | :
   //  :.......:
   //    0 1 2
   MatchMatrix g(4, 3);
   static const int kEdges[][2] = {{0, 2}, {1, 1}, {2, 1}, {3, 0}};
   for (size_t i = 0; i < GTEST_ARRAY_SIZE_(kEdges); ++i) {
     g.SetEdge(kEdges[i][0], kEdges[i][1], true);
   }
   EXPECT_THAT(FindBacktrackingMaxBPM(g),
               ElementsAre(Pair(3, 0),
                           Pair(AnyOf(1, 2), 1),
                           Pair(0, 2))) << g.DebugString();
 }
 
 // Verify a few nonsquare matrices.
 TEST_P(BipartiteNonSquareTest, Exhaustive) {
   size_t nlhs = GetParam().first;
   size_t nrhs = GetParam().second;
   MatchMatrix graph(nlhs, nrhs);
   do {
     EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(),
               internal::FindMaxBipartiteMatching(graph).size())
         << "graph: " << graph.DebugString()
         << "\nbacktracking: "
         << PrintToString(FindBacktrackingMaxBPM(graph))
         << "\nmax flow: "
         << PrintToString(internal::FindMaxBipartiteMatching(graph));
   } while (graph.NextGraph());
 }
 
 INSTANTIATE_TEST_CASE_P(AllGraphs, BipartiteNonSquareTest,
     testing::Values(
         std::make_pair(1, 2),
         std::make_pair(2, 1),
         std::make_pair(3, 2),
         std::make_pair(2, 3),
         std::make_pair(4, 1),
         std::make_pair(1, 4),
         std::make_pair(4, 3),
         std::make_pair(3, 4)));
 
 class BipartiteRandomTest
     : public ::testing::TestWithParam<std::pair<int, int> > {
 };
 
 // Verifies a large sample of larger graphs.
 TEST_P(BipartiteRandomTest, LargerNets) {
   int nodes = GetParam().first;
   int iters = GetParam().second;
   MatchMatrix graph(nodes, nodes);
 
   testing::internal::Int32 seed = GTEST_FLAG(random_seed);
   if (seed == 0) {
     seed = static_cast<testing::internal::Int32>(time(NULL));
   }
 
   for (; iters > 0; --iters, ++seed) {
     srand(static_cast<int>(seed));
     graph.Randomize();
     EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(),
               internal::FindMaxBipartiteMatching(graph).size())
         << " graph: " << graph.DebugString()
         << "\nTo reproduce the failure, rerun the test with the flag"
            " --" << GTEST_FLAG_PREFIX_ << "random_seed=" << seed;
   }
 }
 
 // Test argument is a std::pair<int, int> representing (nodes, iters).
 INSTANTIATE_TEST_CASE_P(Samples, BipartiteRandomTest,
     testing::Values(
         std::make_pair(5, 10000),
         std::make_pair(6, 5000),
         std::make_pair(7, 2000),
         std::make_pair(8, 500),
         std::make_pair(9, 100)));
 
 // Tests IsReadableTypeName().
 
 TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) {
   EXPECT_TRUE(IsReadableTypeName("int"));
   EXPECT_TRUE(IsReadableTypeName("const unsigned char*"));
   EXPECT_TRUE(IsReadableTypeName("MyMap<int, void*>"));
   EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)"));
 }
 
 TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) {
   EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName"));
   EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]"));
   EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass"));
 }
 
 TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) {
   EXPECT_FALSE(
       IsReadableTypeName("basic_string<char, std::char_traits<char> >"));
   EXPECT_FALSE(IsReadableTypeName("std::vector<int, std::alloc_traits<int> >"));
 }
 
 TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) {
   EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)"));
 }
 
 // Tests FormatMatcherDescription().
 
 TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) {
   EXPECT_EQ("is even",
             FormatMatcherDescription(false, "IsEven", Strings()));
   EXPECT_EQ("not (is even)",
             FormatMatcherDescription(true, "IsEven", Strings()));
 
   const char* params[] = {"5"};
   EXPECT_EQ("equals 5",
             FormatMatcherDescription(false, "Equals",
                                      Strings(params, params + 1)));
 
   const char* params2[] = {"5", "8"};
   EXPECT_EQ("is in range (5, 8)",
             FormatMatcherDescription(false, "IsInRange",
                                      Strings(params2, params2 + 2)));
 }
 
 // Tests PolymorphicMatcher::mutable_impl().
 TEST(PolymorphicMatcherTest, CanAccessMutableImpl) {
   PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
   DivisibleByImpl& impl = m.mutable_impl();
   EXPECT_EQ(42, impl.divider());
 
   impl.set_divider(0);
   EXPECT_EQ(0, m.mutable_impl().divider());
 }
 
 // Tests PolymorphicMatcher::impl().
 TEST(PolymorphicMatcherTest, CanAccessImpl) {
   const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
   const DivisibleByImpl& impl = m.impl();
   EXPECT_EQ(42, impl.divider());
 }
 
 TEST(MatcherTupleTest, ExplainsMatchFailure) {
   stringstream ss1;
   ExplainMatchFailureTupleTo(make_tuple(Matcher<char>(Eq('a')), GreaterThan(5)),
                              make_tuple('a', 10), &ss1);
   EXPECT_EQ("", ss1.str());  // Successful match.
 
   stringstream ss2;
   ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))),
                              make_tuple(2, 'b'), &ss2);
   EXPECT_EQ("  Expected arg #0: is > 5\n"
             "           Actual: 2, which is 3 less than 5\n"
             "  Expected arg #1: is equal to 'a' (97, 0x61)\n"
             "           Actual: 'b' (98, 0x62)\n",
             ss2.str());  // Failed match where both arguments need explanation.
 
   stringstream ss3;
   ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))),
                              make_tuple(2, 'a'), &ss3);
   EXPECT_EQ("  Expected arg #0: is > 5\n"
             "           Actual: 2, which is 3 less than 5\n",
             ss3.str());  // Failed match where only one argument needs
                          // explanation.
 }
 
 // Tests Each().
 
 TEST(EachTest, ExplainsMatchResultCorrectly) {
   set<int> a;  // empty
 
   Matcher<set<int> > m = Each(2);
   EXPECT_EQ("", Explain(m, a));
 
   Matcher<const int(&)[1]> n = Each(1);  // NOLINT
 
   const int b[1] = {1};
   EXPECT_EQ("", Explain(n, b));
 
   n = Each(3);
   EXPECT_EQ("whose element #0 doesn't match", Explain(n, b));
 
   a.insert(1);
   a.insert(2);
   a.insert(3);
   m = Each(GreaterThan(0));
   EXPECT_EQ("", Explain(m, a));
 
   m = Each(GreaterThan(10));
   EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10",
             Explain(m, a));
 }
 
 TEST(EachTest, DescribesItselfCorrectly) {
   Matcher<vector<int> > m = Each(1);
   EXPECT_EQ("only contains elements that is equal to 1", Describe(m));
 
   Matcher<vector<int> > m2 = Not(m);
   EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2));
 }
 
 TEST(EachTest, MatchesVectorWhenAllElementsMatch) {
   vector<int> some_vector;
   EXPECT_THAT(some_vector, Each(1));
   some_vector.push_back(3);
   EXPECT_THAT(some_vector, Not(Each(1)));
   EXPECT_THAT(some_vector, Each(3));
   some_vector.push_back(1);
   some_vector.push_back(2);
   EXPECT_THAT(some_vector, Not(Each(3)));
   EXPECT_THAT(some_vector, Each(Lt(3.5)));
 
   vector<std::string> another_vector;
   another_vector.push_back("fee");
   EXPECT_THAT(another_vector, Each(std::string("fee")));
   another_vector.push_back("fie");
   another_vector.push_back("foe");
   another_vector.push_back("fum");
   EXPECT_THAT(another_vector, Not(Each(std::string("fee"))));
 }
 
 TEST(EachTest, MatchesMapWhenAllElementsMatch) {
   map<const char*, int> my_map;
   const char* bar = "a string";
   my_map[bar] = 2;
   EXPECT_THAT(my_map, Each(make_pair(bar, 2)));
 
   map<std::string, int> another_map;
   EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1)));
   another_map["fee"] = 1;
   EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1)));
   another_map["fie"] = 2;
   another_map["foe"] = 3;
   another_map["fum"] = 4;
   EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fee"), 1))));
   EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fum"), 1))));
   EXPECT_THAT(another_map, Each(Pair(_, Gt(0))));
 }
 
 TEST(EachTest, AcceptsMatcher) {
   const int a[] = {1, 2, 3};
   EXPECT_THAT(a, Each(Gt(0)));
   EXPECT_THAT(a, Not(Each(Gt(1))));
 }
 
 TEST(EachTest, WorksForNativeArrayAsTuple) {
   const int a[] = {1, 2};
   const int* const pointer = a;
   EXPECT_THAT(make_tuple(pointer, 2), Each(Gt(0)));
   EXPECT_THAT(make_tuple(pointer, 2), Not(Each(Gt(1))));
 }
 
 // For testing Pointwise().
 class IsHalfOfMatcher {
  public:
   template <typename T1, typename T2>
   bool MatchAndExplain(const tuple<T1, T2>& a_pair,
                        MatchResultListener* listener) const {
     if (get<0>(a_pair) == get<1>(a_pair)/2) {
       *listener << "where the second is " << get<1>(a_pair);
       return true;
     } else {
       *listener << "where the second/2 is " << get<1>(a_pair)/2;
       return false;
     }
   }
 
   void DescribeTo(ostream* os) const {
     *os << "are a pair where the first is half of the second";
   }
 
   void DescribeNegationTo(ostream* os) const {
     *os << "are a pair where the first isn't half of the second";
   }
 };
 
 PolymorphicMatcher<IsHalfOfMatcher> IsHalfOf() {
   return MakePolymorphicMatcher(IsHalfOfMatcher());
 }
 
 TEST(PointwiseTest, DescribesSelf) {
   vector<int> rhs;
   rhs.push_back(1);
   rhs.push_back(2);
   rhs.push_back(3);
   const Matcher<const vector<int>&> m = Pointwise(IsHalfOf(), rhs);
   EXPECT_EQ("contains 3 values, where each value and its corresponding value "
             "in { 1, 2, 3 } are a pair where the first is half of the second",
             Describe(m));
   EXPECT_EQ("doesn't contain exactly 3 values, or contains a value x at some "
             "index i where x and the i-th value of { 1, 2, 3 } are a pair "
             "where the first isn't half of the second",
             DescribeNegation(m));
 }
 
 TEST(PointwiseTest, MakesCopyOfRhs) {
   list<signed char> rhs;
   rhs.push_back(2);
   rhs.push_back(4);
 
   int lhs[] = {1, 2};
   const Matcher<const int (&)[2]> m = Pointwise(IsHalfOf(), rhs);
   EXPECT_THAT(lhs, m);
 
   // Changing rhs now shouldn't affect m, which made a copy of rhs.
   rhs.push_back(6);
   EXPECT_THAT(lhs, m);
 }
 
 TEST(PointwiseTest, WorksForLhsNativeArray) {
   const int lhs[] = {1, 2, 3};
   vector<int> rhs;
   rhs.push_back(2);
   rhs.push_back(4);
   rhs.push_back(6);
   EXPECT_THAT(lhs, Pointwise(Lt(), rhs));
   EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs)));
 }
 
 TEST(PointwiseTest, WorksForRhsNativeArray) {
   const int rhs[] = {1, 2, 3};
   vector<int> lhs;
   lhs.push_back(2);
   lhs.push_back(4);
   lhs.push_back(6);
   EXPECT_THAT(lhs, Pointwise(Gt(), rhs));
   EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs)));
 }
 
 // Test is effective only with sanitizers.
 TEST(PointwiseTest, WorksForVectorOfBool) {
   vector<bool> rhs(3, false);
   rhs[1] = true;
   vector<bool> lhs = rhs;
   EXPECT_THAT(lhs, Pointwise(Eq(), rhs));
   rhs[0] = true;
   EXPECT_THAT(lhs, Not(Pointwise(Eq(), rhs)));
 }
 
 #if GTEST_HAS_STD_INITIALIZER_LIST_
 
 TEST(PointwiseTest, WorksForRhsInitializerList) {
   const vector<int> lhs{2, 4, 6};
   EXPECT_THAT(lhs, Pointwise(Gt(), {1, 2, 3}));
   EXPECT_THAT(lhs, Not(Pointwise(Lt(), {3, 3, 7})));
 }
 
 #endif  // GTEST_HAS_STD_INITIALIZER_LIST_
 
 TEST(PointwiseTest, RejectsWrongSize) {
   const double lhs[2] = {1, 2};
   const int rhs[1] = {0};
   EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs)));
   EXPECT_EQ("which contains 2 values",
             Explain(Pointwise(Gt(), rhs), lhs));
 
   const int rhs2[3] = {0, 1, 2};
   EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2)));
 }
 
 TEST(PointwiseTest, RejectsWrongContent) {
   const double lhs[3] = {1, 2, 3};
   const int rhs[3] = {2, 6, 4};
   EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs)));
   EXPECT_EQ("where the value pair (2, 6) at index #1 don't match, "
             "where the second/2 is 3",
             Explain(Pointwise(IsHalfOf(), rhs), lhs));
 }
 
 TEST(PointwiseTest, AcceptsCorrectContent) {
   const double lhs[3] = {1, 2, 3};
   const int rhs[3] = {2, 4, 6};
   EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs));
   EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs));
 }
 
 TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) {
   const double lhs[3] = {1, 2, 3};
   const int rhs[3] = {2, 4, 6};
   const Matcher<tuple<const double&, const int&> > m1 = IsHalfOf();
   EXPECT_THAT(lhs, Pointwise(m1, rhs));
   EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs));
 
   // This type works as a tuple<const double&, const int&> can be
   // implicitly cast to tuple<double, int>.
   const Matcher<tuple<double, int> > m2 = IsHalfOf();
   EXPECT_THAT(lhs, Pointwise(m2, rhs));
   EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs));
 }
 
 TEST(UnorderedPointwiseTest, DescribesSelf) {
   vector<int> rhs;
   rhs.push_back(1);
   rhs.push_back(2);
   rhs.push_back(3);
   const Matcher<const vector<int>&> m = UnorderedPointwise(IsHalfOf(), rhs);
   EXPECT_EQ(
       "has 3 elements and there exists some permutation of elements such "
       "that:\n"
       " - element #0 and 1 are a pair where the first is half of the second, "
       "and\n"
       " - element #1 and 2 are a pair where the first is half of the second, "
       "and\n"
       " - element #2 and 3 are a pair where the first is half of the second",
       Describe(m));
   EXPECT_EQ(
       "doesn't have 3 elements, or there exists no permutation of elements "
       "such that:\n"
       " - element #0 and 1 are a pair where the first is half of the second, "
       "and\n"
       " - element #1 and 2 are a pair where the first is half of the second, "
       "and\n"
       " - element #2 and 3 are a pair where the first is half of the second",
       DescribeNegation(m));
 }
 
 TEST(UnorderedPointwiseTest, MakesCopyOfRhs) {
   list<signed char> rhs;
   rhs.push_back(2);
   rhs.push_back(4);
 
   int lhs[] = {2, 1};
   const Matcher<const int (&)[2]> m = UnorderedPointwise(IsHalfOf(), rhs);
   EXPECT_THAT(lhs, m);
 
   // Changing rhs now shouldn't affect m, which made a copy of rhs.
   rhs.push_back(6);
   EXPECT_THAT(lhs, m);
 }
 
 TEST(UnorderedPointwiseTest, WorksForLhsNativeArray) {
   const int lhs[] = {1, 2, 3};
   vector<int> rhs;
   rhs.push_back(4);
   rhs.push_back(6);
   rhs.push_back(2);
   EXPECT_THAT(lhs, UnorderedPointwise(Lt(), rhs));
   EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs)));
 }
 
 TEST(UnorderedPointwiseTest, WorksForRhsNativeArray) {
   const int rhs[] = {1, 2, 3};
   vector<int> lhs;
   lhs.push_back(4);
   lhs.push_back(2);
   lhs.push_back(6);
   EXPECT_THAT(lhs, UnorderedPointwise(Gt(), rhs));
   EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), rhs)));
 }
 
 #if GTEST_HAS_STD_INITIALIZER_LIST_
 
 TEST(UnorderedPointwiseTest, WorksForRhsInitializerList) {
   const vector<int> lhs{2, 4, 6};
   EXPECT_THAT(lhs, UnorderedPointwise(Gt(), {5, 1, 3}));
   EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), {1, 1, 7})));
 }
 
 #endif  // GTEST_HAS_STD_INITIALIZER_LIST_
 
 TEST(UnorderedPointwiseTest, RejectsWrongSize) {
   const double lhs[2] = {1, 2};
   const int rhs[1] = {0};
   EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs)));
   EXPECT_EQ("which has 2 elements",
             Explain(UnorderedPointwise(Gt(), rhs), lhs));
 
   const int rhs2[3] = {0, 1, 2};
   EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs2)));
 }
 
 TEST(UnorderedPointwiseTest, RejectsWrongContent) {
   const double lhs[3] = {1, 2, 3};
   const int rhs[3] = {2, 6, 6};
   EXPECT_THAT(lhs, Not(UnorderedPointwise(IsHalfOf(), rhs)));
   EXPECT_EQ("where the following elements don't match any matchers:\n"
             "element #1: 2",
             Explain(UnorderedPointwise(IsHalfOf(), rhs), lhs));
 }
 
 TEST(UnorderedPointwiseTest, AcceptsCorrectContentInSameOrder) {
   const double lhs[3] = {1, 2, 3};
   const int rhs[3] = {2, 4, 6};
   EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs));
 }
 
 TEST(UnorderedPointwiseTest, AcceptsCorrectContentInDifferentOrder) {
   const double lhs[3] = {1, 2, 3};
   const int rhs[3] = {6, 4, 2};
   EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs));
 }
 
 TEST(UnorderedPointwiseTest, AllowsMonomorphicInnerMatcher) {
   const double lhs[3] = {1, 2, 3};
   const int rhs[3] = {4, 6, 2};
   const Matcher<tuple<const double&, const int&> > m1 = IsHalfOf();
   EXPECT_THAT(lhs, UnorderedPointwise(m1, rhs));
 
   // This type works as a tuple<const double&, const int&> can be
   // implicitly cast to tuple<double, int>.
   const Matcher<tuple<double, int> > m2 = IsHalfOf();
   EXPECT_THAT(lhs, UnorderedPointwise(m2, rhs));
 }
 
 // Sample optional type implementation with minimal requirements for use with
 // Optional matcher.
 class SampleOptionalInt {
  public:
   typedef int value_type;
   explicit SampleOptionalInt(int value) : value_(value), has_value_(true) {}
   SampleOptionalInt() : value_(0), has_value_(false) {}
   operator bool() const {
     return has_value_;
   }
   const int& operator*() const {
     return value_;
   }
  private:
   int value_;
   bool has_value_;
 };
 
 TEST(OptionalTest, DescribesSelf) {
   const Matcher<SampleOptionalInt> m = Optional(Eq(1));
   EXPECT_EQ("value is equal to 1", Describe(m));
 }
 
 TEST(OptionalTest, ExplainsSelf) {
   const Matcher<SampleOptionalInt> m = Optional(Eq(1));
   EXPECT_EQ("whose value 1 matches", Explain(m, SampleOptionalInt(1)));
   EXPECT_EQ("whose value 2 doesn't match", Explain(m, SampleOptionalInt(2)));
 }
 
 TEST(OptionalTest, MatchesNonEmptyOptional) {
   const Matcher<SampleOptionalInt> m1 = Optional(1);
   const Matcher<SampleOptionalInt> m2 = Optional(Eq(2));
   const Matcher<SampleOptionalInt> m3 = Optional(Lt(3));
   SampleOptionalInt opt(1);
   EXPECT_TRUE(m1.Matches(opt));
   EXPECT_FALSE(m2.Matches(opt));
   EXPECT_TRUE(m3.Matches(opt));
 }
 
 TEST(OptionalTest, DoesNotMatchNullopt) {
   const Matcher<SampleOptionalInt> m = Optional(1);
   SampleOptionalInt empty;
   EXPECT_FALSE(m.Matches(empty));
 }
 
 class SampleVariantIntString {
  public:
   SampleVariantIntString(int i) : i_(i), has_int_(true) {}
   SampleVariantIntString(const std::string& s) : s_(s), has_int_(false) {}
 
   template <typename T>
   friend bool holds_alternative(const SampleVariantIntString& value) {
     return value.has_int_ == internal::IsSame<T, int>::value;
   }
 
   template <typename T>
   friend const T& get(const SampleVariantIntString& value) {
     return value.get_impl(static_cast<T*>(NULL));
   }
 
  private:
   const int& get_impl(int*) const { return i_; }
   const std::string& get_impl(std::string*) const { return s_; }
 
   int i_;
   std::string s_;
   bool has_int_;
 };
 
 TEST(VariantTest, DescribesSelf) {
   const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1));
   EXPECT_THAT(Describe(m), ContainsRegex("is a variant<> with value of type "
                                          "'.*' and the value is equal to 1"));
 }
 
 TEST(VariantTest, ExplainsSelf) {
   const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1));
   EXPECT_THAT(Explain(m, SampleVariantIntString(1)),
               ContainsRegex("whose value 1"));
   EXPECT_THAT(Explain(m, SampleVariantIntString("A")),
               HasSubstr("whose value is not of type '"));
   EXPECT_THAT(Explain(m, SampleVariantIntString(2)),
               "whose value 2 doesn't match");
 }
 
 TEST(VariantTest, FullMatch) {
   Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1));
   EXPECT_TRUE(m.Matches(SampleVariantIntString(1)));
 
   m = VariantWith<std::string>(Eq("1"));
   EXPECT_TRUE(m.Matches(SampleVariantIntString("1")));
 }
 
 TEST(VariantTest, TypeDoesNotMatch) {
   Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1));
   EXPECT_FALSE(m.Matches(SampleVariantIntString("1")));
 
   m = VariantWith<std::string>(Eq("1"));
   EXPECT_FALSE(m.Matches(SampleVariantIntString(1)));
 }
 
 TEST(VariantTest, InnerDoesNotMatch) {
   Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1));
   EXPECT_FALSE(m.Matches(SampleVariantIntString(2)));
 
   m = VariantWith<std::string>(Eq("1"));
   EXPECT_FALSE(m.Matches(SampleVariantIntString("2")));
 }
 
 class SampleAnyType {
  public:
   explicit SampleAnyType(int i) : index_(0), i_(i) {}
   explicit SampleAnyType(const std::string& s) : index_(1), s_(s) {}
 
   template <typename T>
   friend const T* any_cast(const SampleAnyType* any) {
     return any->get_impl(static_cast<T*>(NULL));
   }
 
  private:
   int index_;
   int i_;
   std::string s_;
 
   const int* get_impl(int*) const { return index_ == 0 ? &i_ : NULL; }
   const std::string* get_impl(std::string*) const {
     return index_ == 1 ? &s_ : NULL;
   }
 };
 
 TEST(AnyWithTest, FullMatch) {
   Matcher<SampleAnyType> m = AnyWith<int>(Eq(1));
   EXPECT_TRUE(m.Matches(SampleAnyType(1)));
 }
 
 TEST(AnyWithTest, TestBadCastType) {
   Matcher<SampleAnyType> m = AnyWith<std::string>(Eq("fail"));
   EXPECT_FALSE(m.Matches(SampleAnyType(1)));
 }
 
 #if GTEST_LANG_CXX11
 TEST(AnyWithTest, TestUseInContainers) {
   std::vector<SampleAnyType> a;
   a.emplace_back(1);
   a.emplace_back(2);
   a.emplace_back(3);
   EXPECT_THAT(
       a, ElementsAreArray({AnyWith<int>(1), AnyWith<int>(2), AnyWith<int>(3)}));
 
   std::vector<SampleAnyType> b;
   b.emplace_back("hello");
   b.emplace_back("merhaba");
   b.emplace_back("salut");
   EXPECT_THAT(b, ElementsAreArray({AnyWith<std::string>("hello"),
                                    AnyWith<std::string>("merhaba"),
                                    AnyWith<std::string>("salut")}));
 }
 #endif  //  GTEST_LANG_CXX11
 TEST(AnyWithTest, TestCompare) {
   EXPECT_THAT(SampleAnyType(1), AnyWith<int>(Gt(0)));
 }
 
 TEST(AnyWithTest, DescribesSelf) {
   const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1));
   EXPECT_THAT(Describe(m), ContainsRegex("is an 'any' type with value of type "
                                          "'.*' and the value is equal to 1"));
 }
 
 TEST(AnyWithTest, ExplainsSelf) {
   const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1));
 
   EXPECT_THAT(Explain(m, SampleAnyType(1)), ContainsRegex("whose value 1"));
   EXPECT_THAT(Explain(m, SampleAnyType("A")),
               HasSubstr("whose value is not of type '"));
   EXPECT_THAT(Explain(m, SampleAnyType(2)), "whose value 2 doesn't match");
 }
 
 #if GTEST_LANG_CXX11
 
 TEST(PointeeTest, WorksOnMoveOnlyType) {
   std::unique_ptr<int> p(new int(3));
   EXPECT_THAT(p, Pointee(Eq(3)));
   EXPECT_THAT(p, Not(Pointee(Eq(2))));
 }
 
 TEST(NotTest, WorksOnMoveOnlyType) {
   std::unique_ptr<int> p(new int(3));
   EXPECT_THAT(p, Pointee(Eq(3)));
   EXPECT_THAT(p, Not(Pointee(Eq(2))));
 }
 
 #endif  // GTEST_LANG_CXX11
 
 }  // namespace gmock_matchers_test
 }  // namespace testing
 
-#if defined _MSC_VER
+#if defined_MSC_VER
 # pragma warning(pop)
 #endif