diff --git a/postproc/time_series_chiralmhd.py b/postproc/time_series_chiralmhd.py
index 6710201..1f85ec1 100644
--- a/postproc/time_series_chiralmhd.py
+++ b/postproc/time_series_chiralmhd.py
@@ -1,285 +1,293 @@
 ###################
 # plotting script #
 ###################
 
 
 
 # import modules
 import pencil as pc
 import numpy as np
 import pylab as plt
 import matplotlib
 from matplotlib import rc
 import matplotlib.text as mtext
 import matplotlib.transforms as mtransforms
 import os
 import sys
 
 # latex fonts:
 from matplotlib import rc
 from matplotlib import rcParams
 from mpl_toolkits.axes_grid1 import make_axes_locatable
 rcParams['text.usetex'] = True
 rcParams['text.latex.preamble'] = [r'\usepackage{amssymb}']
 
 # colors
 colors = ['#000075', '#ff7f0e', '#2ca02c', '#d62728',
           '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
           '#bcbd22', '#17becf', '#B8B8B8', '#eeeeee']
 linestyles = ["-","--","-.",":"]
 
 
 fig, ax = plt.subplots()
 ax = plt.subplot(111)
 
 
 
 
 #########################
 # read in time series and parameters:
 ts_rel = pc.read_ts(filename='time_series.dat', datadir='../chiral_mhd_rel/magnetic_decay/64_3D_kf10_eta1e-2_lambda51e6/data')
 ts_nonrel = pc.read_ts(filename='time_series.dat', datadir='../chiral_mhd_nonrel/magnetic_decay/64_3D_kf10_eta1e-2_lambda51e6/data')
 
 #########################
 
 
 eta = 1e-2 
 tteta = 1./eta
 
 # #########################
 # # read in spectra
 # os.chdir("../")
 # pmag = pc.read_power("data/power_mag.dat")
 
 # # this are the power spectra at different times
 # tspecteta = pmag[0]/g.teta
 # p = pmag[1] 
 # minspec = 0
 # maxspec = len(tspecteta)
 # #incrementspec = round(maxspec/10.,0)  # number of spectra we want to plot in equi-distant steps
 
 # # reduce timeseries array to spectra
 # j=0
 # jspec = 0
 # jspectmp = 0
 # urmsspec = []
 # urmsspec.append(ts.urms[0])
 # for i in range(len(ts.t)):               # loop over all elements in time series
 #     jspec = int(round(j*len(tspecteta)/len(tteta)))        # corresponding index in spectral array
 #     jspectmpm1 = jspectmp                                  # save the previous jspectmp
 # #    if round(tteta[j],3) == round(tspecteta[jspec],3):     # only write something if simulation times are equal (order of 3)
 #     if ((tteta[j]-tspecteta[jspec])**2<0.01):              # only write something if simulation times are very equal 
 #     	jspectmp = jspec                                   # safe the current spectral index
 #         print "index in spectral array =", jspectmp      
 #         if jspectmp == jspectmpm1 :                        # trick to avoid double entries
 #             print "double entry" 
 #         else:  
 #             urmsspec.append(ts.urms[j])                    # write urms
 #     j = j+1 
 #     # if i == len(ts.t)
 #     #         ormsspec.append(0)
 #     #         urmsspec.append(0)
 
 # # find maximum wavenumber
 # j=0
 # kmax = []
 # kmax2Olambda = []
 # for i in range(maxspec):                #Why do I need to substract 1???
 #   kmax2Olambda.append(2*np.argmax(p[j])/g.lambda5)
 #   kmax.append(np.argmax(p[j]))
 #   j = j+1 
 
 # # calculate Rm
 # j=0
 # Rm = []
 # for i in range(maxspec):              #Why do I need to substract 1???
 #   if urmsspec[j] == 0. :
 #       Rm.append(0)
 #   else:
 #       Rm.append(urmsspec[j]/(g.eta*kmax[j]))
 #   j = j+1 
 
 # os.chdir("postproc")
 # #########################
 
 # #########################
 # # find time when kpeak becomes k1:
 # jkpk1 = 0
 # i=0
 # j=0
 # for i in range(maxspec):
 #    if kmax[j]-1 == 0:
 #        jkpk1 = j
 #        break
 #    j = j+1 
 # tspectetakp1 = tspecteta[jkpk1]
 
 # # find time when  kpeak becomes k1:
 # jabmin = np.argmin(ts.abm)
 # ttetaabmin = tteta[jabmin]
 # #########################
 
 fig, ax = plt.subplots()
 ax = plt.subplot(111)
 
 
 
-plt.axis([1e-10, max([max(ts_nonrel.t),max(ts_rel.t)])/tteta, 1e-10, 1e-1])
+plt.axis([1e-10, max([max(ts_nonrel.t),max(ts_rel.t)])/tteta, 1e-10, 1e2])
 
 plt.ylabel('time series')
 plt.xlabel('$t/t_\eta$')          
 
 plt.yscale('log') 
 plt.xscale('log') 
 
 
 # plt.axvline(x=tspectetakp1, linestyle="-", color='grey')
 # plt.axvline(x=ttetaabmin, linestyle=":", color='grey')
 
 
 
 # x1 = np.logspace(-3.8, -3.2, 100)
 # plt.plot(x1, 2.05e-7*x1**(-2./3), color='grey')
 # plt.text(0.000315, 4e-5, '$\propto (t/t_\eta)^{-2/3}$', color='grey')
 
 
 plt.plot(ts_nonrel.t/tteta, ts_nonrel.abm, 
     label="$\langle\mathbf{A}\cdot\mathbf{B} \\rangle$",
     linestyle=linestyles[0], color=colors[0])
 
-
 plt.plot(ts_nonrel.t/tteta, ts_nonrel.brms, 
     label="$\\mathbf{B}_\\mathrm{rms}$",
     linestyle=linestyles[0], color=colors[1])
 
 plt.plot(ts_nonrel.t/tteta, ts_nonrel.urms, 
     label="$\\mathbf{u}_\\mathrm{rms}$",
     linestyle=linestyles[0], color=colors[2])
 
+plt.plot(ts_nonrel.t/tteta, ts_nonrel.mu5rms, 
+    label="$\\mu_\\mathrm{5,rms}$",
+    linestyle=linestyles[0], color=colors[3])
+
 
 plt.plot(ts_rel.t/tteta, ts_rel.abm, 
 #    label="$\langle\mathbf{A}\cdot\mathbf{B} \\rangle$",
     linestyle=linestyles[1], color=colors[0])
 
 plt.plot(ts_rel.t/tteta, ts_rel.brms, 
 #    label="$\\mathbf{B}_\\mathrm{rms}$",
     linestyle=linestyles[1], color=colors[1])
 
 plt.plot(ts_rel.t/tteta, ts_rel.urms, 
 #    label="$\\mathbf{u}_\\mathrm{rms}$",
     linestyle=linestyles[1], color=colors[2])
 
+plt.plot(ts_rel.t/tteta, ts_rel.mu5rms, 
+#    label="$\\mathbf{u}_\\mathrm{rms}$",
+    linestyle=linestyles[1], color=colors[3])
+
+
 
 # plt.scatter(tspecteta, kmax2Olambda, 
 #     label='$2 k_\mathrm{p}/\lambda$',
 #     linestyle=linestyles[1], color=colors[1])
 # plt.plot(ts.t/g.teta, 2*g.ki/g.lambda5 + ts.t/g.teta*0, 
 #     label="$2 k_\mathrm{p,0}/\lambda$", 
 #     linestyle=linestyles[0], color=colors[1])
 
 #plt.plot(ts.t/g.teta, 2*ts.mu5m/g.lambda5, 
     # label="$2 \langle\mu_5\\rangle/\lambda$",
     # linestyle=linestyles[1], color=colors[2])
 
 # plt.plot(ts.t/g.teta, 8*g.eta*ts.brms[0]**2*g.ki*tI*(1-3./4.*(ts.t/tI)**(-1/3)),
 #     label="$8 \\eta B_\\mathrm{rms,0}^2 k_\mathrm{I} (1 - 3 (t/t_\mathrm{I})^{-1/3}/4)$",
 #     linestyle=linestyles[1], color=colors[2])
 
 
 
 # plt.scatter(ts.t/g.teta, ts.abm + 2*ts.mu5m/g.lambda5, 
 #     label="$\langle\mathbf{A}\cdot\mathbf{B} \\rangle + 2 \langle\mu_5\\rangle/\lambda$", 
 #     linestyle=linestyles[1], color=colors[3])
 
 
 
 props = dict(boxstyle='round', facecolor=colors[11],edgecolor=colors[10])
 # plt.axhline(y=1e-5, xmin=5e-4, xmax=3e-2, color=colors[10], linestyle='-')
 
 # plt.annotate( " ", xy = (5e-4, 1e-5), \
 #     xytext = (4e-3, 1e-5),  fontsize = 7, \
 #     color = colors[10], arrowprops=dict(facecolor=colors[10], edgecolor=colors[10], lw=1.5, arrowstyle = '<|-|>, head_length = 1, head_width = .4'))
 # plt.annotate( " ", xy = (4e-3, 1e-5), \
 #     xytext = (3e-2, 1e-5),  fontsize = 7, \
 #     color = colors[10], arrowprops=dict(edgecolor=colors[10], lw=1.5, arrowstyle = '|-|'))
 # plt.text(2.5e-3, 1e-5, "phase (i)", fontsize=11,
 #          verticalalignment='center', bbox=props)
 
 # plt.annotate( " ", xy = (4e-2, 1e-5), \
 #     xytext = (0.35, 1e-5),  fontsize = 7, \
 #     color = colors[10], arrowprops=dict(edgecolor=colors[10], lw=1.5, arrowstyle = '|-|'))
 # plt.text(6.7e-2, 1e-5, "phase (ii)", fontsize=11,
 #          verticalalignment='center', bbox=props)
 
 # plt.annotate( " ", xy = (0.4, 1e-5), \
 #     xytext = (1, 1e-5),  fontsize = 7, \
 #     color = colors[10], arrowprops=dict(edgecolor=colors[10], lw=1.5, arrowstyle = '|-|'))
 # plt.annotate( " ", xy = (1, 1e-5), \
 #     xytext = (5, 1e-5),  fontsize = 7, \
 #     color = colors[10], arrowprops=dict(facecolor=colors[10], lw=1.5, edgecolor=colors[10], arrowstyle = '<|-|>, head_length = 1, head_width = .4'))
 # plt.text(6.3e-1, 1e-5, "phase (iii)", fontsize=11,
 #          verticalalignment='center', bbox=props)
 #########
 # # add scaling bar:
 # class RotationAwareAnnotation2(mtext.Annotation):
 #     def __init__(self, s, xy, p, pa=None, ax=None, **kwargs):
 #         self.ax = ax or plt.gca()
 #         self.p = p
 #         if not pa:
 #             self.pa = xy
 #         kwargs.update(rotation_mode=kwargs.get("rotation_mode", "anchor"))
 #         mtext.Annotation.__init__(self, s, xy, **kwargs)
 #         self.set_transform(mtransforms.IdentityTransform())
 #         if 'clip_on' in kwargs:
 #             self.set_clip_path(self.ax.patch)
 #         self.ax._add_text(self)
 
 #     def calc_angle(self):
 #         p = self.ax.transData.transform_point(self.p)
 #         pa = self.ax.transData.transform_point(self.pa)
 #         ang = np.arctan2(p[1]-pa[1], p[0]-pa[0])
 #         return np.rad2deg(ang)
 
 #     def _get_rotation(self):
 #         return self.calc_angle()
 
 #     def _set_rotation(self, rotation):
 #         pass
 
 #     _rotation = property(_get_rotation, _set_rotation)
 
 
 # tsarray = np.logspace(-3.6,  -2.6, 100)
 # scaling_function = lambda tsarray: 1.9e-7*tsarray**(-2./3)
 # y = scaling_function(tsarray)
 
 # ax.plot(tsarray, y, color='grey', linewidth=0.75)
 # #ax.set(yscale = 'log', xscale = 'log', ylim=(1e-6, 1e-4), xlim=(1e-5, 0.02), xlabel=r'$x$')
 
 # annots= []
 # xi=tsarray[len(tsarray)/2]
 # an = RotationAwareAnnotation2("$\propto (t/t_\eta)^{-2/3}$", 
 #                                   xy=(xi,scaling_function(xi)), p=(xi+.01,scaling_function(xi+.01)), ax=ax,
 #                                   xytext=(-1,1), textcoords="offset points", 
 #                                   ha="center", va="bottom", color='grey')
 # annots.append(an)
 # #########
 
 
 # rect = patches.Rectangle((1e-3,4e-2),1e-5,2e-5,linewidth=1,edgecolor='r',facecolor='red')
 # ax.add_patch(rect)
 
 # ax.add_patch(
 #      patches.Rectangle(
 #         (1e-3,4e-2),
 #         1e-5,2e-5,
 #         fill=False      # remove background
 #      ) ) 
 
 plt.legend(loc='lower right')
 
 
 # save figure
 fig.savefig("time_series_chiralmhd.pdf", bbox_inches='tight')