diff --git a/supplementary/fig_ext_rect_mbr.pdf b/fig_ext_rect_mbr.pdf similarity index 100% rename from supplementary/fig_ext_rect_mbr.pdf rename to fig_ext_rect_mbr.pdf diff --git a/supplementary/fig_mirror_noise.pdf b/fig_mirror_noise.pdf similarity index 100% rename from supplementary/fig_mirror_noise.pdf rename to fig_mirror_noise.pdf diff --git a/supplementary/fig_power_sweep.pdf b/fig_power_sweep.pdf similarity index 100% rename from supplementary/fig_power_sweep.pdf rename to fig_power_sweep.pdf diff --git a/supplementary/fig_process_flow.pdf b/fig_process_flow.pdf similarity index 100% rename from supplementary/fig_process_flow.pdf rename to fig_process_flow.pdf diff --git a/main.bbl b/main.bbl index dc381a9..66e6ca2 100644 --- a/main.bbl +++ b/main.bbl @@ -1,662 +1,588 @@ %merlin.mbs apsrev4-1.bst 2010-07-25 4.21a (PWD, AO, DPC) hacked %Control: key (0) %Control: author (8) initials jnrlst %Control: editor formatted (1) identically to author %Control: production of article title (-1) disabled %Control: page (0) single %Control: year (1) truncated %Control: production of eprint (0) enabled -\begin{thebibliography}{51}% +\begin{thebibliography}{47}% \makeatletter \providecommand \@ifxundefined [1]{% \@ifx{#1\undefined} }% \providecommand \@ifnum [1]{% \ifnum #1\expandafter \@firstoftwo \else \expandafter \@secondoftwo \fi }% \providecommand \@ifx [1]{% \ifx #1\expandafter \@firstoftwo \else \expandafter \@secondoftwo \fi }% \providecommand \natexlab [1]{#1}% \providecommand \enquote [1]{``#1''}% \providecommand \bibnamefont [1]{#1}% \providecommand \bibfnamefont [1]{#1}% \providecommand \citenamefont [1]{#1}% \providecommand \href@noop [0]{\@secondoftwo}% \providecommand \href [0]{\begingroup \@sanitize@url \@href}% \providecommand \@href[1]{\@@startlink{#1}\@@href}% \providecommand \@@href[1]{\endgroup#1\@@endlink}% \providecommand \@sanitize@url [0]{\catcode `\\12\catcode `\$12\catcode `\&12\catcode `\#12\catcode `\^12\catcode `\_12\catcode `\%12\relax}% \providecommand \@@startlink[1]{}% \providecommand \@@endlink[0]{}% \providecommand \url [0]{\begingroup\@sanitize@url \@url }% \providecommand \@url [1]{\endgroup\@href {#1}{\urlprefix }}% \providecommand \urlprefix [0]{URL }% \providecommand \Eprint [0]{\href }% \providecommand \doibase [0]{http://dx.doi.org/}% \providecommand \selectlanguage [0]{\@gobble}% \providecommand \bibinfo [0]{\@secondoftwo}% \providecommand \bibfield [0]{\@secondoftwo}% \providecommand \translation [1]{[#1]}% \providecommand \BibitemOpen [0]{}% \providecommand \bibitemStop [0]{}% \providecommand \bibitemNoStop [0]{.\EOS\space}% \providecommand \EOS [0]{\spacefactor3000\relax}% \providecommand \BibitemShut [1]{\csname bibitem#1\endcsname}% \let\auto@bib@innerbib\@empty % \bibitem [{\citenamefont {{LIGO Scientific Collaboration and Virgo Collaboration}}(2016)}]{ligo_collaboration_observation_gw_2016}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibnamefont {{LIGO Scientific Collaboration and Virgo Collaboration}}},\ }\href {\doibase 10.1103/PhysRevLett.116.061102} {\bibfield {journal} {\bibinfo {journal} {Physical Review Letters}\ }\textbf {\bibinfo {volume} {116}},\ \bibinfo {pages} {061102} (\bibinfo {year} {2016})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Sterr}\ \emph {et~al.}(2009)\citenamefont {Sterr}, \citenamefont {Legero}, \citenamefont {Kessler}, \citenamefont {Schnatz}, \citenamefont {Grosche}, \citenamefont {Terra},\ and\ \citenamefont {Riehle}}]{sterr_ultrastable_2009}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {U.}~\bibnamefont {Sterr}}, \bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Legero}}, \bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Kessler}}, \bibinfo {author} {\bibfnamefont {H.}~\bibnamefont {Schnatz}}, \bibinfo {author} {\bibfnamefont {G.}~\bibnamefont {Grosche}}, \bibinfo {author} {\bibfnamefont {O.}~\bibnamefont {Terra}}, \ and\ \bibinfo {author} {\bibfnamefont {F.}~\bibnamefont {Riehle}},\ }in\ \href {\doibase 10.1117/12.825217} {\emph {\bibinfo {booktitle} {Time and {Frequency} {Metrology} {II}}}},\ Vol.\ \bibinfo {volume} {7431}\ (\bibinfo {publisher} {International Society for Optics and Photonics},\ \bibinfo {year} {2009})\ p.\ \bibinfo {pages} {74310A}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Ye}\ \emph {et~al.}(2008)\citenamefont {Ye}, \citenamefont {Kimble},\ and\ \citenamefont {Katori}}]{ye_quantum_2008}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Ye}}, \bibinfo {author} {\bibfnamefont {H.~J.}\ \bibnamefont {Kimble}}, \ and\ \bibinfo {author} {\bibfnamefont {H.}~\bibnamefont {Katori}},\ }\href {\doibase 10.1126/science.1148259} {\bibfield {journal} {\bibinfo {journal} {Science}\ }\textbf {\bibinfo {volume} {320}},\ \bibinfo {pages} {1734} (\bibinfo {year} {2008})},\ \bibinfo {note} {publisher: American Association for the Advancement of Science Section: Review}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Aspelmeyer}\ \emph {et~al.}(2014)\citenamefont {Aspelmeyer}, \citenamefont {Kippenberg},\ and\ \citenamefont {Marquardt}}]{aspelmeyer_cavity_2014}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Aspelmeyer}}, \bibinfo {author} {\bibfnamefont {T.~J.}\ \bibnamefont {Kippenberg}}, \ and\ \bibinfo {author} {\bibfnamefont {F.}~\bibnamefont {Marquardt}},\ }\href {\doibase 10.1103/RevModPhys.86.1391} {\bibfield {journal} {\bibinfo {journal} {Reviews of Modern Physics}\ }\textbf {\bibinfo {volume} {86}},\ \bibinfo {pages} {1391} (\bibinfo {year} {2014})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Braginsky}\ \emph {et~al.}(2000)\citenamefont {Braginsky}, \citenamefont {Gorodetsky},\ and\ \citenamefont {Vyatchanin}}]{braginsky_thermorefractive_2000}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {V.~B.}\ \bibnamefont {Braginsky}}, \bibinfo {author} {\bibfnamefont {M.~L.}\ \bibnamefont {Gorodetsky}}, \ and\ \bibinfo {author} {\bibfnamefont {S.~P.}\ \bibnamefont {Vyatchanin}},\ }\href {\doibase 10.1016/S0375-9601(00)00389-3} {\bibfield {journal} {\bibinfo {journal} {Physics Letters A}\ }\textbf {\bibinfo {volume} {271}},\ \bibinfo {pages} {303} (\bibinfo {year} {2000})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Gorodetsky}(2008)}]{gorodetsky_thermal_noise_compensation_2008}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {M.~L.}\ \bibnamefont {Gorodetsky}},\ }\href {\doibase 10.1016/j.physleta.2008.09.056} {\bibfield {journal} {\bibinfo {journal} {Physics Letters A}\ }\textbf {\bibinfo {volume} {372}},\ \bibinfo {pages} {6813} (\bibinfo {year} {2008})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Braginsky}\ \emph {et~al.}()\citenamefont {Braginsky}, \citenamefont {Gorodetsky},\ and\ \citenamefont {Vyatchanin}}]{braginsky_thermodynamical_1999}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {V.~B.}\ \bibnamefont {Braginsky}}, \bibinfo {author} {\bibfnamefont {M.~L.}\ \bibnamefont {Gorodetsky}}, \ and\ \bibinfo {author} {\bibfnamefont {S.~P.}\ \bibnamefont {Vyatchanin}},\ }\href {\doibase 10.1016/S0375-9601(99)00785-9} {\ \textbf {\bibinfo {volume} {264}},\ \bibinfo {pages} {1}}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Cole}\ \emph {et~al.}()\citenamefont {Cole}, \citenamefont {Zhang}, \citenamefont {Martin}, \citenamefont {Ye},\ and\ \citenamefont {Aspelmeyer}}]{cole_tenfold_2013}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {G.~D.}\ \bibnamefont {Cole}}, \bibinfo {author} {\bibfnamefont {W.}~\bibnamefont {Zhang}}, \bibinfo {author} {\bibfnamefont {M.~J.}\ \bibnamefont {Martin}}, \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Ye}}, \ and\ \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Aspelmeyer}},\ }\href {\doibase 10.1038/nphoton.2013.174} {\ \textbf {\bibinfo {volume} {7}},\ \bibinfo {pages} {644}}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Robinson}\ \emph {et~al.}()\citenamefont {Robinson}, \citenamefont {Oelker}, \citenamefont {Milner}, \citenamefont {Zhang}, \citenamefont {Legero}, \citenamefont {Matei}, \citenamefont {Riehle}, \citenamefont {Sterr},\ and\ \citenamefont {Ye}}]{robinson_crystalline_2019}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {J.~M.}\ \bibnamefont {Robinson}}, \bibinfo {author} {\bibfnamefont {E.}~\bibnamefont {Oelker}}, \bibinfo {author} {\bibfnamefont {W.~R.}\ \bibnamefont {Milner}}, \bibinfo {author} {\bibfnamefont {W.}~\bibnamefont {Zhang}}, \bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Legero}}, \bibinfo {author} {\bibfnamefont {D.~G.}\ \bibnamefont {Matei}}, \bibinfo {author} {\bibfnamefont {F.}~\bibnamefont {Riehle}}, \bibinfo {author} {\bibfnamefont {U.}~\bibnamefont {Sterr}}, \ and\ \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Ye}},\ }\href {\doibase 10.1364/OPTICA.6.000240} {\ \textbf {\bibinfo {volume} {6}},\ \bibinfo {pages} {240}},\ \bibinfo {note} {publisher: Optical Society of America}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Gorodetsky}\ and\ \citenamefont {Grudinin}()}]{gorodetsky_fundamental_2004}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {M.~L.}\ \bibnamefont {Gorodetsky}}\ and\ \bibinfo {author} {\bibfnamefont {I.~S.}\ \bibnamefont {Grudinin}},\ }\href {\doibase 10.1364/JOSAB.21.000697} {\ \textbf {\bibinfo {volume} {21}},\ \bibinfo {pages} {697}}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Anetsberger}\ \emph {et~al.}()\citenamefont {Anetsberger}, \citenamefont {Arcizet}, \citenamefont {Unterreithmeier}, \citenamefont {Rivière}, \citenamefont {Schliesser}, \citenamefont {Weig}, \citenamefont {Kotthaus},\ and\ \citenamefont {Kippenberg}}]{anetsberger_near-field_2009}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {G.}~\bibnamefont {Anetsberger}}, \bibinfo {author} {\bibfnamefont {O.}~\bibnamefont {Arcizet}}, \bibinfo {author} {\bibfnamefont {Q.~P.}\ \bibnamefont {Unterreithmeier}}, \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Rivière}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Schliesser}}, \bibinfo {author} {\bibfnamefont {E.~M.}\ \bibnamefont {Weig}}, \bibinfo {author} {\bibfnamefont {J.~P.}\ \bibnamefont {Kotthaus}}, \ and\ \bibinfo {author} {\bibfnamefont {T.~J.}\ \bibnamefont {Kippenberg}},\ }\href {\doibase 10.1038/nphys1425} {\ \textbf {\bibinfo {volume} {5}},\ \bibinfo {pages} {909}}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Riehle}()}]{riehle_frequency_2005}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {F.}~\bibnamefont {Riehle}},\ }\href@noop {} {\emph {\bibinfo {title} {Frequency Standards: Basics and Applications}}},\ \bibinfo {edition} {1st}\ ed.\ (\bibinfo {publisher} {Wiley-{VCH}})\BibitemShut {NoStop}% \bibitem [{\citenamefont {Audoin}\ \emph {et~al.}(1991)\citenamefont {Audoin}, \citenamefont {Candelier},\ and\ \citenamefont {Diamarcq}}]{audoin_intermodulation_1991}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {C.}~\bibnamefont {Audoin}}, \bibinfo {author} {\bibfnamefont {V.}~\bibnamefont {Candelier}}, \ and\ \bibinfo {author} {\bibfnamefont {N.}~\bibnamefont {Diamarcq}},\ }\href {\doibase 10.1109/TIM.1990.1032896} {\bibfield {journal} {\bibinfo {journal} {IEEE Transactions on Instrumentation and Measurement}\ }\textbf {\bibinfo {volume} {40}},\ \bibinfo {pages} {121} (\bibinfo {year} {1991})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Ferguson}\ and\ \citenamefont {Elliott}(1990)}]{ferguson_laser-noise-induced_1990}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {B.~A.}\ \bibnamefont {Ferguson}}\ and\ \bibinfo {author} {\bibfnamefont {D.~S.}\ \bibnamefont {Elliott}},\ }\href {\doibase 10.1103/PhysRevA.41.6183} {\bibfield {journal} {\bibinfo {journal} {Physical Review A}\ }\textbf {\bibinfo {volume} {41}},\ \bibinfo {pages} {6183} (\bibinfo {year} {1990})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Bahoura}\ and\ \citenamefont {Clairon}(2003)}]{bahoura_ultimate_2003}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Bahoura}}\ and\ \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Clairon}},\ }\href {\doibase 10.1109/TUFFC.2003.1251124} {\bibfield {journal} {\bibinfo {journal} {IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control}\ }\textbf {\bibinfo {volume} {50}},\ \bibinfo {pages} {1414} (\bibinfo {year} {2003})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Sudhir}\ \emph - {et~al.}(2017{\natexlab{a}})\citenamefont {Sudhir}, \citenamefont {Wilson}, - \citenamefont {Schilling}, \citenamefont {Schütz}, \citenamefont {Fedorov}, - \citenamefont {Ghadimi}, \citenamefont {Nunnenkamp},\ and\ \citenamefont - {Kippenberg}}]{sudhir_appearance_2017}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {V.}~\bibnamefont - {Sudhir}}, \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Wilson}}, - \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Schilling}}, \bibinfo - {author} {\bibfnamefont {H.}~\bibnamefont {Schütz}}, \bibinfo {author} - {\bibfnamefont {S.}~\bibnamefont {Fedorov}}, \bibinfo {author} {\bibfnamefont - {A.}~\bibnamefont {Ghadimi}}, \bibinfo {author} {\bibfnamefont - {A.}~\bibnamefont {Nunnenkamp}}, \ and\ \bibinfo {author} {\bibfnamefont - {T.}~\bibnamefont {Kippenberg}},\ }\href {\doibase 10.1103/PhysRevX.7.011001} - {\bibfield {journal} {\bibinfo {journal} {Physical Review X}\ }\textbf - {\bibinfo {volume} {7}},\ \bibinfo {pages} {011001} (\bibinfo {year} - {2017}{\natexlab{a}})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Wilson}\ \emph {et~al.}(2015)\citenamefont {Wilson}, - \citenamefont {Sudhir}, \citenamefont {Piro}, \citenamefont {Schilling}, - \citenamefont {Ghadimi},\ and\ \citenamefont - {Kippenberg}}]{wilson_measurement-based_2015}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {D.~J.}\ \bibnamefont - {Wilson}}, \bibinfo {author} {\bibfnamefont {V.}~\bibnamefont {Sudhir}}, - \bibinfo {author} {\bibfnamefont {N.}~\bibnamefont {Piro}}, \bibinfo {author} - {\bibfnamefont {R.}~\bibnamefont {Schilling}}, \bibinfo {author} - {\bibfnamefont {A.}~\bibnamefont {Ghadimi}}, \ and\ \bibinfo {author} - {\bibfnamefont {T.~J.}\ \bibnamefont {Kippenberg}},\ }\href {\doibase - 10.1038/nature14672} {\bibfield {journal} {\bibinfo {journal} {Nature}\ - }\textbf {\bibinfo {volume} {524}},\ \bibinfo {pages} {325} (\bibinfo {year} - {2015})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Chan}\ \emph {et~al.}(2011)\citenamefont {Chan}, - \citenamefont {Alegre}, \citenamefont {Safavi-Naeini}, \citenamefont {Hill}, - \citenamefont {Krause}, \citenamefont {Gröblacher}, \citenamefont - {Aspelmeyer},\ and\ \citenamefont {Painter}}]{chan_laser_2011}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {J.}~\bibnamefont - {Chan}}, \bibinfo {author} {\bibfnamefont {T.~P.~M.}\ \bibnamefont {Alegre}}, - \bibinfo {author} {\bibfnamefont {A.~H.}\ \bibnamefont {Safavi-Naeini}}, - \bibinfo {author} {\bibfnamefont {J.~T.}\ \bibnamefont {Hill}}, \bibinfo - {author} {\bibfnamefont {A.}~\bibnamefont {Krause}}, \bibinfo {author} - {\bibfnamefont {S.}~\bibnamefont {Gröblacher}}, \bibinfo {author} - {\bibfnamefont {M.}~\bibnamefont {Aspelmeyer}}, \ and\ \bibinfo {author} - {\bibfnamefont {O.}~\bibnamefont {Painter}},\ }\href {\doibase - 10.1038/nature10461} {\bibfield {journal} {\bibinfo {journal} {Nature}\ - }\textbf {\bibinfo {volume} {478}},\ \bibinfo {pages} {89} (\bibinfo {year} - {2011})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Qiu}\ \emph {et~al.}(2019)\citenamefont {Qiu}, - \citenamefont {Shomroni}, \citenamefont {Seidler},\ and\ \citenamefont - {Kippenberg}}]{qiu_laser_2019}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {L.}~\bibnamefont - {Qiu}}, \bibinfo {author} {\bibfnamefont {I.}~\bibnamefont {Shomroni}}, - \bibinfo {author} {\bibfnamefont {P.}~\bibnamefont {Seidler}}, \ and\ - \bibinfo {author} {\bibfnamefont {T.~J.}\ \bibnamefont {Kippenberg}},\ }\href - {http://arxiv.org/abs/1903.10242} {\bibfield {journal} {\bibinfo {journal} - {arXiv:1903.10242 [quant-ph]}\ } (\bibinfo {year} {2019})},\ \bibinfo {note} - {arXiv: 1903.10242}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Rossi}\ \emph {et~al.}(2018)\citenamefont {Rossi}, - \citenamefont {Mason}, \citenamefont {Chen}, \citenamefont {Tsaturyan},\ and\ - \citenamefont {Schliesser}}]{rossi_measurement-based_2018}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont - {Rossi}}, \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Mason}}, - \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Chen}}, \bibinfo {author} - {\bibfnamefont {Y.}~\bibnamefont {Tsaturyan}}, \ and\ \bibinfo {author} - {\bibfnamefont {A.}~\bibnamefont {Schliesser}},\ }\href {\doibase - 10.1038/s41586-018-0643-8} {\bibfield {journal} {\bibinfo {journal} - {Nature}\ }\textbf {\bibinfo {volume} {563}},\ \bibinfo {pages} {53} - (\bibinfo {year} {2018})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Hong}\ \emph {et~al.}(2017)\citenamefont {Hong}, - \citenamefont {Riedinger}, \citenamefont {Marinković}, \citenamefont - {Wallucks}, \citenamefont {Hofer}, \citenamefont {Norte}, \citenamefont - {Aspelmeyer},\ and\ \citenamefont {Gröblacher}}]{hong_hanbury_2017}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont - {Hong}}, \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Riedinger}}, - \bibinfo {author} {\bibfnamefont {I.}~\bibnamefont {Marinković}}, \bibinfo - {author} {\bibfnamefont {A.}~\bibnamefont {Wallucks}}, \bibinfo {author} - {\bibfnamefont {S.~G.}\ \bibnamefont {Hofer}}, \bibinfo {author} - {\bibfnamefont {R.~A.}\ \bibnamefont {Norte}}, \bibinfo {author} - {\bibfnamefont {M.}~\bibnamefont {Aspelmeyer}}, \ and\ \bibinfo {author} - {\bibfnamefont {S.}~\bibnamefont {Gröblacher}},\ }\href {\doibase - 10.1126/science.aan7939} {\bibfield {journal} {\bibinfo {journal} - {Science}\ } (\bibinfo {year} {2017}),\ 10.1126/science.aan7939}\BibitemShut - {NoStop}% -\bibitem [{\citenamefont {Riedinger}\ \emph {et~al.}(2018)\citenamefont - {Riedinger}, \citenamefont {Wallucks}, \citenamefont {Marinković}, - \citenamefont {Löschnauer}, \citenamefont {Aspelmeyer}, \citenamefont - {Hong},\ and\ \citenamefont {Gröblacher}}]{riedinger_remote_2018}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {R.}~\bibnamefont - {Riedinger}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Wallucks}}, - \bibinfo {author} {\bibfnamefont {I.}~\bibnamefont {Marinković}}, \bibinfo - {author} {\bibfnamefont {C.}~\bibnamefont {Löschnauer}}, \bibinfo {author} - {\bibfnamefont {M.}~\bibnamefont {Aspelmeyer}}, \bibinfo {author} - {\bibfnamefont {S.}~\bibnamefont {Hong}}, \ and\ \bibinfo {author} - {\bibfnamefont {S.}~\bibnamefont {Gröblacher}},\ }\href {\doibase - 10.1038/s41586-018-0036-z} {\bibfield {journal} {\bibinfo {journal} - {Nature}\ }\textbf {\bibinfo {volume} {556}},\ \bibinfo {pages} {473} - (\bibinfo {year} {2018})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Safavi-Naeini}\ \emph {et~al.}(2013)\citenamefont - {Safavi-Naeini}, \citenamefont {Gröblacher}, \citenamefont {Hill}, - \citenamefont {Chan}, \citenamefont {Aspelmeyer},\ and\ \citenamefont - {Painter}}]{safavi-naeini_squeezed_2013}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~H.}\ \bibnamefont - {Safavi-Naeini}}, \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont - {Gröblacher}}, \bibinfo {author} {\bibfnamefont {J.~T.}\ \bibnamefont - {Hill}}, \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Chan}}, \bibinfo - {author} {\bibfnamefont {M.}~\bibnamefont {Aspelmeyer}}, \ and\ \bibinfo - {author} {\bibfnamefont {O.}~\bibnamefont {Painter}},\ }\href {\doibase - 10.1038/nature12307} {\bibfield {journal} {\bibinfo {journal} {Nature}\ - }\textbf {\bibinfo {volume} {500}},\ \bibinfo {pages} {185} (\bibinfo {year} - {2013})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Purdy}\ \emph {et~al.}(2013)\citenamefont {Purdy}, - \citenamefont {Yu}, \citenamefont {Peterson}, \citenamefont {Kampel},\ and\ - \citenamefont {Regal}}]{purdy_strong_2013}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {T.~P.}\ \bibnamefont - {Purdy}}, \bibinfo {author} {\bibfnamefont {P.-L.}\ \bibnamefont {Yu}}, - \bibinfo {author} {\bibfnamefont {R.~W.}\ \bibnamefont {Peterson}}, \bibinfo - {author} {\bibfnamefont {N.~S.}\ \bibnamefont {Kampel}}, \ and\ \bibinfo - {author} {\bibfnamefont {C.~A.}\ \bibnamefont {Regal}},\ }\href {\doibase - 10.1103/PhysRevX.3.031012} {\bibfield {journal} {\bibinfo {journal} - {Physical Review X}\ }\textbf {\bibinfo {volume} {3}} (\bibinfo {year} - {2013}),\ 10.1103/PhysRevX.3.031012}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Purdy}\ \emph {et~al.}(2016)\citenamefont {Purdy}, - \citenamefont {Grutter}, \citenamefont {Srinivasan},\ and\ \citenamefont - {Taylor}}]{purdy_observation_2016}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {T.~P.}\ \bibnamefont - {Purdy}}, \bibinfo {author} {\bibfnamefont {K.~E.}\ \bibnamefont {Grutter}}, - \bibinfo {author} {\bibfnamefont {K.}~\bibnamefont {Srinivasan}}, \ and\ - \bibinfo {author} {\bibfnamefont {J.~M.}\ \bibnamefont {Taylor}},\ }\href - {http://arxiv.org/abs/1605.05664} {\bibfield {journal} {\bibinfo {journal} - {arXiv:1605.05664 [cond-mat, physics:physics, physics:quant-ph]}\ } (\bibinfo - {year} {2016})},\ \bibinfo {note} {arXiv: 1605.05664}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Sudhir}\ \emph - {et~al.}(2017{\natexlab{b}})\citenamefont {Sudhir}, \citenamefont - {Schilling}, \citenamefont {Fedorov}, \citenamefont {Schütz}, \citenamefont - {Wilson},\ and\ \citenamefont {Kippenberg}}]{sudhir_quantum_2017}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {V.}~\bibnamefont - {Sudhir}}, \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Schilling}}, - \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Fedorov}}, \bibinfo - {author} {\bibfnamefont {H.}~\bibnamefont {Schütz}}, \bibinfo {author} - {\bibfnamefont {D.}~\bibnamefont {Wilson}}, \ and\ \bibinfo {author} - {\bibfnamefont {T.}~\bibnamefont {Kippenberg}},\ }\href {\doibase - 10.1103/PhysRevX.7.031055} {\bibfield {journal} {\bibinfo {journal} - {Physical Review X}\ }\textbf {\bibinfo {volume} {7}},\ \bibinfo {pages} - {031055} (\bibinfo {year} {2017}{\natexlab{b}})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Cripe}\ \emph {et~al.}(2019)\citenamefont {Cripe}, - \citenamefont {Aggarwal}, \citenamefont {Lanza}, \citenamefont {Libson}, - \citenamefont {Singh}, \citenamefont {Heu}, \citenamefont {Follman}, - \citenamefont {Cole}, \citenamefont {Mavalvala},\ and\ \citenamefont - {Corbitt}}]{cripe_measurement_2019}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {J.}~\bibnamefont - {Cripe}}, \bibinfo {author} {\bibfnamefont {N.}~\bibnamefont {Aggarwal}}, - \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Lanza}}, \bibinfo - {author} {\bibfnamefont {A.}~\bibnamefont {Libson}}, \bibinfo {author} - {\bibfnamefont {R.}~\bibnamefont {Singh}}, \bibinfo {author} {\bibfnamefont - {P.}~\bibnamefont {Heu}}, \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont - {Follman}}, \bibinfo {author} {\bibfnamefont {G.~D.}\ \bibnamefont {Cole}}, - \bibinfo {author} {\bibfnamefont {N.}~\bibnamefont {Mavalvala}}, \ and\ - \bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Corbitt}},\ }\href - {\doibase 10.1038/s41586-019-1051-4} {\bibfield {journal} {\bibinfo - {journal} {Nature}\ }\textbf {\bibinfo {volume} {568}},\ \bibinfo {pages} - {364} (\bibinfo {year} {2019})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Yap}\ \emph {et~al.}(2019)\citenamefont {Yap}, - \citenamefont {Cripe}, \citenamefont {Mansell}, \citenamefont {McRae}, - \citenamefont {Ward}, \citenamefont {Slagmolen}, \citenamefont {Heu}, - \citenamefont {Follman}, \citenamefont {Cole}, \citenamefont {Corbitt},\ and\ - \citenamefont {McClelland}}]{yap_broadband_2019}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {M.~J.}\ \bibnamefont - {Yap}}, \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Cripe}}, \bibinfo - {author} {\bibfnamefont {G.~L.}\ \bibnamefont {Mansell}}, \bibinfo {author} - {\bibfnamefont {T.~G.}\ \bibnamefont {McRae}}, \bibinfo {author} - {\bibfnamefont {R.~L.}\ \bibnamefont {Ward}}, \bibinfo {author} - {\bibfnamefont {B.~J.~J.}\ \bibnamefont {Slagmolen}}, \bibinfo {author} - {\bibfnamefont {P.}~\bibnamefont {Heu}}, \bibinfo {author} {\bibfnamefont - {D.}~\bibnamefont {Follman}}, \bibinfo {author} {\bibfnamefont {G.~D.}\ - \bibnamefont {Cole}}, \bibinfo {author} {\bibfnamefont {T.}~\bibnamefont - {Corbitt}}, \ and\ \bibinfo {author} {\bibfnamefont {D.~E.}\ \bibnamefont - {McClelland}},\ }\href {\doibase 10.1038/s41566-019-0527-y} {\bibfield - {journal} {\bibinfo {journal} {Nature Photonics}\ ,\ \bibinfo {pages} {1}} - (\bibinfo {year} {2019})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Aggarwal}\ \emph {et~al.}(2018)\citenamefont - {Aggarwal}, \citenamefont {Cullen}, \citenamefont {Cripe}, \citenamefont - {Cole}, \citenamefont {Lanza}, \citenamefont {Libson}, \citenamefont - {Follman}, \citenamefont {Heu}, \citenamefont {Corbitt},\ and\ \citenamefont - {Mavalvala}}]{aggarwal_room_2018}% - \BibitemOpen - \bibfield {author} {\bibinfo {author} {\bibfnamefont {N.}~\bibnamefont - {Aggarwal}}, \bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Cullen}}, - \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Cripe}}, \bibinfo - {author} {\bibfnamefont {G.~D.}\ \bibnamefont {Cole}}, \bibinfo {author} - {\bibfnamefont {R.}~\bibnamefont {Lanza}}, \bibinfo {author} {\bibfnamefont - {A.}~\bibnamefont {Libson}}, \bibinfo {author} {\bibfnamefont - {D.}~\bibnamefont {Follman}}, \bibinfo {author} {\bibfnamefont - {P.}~\bibnamefont {Heu}}, \bibinfo {author} {\bibfnamefont {T.}~\bibnamefont - {Corbitt}}, \ and\ \bibinfo {author} {\bibfnamefont {N.}~\bibnamefont - {Mavalvala}},\ }\href {http://arxiv.org/abs/1812.09942} {\bibfield {journal} - {\bibinfo {journal} {arXiv:1812.09942 [physics, physics:quant-ph]}\ } - (\bibinfo {year} {2018})},\ \bibinfo {note} {arXiv: 1812.09942}\BibitemShut - {NoStop}% \bibitem [{\citenamefont {Thompson}\ \emph {et~al.}(2008)\citenamefont {Thompson}, \citenamefont {Zwickl}, \citenamefont {Jayich}, \citenamefont {Marquardt}, \citenamefont {Girvin},\ and\ \citenamefont {Harris}}]{thompson_strong_2008}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {J.~D.}\ \bibnamefont {Thompson}}, \bibinfo {author} {\bibfnamefont {B.~M.}\ \bibnamefont {Zwickl}}, \bibinfo {author} {\bibfnamefont {A.~M.}\ \bibnamefont {Jayich}}, \bibinfo {author} {\bibfnamefont {F.}~\bibnamefont {Marquardt}}, \bibinfo {author} {\bibfnamefont {S.~M.}\ \bibnamefont {Girvin}}, \ and\ \bibinfo {author} {\bibfnamefont {J.~G.~E.}\ \bibnamefont {Harris}},\ }\href {\doibase 10.1038/nature06715} {\bibfield {journal} {\bibinfo {journal} {Nature}\ - }\textbf {\bibinfo {volume} {452}},\ \bibinfo {pages} {72} (\bibinfo {year} - {2008})}\BibitemShut {NoStop}% + }\textbf {\bibinfo {volume} {452}},\ \bibinfo {pages} {72–75} (\bibinfo + {year} {2008})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Wilson}\ \emph {et~al.}(2009)\citenamefont {Wilson}, \citenamefont {Regal}, \citenamefont {Papp},\ and\ \citenamefont {Kimble}}]{wilson_cavity_2009}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {D.~J.}\ \bibnamefont {Wilson}}, \bibinfo {author} {\bibfnamefont {C.~A.}\ \bibnamefont {Regal}}, \bibinfo {author} {\bibfnamefont {S.~B.}\ \bibnamefont {Papp}}, \ and\ \bibinfo {author} {\bibfnamefont {H.~J.}\ \bibnamefont {Kimble}},\ }\href {\doibase 10.1103/PhysRevLett.103.207204} {\bibfield {journal} {\bibinfo {journal} {Physical Review Letters}\ }\textbf {\bibinfo {volume} {103}},\ \bibinfo {pages} {207204} (\bibinfo {year} {2009})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Tsaturyan}\ \emph {et~al.}(2017)\citenamefont {Tsaturyan}, \citenamefont {Barg}, \citenamefont {Polzik},\ and\ \citenamefont {Schliesser}}]{tsaturyan_ultracoherent_2017}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {Y.}~\bibnamefont {Tsaturyan}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Barg}}, \bibinfo {author} {\bibfnamefont {E.~S.}\ \bibnamefont {Polzik}}, \ and\ \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Schliesser}},\ }\href {\doibase 10.1038/nnano.2017.101} {\bibfield {journal} {\bibinfo {journal} {Nature Nanotechnology}\ }\textbf {\bibinfo {volume} {12}},\ \bibinfo {pages} {776} (\bibinfo {year} {2017})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Reetz}\ \emph {et~al.}(2019)\citenamefont {Reetz}, \citenamefont {Fischer}, \citenamefont {Assumpção}, \citenamefont {McNally}, \citenamefont {Burns}, \citenamefont {Sankey},\ and\ \citenamefont {Regal}}]{reetz_analysis_2019}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {C.}~\bibnamefont {Reetz}}, \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Fischer}}, \bibinfo {author} {\bibfnamefont {G.}~\bibnamefont {Assumpção}}, \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {McNally}}, \bibinfo {author} {\bibfnamefont {P.}~\bibnamefont {Burns}}, \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Sankey}}, \ and\ \bibinfo {author} {\bibfnamefont {C.}~\bibnamefont {Regal}},\ }\href {\doibase 10.1103/PhysRevApplied.12.044027} {\bibfield {journal} {\bibinfo {journal} {Physical Review Applied}\ }\textbf {\bibinfo {volume} {12}},\ \bibinfo {pages} {044027} (\bibinfo {year} {2019})}\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Brawley}\ \emph {et~al.}(2016)\citenamefont - {Brawley}, \citenamefont {Vanner}, \citenamefont {Larsen}, \citenamefont - {Schmid}, \citenamefont {Boisen},\ and\ \citenamefont - {Bowen}}]{brawley_nonlinear_2016}% +\bibitem [{\citenamefont {Brawley}\ \emph + {et~al.}(2016{\natexlab{a}})\citenamefont {Brawley}, \citenamefont {Vanner}, + \citenamefont {Larsen}, \citenamefont {Schmid}, \citenamefont {Boisen},\ and\ + \citenamefont {Bowen}}]{brawley_nonlinear_2016}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {G.~A.}\ \bibnamefont {Brawley}}, \bibinfo {author} {\bibfnamefont {M.~R.}\ \bibnamefont {Vanner}}, \bibinfo {author} {\bibfnamefont {P.~E.}\ \bibnamefont {Larsen}}, \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Schmid}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Boisen}}, \ and\ \bibinfo {author} {\bibfnamefont {W.~P.}\ \bibnamefont {Bowen}},\ }\href {\doibase 10.1038/ncomms10988} {\bibfield {journal} {\bibinfo {journal} {Nature Communications}\ }\textbf {\bibinfo {volume} {7}},\ \bibinfo {pages} {10988} - (\bibinfo {year} {2016})}\BibitemShut {NoStop}% + (\bibinfo {year} {2016}{\natexlab{a}})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Leijssen}\ \emph {et~al.}(2017)\citenamefont {Leijssen}, \citenamefont {Gala}, \citenamefont {Freisem}, \citenamefont {Muhonen},\ and\ \citenamefont {Verhagen}}]{leijssen_nonlinear_2017}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Leijssen}}, \bibinfo {author} {\bibfnamefont {G.~R.~L.}\ \bibnamefont {Gala}}, \bibinfo {author} {\bibfnamefont {L.}~\bibnamefont {Freisem}}, \bibinfo {author} {\bibfnamefont {J.~T.}\ \bibnamefont {Muhonen}}, \ and\ \bibinfo {author} {\bibfnamefont {E.}~\bibnamefont {Verhagen}},\ }\href {\doibase 10.1038/ncomms16024} {\bibfield {journal} {\bibinfo {journal} {Nature Communications}\ }\textbf {\bibinfo {volume} {8}},\ \bibinfo {pages} {1} (\bibinfo {year} {2017})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Gangat}\ \emph {et~al.}(2011)\citenamefont {Gangat}, \citenamefont {Stace},\ and\ \citenamefont {Milburn}}]{gangat_phonon_2011}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~A.}\ \bibnamefont {Gangat}}, \bibinfo {author} {\bibfnamefont {T.~M.}\ \bibnamefont {Stace}}, \ and\ \bibinfo {author} {\bibfnamefont {G.~J.}\ \bibnamefont {Milburn}},\ }\href {\doibase 10.1088/1367-2630/13/4/043024} {\bibfield {journal} {\bibinfo {journal} {New Journal of Physics}\ }\textbf {\bibinfo {volume} {13}},\ \bibinfo {pages} {043024} (\bibinfo {year} {2011})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Clerk}\ \emph {et~al.}(2010)\citenamefont {Clerk}, \citenamefont {Marquardt},\ and\ \citenamefont {Harris}}]{clerk_quantum_2010}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~A.}\ \bibnamefont {Clerk}}, \bibinfo {author} {\bibfnamefont {F.}~\bibnamefont {Marquardt}}, \ and\ \bibinfo {author} {\bibfnamefont {J.~G.~E.}\ \bibnamefont {Harris}},\ }\href {\doibase 10.1103/PhysRevLett.104.213603} {\bibfield {journal} {\bibinfo {journal} {Physical Review Letters}\ }\textbf {\bibinfo {volume} {104}},\ \bibinfo {pages} {213603} (\bibinfo {year} {2010})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Nunnenkamp}\ \emph {et~al.}(2010)\citenamefont {Nunnenkamp}, \citenamefont {Børkje}, \citenamefont {Harris},\ and\ \citenamefont {Girvin}}]{nunnenkamp_cooling_and_squeezing_2010}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Nunnenkamp}}, \bibinfo {author} {\bibfnamefont {K.}~\bibnamefont {Børkje}}, \bibinfo {author} {\bibfnamefont {J.~G.~E.}\ \bibnamefont {Harris}}, \ and\ \bibinfo {author} {\bibfnamefont {S.~M.}\ \bibnamefont {Girvin}},\ }\href {\doibase 10.1103/PhysRevA.82.021806} {\bibfield {journal} {\bibinfo {journal} {Physical Review A}\ }\textbf {\bibinfo {volume} {82}},\ \bibinfo {pages} {021806} (\bibinfo {year} {2010})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Martin}\ and\ \citenamefont {Zurek}(2007)}]{martin_measurement_2007}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {I.}~\bibnamefont {Martin}}\ and\ \bibinfo {author} {\bibfnamefont {W.~H.}\ \bibnamefont {Zurek}},\ }\href {\doibase 10.1103/PhysRevLett.98.120401} {\bibfield {journal} {\bibinfo {journal} {Physical Review Letters}\ }\textbf {\bibinfo {volume} {98}},\ \bibinfo {pages} {120401} (\bibinfo {year} {2007})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Paraïso}\ \emph {et~al.}(2015)\citenamefont {Paraïso}, \citenamefont {Kalaee}, \citenamefont {Zang}, \citenamefont {Pfeifer}, \citenamefont {Marquardt},\ and\ \citenamefont {Painter}}]{paraiso_position-squared_2015}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {T.~K.}\ \bibnamefont {Paraïso}}, \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Kalaee}}, \bibinfo {author} {\bibfnamefont {L.}~\bibnamefont {Zang}}, \bibinfo {author} {\bibfnamefont {H.}~\bibnamefont {Pfeifer}}, \bibinfo {author} {\bibfnamefont {F.}~\bibnamefont {Marquardt}}, \ and\ \bibinfo {author} {\bibfnamefont {O.}~\bibnamefont {Painter}},\ }\href {\doibase 10.1103/PhysRevX.5.041024} {\bibfield {journal} {\bibinfo {journal} {Physical Review X}\ }\textbf {\bibinfo {volume} {5}},\ \bibinfo {pages} {041024} (\bibinfo {year} {2015})}\BibitemShut {NoStop}% \bibitem [{spe()}]{specta_notations}% \BibitemOpen \href@noop {} {}\bibinfo {howpublished} {We use two-sided spectral densities, denoted as $S_{xx}[\omega]$, in theoretical derivations and one-sided spectral densities, denoted as $S_{x}[\omega]=2S_{xx}[\omega]$ for $\omega>2$, for the presentation of experimental data.}\BibitemShut {Stop}% \bibitem [{\citenamefont {Gardiner}()}]{gardiner_handbook_1985}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {C.~W.}\ \bibnamefont {Gardiner}},\ }\href@noop {} {\emph {\bibinfo {title} {Handbook of Stochastic Methods}}},\ \bibinfo {edition} {2nd}\ ed.\ (\bibinfo {publisher} {Springer},\ \bibinfo {address} {Berlin})\ \bibinfo {note} {section 2.8.1}\BibitemShut {NoStop}% +\bibitem [{\citenamefont {Purdy}\ \emph {et~al.}(2013)\citenamefont {Purdy}, + \citenamefont {Yu}, \citenamefont {Peterson}, \citenamefont {Kampel},\ and\ + \citenamefont {Regal}}]{purdy_strong_2013}% + \BibitemOpen + \bibfield {author} {\bibinfo {author} {\bibfnamefont {T.~P.}\ \bibnamefont + {Purdy}}, \bibinfo {author} {\bibfnamefont {P.-L.}\ \bibnamefont {Yu}}, + \bibinfo {author} {\bibfnamefont {R.~W.}\ \bibnamefont {Peterson}}, \bibinfo + {author} {\bibfnamefont {N.~S.}\ \bibnamefont {Kampel}}, \ and\ \bibinfo + {author} {\bibfnamefont {C.~A.}\ \bibnamefont {Regal}},\ }\href {\doibase + 10.1103/PhysRevX.3.031012} {\bibfield {journal} {\bibinfo {journal} + {Physical Review X}\ }\textbf {\bibinfo {volume} {3}} (\bibinfo {year} + {2013}),\ 10.1103/PhysRevX.3.031012}\BibitemShut {NoStop}% +\bibitem [{\citenamefont {Safavi-Naeini}\ \emph {et~al.}(2013)\citenamefont + {Safavi-Naeini}, \citenamefont {Gröblacher}, \citenamefont {Hill}, + \citenamefont {Chan}, \citenamefont {Aspelmeyer},\ and\ \citenamefont + {Painter}}]{safavi-naeini_squeezed_2013}% + \BibitemOpen + \bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~H.}\ \bibnamefont + {Safavi-Naeini}}, \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont + {Gröblacher}}, \bibinfo {author} {\bibfnamefont {J.~T.}\ \bibnamefont + {Hill}}, \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Chan}}, \bibinfo + {author} {\bibfnamefont {M.}~\bibnamefont {Aspelmeyer}}, \ and\ \bibinfo + {author} {\bibfnamefont {O.}~\bibnamefont {Painter}},\ }\href {\doibase + 10.1038/nature12307} {\bibfield {journal} {\bibinfo {journal} {Nature}\ + }\textbf {\bibinfo {volume} {500}},\ \bibinfo {pages} {185} (\bibinfo {year} + {2013})}\BibitemShut {NoStop}% +\bibitem [{\citenamefont {Sudhir}\ \emph + {et~al.}(2017{\natexlab{a}})\citenamefont {Sudhir}, \citenamefont {Wilson}, + \citenamefont {Schilling}, \citenamefont {Schütz}, \citenamefont {Fedorov}, + \citenamefont {Ghadimi}, \citenamefont {Nunnenkamp},\ and\ \citenamefont + {Kippenberg}}]{sudhir_appearance_2017}% + \BibitemOpen + \bibfield {author} {\bibinfo {author} {\bibfnamefont {V.}~\bibnamefont + {Sudhir}}, \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Wilson}}, + \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Schilling}}, \bibinfo + {author} {\bibfnamefont {H.}~\bibnamefont {Schütz}}, \bibinfo {author} + {\bibfnamefont {S.}~\bibnamefont {Fedorov}}, \bibinfo {author} {\bibfnamefont + {A.}~\bibnamefont {Ghadimi}}, \bibinfo {author} {\bibfnamefont + {A.}~\bibnamefont {Nunnenkamp}}, \ and\ \bibinfo {author} {\bibfnamefont + {T.}~\bibnamefont {Kippenberg}},\ }\href {\doibase 10.1103/PhysRevX.7.011001} + {\bibfield {journal} {\bibinfo {journal} {Physical Review X}\ }\textbf + {\bibinfo {volume} {7}},\ \bibinfo {pages} {011001} (\bibinfo {year} + {2017}{\natexlab{a}})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Kampel}\ \emph {et~al.}(2017)\citenamefont {Kampel}, \citenamefont {Peterson}, \citenamefont {Fischer}, \citenamefont {Yu}, \citenamefont {Cicak}, \citenamefont {Simmonds}, \citenamefont {Lehnert},\ and\ \citenamefont {Regal}}]{kampel_improving_2017}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {N.}~\bibnamefont {Kampel}}, \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Peterson}}, \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Fischer}}, \bibinfo {author} {\bibfnamefont {P.-L.}\ \bibnamefont {Yu}}, \bibinfo {author} {\bibfnamefont {K.}~\bibnamefont {Cicak}}, \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Simmonds}}, \bibinfo {author} {\bibfnamefont {K.}~\bibnamefont {Lehnert}}, \ and\ \bibinfo {author} {\bibfnamefont {C.}~\bibnamefont {Regal}},\ }\href {\doibase 10.1103/PhysRevX.7.021008} {\bibfield {journal} {\bibinfo {journal} {Physical Review X}\ }\textbf {\bibinfo {volume} {7}},\ \bibinfo {pages} {021008} (\bibinfo {year} {2017})}\BibitemShut {NoStop}% +\bibitem [{\citenamefont {Sudhir}\ \emph + {et~al.}(2017{\natexlab{b}})\citenamefont {Sudhir}, \citenamefont + {Schilling}, \citenamefont {Fedorov}, \citenamefont {Schütz}, \citenamefont + {Wilson},\ and\ \citenamefont {Kippenberg}}]{sudhir_quantum_2017}% + \BibitemOpen + \bibfield {author} {\bibinfo {author} {\bibfnamefont {V.}~\bibnamefont + {Sudhir}}, \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Schilling}}, + \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Fedorov}}, \bibinfo + {author} {\bibfnamefont {H.}~\bibnamefont {Schütz}}, \bibinfo {author} + {\bibfnamefont {D.}~\bibnamefont {Wilson}}, \ and\ \bibinfo {author} + {\bibfnamefont {T.}~\bibnamefont {Kippenberg}},\ }\href {\doibase + 10.1103/PhysRevX.7.031055} {\bibfield {journal} {\bibinfo {journal} + {Physical Review X}\ }\textbf {\bibinfo {volume} {7}},\ \bibinfo {pages} + {031055} (\bibinfo {year} {2017}{\natexlab{b}})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Zhao}\ \emph {et~al.}(2012)\citenamefont {Zhao}, \citenamefont {Wilson}, \citenamefont {Ni},\ and\ \citenamefont {Kimble}}]{zhao_wilson_suppression_2012}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {Y.}~\bibnamefont {Zhao}}, \bibinfo {author} {\bibfnamefont {D.~J.}\ \bibnamefont {Wilson}}, \bibinfo {author} {\bibfnamefont {K.-K.}\ \bibnamefont {Ni}}, \ and\ \bibinfo {author} {\bibfnamefont {H.~J.}\ \bibnamefont {Kimble}},\ }\href {\doibase 10.1364/OE.20.003586} {\bibfield {journal} {\bibinfo {journal} {Optics Express}\ }\textbf {\bibinfo {volume} {20}},\ \bibinfo {pages} {3586} (\bibinfo {year} {2012})},\ \bibinfo {note} {publisher: Optical Society of America}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Wilson}(2012)}]{wilson_thesis_2012}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {D.~J.}\ \bibnamefont {Wilson}},\ }\emph {\bibinfo {title} {Cavity optomechanics with high-stress silicon nitride films}},\ \href {http://resolver.caltech.edu/CaltechTHESIS:06122012-123343193} {\bibinfo {type} {phd}},\ \bibinfo {school} {California Institute of Technology} (\bibinfo {year} {2012})\BibitemShut {NoStop}% -\bibitem [{\citenamefont {Gorodetksy}\ \emph {et~al.}(2010)\citenamefont - {Gorodetksy}, \citenamefont {Schliesser}, \citenamefont {Anetsberger}, - \citenamefont {Deleglise},\ and\ \citenamefont - {Kippenberg}}]{gorodetksy_determination_2010}% +\bibitem [{\citenamefont {Gorodetksy}\ \emph + {et~al.}(2010{\natexlab{a}})\citenamefont {Gorodetksy}, \citenamefont + {Schliesser}, \citenamefont {Anetsberger}, \citenamefont {Deleglise},\ and\ + \citenamefont {Kippenberg}}]{gorodetksy_determination_2010}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {M.~L.}\ \bibnamefont {Gorodetksy}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Schliesser}}, \bibinfo {author} {\bibfnamefont {G.}~\bibnamefont {Anetsberger}}, \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Deleglise}}, \ and\ \bibinfo {author} {\bibfnamefont {T.~J.}\ \bibnamefont {Kippenberg}},\ }\href {\doibase 10.1364/OE.18.023236} {\bibfield {journal} {\bibinfo {journal} {Optics Express}\ }\textbf {\bibinfo {volume} {18}},\ - \bibinfo {pages} {23236} (\bibinfo {year} {2010})}\BibitemShut {NoStop}% + \bibinfo {pages} {23236} (\bibinfo {year} {2010}{\natexlab{a}})}\BibitemShut + {NoStop}% \bibitem [{\citenamefont {Ghadimi}\ \emph {et~al.}(2018)\citenamefont {Ghadimi}, \citenamefont {Fedorov}, \citenamefont {Engelsen}, \citenamefont {Bereyhi}, \citenamefont {Schilling}, \citenamefont {Wilson},\ and\ \citenamefont {Kippenberg}}]{ghadimi_strain_2017}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~H.}\ \bibnamefont {Ghadimi}}, \bibinfo {author} {\bibfnamefont {S.~A.}\ \bibnamefont {Fedorov}}, \bibinfo {author} {\bibfnamefont {N.~J.}\ \bibnamefont {Engelsen}}, \bibinfo {author} {\bibfnamefont {M.~J.}\ \bibnamefont {Bereyhi}}, \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Schilling}}, \bibinfo {author} {\bibfnamefont {D.~J.}\ \bibnamefont {Wilson}}, \ and\ \bibinfo {author} {\bibfnamefont {T.~J.}\ \bibnamefont {Kippenberg}},\ }\href {\doibase 10.1126/science.aar6939} {\bibfield {journal} {\bibinfo {journal} {Science}\ }\textbf {\bibinfo {volume} {360}},\ \bibinfo {pages} {764} (\bibinfo {year} {2018})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Saulson}(1990)}]{saulson_thermal_1990}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {P.~R.}\ \bibnamefont {Saulson}},\ }\href {http://journals.aps.org/prd/abstract/10.1103/PhysRevD.42.2437} {\bibfield {journal} {\bibinfo {journal} {Physical Review D}\ }\textbf {\bibinfo {volume} {42}},\ \bibinfo {pages} {2437} (\bibinfo {year} {1990})}\BibitemShut {NoStop}% +\bibitem [{\citenamefont {Rossi}\ \emph {et~al.}(2018)\citenamefont {Rossi}, + \citenamefont {Mason}, \citenamefont {Chen}, \citenamefont {Tsaturyan},\ and\ + \citenamefont {Schliesser}}]{rossi_measurement-based_2018}% + \BibitemOpen + \bibfield {author} {\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont + {Rossi}}, \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Mason}}, + \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Chen}}, \bibinfo {author} + {\bibfnamefont {Y.}~\bibnamefont {Tsaturyan}}, \ and\ \bibinfo {author} + {\bibfnamefont {A.}~\bibnamefont {Schliesser}},\ }\href {\doibase + 10.1038/s41586-018-0643-8} {\bibfield {journal} {\bibinfo {journal} + {Nature}\ }\textbf {\bibinfo {volume} {563}},\ \bibinfo {pages} {53} + (\bibinfo {year} {2018})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Reinhardt}\ \emph {et~al.}(2016)\citenamefont {Reinhardt}, \citenamefont {Müller}, \citenamefont {Bourassa},\ and\ \citenamefont {Sankey}}]{reinhardt_ultralow-noise_2016}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {C.}~\bibnamefont {Reinhardt}}, \bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Müller}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Bourassa}}, \ and\ \bibinfo {author} {\bibfnamefont {J.~C.}\ \bibnamefont {Sankey}},\ }\href {\doibase 10.1103/PhysRevX.6.021001} {\bibfield {journal} {\bibinfo {journal} {Physical Review X}\ }\textbf {\bibinfo {volume} {6}},\ \bibinfo {pages} {021001} (\bibinfo {year} {2016})}\BibitemShut {NoStop}% \bibitem [{\citenamefont {Fedorov}\ \emph {et~al.}(2020)\citenamefont {Fedorov}, \citenamefont {Beccari}, \citenamefont {Engelsen},\ and\ \citenamefont {Kippenberg}}]{fedorov_fractal-like_2020}% \BibitemOpen \bibfield {author} {\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Fedorov}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Beccari}}, \bibinfo {author} {\bibfnamefont {N.}~\bibnamefont {Engelsen}}, \ and\ \bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Kippenberg}},\ }\href {\doibase 10.1103/PhysRevLett.124.025502} {\bibfield {journal} {\bibinfo {journal} {Physical Review Letters}\ }\textbf {\bibinfo {volume} {124}},\ \bibinfo {pages} {025502} (\bibinfo {year} {2020})}\BibitemShut {NoStop}% \bibitem [{zen()}]{zenodo_repos}% \BibitemOpen \href@noop {} {}\bibinfo {howpublished} {Raw measurements data, analysis code to repoduce the manuscript figures, and the GDS designs of PnC membranes are available on zenodo.org, DOI:.../zenodo....}\BibitemShut {Stop}% +\bibitem [{\citenamefont {Gärtner}\ \emph {et~al.}(2018)\citenamefont + {Gärtner}, \citenamefont {Moura}, \citenamefont {Haaxman}, \citenamefont + {Norte},\ and\ \citenamefont {Gröblacher}}]{gartner2018integrated}% + \BibitemOpen + \bibfield {author} {\bibinfo {author} {\bibfnamefont {C.}~\bibnamefont + {Gärtner}}, \bibinfo {author} {\bibfnamefont {J.~P.}\ \bibnamefont {Moura}}, + \bibinfo {author} {\bibfnamefont {W.}~\bibnamefont {Haaxman}}, \bibinfo + {author} {\bibfnamefont {R.~A.}\ \bibnamefont {Norte}}, \ and\ \bibinfo + {author} {\bibfnamefont {S.}~\bibnamefont {Gröblacher}},\ }\href@noop {} + {\bibfield {journal} {\bibinfo {journal} {Nano Letters}\ }\textbf {\bibinfo + {volume} {18}},\ \bibinfo {pages} {7171} (\bibinfo {year} + {2018})}\BibitemShut {NoStop}% +\bibitem [{\citenamefont {Nielsen}\ \emph {et~al.}(2004)\citenamefont + {Nielsen}, \citenamefont {Christensen}, \citenamefont {Pedersen},\ and\ + \citenamefont {Thomsen}}]{nielsen2004particle}% + \BibitemOpen + \bibfield {author} {\bibinfo {author} {\bibfnamefont {C.~B.}\ \bibnamefont + {Nielsen}}, \bibinfo {author} {\bibfnamefont {C.}~\bibnamefont + {Christensen}}, \bibinfo {author} {\bibfnamefont {C.}~\bibnamefont + {Pedersen}}, \ and\ \bibinfo {author} {\bibfnamefont {E.~V.}\ \bibnamefont + {Thomsen}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal} + {Journal of The Electrochemical Society}\ }\textbf {\bibinfo {volume} + {151}},\ \bibinfo {pages} {G338} (\bibinfo {year} {2004})}\BibitemShut + {NoStop}% +\bibitem [{\citenamefont {Brawley}\ \emph + {et~al.}(2016{\natexlab{b}})\citenamefont {Brawley}, \citenamefont {Vanner}, + \citenamefont {Larsen}, \citenamefont {Schmid}, \citenamefont {Boisen},\ and\ + \citenamefont {Bowen}}]{Brawley_2016}% + \BibitemOpen + \bibfield {author} {\bibinfo {author} {\bibfnamefont {G.~A.}\ \bibnamefont + {Brawley}}, \bibinfo {author} {\bibfnamefont {M.~R.}\ \bibnamefont {Vanner}}, + \bibinfo {author} {\bibfnamefont {P.~E.}\ \bibnamefont {Larsen}}, \bibinfo + {author} {\bibfnamefont {S.}~\bibnamefont {Schmid}}, \bibinfo {author} + {\bibfnamefont {A.}~\bibnamefont {Boisen}}, \ and\ \bibinfo {author} + {\bibfnamefont {W.~P.}\ \bibnamefont {Bowen}},\ }\href {\doibase + 10.1038/ncomms10988} {\bibfield {journal} {\bibinfo {journal} {Nature + Communications}\ }\textbf {\bibinfo {volume} {7}} (\bibinfo {year} + {2016}{\natexlab{b}}),\ 10.1038/ncomms10988}\BibitemShut {NoStop}% +\bibitem [{\citenamefont {Lai}\ \emph {et~al.}(1990)\citenamefont {Lai}, + \citenamefont {Leung}, \citenamefont {Young}, \citenamefont {Barber},\ and\ + \citenamefont {Hill}}]{Lai_perturbation_1990}% + \BibitemOpen + \bibfield {author} {\bibinfo {author} {\bibfnamefont {H.~M.}\ \bibnamefont + {Lai}}, \bibinfo {author} {\bibfnamefont {P.~T.}\ \bibnamefont {Leung}}, + \bibinfo {author} {\bibfnamefont {K.}~\bibnamefont {Young}}, \bibinfo + {author} {\bibfnamefont {P.~W.}\ \bibnamefont {Barber}}, \ and\ \bibinfo + {author} {\bibfnamefont {S.~C.}\ \bibnamefont {Hill}},\ }\href {\doibase + 10.1103/PhysRevA.41.5187} {\bibfield {journal} {\bibinfo {journal} {Phys. + Rev. A}\ }\textbf {\bibinfo {volume} {41}},\ \bibinfo {pages} {5187} + (\bibinfo {year} {1990})}\BibitemShut {NoStop}% +\bibitem [{\citenamefont {Gorodetksy}\ \emph + {et~al.}(2010{\natexlab{b}})\citenamefont {Gorodetksy}, \citenamefont + {Schliesser}, \citenamefont {Anetsberger}, \citenamefont {Deleglise},\ and\ + \citenamefont {Kippenberg}}]{Gorodetksy_vacuum_2010}% + \BibitemOpen + \bibfield {author} {\bibinfo {author} {\bibfnamefont {M.~L.}\ \bibnamefont + {Gorodetksy}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont + {Schliesser}}, \bibinfo {author} {\bibfnamefont {G.}~\bibnamefont + {Anetsberger}}, \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont + {Deleglise}}, \ and\ \bibinfo {author} {\bibfnamefont {T.~J.}\ \bibnamefont + {Kippenberg}},\ }\href {\doibase 10.1364/OE.18.023236} {\bibfield {journal} + {\bibinfo {journal} {Opt. Express}\ }\textbf {\bibinfo {volume} {18}},\ + \bibinfo {pages} {23236} (\bibinfo {year} {2010}{\natexlab{b}})}\BibitemShut + {NoStop}% \end{thebibliography}% diff --git a/main.tex b/main.tex index 3f75cb5..e432a59 100644 --- a/main.tex +++ b/main.tex @@ -1,291 +1,478 @@ \documentclass[aps,prx,a4paper,notitlepage,reprint,superscriptaddress]{revtex4-1} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PACKAGE CONFIG. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{amsmath,amssymb,amsfonts} % standard AMS packages \usepackage{mathrsfs} % use \ma۳thscr{} for script letters in math \usepackage{mathtools} % for proper typesetting of := and =: \usepackage{color} \usepackage{chemformula} +\usepackage{siunitx} \usepackage{graphicx,float} \usepackage[colorlinks, linkcolor=red, citecolor=blue, urlcolor=red]{hyperref} \usepackage{cleveref} \usepackage{soul} \usepackage{changes} \interfootnotelinepenalty=10000 % prevents footnotes from splitting across pages %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CUSTOM MACROS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % macros for physics objects \newcommand{\ket}[1]{\vert{#1}\rangle} \newcommand{\bra}[1]{\langle{#1}\vert} \newcommand{\op}[1]{\hat{#1}} \newcommand{\tr}{\mathrm{Tr}} \newcommand{\avg}[1]{\left\langle{#1}\right\rangle} % macros for math objects \newcommand{\re}{\mathrm{Re}\,} \newcommand{\im}{\mathrm{Im}\,} \newcommand{\abs}[1]{\left\vert{#1}\right\vert} \newcommand{\symtext}[2]{\ensuremath{\stackrel{{#2}}{{#1}}}} % specific macros for this document \renewcommand{\t}[1]{\mathrm{#1}} \newcommand{\SiN}{Si$_3$N$_4\,$} \newcommand{\fnss}{\mathcal{F}} \newcommand{\mbrsize}[1]{#1\,mm$\times$#1\,mm} % useful reference macros \newcommand{\figref}[1]{Fig.~\ref{#1}} \renewcommand{\eqref}[1]{Eq.~\ref{#1}} \newcommand{\secref}[1]{Sec.~\ref{#1}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN DOCUMENT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \title{Optomechanical thermal intermodulation noise} \author{S. A. Fedorov} \thanks{These authors contributed equally} \email{sergey.fedorov@epfl.ch} \affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} \author{A. Beccari} \thanks{These authors contributed equally} \affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} \author{A. Arabmoheghi} \affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} %\author{\\M. J. Bereyhi} %\affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} \author{D. J. Wilson} \affiliation{College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA} \author{N. J. Engelsen} \email{nils.engelsen@epfl.ch} \affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} \author{T. J. Kippenberg} \email{tobias.kippenberg@epfl.ch} \affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} \begin{abstract} Thermal fluctuations limit the sensitivity of precision measurements ranging from laser interferometer gravitational wave observatories to optical atomic clocks. In optical cavities, thermal fluctuations of length or refractive index create frequency noise. Here we report a previously unobserved broadband noise process, thermal intermodulation noise, originating from the transduction of frequency fluctuations by the nonlinearity in the cavity-laser detuning response. We study thermal intermodulation noise due to the Brownian motion of a thin $\ch{Si3N4}$ membrane resonator in an optomechanical cavity at room temperature, and show that it creates intensity noise for resonant laser excitation. We study the laser detuning dependence of the noise and demonstrate that it scales with the quartic power of the ratio of the optomechanical coupling rate to the cavity linewidth; both of which are in excellent agreement with our developed theoretical model. The noise process is particularly relevant to quantum optomechanics. We utilize a phononic crystal membrane with a low mass, soft-clamped defect mode and operate in a regime where quantum fluctuations of radiation pressure are expected to dominate (i.e. a nominal quantum cooperativity exceeding unity). However, we find that the thermal intermodulation noise exceeds the vacuum fluctuations by orders of magnitude, even within the bandgap, thereby preventing the observation of pondermotive squeezing. The described noise process is broadly relevant to cavity-based measurements, and is especially pronounced when thermally induced frequency fluctuations are comparable to the optical linewidth. \end{abstract} \date{\today} \maketitle %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATTER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Introduction} Optical cavities are an enabling technology for precision metrology, with applications including gravitational wave detection \cite{ligo_collaboration_observation_gw_2016}, ultrastable lasers \cite{sterr_ultrastable_2009}, cavity QED \cite{ye_quantum_2008} to cavity optomechanics \cite{aspelmeyer_cavity_2014}. The ultimate limits in the frequency stability of such cavities are imposed by thermal noise. At finite temperature, the optical resonance frequencies exhibits frequency fluctuations which originate from Brownian motion of mirror surfaces and the thermorefractive and thermoelastic fluctuations of the mirror substrates \cite{braginsky_thermorefractive_2000,gorodetsky_thermal_noise_compensation_2008}. Historically, understanding and minimizing such thermal noises has played a key role in design of laser interferometer gravitational wave detectors, where it motivated changes in the choice of mirror substrate \cite{braginsky_thermodynamical_1999}. Moreover, thermal noises have been combated by the development of crystalline mirror coatings \cite{cole_tenfold_2013} and cryogenic operation \cite{robinson_crystalline_2019}. Fundamental thermodynamical noises are particularly prominent in optical micro-cavities, which due to their lower mode volume exhibit larger fluctuations \cite{gorodetsky_fundamental_2004,anetsberger_near-field_2009}. In the regime where the cavity response is linear in the cavity-laser detuning, these thermal fluctuations manifest as excess phase noise in an optical field resonant with the cavity. However, the inherent nonlinearity of the cavity response with respect to the cavity-laser detuning can create noise in the amplitude quadrature of a resonant laser field. This effect is known as \emph{intermodulation noise}, as it mixes different Fourier components of the frequency noise \cite{riehle_frequency_2005}. When frequency locking using modulation sidebands, such technical intermodulation noise in the error signal is known to limit the stability of frequency standards \cite{audoin_intermodulation_1991} and cavity-stabilized lasers \cite{ferguson_laser-noise-induced_1990,bahoura_ultimate_2003}. Here we report and study \emph{optomechanical thermal intermodulation noise} (TIN) which has a fundamental thermodynamic origin. Specifically, we show that this noise arises in optomechanical systems, caused by thermal motion of multiple mechanical modes coupled to the cavity field, and presents a key obstacle in room temperature quantum optomechanics experiments. Our platform is the membrane-in-the-middle (MIM) system, which is considered promising for accessing quantum optomechanical experiments at room temperature \cite{thompson_strong_2008,wilson_cavity_2009}. Recent advances in high-stress \SiN membrane resonators hosting high-$Q$ and low mass soft-clamped modes \cite{tsaturyan_ultracoherent_2017,reetz_analysis_2019} have made it theoretically possible to reach the radiation pressure quantum backaction dominated regime at room temperature using microwatt-level optical input powers. Yet, concomitant with this approach is a dense spectrum of membrane modes coupled to the optical field, which produce a high level of TIN and prevent access to the quantum backaction dominated regime. The optical transduction nonlinearity which creates thermal intermodulation noise was reported in optomechanical systems previously \cite{brawley_nonlinear_2016,leijssen_nonlinear_2017}. To the lowest order in the displacement divided by dynamic range, it manifests as the measurement of mechanical displacement squared. Such measurements have enticing applications in quantum optomechanics: they can be used for the observation of phononic jumps \cite{gangat_phonon_2011}, phononic shot noise \cite{clerk_quantum_2010}, and the creation of mechanical squeezed states \cite{nunnenkamp_cooling_and_squeezing_2010} if the effects of linear measurement backaction are kept small \cite{martin_measurement_2007,brawley_nonlinear_2016}. Experiments that demonstrated quadratic optomechanical position measurements using position-squared coupling to the cavity frequency \cite{paraiso_position-squared_2015} remain deep in the classical regime due to small coupling rates. Optical cavity transduction can produce large, effective quadratic nonlinearity \cite{brawley_nonlinear_2016}, but it is inevitably accompanied by linear quantum backaction. Our work shows that a new noise source arises as a further consequence of nonlinear cavity transduction: optomechanical thermal intermodulation noise. \section{Theory of intermodulation noise} \label{sec:genTheor} We begin by presenting the theory of thermal intermodulation noise with the assumption that the cavity frequency fluctuations are slow compared to the optical decay rate. We concentrate on the lowest-order, i.e. quadratic, nonlinearity of the cavity detuning transduction. We consider (as in our experimental setup) an optical cavity with two ports, which is driven by a laser coupled to port one. The output from port two is directly detected on a photodiode. In the classical regime, i.e. neglecting vacuum fluctuations, the complex amplitude of the intracavity optical field, $a$, and the output field $s_\t{out,2}$ can be found from the input-output relations \begin{align} &\frac{da(t)}{dt}=\left(i\Delta(t)-\frac{\kappa}{2}\right)a(t)+\sqrt{\kappa_1}\, s_\t{in,1},\\ & s_\t{out,2}(t)=-\sqrt{\kappa_2}a(t),\label{eq:oi2} \end{align} where $s_\t{in,1}$ is the constant coherent drive amplitude, $\Delta(t)=\omega_L-\omega_c(t)$ is the laser detuning from the cavity resonance, modulated by the cavity frequency noise, and $\kappa_{1,2}$ are the external coupling rates of ports one and two and $\kappa=\kappa_1+\kappa_2$. In the fast cavity limit, when the optical field adiabatically follows $\Delta(t)$, the intracavity field is found as \begin{equation}\label{eq:aFull} a(t)=2\sqrt{\frac{\eta_1}{\kappa}} L(\nu(t))\, s_\t{in,1}, \end{equation} where we introduced for brevity the normalized detuning $\nu=2\Delta/\kappa$, the cavity decay ratios $\eta_{1,2}=\kappa_{1,2}/\kappa$ and Lorentzian susceptibility \begin{equation} L(\nu)=\frac{1}{1-i\nu}. \end{equation} Expanding $L$ in \eqref{eq:aFull} over small detuning fluctuations $\delta\nu$ around the mean value $\nu_0$ up to second order we find the intracavity field as \begin{equation}\label{eq:aSq} a=2\sqrt{\frac{\eta_1}{\kappa}}L(\nu_0)(1+iL(\nu_0)\delta\nu -L(\nu_0)^2\delta\nu^2) s_\t{in,1}. \end{equation} According to \eqref{eq:aSq}, the intracavity field is modulated by the cavity frequency excursion, $\delta\nu$, and the frequency excursions squared, $\delta\nu^2$. If $\delta\nu(t)$ is a stationary Gaussian noise process, like typical thermal noises, the linear and quadratic contributions are uncorrelated (despite clearly not being independent). This is due to the fact that odd-order correlations vanish for Gaussian noise, \begin{equation} \langle\delta\nu(t)^2\delta\nu(t+\tau)\rangle=0, \end{equation} where $\langle ...\rangle$ is the time average, for an arbitrary time delay $\tau$. Next, we consider the photodetected signal, which, up to a conversion factor, equals the intensity of the output light and is found to be \begin{multline}\label{eq:detectedNoise} I(t)=|s_\t{out,2}(t)|^2\propto \\ |L(\nu_0)|^2 \left(1-\frac{2\nu_0}{1+\nu_0^2}\delta\nu(t)+\frac{3\nu_0^2-1}{(1+\nu_0^2)^2}\delta\nu(t)^2\right). \end{multline} \noindent Notice that $\delta\nu(t)$ and $\delta\nu(t)^2$ can be distinguished by their detuning dependence. The linearly transduced fluctuations vanish on resonance ($\nu=0$), where $\partial L/\partial \nu=0$. Similarly, when $\partial^2 L/\partial\nu^2=0$, the quadratic frequency fluctuations vanish, and thus also the thermal intermodulation noise. We will denote these ``magic'' detunings by $\nu_0$, which is given by \begin{equation} \nu_0=\pm 1/\sqrt{3} \end{equation} \noindent In the following experiments, we will make measurements at $\nu=\nu_0$ to independently characterize the spectra of $\delta\nu(t)$ and $\delta\nu(t)^2$. The total spectrum \cite{specta_notations} of the detected signal, $I(t)$, is an incoherent sum of the linear term, \begin{equation}\label{eq:Snu} S_{\nu\nu}[\omega]=\int_{-\infty}^{\infty}\langle \delta\nu(t) \delta\nu(t+\tau) \rangle e^{i\omega \tau}d\tau, \end{equation} and the quadratic term, which for Gaussian noise can be found using Wick's theorem \cite{gardiner_handbook_1985} \begin{equation} \langle \delta\nu(t)^2 \delta\nu(t+\tau)^2 \rangle=\langle\delta\nu(t)^2 \rangle^2+2\langle \delta\nu(t) \delta\nu(t+\tau) \rangle^2, \end{equation} as \begin{multline}\label{eq:Snu2} S_{\nu\nu}^{(2)}[\omega]=\int_{-\infty}^{\infty}\langle \delta\nu(t)^2 \delta\nu(t+\tau)^2 \rangle e^{i\omega \tau}d\tau=\\ 2\pi\langle \delta\nu^2\rangle^2 \delta[\omega]+2\times\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{\nu\nu}[\omega']S_{\nu\nu}[\omega-\omega']d\omega', \end{multline} where $\delta[\omega]$ is the Dirac delta function. \begin{figure}[t] \centering \includegraphics[width=\columnwidth]{fig_intro} \caption{Physical mechanism of optomechanical thermal intermodulation noise. \small{a) Transduction of the oscillator's motion to the phase (upper panel) and amplitude (lower panel) quadratures of resonant intracavity light. b) Spectra of linear (upper panel) and quadratic (lower panel) position fluctuations of a multimode resonator, which can lead to the emergence of a wideband noise process. c) Experimental setup in which TIN is studied consisting of a membrane-in-the-middle optomechanical system. PM: Phase modulator. AM: Amplitude modulator. ESA: Electronic spectrum analyzer.}} \label{fig:intro} \end{figure} \begin{figure*}[t] \centering \includegraphics[width=\textwidth]{fig_rect_mbr} \caption{Observation of optomechanical thermal intermodulation noise. \small{a), b) and c) show measurements for a membrane-in-the middle cavity with 2 mm square membrane. a) Cavity reflection signal as the laser is scanned over two resonances, with low (left) and high (right) optomechanical coupling. b) Dependence of resonant RIN, averaged over $0.6-1.6$ MHz, on the input power. Parameters: $\kappa/2\pi=9.9$ MHz, $g_0/2\pi=84$ Hz for the fundamental mode. The interval of $\pm$ one standard deviation around the mean is shaded gray. c) Dependence of the average RIN in a $0.6-1.6$ MHz band on $g_0/\kappa$. d) Noise from a MIM cavity with the laser detuned from resonance (top) and on resonance (bottom) using a 1 mm square membrane, with $\kappa/2\pi=26.6$ MHz and $g_0/2\pi=330$ Hz for the fundamental mode.\hl{It would help to indicate the elevated noisefloor in the figure, which is our wideband TIN noise source. Second: what are the detuning values shown in d? The 'magic' value is not shown it appears.} }} \label{fig:rectMbr} \end{figure*} % Wavelengths: % b), the the power dependence, is taken at \lambda=837.7 nm, % d), the example transmission noises with 1 mm membrane, are taken at \lambda=838.2 nm, \section{Thermal intermodulation noise} In an optomechanical cavity, the dominant source of cavity frequency fluctuations is the Brownian motion of mechanical modes coupled to the cavity, \begin{equation}\label{eq:dnuOpt} \delta\nu(t)= 2\frac{G}{\kappa} x(t), \end{equation} where $G=-\partial \omega_c/\partial x$ is the linear optomechanical coupling constant, and $x$ is the total resonator displacement, i.e. the sum of independent contributions $x_n$ of different mechanical modes (the effect of the finite cavity mode waist is treated in the SI). The spectrum of the Brownian frequency noise is then found to be \begin{equation}\label{eq:mbrFreqFluct} S_{\nu\nu}[\omega]=\left(\frac{2G}{\kappa}\right)^{2}\sum_n S_{xx,n}[\omega], \end{equation} where $S_{xx,n}[\omega]$ are the displacement spectra of individual mechanical modes (see SI for more details). The thermomechanical frequency noise given by \eqref{eq:mbrFreqFluct} produces TIN which contains peaks at sums and differences of mechanical resonance frequencies and a broadband background due to off-resonant components of thermal noise, as illustrated in \figref{fig:intro}b. The magnitude of the intermodulation noise is related to the quadratic spectrum of the total mechanical displacement, $S_{xx}^{(2)}$, as \begin{equation}\label{eq:intNoiseSxx2} S_{\nu\nu}^{(2)}=(2G/\kappa)^{4}S_{xx}^{(2)}. \end{equation} A reservation needs to be made: the theory presented in \secref{sec:genTheor} is only strictly applicable to an optomechanical cavity when the input power is sufficiently low, such that the driving of mechanical motion by radiation pressure fluctuations created by the intermodulation noise is negligible; otherwise the fluctuations of $x(t)$ and $\delta \nu(t)$ may deviate from purely Gaussian and correlations exist between $\delta\nu(t)$ and $\delta\nu(t)^2$. On a practical level, this reservation has minor significance for our experiment. Also, the presence of linear dynamical backaction of radiation pressure does not change the results of \secref{sec:genTheor} but does modify $S_{xx}$. Thermal intermodulation noise can preclude the observation of linear quantum correlations, which are induced by the vacuum fluctuations of radiation pressure between the quadratures of light and manifest as ponderomotive squeezing \cite{purdy_strong_2013,safavi-naeini_squeezed_2013}, Raman sideband asymmetry \cite{sudhir_appearance_2017} and the cancellation of shot noise in force measurements \cite{kampel_improving_2017,sudhir_quantum_2017}. The observation of quantum correlations typically requires selecting a mechanical mode with high $Q$, a spectral neighbourhood free from other modes, and a high optomechanical coupling rate. If TIN is taken into account, the following condition also needs to be satisfied: \begin{equation}\label{eq:qbaCond} C_q\left(\frac{g_0}{\kappa}\right)^2 \Gamma_m n_\t{th}\frac{S^{(2)}_{xx}[\omega]}{x_\t{zpf}^4}\ll 1. \end{equation} Here $C_q=4 g_0^2\bar{n}_c/(\kappa \Gamma_m n_\t{th})\gtrsim 1$ is the quantum cooperativity, $g_0=G\sqrt{\hbar /2 m_\t{eff} \Omega_m}$, $\bar{n}_c$ is the intracavity photon number. The selected mechanical mode is characterized by the resonance frequency $\Omega_m$, the damping rate $\Gamma_m$, the effective mass $m_\t{eff}$ and the thermal phonon occupancy $n_\t{th}=\hbar\Omega_m/(k_B T)$. From the condition given by \eqref{eq:qbaCond}, we can learn that simply increasing the quantum cooperativity is not necessarily a successful strategy when limited by intermodulation noise. One can immediately observe that by reducing the mechanical dissipation and $g_0/\kappa$, one can keep the quantum cooperativity constant while lowering the intermodulation noise. The engineering of mode spectrum to reduce $S^{(2)}_{xx}$ at the desired frequency might also be a fruitful approach. The nonlinearity of the cavity-laser detuning response, producing TIN, modulates the optical field proportional to $x^2$ in a way analogous to, but not equivalent to, quadratic optomechanical coupling, $\partial^2 \omega_c/\partial x^2$. It was noticed that the cavity transduction commonly results in effective quadratic coupling which is orders of magnitude stronger than the highest experimentally reported $\partial^2 \omega_c/\partial x^2$ (in terms of the optical signal proportional to $x^2$ \cite{brawley_nonlinear_2016}). In the Supplementary Information, it is shown that the same is true in the MIM system. Here, the quadratic signal originating from nonlinear transduction, which creates the intermodulation noise, is larger than the signals due to nonlinear optomechanical coupling, $\partial^2 \omega_c/\partial x^2$, by a factor of $r \mathcal{F}$, where $r$ is the membrane reflectivity and $\mathcal{F}$ is the optical finesse. \section{Experimental observation of thermal intermodulation noise} \label{sec:rectMbr} TIN has a number of manifestations that are qualitatively different from other thermal noises in optical cavities. Namely, TIN is present in the \emph{amplitude quadrature} of an optical field coupled to a cavity on resonance, and its magnitude depends very sensitively on the ratio of RMS cavity frequency fluctuations to the linewidth. In this section we present the observation of broadband classical intensity noise in the optical field resonant with membrane-in-the-middle optomechanical cavity at room temperature, and verify that this noise is due to the intermodulation of Brownian motion of membrane modes. -Our experimental setup, shown in \figref{fig:intro}c, comprises a membrane-in-the-middle cavity, consisting of two high-reflectivity, dielectric mirrors with 100 ppm transmission and a 200 $\mu$m-thick silicon chip which is sandwiched directly between the mirrors and hosts a suspended high-stress stoichiometric \SiN membrane. The total length of the cavity is around 350 $\mu$m. The MIM cavity is situated in a vacuum chamber at room temperature and probed using a Ti:Sa or a tunable external cavity diode laser (ECDL) at a wavelength around 840 nm, close to the maximum reflectivity wavelength of the mirrors. The Ti:Sa laser was used in all the thermal noise measurements, whereas the diode laser was only used for the characterization of optical linewidths. The measurement signal was generated by direct detection of the light transmitted through the cavity on an avalanche photodiode. The reflected light, separated using a circulator, was used for Pound-Drever-Hall (PDH) locking of the Ti:Sa frequency. The one-sided spectra \cite{specta_notations} of signals were detected in transmission and calibrated either as relative intensity noise (RIN) or as effective cavity detuning fluctuations, $S_\Delta$, with the help of calibration tones applied to the amplitude or phase quadratures of the laser, respectively. +Our experimental setup, shown in \figref{fig:intro}c, comprises a membrane-in-the-middle cavity, consisting of two high-reflectivity, dielectric mirrors with 100 ppm transmission and a 200 $\mu$m-thick silicon chip which is sandwiched directly between the mirrors and hosts a suspended high-stress stoichiometric \SiN membrane. The total length of the cavity is around 350 $\mu$m. The MIM cavity is situated in a vacuum chamber at room temperature and probed using a Ti:Sa or a tunable external cavity diode laser at a wavelength around 840 nm, close to the maximum reflectivity wavelength of the mirrors. The Ti:Sa laser was used in all the thermal noise measurements, whereas the diode laser was only used for the characterization of optical linewidths. The measurement signal was generated by direct detection of the light transmitted through the cavity on an avalanche photodiode. The reflected light, separated using a circulator, was used for Pound-Drever-Hall (PDH) locking of the Ti:Sa frequency. The one-sided spectra \cite{specta_notations} of signals were detected in transmission and calibrated either as relative intensity noise (RIN) or as effective cavity detuning fluctuations, $S_\Delta$, with the help of calibration tones applied to the amplitude or phase quadratures of the laser, respectively. \subsection{Intermodulation noise in a cavity with a uniform membrane} \added{We first characterize the TIN in....} The characterization of TIN was performed using 20 nm-thick, square membranes with different side lengths as mechanical resonators. The insertion of a membrane into the cavity resulted in excess loss for most of the optical resonances. Nevertheless, for some resonances, the optical quality factors were reduced by only 10\% (for more data on the optical losses, see SI). The optomechanical cooperativity was kept low during the noise measurements to eliminate dynamical backaction of the light (damping or amplification of mechanical motion). For this purpose the residual pressure in the vacuum chamber was kept high, $0.22\pm 0.03$ mBar, such that the quality factors of the fundamental modes of the membranes were limited by gas damping to $Q\sim 10^3$. The reflection signals of two resonances of a MIM cavity with a \mbrsize{2} membrane are presented in \figref{fig:rectMbr}a. The resonances have similar optical linewidths \hl{state order of magnitude} but different optomechanical couplings, and the one with high coupling \hl{approx. how high? g0?})shows clear signatures of thermal noise. For the resonance with high coupling, the total RMS thermal frequency fluctuations are expected to be around 2 MHz, which is still well below the cavity linewidth, $\kappa/2\pi=16$ MHz. The thermal fluctuations imprinted on the optical field by the cavity are significant even when the laser is resonant with the cavity. Typical spectra of the detected noise are shown in \figref{fig:rectMbr}d for a cavity with a different, \mbrsize{1}, square membrane. When the laser is locked detuned from the cavity resonance (close to the ``magic" detuning, $\nu_0\approx -1/\sqrt{3}$), the transmission signal is dominated by the Brownian motion of membrane modes linearly transduced by the cavity \hl{Shown where in the figure 2?}. The magnitude of thermomechanical noise is gradually reduced at high frequencies due to the averaging of membrane mode profiles \cite{zhao_wilson_suppression_2012,wilson_thesis_2012} over the cavity waist (approx $35$ $\mu$m in our experiment), until it meets shot noise at around 15 MHz (verified by the optical power dependence, see SI). When the laser is locked on resonance, the output light also contains a large amount of thermal noise---at an input power of 5 $\mu$W the classical RIN exceeds the shot noise level by about 25 dB at MHz frequencies. Again, at high frequency the noise level approaches shot noise. An unambiguous proof of the intermodulation origin of the resonant intensity noise is obtained by examining the scaling of the noise level with $G/\kappa$. In thermal equilibrium the spectral density of frequency fluctuations, $\delta\nu(t)$, created by a particular membrane is proportional to $(G/\kappa)^2$, and therefore the spectral density of intermodulation noise is expected to be proportional to $(G/\kappa)^4$. We confirm this scaling by measuring the resonant intensity noise for different optical resonances of the same cavity with a \mbrsize{2} membrane and present in \figref{fig:rectMbr}b the noise magnitude, averaged over the frequency band from 0.6 to 1.6 MHz, as a function of $g_0/\kappa$. Here $g_0$ is that of the fundamental mechanical mode, measured using frequency noise calibration as described in Ref. \cite{gorodetksy_determination_2010}. By performing a sweep of the input laser power on one of the resonances of the same cavity we show (see \figref{fig:rectMbr}b) that the resonant intensity noise level is power-independent and therefore the noise is not related to radiation pressure effects. \begin{figure}[t] \centering \includegraphics[width=\columnwidth]{fig_theor} \caption{\hl{Short figure captions should be added to guide the reader.}\small{Detuning fluctuation (top row) and relative intensity noise (bottom row) spectra produced by the modes of a 20-nm, \mbrsize{0.3}, rectangular, Si$_3$N$_4$ membrane. Red shows experimental data and blue is the theoretical prediction. }} \label{fig:theor} \end{figure} The TIN observed in our experiments agrees well with our model. By calculating the spectrum of total membrane fluctuations according to \eqref{eq:mbrFreqFluct} and applying the convolution formula from \eqref{eq:Snu2} (see SI for full details), we can accurately reproduce the observed noise. In \figref{fig:theor}, we compare the measured detuning and intensity noise spectra with the theoretical model. Here, we assume that the damping rate of all the membrane modes are identical as the experiment is operated in the gas-damping-dominated regime. While this model is not detailed enough to reproduce all the noise features, it accurately reproduces the overall magnitude and the broadband envelope of the intermodulation noise observed in the experiment. A comparison of the linear and quadratic displacements of rectangular membranes of different sizes is made in the SI, where we observe that the overall magnitude of the noise increases with increasing membrane size, owing to the increased mode density of larger structures. \begin{figure}[t] \centering \includegraphics[width=\columnwidth]{fig_soft_clamped} \caption{\small{Microscope images of PnC membranes (top) and ringdowns of their soft-clamped, localized modes (bottom). a) 3.6\,mm$\times$3.3\,mm$\times$40\,nm, with a localized mode at 853 kHz, b) 2\,mm$\times$2\,mm$\times$20\,nm membrane with a localized mode at 1.46 MHz.}} \label{fig:softClamped} \end{figure} \begin{figure*}[t] \centering \includegraphics[width=\textwidth]{fig_detuning_sweep} -\caption{\added{Observation and detuning dependence of thermal optomechanical intermodulation noise in a phononic bandgap membrane.}\small{ +\caption{\small{Observation and detuning dependence of thermal optomechanical intermodulation noise in a phononic bandgap membrane. a) Blue---protocurrent noise spectrum detected with the cavity-laser detuning set to $2\Delta/\kappa\approx-0.3$, red---shot noise level. The shaded region shows the noise averaging band for the plot in b. The inset shows an optical cavity mode (imaged at $\lambda\approx780$ nm) overlapping with the PnC membrane defect. b) The variation of the relative intensity noise at bandgap frequencies with cavity-laser detuning. Red dots are experimental measurements, blue line---fit \eqref{eq:Siidelta}, orange line --- cavity phase noise inferred from the fit, shaded blue region---independently calibrated cavity noise, with uncertainty from the selection of the averaging band (see SI).}} \label{fig:detuningSweep} \end{figure*} -Before presenting our investigation of TIN with soft-clamped membranes, we would like to address two potential confounding effects: \emph{laser frequency noise} and \emph{dissipative coupling}. Laser frequency fluctuations contribute to detuning fluctuations in the same way as cavity frequency fluctuations. However, the noise of the Ti:Sa laser used in our experiments was much lower \hl{Very qualitative statement. Can you be quantitative?} than the thermomechanical frequency noise of the short MIM cavities, and was therefore neglected. Additionally, we did not observe any significant effect of the laser lock performance on the magnitude of TIN, which indicates that the up-conversion of detuning noise from low frequencies($<10$ kHz), where the laser noise is largest, contributes negligibly to the TIN in our cavities. As dissipative coupling leads to the modulation of optical linewidth by mechanical position, it could also potentially explain intensity noise in a resonant optical field. Although dissipative coupling is generally present in MIM cavities \cite{wilson_thesis_2012}, the magnitude of this noise would expected to be orders of magnitude below that measured in our experiments (see SI for more details). Moreover, dissipative coupling cannot explain the observed scaling of resonant RIN ($\propto (G/\kappa)^4$) and the absence of correlation between the RIN level and the excess optical loss added by the membrane. +We would like to address two potential confounding effects: \emph{laser frequency noise} and \emph{dissipative coupling}. Laser frequency fluctuations contribute to detuning fluctuations in the same way as cavity frequency fluctuations. However, the noise of the Ti:Sa laser used in our experiments was much lower \hl{Very qualitative statement. Can you be quantitative?} than the thermomechanical frequency noise of the short MIM cavities, and was therefore neglected. Additionally, we did not observe any significant effect of the laser lock performance on the magnitude of TIN, which indicates that the up-conversion of detuning noise from low frequencies($<10$ kHz), where the laser noise is largest, contributes negligibly to the TIN in our cavities. As dissipative coupling leads to the modulation of optical linewidth by mechanical position, it could also potentially explain intensity noise in a resonant optical field. Although dissipative coupling is generally present in MIM cavities \cite{wilson_thesis_2012}, the magnitude of this noise would expected to be orders of magnitude below that measured in our experiments (see SI for more details). Moreover, dissipative coupling cannot explain the observed scaling of resonant RIN ($\propto (G/\kappa)^4$) and the absence of correlation between the RIN level and the excess optical loss added by the membrane. \subsection{Thermal intermodulation noise caused by a soft-clamped phononic crystal membrane} % Comment: Raw numbers for the input and output powers, uncorrected for the transmission of the vacuum chamber: % 137 uW input -> 15 uW output (resonance with kappa/2 pi = 34 MHz, at \lambda = 849.8 nm) % 30 uW input -> 8.3 uW output (resonance with kappa/2 pi = 25 MHz, at \lambda = 840.8 nm) -Localized (``soft-clamped") defect modes in stressed phononic crystal (PnC) resonators can have quality factors in excess of $10^8$ at room temperature due to enhanced dissipation dilution \cite{tsaturyan_ultracoherent_2017,ghadimi_strain_2017}. Owing to their high $Q$ and low effective mass, which result in low thermal force noise, $S_\t{FF,th}= 2k_B T m_\t{eff}\Gamma_m$ \cite{saulson_thermal_1990}, these modes are promising for quantum optomechanics experiments \cite{rossi_measurement-based_2018}. Soft-clamped modes with thermal noises as low as 55~aN/$\sqrt{\text{Hz}}$ have been demonstrated in PnC membranes at room temperature \cite{tsaturyan_ultracoherent_2017,reetz_analysis_2019}. +Localized (``soft-clamped") defect modes in stressed phononic crystal (PnC) resonators can have quality factors in excess of $10^8$ at room temperature due to enhanced dissipation dilution \cite{tsaturyan_ultracoherent_2017,ghadimi_strain_2017}. Owing to their high $Q$ and low effective mass, which result in low thermal force noise, $S_\t{FF,th}= 2k_B T m_\t{eff}\Gamma_m$ \cite{saulson_thermal_1990}, these modes are promising for quantum optomechanics experiments \cite{rossi_measurement-based_2018}. -In \figref{fig:softClamped}a and b we present \SiN PnC membranes with soft-clamped modes optimized for low effective mass and high $Q$. The phononic crystals are formed by the hexagonal pattern of circular holes introduced in Ref.~\cite{tsaturyan_ultracoherent_2017}, which creates a bandgap for flexural modes. \hl{The next sentence could be moved to the IS, couldn't it? Quite detailed comment, evidently important. Perhaps best to mention in the design section of the PnC. Alternatively given this is important: you could show the edge also as image in the inset, to figure 5 a.}The phononic crystal is terminated to the silicon frame at half the hole radii in order to prevent mode localization at the membrane edges---such modes have low $Q$ and can have frequencies within the phononic bandgap, contaminating the spectrum. \figref{fig:softClamped}a shows a microscope image of a resonator with a trampoline defect, featuring $m_\t{eff}=3.8$ ng and $Q=1.65\times 10^8$ at $0.853$ MHz, corresponding to a thermal force noise $S_\t{FF,th}=13$ aN/$\sqrt{\text{Hz}}$. Another resonator, shown in \figref{fig:softClamped}b, is a \mbrsize{2} phononic crystal membrane with a defect engineered to create a single mode localized in the middle of the phononic bandgap. The displayed sample has $Q=7.4\times 10^7$ at $1.46$ MHz and $m_\t{eff}=1.1$ ng, corresponding to $S_\t{FF,th}=34$ aN/$\sqrt{\text{Hz}}$. +In \figref{fig:softClamped}a and b we present \SiN PnC membranes with soft-clamped modes optimized for low effective mass and high $Q$. The phononic crystals are formed by the hexagonal pattern of circular holes introduced in Ref.~\cite{tsaturyan_ultracoherent_2017}, which creates a bandgap for flexural modes. The phononic crystal is terminated to the silicon frame at half the hole radii in order to prevent mode localization at the membrane edges---such modes have low $Q$ and can have frequencies within the phononic bandgap, contaminating the spectrum. \figref{fig:softClamped}a shows a microscope image of a resonator with a trampoline defect, featuring $m_\t{eff}=3.8$ ng and $Q=1.65\times 10^8$ at $0.853$ MHz, corresponding to a thermal force noise $S_\t{FF,th}=13$ aN/$\sqrt{\text{Hz}}$. Another resonator, shown in \figref{fig:softClamped}b, is a \mbrsize{2} phononic crystal membrane with a defect engineered to create a single mode localized in the middle of the phononic bandgap. The displayed sample has $Q=7.4\times 10^7$ at $1.46$ MHz and $m_\t{eff}=1.1$ ng, corresponding to $S_\t{FF,th}=34$ aN/$\sqrt{\text{Hz}}$. -The phononic bandgap spectrally isolates soft-clamped modes from the thermomechanical noise created by the rest of the membrane spectrum. Nevertheless, when a PnC membrane is incorporated in a MIM cavity the entire multitude of membrane modes contributes to the TIN \emph{even within bandgap frequencies}, as TIN is produced by a nonlinear process. \hl{Avoid telegraphing what comes next. This makes the manuscript unnecessarily long} In the following, we present measurements of the in-bandgap excess noise in a MIM cavity at room temperature and show that it is dominated by TIN at all detunings except for the immediate vicinity of the ``magic" detuning $\nu_0=-1/\sqrt{3}$. Around $\nu_0=-1/\sqrt{3}$ the cavity noise, characterized by measuring the noise of an empty cavity (see SI), is the dominant excess noise. The measurements were conducted using a 2mm square PnC membrane with the patterning shown in \figref{fig:softClamped}b, but made of 40 nm-thick \SiN. The membrane has a single soft-clamped mode with $Q=4.1\times 10^7$ at $1.55$ MHz. The quality factor was characterized immediately before inserting the membrane in the cavity assembly. The measurements presented in this section were made using the same setup described in \secref{sec:rectMbr} and shown in \figref{fig:intro}c, the only difference being that the vacuum pressure was kept below $5\times 10^{-7}$ mBar in order to eliminate gas damping. +The phononic bandgap spectrally isolates soft-clamped modes from the thermomechanical noise created by the rest of the membrane spectrum. Nevertheless, when a PnC membrane is incorporated in a MIM cavity the entire multitude of membrane modes contributes to the TIN \emph{even within bandgap frequencies}, as TIN is produced by a nonlinear process. The in-bandgap excess noise in a MIM cavity at room temperature is dominated by TIN at all detunings except for the immediate vicinity of the ``magic" detuning $\nu_0=-1/\sqrt{3}$. Around $\nu_0=-1/\sqrt{3}$ the cavity noise, characterized by measuring the noise of an empty cavity (see SI), is the dominant excess noise. The measurements were conducted using a 2mm square PnC membrane with the patterning shown in \figref{fig:softClamped}b, but made of 40 nm-thick \SiN. The membrane has a single soft-clamped mode with $Q=4.1\times 10^7$ at $1.55$ MHz. The quality factor was characterized immediately before inserting the membrane in the cavity assembly. The measurements presented in this section were made using the same setup described in \secref{sec:rectMbr} and shown in \figref{fig:intro}c, the only difference being that the vacuum pressure was kept below $5\times 10^{-7}$ mBar in order to eliminate gas damping. \figref{fig:detuningSweep}a shows the spectrum of light transmitted through a resonance of membrane-in-the-middle cavity with $g_0/2\pi=0.9$ kHz for the soft-clamped mode, $\kappa/2\pi=34$ MHz (estimated roundtrip excess optical loss is 300 ppm) and $C_0=2.5$. The input power in the measurement was 100 $\mathrm{\mu W}$ after correcting for spatial mode matching, which corresponds to a nominal $C_Q\sim1$. The shot noise level was calibrated in a separate measurement by directing an independent laser beam on the detector. The noise at bandgap frequencies is dominated by TIN, which exceeds the shot noise by four orders of magnitude. The spectrum also shows a dispersive feature in the middle of the bandgap, which is a signature of classical correlations due to the intracavity TIN exciting the localized mechanical mode. We next present in \figref{fig:detuningSweep}b the dependence of the bandgap noise level on the laser detuning, measured on a different optical resonance of the same MIM cavity and at lower input power. In this measurement $g_0/2\pi=360$ Hz for the localized mode, $\kappa/2\pi=24.8$ MHz (estimated 150 ppm excess loss per roundtrip) and the input power was 30 $\mu$W. The bandgap noise was averaged over a 35 kHz band indicated in \figref{fig:detuningSweep}a. \hl{Some of the technical parts could be moved to a SI to streamline reading of the manuscript} The detuning of the laser from the cavity resonance was controlled by and inferred from the locking offset. For detunings greater than $2\Delta/\kappa\approx 0.5$, where the PDH error flips sign, side of the line locking was used instead of PDH. With the laser drive detuned from the resonance, both linear, $\delta\nu(t)$, and quadratic, $\delta\nu(t)^2$, cavity frequency fluctuations contribute to the detected signal, as described in \eqref{eq:detectedNoise}. $S_{\nu\nu}$ is dominated by cavity noise at bandgap frequencies, while $S_{\nu\nu}^{(2)}$ consists of the intermodulation products of all the membrane modes. Moreover, radiation pressure cooling of membrane modes must be taken into account. Then, the overall detuning dependence of the classical intensity noise, $S_{II}$, is given by (see SI for a detailed derivation) \begin{equation}\label{eq:Siidelta} S_{II}\propto \frac{4 \nu_0^2}{(1+\nu_0^2)^2} C_1+\frac{1}{|\nu_0|}\frac{(3\nu_0^2-1)^2}{1+\nu_0^2} C_2, \end{equation} where $C_1$ and $C_2$ are proportional to $S_{\nu\nu}$ and $S_{\nu\nu}^{(2)}$, respectively. $C_1$ and $C_2$ are taken as free parameters in fitting the data in \figref{fig:detuningSweep}b, but the inferred value of $C_1$ is consistent with the cavity noise level calibrated independently (see SI). As can be seen from \figref{fig:detuningSweep}b, our model reproduces the observed variation of output noise with detuning very well. While at small detunings from resonance, TIN is the dominant contribution to the overall noise, around the ``magic" detuning, TIN is suppressed and the output noise is limited by the cavity noise. Notice that the intensity of the detected light in our measurement is proportional to the intensity of the intracavity field. Therefore, the suppresion of TIN in the output necessarily implies the suppression of the corresponding radiation pressure noise, which can lead to classical heating of the mechanical oscillator and thereby limit the true quantum cooperativity. \section{Conclusions and outlook} To summarize, we have presented the observation and characterization of a previously unreported broadband thermal noise in optical cavities, TIN, which originates from the quadratic transduction of thermal cavity frequency noise. Although produced by the cavity frequency noise, TIN is not correlated with it (neglecting radiation pressure effects) and therefore in many ways behaves as an independent noise. The key qualitative feature of TIN is that it creates intensity fluctuations in an optical field resonant with the cavity. The TIN magnitude grows quadratically in the ratio of RMS thermal frequency fluctuations by the optical linewidth, and therefore it strongly affects high-finesse optical cavities with large frequency fluctuations, such as optomechanical membrane-in-the-middle cavities at room temperature. Thermal intermodulation noise in optomechanical experiments can be avoided by using cavities with low finesse (equivalently, low $g_0/\kappa$), and by coupling them to mechanical resonators with lower total thermal fluctuations, i.e. which have fewer mechanical modes, higher frequency, and higher $Q$ for all modes. The latter consideration could make the fundamental modes of mechanical resonators (e.g. low-mass trampolines \cite{reinhardt_ultralow-noise_2016}) seem preferable compared to high-$Q$ but high-order PnC defect soft-clamped modes. In this context, a newly proposed method of exploiting self-similar structures as mechanical resonators with soft-clamped fundamental modes \cite{fedorov_fractal-like_2020} could potentially be fruitful for overcoming TIN. Another way of reducing the TIN is laser cooling of mechanical motion, either by dynamical backaction of a red-detuned beam or by active feedback. In this case, however, all mechanical modes that contribute to the total cavity noise must be efficiently cooled, which could be technically challenging. The raw measurement data, analysis scripts and membrane designs are available in \cite{zenodo_repos}. \section{Acknowledgements} The authors thank Ryan Schilling for fabrication advice. All samples were fabricated and grown in the Center of MicroNanoTechnology (CMi) at EPFL. This work was supported by the Swiss National Science Foundation under grant no. 182103 and the Defense Advanced Research Projects Agency (DARPA), Defense Sciences Office (DSO), under contract no. D19AP00016 (QUORT). A.B. acknowledges support from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 722923 (OMT). N.J.E. acknowledges support from the Swiss National Science Foundation under grant no. 185870 (Ambizione). +% SUPPLEMENTARY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%\clearpage +\appendix + +\section{Membrane fabrication} + +Patterned and unpatterned membrane samples are fabricated on the same \SI{100}{\milli \meter} wafer. Stoichiometric, high stress \ch{Si_3N_4} is grown by low pressure chemical vapor deposition (LPCVD) on both sides of a \SI{200}{\micro \meter}-thick silicon wafer. The initial deposition stress is estimated a posteriori from the observation of membrane resonant frequencies, and varies in the range \SI{900}{}-\SI{1100}{MPa}, changing slightly with deposition run. + +The fabrication process relies on bulk wet etching of silicon in \ch{KOH} through the whole wafer thickness, to create openings for optical access to the membranes samples \cite{tsaturyan_ultracoherent_2017,reinhardt_ultralow-noise_2016,gartner2018integrated}. The extremely high selectivity of \ch{Si_3N_4} to \ch{Si} during \ch{KOH} etching allows the use of the backside nitride layer as a mask, to define the outline of the membranes on the frontside. + +Initially, the frontside nitride (\ch{Si_3N_4}) layer is patterned with h-line photolithography and \ch{CHF_3}/\ch{SF6}-based reactive ion etching (RIE) (steps 2-3 of figure \ref{fig:processflow}). The photoresist film is then stripped with a sequence of hot N-Methyl-2-pyrrolidone (NMP) and \ch{O_2} plasma; this procedure is carefully repeated after each etching step. The frontside nitride layer is then protected by spinning a thick layer of negative-tone photoresist (MicroChemicals AZ\textregistered 15nXT), prior to flipping the wafer and beginning the patterning of membrane windows on the backside nitride layer (steps 4-5). We noticed a reduction in the occurrence of local defects and increased overall membrane yield when the unreleased membranes on the frontside were protected from contact with hot plates, spin-coaters and plasma etchers chucks. The backside layer is then patterned with membrane windows, in a completely analogous way. The exposure step requires a wafer thickness-dependent rescaling of membrane windows, to account for the slope of slow-etching planes in \ch{KOH}, and careful alignment with frontside features. + +After stripping the photoresist, the wafer is installed in a PTFE holder for the first wet etching step in \ch{KOH} at $\approx \SI{75}{\celsius}$ (step 6). The holder clamps the wafer along its rim, sealing off the wafer frontside with a rubber O-ring, while exposing the backside to chemical etching by \ch{KOH}. This procedure is necessary to ensure that PnC membranes are suspended correctly: we noticed that releasing PnC samples by etching from both sides of the wafer produced a large number of defects in the phononic crystal, probably due to the particular dynamics of undercut and stress relaxation in the film. The wafer is etched until \SI{30}{}-\SI{40}{\micro\meter} of silicon remains, leaving the samples robust during the subsequent fabrication steps. The wafer is then removed from the KOH bath and the PTFE holder, rinsed and cleaned in concentrated \ch{HCl} at room temperature for 2 hours \cite{nielsen2004particle}. + +Subsequently, the wafer is coated with thick, protective photoresist and diced into $\SI{8.75}{mm}\times\SI{8.75}{mm}$ chips, and the remainder of the process is carried on chip-wise. Chips are cleaned again with hot solvents and \ch{O_2} plasma, and the membrane release is completed by exposing chips to \ch{KOH} from both sides (step 7). The temperature of the solution is lowered ($\approx \SI{55}{}-\SI{60}{\celsius}$), to mitigate the perturbation of fragile samples by buoyant \ch{N_2} bubbles, a byproduct of the etching reaction. After the undercut is complete, the samples are carefully rinsed, cleaned in \ch{HCl}, transferred to an ethanol bath and gently dried in a critical point dryer (CPD). + +\begin{figure}[t] +\includegraphics[width=\columnwidth]{fig_process_flow.pdf} +\centering +\caption{\small{Main steps of the fabrication process. Magenta - \ch{Si_3N_4}; gray - Si; green - photoresist.}} +\label{fig:processflow} +\end{figure} + +\section{Quadratic mechanical displacement transduction by the optical cavity versus quadratic optomechanical coupling} + +Nonlinear cavity transduction can produce signals, quadratic in mechanic displacement, that are orders of magnitude stronger than those due $\partial^2 \omega_c/\partial x^2$ terms that were ever experimentally demonstrated \cite{Brawley_2016}. Below we derive the classical dynamics of optical field in an optomechanical cavity taking into account terms that are quadratic in displacement. We show that in membrane in the middle cavity typical quadratic signals originating from the nonlinear transduction are $r\mathcal{F}$ larger than the signals due to the nonlinear optomechanical coupling, $\partial^2 \omega_c/\partial x^2$. + +The fluctuations of $\nu$ due to the mechanical displacement are given by +\begin{equation} +\delta\nu(t)\approx 2\frac{G}{\kappa} x(t)+\frac{G_2}{\kappa} x(t)^2, +\end{equation} +where $G=-\partial \omega_c/\partial x$ and $G_2=-\partial^2 \omega_c/\partial^2 x$ are the linear and quadratic optomechanical coupling, respectively, and the total displacement $x$ is composed by partial contributions of different modes $x_n$ +\begin{equation} +x(t) = \sum_n x_n(t). +\end{equation} +For resonant lase probe we can find the intracavity field as +\begin{multline}\label{eq:aResDisp} +a(t)\approx 2\sqrt{\frac{\eta_1}{\kappa}}(1 -i\nu(t) -\nu(t)^2) s_\t{in,1}=\\ +2\sqrt{\frac{\eta_1}{\kappa}}\left(1 -2i\frac{G}{\kappa} x(t) -\left(\left(2\frac{G}{\kappa} \right)^2+i\frac{G_2}{\kappa}\right) x(t)^2\right) s_\t{in,1}. +\end{multline} +It is instructive to compare the magnitudes of the two contributions to the prefactor of $x(t)^2$. The typical value for $G$ (assuming the membrane to be not very close to one of the mirrors) is +\begin{equation} +G\sim 2r \frac{\omega_c}{l_c}, +\end{equation} +while the typical value for $G_2$ is \cite{thompson_strong_2008} +\begin{equation} +G_2\sim 4 \frac{r \omega_c^2}{c \, l_c}, +\end{equation} +where $c$ is the speed of light, $r$ is the membrane reflectivity and $l_c$ is the cavity length. The ratio of the two contributions is evaluated as +\begin{equation} +\left. \left(2\frac{G}{\kappa} \right)^2\right/\left(\frac{G_2}{\kappa}\right)\sim\mathcal{F}r. +\end{equation} +As the cavity finesse $\mathcal{F}$ is typically large, on on the order of $10^3$ to $10^5$, and the membrane reflectivity $r$ is between $0.1$ and $0.5$, we conclude that linear optomechanical coupling needs to extremely well suppressed in order for the quadratic coupling $G_2$ to contribute. + +\section{Dissipative coupling} +In an optomechanical membrane-in-the-middle cavity dissipative coupling, $\partial \kappa/\partial x$, exists in addition to the dispersive coupling, $\partial \omega_c/\partial x$. Dissipative coupling modulates the optical decay rate, both external coupling and intrinsic loss, and potentially can produce intensity noise in a resonantly locked probe laser. However, for the parameters of our experiment the dissipative coupling is negligible. + +The noise due to dissipative coupling can be upper-bound as follows. The cavity linewidth cannot change by more than $\kappa$ as the membrane is translated by $\lambda$ inside the cavity, and therefore the dissipative coupling rate is limited by +\begin{equation} +\frac{\partial \kappa}{\partial x}\lesssim \frac{\kappa}{\lambda}= \frac{1}{\mathcal{F}}\frac{\omega_c}{2l_c}\sim \frac{G}{\mathcal{F}}, +\end{equation} +where in the last transition it was assumed that the membrane reflectivity is not very much smaller than one. + +Resonant intracavity field modulated by dissipative coupling only is given by +\begin{equation} +a(t)\approx 2\sqrt{\frac{\eta_1}{\kappa}}\left(1 - \frac{1}{2\kappa}\frac{\partial \kappa}{\partial x} x(t)\right) s_\t{in,1}. +\end{equation} +Comparing to \eqref{eq:aResDisp}, we find that the noise produced by dissipative coupling is negligible compared to the intermodulation noise if +\begin{equation} +\frac{G}{\kappa}x \gg \frac{1}{\mathcal{F}}. +\end{equation} +In all the experiments presented in this work this condition is satisfied, $Gx/\kappa$ ranges from \textcolor{red}{0.1 to 0.01 [verify exact numbers]}, whereas $1/\mathcal{F}$ is always less than $10^{-4}$. + +\section{Details of TIN calculations} + +%%%%%%%%%%%%%%% + + +\noindent For an optomechanical system, the cavity resonance frequency shifts due to a displacement field $\vec{u}(\vec r)$ is up to linear term given by \cite{Lai_perturbation_1990, Gorodetksy_vacuum_2010} + +\begin{equation} + \frac{\Delta\omega_c}{\omega_c} = \frac{1}{2}\frac{\int |\vec E{(\vec r)}|^2\nabla\epsilon(\vec r)\cdot \vec{u}(\vec r)}{\int |\vec E{(\vec r)}|^2\epsilon(\vec r)} +\end{equation} + where $\epsilon(\vec r)$ is the dielectric constant. For membrane in the middle systems the gradient of the dielectric constant is constant over the displacement field region. Therefore, the resonance frequency shift and correspondingly the linear optomechanical coupling constant ($G$) is only proportional to the average of the displacement field over the cavity mode shape at the position of the membrane. Hence, the optomechanical coupling constant for different flexural modes of a membrane can be written in the form $G_n = \eta_n\cdot G$, where $n$ denotes the mode number, $G$ is a constant and $\eta_n$ are the overlap factors, proportional to the average of the mode shape on the cavity mode. For a membrane (in the x-y plane) with flexural modes $\{u_n(x,y)\}$, by choosing $G$ to be equal to the coupling constant for the fundamental mode ($G_1$) the overlap factors have the form + + \begin{equation} + \eta_n = \frac{\int u_n(x,y)I(x,y)\,dxdy}{\int u_1(x,y)I(x,y)\,dxdy}, + \end{equation} +where $u_1$ denotes the fundamental mode and $I(x,y) = |\vec E{(x,y)}|^2$ is the cavity mode shape. For TEM$_{00}$ mode of a Fabry-Perot cavity the transverse mode profile is given by +\begin{equation} + I(x,y) = \sqrt{\frac{2}{\pi w^2}} e^{-2((x-x_0)^2+(y-y_0)^2)/w^2} +\end{equation} +with $w$ being the waist of the mode shape at the position of the membrane and $x_0$ and $y_0$ being the posistion on the membrane the beam is focused on. We normalize the coupling constants to the value for the fundamental mode since in the actual experiment we calibrate the coupling constant using the fundamental mode. With $x_n(t)$ being the amplitude of the $n_{th}$ mode, total fluctuations of the cavity normalized detuning is given by +\begin{equation} + \delta\nu(t) = \frac{2G}{\kappa} \sum_n \eta_n x_n(t). +\end{equation} +Comparing to Eq.. (12) of the main text total displacement, $x(t)$ is defined as +\begin{equation} + x(t) = \sum_n \eta_n x_n(t). +\end{equation} +Spectrum of the linear fluctuations of $x$, $S_{xx}^{(1)}[\omega]$, is linear combination of thermal spectra of each mode, $S_{xx,n}^{(1)}[\omega]$, due to the fact that Brownian motion of different modes are statistically independent. $S_{xx,n}^{(1)}[\omega]$ is also given by the fluctuation-dissipation theorem. + +\begin{equation}\label{S_xx} + S_{xx}^{(1)}[\omega] = \sum_n \eta_n^2 S_{xx,n}^{(1)}[\omega] = \sum_n \eta_n^2 \frac{2kT}{\omega}\Im{\chi_n[\omega]} +\end{equation} +where $\chi_n[\omega]$ is the susceptibility of mode $n$. The quadratic fluctuations of $x$ can be calculated using a relation similar to Eq. (11) of the main text + +\begin{equation}\label{S_xx2} + S_{xx}^{(2)}[\omega] = 2\pi\langle x^2\rangle \delta[\omega] + \frac{1}{\pi}\int_{-\infty}^{\infty}S_{xx}^{(1)}[\omega']S_{xx}^{(1)}[\omega-\omega']d\omega' +\end{equation} +Having computed the linear and quadratic spectra of displacement fluctuations, the linear and quadratic frequency fluctuations are also calculated accordingly using the Eq. (13) and (14) of the main text, and finally the total photocurrent spectrum can be calculated from Eq. (18). + +For a thin high stress sqaure membrane with side L, the flexural modes are given by sine waves as +\begin{equation} + u_{nm} = \frac{2}{L}\sin{(\frac{2\pi x}{L})}\sin{(\frac{2\pi y}{L})}, +\end{equation} +with the mode frequencies are $\Omega_{nm} = \frac{\pi c}{L}\sqrt{n^2 + m^2}$ where $L$ is the side of the square and $c=\sqrt{\frac{\sigma}{\rho}}$ is the speed of the acoustic wave in a film with density of $\rho$ and stress $\sigma$. The effective mass for all modes is equal to $M/4$, a quarter of the total mass of the membrane. In the data presented in Fig. (3) of the main text, the membrane in under a rather high pressure, so that the damping process is dominated by the viscous damping which means constant damping rate given by $\Gamma_{nm} = \Omega_{nm}/Q_{nm}$. Piecing it all together, the susceptibility of the mode ${nm}$ is given by + +\begin{equation} + \chi_{nm}[\omega] = \frac{1}{M/4}\frac{1}{\Omega_{nm}^2 - \omega^2 - i\Gamma_{nm}\omega}. +\end{equation} + +Finally, we can analytically calculate the linear spectrum using Eq. (\ref{S_xx}) and then find the TIN by numerically computing the convolution integral in Eq. (\ref{S_xx2}). + + +%%%%%%%%%%%%%%% + +\section{The model of detuning dependence of total output light noise for MiM cavity with PnC membrane} +As shown in the main manuscript text, the intensity of light, $I(t)$, and therefore the photodiode signal, is related to the linear ($\delta\nu(t)$) and quadratic ($\delta\nu(t)^2$) fluctuations of the cavity frequency as +\begin{multline} +I(t)=|s_\t{out,2}(t)|^2\propto\\ +|L(\nu_0)|^2 \left(1-\frac{2\nu_0}{1+\nu_0^2}\delta\nu(t)+\frac{3\nu_0^2-1}{(1+\nu_0^2)^2}\delta\nu(t)^2\right), +\end{multline} +where $\nu_0=2\Delta_0/\kappa$ is normalized detuning. The spectrum of intensity fluctuations of the output light is given by, +\begin{equation} +S_{II}[\omega]\propto \frac{4 \nu_0^2}{(1+\nu_0^2)^2} S_{\nu\nu}[\omega]+\frac{(3\nu_0^2-1)^2}{(1+\nu_0^2)^4} S^{(2)}_{\nu\nu}[\omega]. +\end{equation} +In an optomechanical cavity operated at high input power $S_{\nu\nu}$ and $S^{(2)}_{\nu\nu}$ in general are detuning-dependent because of the dynamic backaction of light, most importantly because of the laser cooling/amplification of mechanical motion. + +In order to find the dependence of $S_{II}$ on $\Delta$ some specific assumptions need to be made about the operation regime and the frequency of interest. Considering the case of data in Fig.~5b of the main text, here the noise level is estimated at the bandgap frequency and therefore only the mirror noise is expected to contribute to $S_{\nu\nu}$. The mechanical modes of the mirrors are relatively weakly coupled to the intracavity light and therefore the dynamical backaction for them can be neglected, resulting in detuning-independent $S_{\nu\nu}$. The intermodulation noise contribution, on the contrary, is significantly affected by laser cooling. It is natural to suggest (and it is advocated for by the very good agreement of our conclusions with experimental data) that TIN at bandgap frequencies is dominated by the mixing products of resonant and off-resonant parts of the membrane thermomechanical spectrum. Dynamical backaction reduces the mechanical spectral density on resonance $\propto 1/\Gamma_\t{DBA}$, where $\Gamma_\t{DBA}$ is the optical damping rate and $\Gamma_\t{DBA}\gg \Gamma_m$ is assumed, and it does not affect the off-resonant spectral density. In unresolved-sideband regime, which is typically well fulfilled in our measurements, the optical damping rate is given by +\begin{equation} +%\Gamma_\t{DBA}=-8\Omega_m\left(\frac{2g_0}{\kappa}\right)^2 \frac{\nu_0}{(1+\nu_0^2)^2}n_c +\Gamma_\t{DBA}= -32\frac{\Omega_m}{\kappa}\left(\frac{2g_0}{\kappa}\right)^2\frac{\nu_0}{(1+\nu_0^2)^3} \eta_1|s_\t{in,1}|^2, +\end{equation} +and under our assumptions the spectral density of quadratic frequency fluctuations at PnC bandgap frequencies follows the detuning dependence of $1/\Gamma_\t{DBA}$, +\begin{equation} + S^{(2)}_{\nu\nu}\propto \frac{(1+\nu_0^2)^3}{|\nu_0|}, +\end{equation} +for $\nu_0<0$. + +Motivated by this consideration, the experimental data in Fig.~5b is fitted with the model +\begin{equation} +S_{II}\propto \frac{4 \nu_0^2}{(1+\nu_0^2)^2} C_1+\frac{1}{|\nu_0|}\frac{(3\nu_0^2-1)^2}{1+\nu_0^2} C_2, +\end{equation} +where $C_1$ and $C_2$ are free parameters. It was found that the model very well reproduces the observed variation of output noise with detuning and the value of $C_1$ found from the fit is indeed consistent with independently measured mirror noise, as shown in \figref{fig:mirrorNoise}. + + +\section{Extended data} +\textcolor{red}{[This section is a draft]} + +\textcolor{red}{[Add a calibrated measurement of the amplitude noise of Ti:Sa laser]} + +\begin{figure*}[t] +\includegraphics[width=\textwidth]{fig_power_sweep.pdf} +\centering +\caption{\small{a) Spectra of resonant relative intensity noise for a 2mm$\times$2mm square unpatterned membrane (resonance wavelength 837.7 nm, $g_0/2\pi=84$ Hz, $\kappa/2\pi=9.9$ MHz) at different input powers. The inset shows the same plot zoomed in at low frequencies. The RIN levels plotted in Fig. 2 of main manuscript are averaged over the frequency range shaded gray. b) The reproduction of the average RIN from Fig. 2 of main manuscript.}} +\label{fig:powerSweep} +\end{figure*} +The spectra of resonant RIN taken at different powers (shown in \figref{fig:powerSweep}a) show that the transmission signal is shot noise-limited at the frequency $\gtrsim 15$ MHz and therefore validates the shot noise estimate in Fig 2 of the main text. + +\begin{figure*}[t] +\includegraphics[width=\textwidth]{fig_ext_rect_mbr.pdf} +\centering +\caption{\small{a) Low frequency zoom-in of the data in Fig. 2 of the main text. b) Green points---measured linewidths of different optical resonances of MIM cavity with a 2mm$\times$2mm$\times$20nm unpatterned membrane, the dashed line is a guide to eye. Orange line---linewidth of an empty cavity with the same +length.}} +\label{fig:extRectMbr} +\end{figure*} + +\begin{figure*}[t] +\includegraphics[width=\textwidth]{fig_mirror_noise.pdf} +\centering +\caption{\small{a) Spectrum of detuning fluctuations due to the mirror noise. b) Mirror noise overlapped with a trace from detuning sweep presented in Fig. 5 of the main text corresponding to $2\Delta/\kappa=-0.51$.}} +\label{fig:mirrorNoise} +\end{figure*} + \bibliography{references} \end{document} diff --git a/references.bib b/references.bib index d2ccf0a..3a2d099 100644 --- a/references.bib +++ b/references.bib @@ -1,1572 +1,1659 @@ %% This BibTeX bibliography file was created using BibDesk. %% http://bibdesk.sourceforge.net/ %% Saved with string encoding Unicode (UTF-8) +@article{nielsen2004particle, + title={Particle precipitation in connection with KOH etching of silicon}, + author={Nielsen, C Bergenstof and Christensen, Carsten and Pedersen, Casper and Thomsen, Erik Vilain}, + journal={Journal of The Electrochemical Society}, + volume={151}, + number={5}, + pages={G338--G342}, + year={2004}, + publisher={The Electrochemical Society} +} + +@article{Brawley_2016, + title={Nonlinear optomechanical measurement of mechanical motion}, + volume={7}, + ISSN={2041-1723}, + url={http://dx.doi.org/10.1038/ncomms10988}, + DOI={10.1038/ncomms10988}, + number={1}, + journal={Nature Communications}, + publisher={Springer Science and Business Media LLC}, + author={Brawley, G. A. and Vanner, M. R. and Larsen, P. E. and Schmid, S. and Boisen, A. and Bowen, W. P.}, + year={2016}, + month={Mar} +} + + +@article{thompson_strong_2008, + title={Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane}, + volume={452}, + ISSN={1476-4687}, + url={http://dx.doi.org/10.1038/nature06715}, + DOI={10.1038/nature06715}, + number={7183}, + journal={Nature}, + publisher={Springer Science and Business Media LLC}, + author={Thompson, J. D. and Zwickl, B. M. and Jayich, A. M. and Marquardt, Florian and Girvin, S. M. and Harris, J. G. E.}, + year={2008}, + month={Mar}, + pages={72–75} +} + + +@article{gartner2018integrated, + title={Integrated optomechanical arrays of two high reflectivity SiN membranes}, + author={Gärtner, Claus and Moura, Jo{\~a}o P and Haaxman, Wouter and Norte, Richard A and Gröblacher, Simon}, + journal={Nano Letters}, + volume={18}, + number={11}, + pages={7171--7175}, + year={2018}, + publisher={ACS Publications} +} + +@article{Lai_perturbation_1990, + title = {Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets}, + author = {Lai, H. M. and Leung, P. T. and Young, K. and Barber, P. W. and Hill, S. C.}, + journal = {Phys. Rev. A}, + volume = {41}, + issue = {9}, + pages = {5187--5198}, + numpages = {0}, + year = {1990}, + month = {May}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevA.41.5187}, + url = {https://link.aps.org/doi/10.1103/PhysRevA.41.5187} +} + + + +@article{Gorodetksy_vacuum_2010, +author = {M. L. Gorodetksy and A. Schliesser and G. Anetsberger and S. Deleglise and T. J. Kippenberg}, +journal = {Opt. Express}, +keywords = {Phase measurement; Fluctuations, relaxations, and noise; Optical microelectromechanical devices; Cavity quantum electrodynamics; Discrete Fourier transforms; Frequency modulation; Optical systems; Optomechanics; Phase modulation}, +number = {22}, +pages = {23236--23246}, +publisher = {OSA}, +title = {Determination of the vacuum optomechanical coupling rate using frequency noise calibration}, +volume = {18}, +month = {Oct}, +year = {2010}, +url = {http://www.opticsexpress.org/abstract.cfm?URI=oe-18-22-23236}, +doi = {10.1364/OE.18.023236}, +} + + + @book{riehle_frequency_2005, location = {Weinheim}, edition = {1 edition}, title = {Frequency Standards: Basics and Applications}, isbn = {978-3-527-40230-4}, shorttitle = {Frequency Standards}, pagetotal = {540}, publisher = {Wiley-{VCH}}, author = {Riehle, Fritz}, date = {2005-01-04} } @article{braginsky_thermodynamical_1999, title = {Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae}, volume = {264}, issn = {0375-9601}, url = {http://www.sciencedirect.com/science/article/pii/S0375960199007859}, doi = {10.1016/S0375-9601(99)00785-9}, pages = {1--10}, number = {1}, journaltitle = {Physics Letters A}, shortjournal = {Physics Letters A}, author = {Braginsky, V. B. and Gorodetsky, M. L. and Vyatchanin, S. P.}, urldate = {2017-01-13}, date = {1999-12-13} } @article{gorodetsky_fundamental_2004, title = {Fundamental thermal fluctuations in microspheres}, volume = {21}, rights = {\&\#169; 2004 Optical Society of America}, issn = {1520-8540}, url = {https://www.osapublishing.org/josab/abstract.cfm?uri=josab-21-4-697}, doi = {10.1364/JOSAB.21.000697}, pages = {697--705}, number = {4}, journaltitle = {{JOSA} B}, shortjournal = {J. Opt. Soc. Am. B, {JOSAB}}, author = {Gorodetsky, Michael L. and Grudinin, Ivan S.}, urldate = {2018-06-24}, date = {2004-04-01} } @article{anetsberger_near-field_2009, title = {Near-field cavity optomechanics with nanomechanical oscillators}, volume = {5}, rights = {© 2009 Nature Publishing Group}, issn = {1745-2473}, url = {http://www.nature.com/nphys/journal/v5/n12/full/nphys1425.html}, doi = {10.1038/nphys1425}, pages = {909--914}, number = {12}, journaltitle = {Nature Physics}, shortjournal = {Nat Phys}, author = {Anetsberger, G. and Arcizet, O. and Unterreithmeier, Q. P. and Rivière, R. and Schliesser, A. and Weig, E. M. and Kotthaus, J. P. and Kippenberg, T. J.}, urldate = {2016-09-27}, date = {2009-12}, langid = {english}, keywords = {Condensed Matter - Mesoscale and Nanoscale Physics, Quantum Physics} } @article{robinson_crystalline_2019, title = {Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift}, volume = {6}, rights = {\&\#169; 2019 Optical Society of America}, issn = {2334-2536}, url = {https://www.osapublishing.org/optica/abstract.cfm?uri=optica-6-2-240}, doi = {10.1364/OPTICA.6.000240}, pages = {240--243}, number = {2}, journaltitle = {Optica}, shortjournal = {Optica, {OPTICA}}, author = {Robinson, John M. and Oelker, Eric and Milner, William R. and Zhang, Wei and Legero, Thomas and Matei, Dan G. and Riehle, Fritz and Sterr, Uwe and Ye, Jun}, urldate = {2020-04-02}, date = {2019-02-20}, note = {Publisher: Optical Society of America} } @article{cole_tenfold_2013, title = {Tenfold reduction of Brownian noise in high-reflectivity optical coatings}, volume = {7}, rights = {2013 Nature Publishing Group}, issn = {1749-4893}, url = {https://www.nature.com/articles/nphoton.2013.174}, doi = {10.1038/nphoton.2013.174}, pages = {644--650}, number = {8}, journaltitle = {Nature Photonics}, author = {Cole, Garrett D. and Zhang, Wei and Martin, Michael J. and Ye, Jun and Aspelmeyer, Markus}, urldate = {2020-02-18}, date = {2013-08}, langid = {english} } @article{ye_quantum_2008, title = {Quantum {State} {Engineering} and {Precision} {Metrology} {Using} {State}-{Insensitive} {Light} {Traps}}, volume = {320}, copyright = {American Association for the Advancement of Science}, issn = {0036-8075, 1095-9203}, url = {https://science.sciencemag.org/content/320/5884/1734}, doi = {10.1126/science.1148259}, language = {en}, number = {5884}, urldate = {2020-02-27}, journal = {Science}, author = {Ye, Jun and Kimble, H. J. and Katori, Hidetoshi}, month = jun, year = {2008}, pmid = {18583603}, note = {Publisher: American Association for the Advancement of Science Section: Review}, pages = {1734--1738} } @inproceedings{sterr_ultrastable_2009, title = {Ultrastable lasers: new developments and applications}, volume = {7431}, shorttitle = {Ultrastable lasers}, url = {https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7431/74310A/Ultrastable-lasers-new-developments-and-applications/10.1117/12.825217.short}, doi = {10.1117/12.825217}, urldate = {2020-02-27}, booktitle = {Time and {Frequency} {Metrology} {II}}, publisher = {International Society for Optics and Photonics}, author = {Sterr, U. and Legero, T. and Kessler, T. and Schnatz, H. and Grosche, G. and Terra, O. and Riehle, F.}, month = aug, year = {2009}, pages = {74310A} } @article{ferguson_laser-noise-induced_1990, title = {Laser-noise-induced intensity fluctuations in an optical interferometer}, volume = {41}, url = {https://link.aps.org/doi/10.1103/PhysRevA.41.6183}, doi = {10.1103/PhysRevA.41.6183}, number = {11}, urldate = {2020-02-21}, journal = {Physical Review A}, author = {Ferguson, B. A. and Elliott, D. S.}, month = jun, year = {1990}, keywords = {intermodulation noise}, pages = {6183--6192} } @article{fedorov_fractal-like_2020, title = {Fractal-like {Mechanical} {Resonators} with a {Soft}-{Clamped} {Fundamental} {Mode}}, volume = {124}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.124.025502}, doi = {10.1103/PhysRevLett.124.025502}, number = {2}, urldate = {2020-01-16}, journal = {Physical Review Letters}, author = {Fedorov, S. A. and Beccari, A. and Engelsen, N. J. and Kippenberg, T. J.}, month = jan, year = {2020}, pages = {025502} } @article{zhao_wilson_suppression_2012, title = {Suppression of extraneous thermal noise in cavity optomechanics}, volume = {20}, copyright = {\&\#169; 2012 OSA}, issn = {1094-4087}, url = {https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-4-3586}, doi = {10.1364/OE.20.003586}, language = {EN}, number = {4}, urldate = {2020-02-26}, journal = {Optics Express}, author = {Zhao, Yi and Wilson, Dalziel J. and Ni, K.-K. and Kimble, H. J.}, month = feb, year = {2012}, note = {Publisher: Optical Society of America}, keywords = {Atomic force microscopy, Radiation pressure, Power spectral density, Phase modulation, Laser beams, Laser sources}, pages = {3586--3612} } @article{gorodetksy_determination_2010, title = {Determination of the vacuum optomechanical coupling rate using frequency noise calibration}, volume = {18}, copyright = {\&\#169; 2010 OSA}, issn = {1094-4087}, url = {https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-22-23236}, doi = {10.1364/OE.18.023236}, language = {EN}, number = {22}, urldate = {2018-07-26}, journal = {Optics Express}, author = {Gorodetksy, M. L. and Schliesser, A. and Anetsberger, G. and Deleglise, S. and Kippenberg, T. J.}, month = oct, year = {2010}, keywords = {Optomechanics, Discrete Fourier transforms, Frequency modulation, Cavity quantum electrodynamics, Optical systems, Phase modulation}, pages = {23236--23246} } @phdthesis{wilson_thesis_2012, type = {phd}, title = {Cavity optomechanics with high-stress silicon nitride films}, url = {http://resolver.caltech.edu/CaltechTHESIS:06122012-123343193}, urldate = {2018-11-11}, school = {California Institute of Technology}, author = {Wilson, Dalziel Joseph}, month = jun, year = {2012} } @article{kampel_improving_2017, title = {Improving {Broadband} {Displacement} {Detection} with {Quantum} {Correlations}}, volume = {7}, url = {https://link.aps.org/doi/10.1103/PhysRevX.7.021008}, doi = {10.1103/PhysRevX.7.021008}, number = {2}, journal = {Physical Review X}, author = {Kampel, N. S. and Peterson, R. W. and Fischer, R. and Yu, P.-L. and Cicak, K. and Simmonds, R. W. and Lehnert, K. W. and Regal, C. A.}, month = apr, year = {2017}, pages = {021008} } @article{bahoura_ultimate_2003, title = {Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a {Fabry}-{Perot} interferometer}, volume = {50}, issn = {1525-8955}, doi = {10.1109/TUFFC.2003.1251124}, number = {11}, journal = {IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control}, author = {Bahoura, M. and Clairon, A.}, month = nov, year = {2003}, keywords = {intermodulation noise, laser frequency stability}, pages = {1414--1421} } @article{audoin_intermodulation_1991, title = {A limit to the frequency stability of passive frequency standards due to an intermodulation effect}, volume = {40}, issn = {0018-9456, 1557-9662}, doi = {10.1109/TIM.1990.1032896}, number = {2}, journal = {IEEE Transactions on Instrumentation and Measurement}, author = {Audoin, C. and Candelier, V. and Diamarcq, N.}, month = apr, year = {1991}, keywords = {Optical resonators, Oscillators, Resonance, Frequency modulation, Stability, Laser noise, Atom lasers, Demodulation, Laser excitation, Pump lasers}, pages = {121--125} } @article{braginsky_thermorefractive_2000, title = {Thermo-refractive noise in gravitational wave antennae}, volume = {271}, issn = {0375-9601}, url = {http://www.sciencedirect.com/science/article/pii/S0375960100003893}, doi = {10.1016/S0375-9601(00)00389-3}, number = {5}, urldate = {2018-06-24}, journal = {Physics Letters A}, author = {Braginsky, V. B. and Gorodetsky, M. L. and Vyatchanin, S. P.}, month = jul, year = {2000}, pages = {303--307} } @article{sudhir_appearance_2017, title = {Appearance and {Disappearance} of {Quantum} {Correlations} in {Measurement}-{Based} {Feedback} {Control} of a {Mechanical} {Oscillator}}, volume = {7}, url = {https://link.aps.org/doi/10.1103/PhysRevX.7.011001}, doi = {10.1103/PhysRevX.7.011001}, number = {1}, urldate = {2018-12-01}, journal = {Physical Review X}, author = {Sudhir, V. and Wilson, D. J. and Schilling, R. and Schütz, H. and Fedorov, S. A. and Ghadimi, A. H. and Nunnenkamp, A. and Kippenberg, T. J.}, month = jan, year = {2017}, pages = {011001} } @article{riedinger_remote_2018, title = {Remote quantum entanglement between two micromechanical oscillators}, volume = {556}, copyright = {2018 Macmillan Publishers Ltd., part of Springer Nature}, issn = {1476-4687}, url = {https://www.nature.com/articles/s41586-018-0036-z}, doi = {10.1038/s41586-018-0036-z}, language = {en}, number = {7702}, urldate = {2018-08-30}, journal = {Nature}, author = {Riedinger, Ralf and Wallucks, Andreas and Marinković, Igor and Löschnauer, Clemens and Aspelmeyer, Markus and Hong, Sungkun and Gröblacher, Simon}, month = apr, year = {2018}, pages = {473--477} } @article{hong_hanbury_2017, title = {Hanbury {Brown} and {Twiss} interferometry of single phonons from an optomechanical resonator}, copyright = {Copyright © 2017, American Association for the Advancement of Science}, issn = {0036-8075, 1095-9203}, url = {https://science.sciencemag.org/content/early/2017/09/20/science.aan7939}, doi = {10.1126/science.aan7939}, language = {en}, urldate = {2020-02-20}, journal = {Science}, author = {Hong, Sungkun and Riedinger, Ralf and Marinković, Igor and Wallucks, Andreas and Hofer, Sebastian G. and Norte, Richard A. and Aspelmeyer, Markus and Gröblacher, Simon}, month = sep, year = {2017}, pmid = {28935767} } @book{gardiner_handbook_1985, address = {Berlin}, edition = {2nd edition}, title = {Handbook of Stochastic Methods}, isbn = {978-3-540-61634-4}, publisher = {Springer}, author = {Gardiner, Crispin W.}, month = {jan}, note = {section 2.8.1} year = {1985} } @article{qiu_laser_2019, title = {Laser cooling of a nanomechanical oscillator to the zero-point energy}, url = {http://arxiv.org/abs/1903.10242}, urldate = {2020-02-20}, journal = {arXiv:1903.10242 [quant-ph]}, author = {Qiu, Liu and Shomroni, Itay and Seidler, Paul and Kippenberg, Tobias J.}, month = dec, year = {2019}, note = {arXiv: 1903.10242}, keywords = {Quantum Physics} } @article{gorodetsky_thermal_noise_compensation_2008, title = {Thermal noises and noise compensation in high-reflection multilayer coating}, volume = {372}, issn = {0375-9601}, url = {http://www.sciencedirect.com/science/article/pii/S0375960108014692}, doi = {10.1016/j.physleta.2008.09.056}, language = {en}, number = {46}, urldate = {2020-02-06}, journal = {Physics Letters A}, author = {Gorodetsky, Michael L.}, month = nov, year = {2008}, pages = {6813--6822} } @article{ligo_collaboration_observation_gw_2016, title = {Observation of {Gravitational} {Waves} from a {Binary} {Black} {Hole} {Merger}}, volume = {116}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.116.061102}, doi = {10.1103/PhysRevLett.116.061102}, number = {6}, urldate = {2020-02-07}, journal = {Physical Review Letters}, author = {{LIGO Scientific Collaboration and Virgo Collaboration}}, month = feb, year = {2016}, pages = {061102} } @article{advanced_ligo_2015, title = {Advanced {LIGO}}, volume = {32}, issn = {0264-9381}, url = {http://stacks.iop.org/0264-9381/32/i=7/a=074001}, doi = {10.1088/0264-9381/32/7/074001}, language = {en}, number = {7}, urldate = {2018-11-19}, journal = {Classical and Quantum Gravity}, author = {{LIGO Scientific Collaboration}}, year = {2015}, pages = {074001} } @article{chan_laser_2011, title = {Laser cooling of a nanomechanical oscillator into its quantum ground state}, volume = {478}, copyright = {© 2011 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.}, issn = {0028-0836}, url = {http://www.nature.com/nature/journal/v478/n7367/full/nature10461.html}, doi = {10.1038/nature10461}, language = {en}, number = {7367}, urldate = {2016-09-28}, journal = {Nature}, author = {Chan, Jasper and Alegre, T. P. Mayer and Safavi-Naeini, Amir H. and Hill, Jeff T. and Krause, Alex and Gröblacher, Simon and Aspelmeyer, Markus and Painter, Oskar}, month = oct, year = {2011}, keywords = {Applied physics and engineering, Physics}, pages = {89--92} } @article{purdy_strong_2013, title = {Strong {Optomechanical} {Squeezing} of {Light}}, volume = {3}, issn = {2160-3308}, url = {http://link.aps.org/doi/10.1103/PhysRevX.3.031012}, doi = {10.1103/PhysRevX.3.031012}, language = {en}, number = {3}, urldate = {2016-08-20}, journal = {Physical Review X}, author = {Purdy, T. P. and Yu, P.-L. and Peterson, R. W. and Kampel, N. S. and Regal, C. A.}, month = sep, year = {2013} } @article{safavi-naeini_squeezed_2013, title = {Squeezed light from a silicon micromechanical resonator}, volume = {500}, copyright = {© 2013 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.}, issn = {0028-0836}, url = {http://www.nature.com/nature/journal/v500/n7461/abs/nature12307.html}, doi = {10.1038/nature12307}, language = {en}, number = {7461}, urldate = {2016-09-29}, journal = {Nature}, author = {Safavi-Naeini, Amir H. and Gröblacher, Simon and Hill, Jeff T. and Chan, Jasper and Aspelmeyer, Markus and Painter, Oskar}, month = aug, year = {2013}, keywords = {Quantum metrology, Quantum optics}, pages = {185--189} } @article{martin_measurement_2007, title = {Measurement of {Energy} {Eigenstates} by a {Slow} {Detector}}, volume = {98}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.98.120401}, doi = {10.1103/PhysRevLett.98.120401}, number = {12}, urldate = {2019-12-02}, journal = {Physical Review Letters}, author = {Martin, I. and Zurek, W. H.}, month = mar, year = {2007}, pages = {120401} } @article{reetz_analysis_2019, title = {Analysis of {Membrane} {Phononic} {Crystals} with {Wide} {Band} {Gaps} and {Low}-{Mass} {Defects}}, volume = {12}, url = {https://link.aps.org/doi/10.1103/PhysRevApplied.12.044027}, doi = {10.1103/PhysRevApplied.12.044027}, number = {4}, urldate = {2019-12-15}, journal = {Physical Review Applied}, author = {Reetz, C. and Fischer, R. and Assumpção, G.G.T. and McNally, D.P. and Burns, P.S. and Sankey, J.C. and Regal, C.A.}, month = oct, year = {2019}, pages = {044027} } @article{yap_broadband_2019, title = {Broadband reduction of quantum radiation pressure noise via squeezed light injection}, copyright = {2019 The Author(s), under exclusive licence to Springer Nature Limited}, issn = {1749-4893}, url = {https://www.nature.com/articles/s41566-019-0527-y}, doi = {10.1038/s41566-019-0527-y}, language = {en}, urldate = {2019-11-19}, journal = {Nature Photonics}, author = {Yap, Min Jet and Cripe, Jonathan and Mansell, Georgia L. and McRae, Terry G. and Ward, Robert L. and Slagmolen, Bram J. J. and Heu, Paula and Follman, David and Cole, Garrett D. and Corbitt, Thomas and McClelland, David E.}, month = oct, year = {2019}, pages = {1--5} } @article{paraiso_position-squared_2015, title = {Position-{Squared} {Coupling} in a {Tunable} {Photonic} {Crystal} {Optomechanical} {Cavity}}, volume = {5}, url = {http://link.aps.org/doi/10.1103/PhysRevX.5.041024}, doi = {10.1103/PhysRevX.5.041024}, number = {4}, urldate = {2016-08-31}, journal = {Physical Review X}, author = {Paraïso, Taofiq K. and Kalaee, Mahmoud and Zang, Leyun and Pfeifer, Hannes and Marquardt, Florian and Painter, Oskar}, month = nov, year = {2015}, pages = {041024} } @article{nunnenkamp_cooling_and_squeezing_2010, title = {Cooling and squeezing via quadratic optomechanical coupling}, volume = {82}, url = {https://link.aps.org/doi/10.1103/PhysRevA.82.021806}, doi = {10.1103/PhysRevA.82.021806}, number = {2}, urldate = {2019-11-25}, journal = {Physical Review A}, author = {Nunnenkamp, A. and Børkje, K. and Harris, J. G. E. and Girvin, S. M.}, month = aug, year = {2010}, pages = {021806} } @article{clerk_quantum_2010, title = {Quantum {Measurement} of {Phonon} {Shot} {Noise}}, volume = {104}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.104.213603}, doi = {10.1103/PhysRevLett.104.213603}, number = {21}, journal = {Physical Review Letters}, author = {Clerk, A. A. and Marquardt, Florian and Harris, J. G. E.}, month = may, year = {2010}, keywords = {Nonlinear optomechanics}, pages = {213603} } @article{gangat_phonon_2011, title = {Phonon number quantum jumps in an optomechanical system}, volume = {13}, issn = {1367-2630}, url = {http://stacks.iop.org/1367-2630/13/i=4/a=043024}, doi = {10.1088/1367-2630/13/4/043024}, language = {en}, number = {4}, journal = {New Journal of Physics}, author = {Gangat, A. A. and Stace, T. M. and Milburn, G. J.}, year = {2011}, keywords = {Nonlinear optomechanics}, pages = {043024} } @article{brawley_nonlinear_2016, title = {Nonlinear optomechanical measurement of mechanical motion}, volume = {7}, copyright = {2016 Nature Publishing Group}, issn = {2041-1723}, url = {https://www.nature.com/articles/ncomms10988}, doi = {10.1038/ncomms10988}, language = {en}, urldate = {2019-02-07}, journal = {Nature Communications}, author = {Brawley, G. A. and Vanner, M. R. and Larsen, P. E. and Schmid, S. and Boisen, A. and Bowen, W. P.}, month = mar, year = {2016}, pages = {10988} } @article{leijssen_nonlinear_2017, title = {Nonlinear cavity optomechanics with nanomechanical thermal fluctuations}, volume = {8}, copyright = {2017 The Author(s)}, issn = {2041-1723}, url = {https://www.nature.com/articles/ncomms16024}, doi = {10.1038/ncomms16024}, language = {en}, number = {1}, urldate = {2019-10-22}, journal = {Nature Communications}, author = {Leijssen, Rick and Gala, Giada R. La and Freisem, Lars and Muhonen, Juha T. and Verhagen, Ewold}, month = jul, year = {2017}, pages = {1--10} } @article{matsko_electromagnetic-continuum-induced_2018, title = {Electromagnetic-continuum-induced nonlinearity}, volume = {97}, url = {https://link.aps.org/doi/10.1103/PhysRevA.97.053824}, doi = {10.1103/PhysRevA.97.053824}, number = {5}, urldate = {2019-11-18}, journal = {Physical Review A}, author = {Matsko, Andrey B. and Vyatchanin, Sergey P.}, month = may, year = {2018}, pages = {053824} } @article{aggarwal_room_2018, title = {Room temperature optomechanical squeezing}, url = {http://arxiv.org/abs/1812.09942}, urldate = {2019-10-21}, journal = {arXiv:1812.09942 [physics, physics:quant-ph]}, author = {Aggarwal, Nancy and Cullen, Torrey and Cripe, Jonathan and Cole, Garrett D. and Lanza, Robert and Libson, Adam and Follman, David and Heu, Paula and Corbitt, Thomas and Mavalvala, Nergis}, month = dec, year = {2018}, note = {arXiv: 1812.09942}, keywords = {Physics - Optics, Quantum Physics}, annote = {Comment: 5 pages, 4 figures in main text. 4 pages, 5 figures in supplemental information} } @article{purdy_observation_2016, title = {Observation of {Optomechanical} {Quantum} {Correlations} at {Room} {Temperature}}, url = {http://arxiv.org/abs/1605.05664}, urldate = {2016-09-30}, journal = {arXiv:1605.05664 [cond-mat, physics:physics, physics:quant-ph]}, author = {Purdy, T. P. and Grutter, K. E. and Srinivasan, K. and Taylor, J. M.}, month = may, year = {2016}, note = {arXiv: 1605.05664}, keywords = {Condensed Matter - Mesoscale and Nanoscale Physics, Physics - Optics, Quantum Physics}, annote = {Comment: 13 pages, 7 figures} } @article{cripe_measurement_2019, title = {Measurement of quantum back action in the audio band at room temperature}, volume = {568}, copyright = {2019 The Author(s), under exclusive licence to Springer Nature Limited}, issn = {1476-4687}, url = {https://www.nature.com/articles/s41586-019-1051-4}, doi = {10.1038/s41586-019-1051-4}, language = {en}, number = {7752}, urldate = {2019-11-19}, journal = {Nature}, author = {Cripe, Jonathan and Aggarwal, Nancy and Lanza, Robert and Libson, Adam and Singh, Robinjeet and Heu, Paula and Follman, David and Cole, Garrett D. and Mavalvala, Nergis and Corbitt, Thomas}, month = apr, year = {2019}, pages = {364--367} } @article{sudhir_quantum_2017, title = {Quantum {Correlations} of {Light} from a {Room}-{Temperature} {Mechanical} {Oscillator}}, volume = {7}, url = {https://link.aps.org/doi/10.1103/PhysRevX.7.031055}, doi = {10.1103/PhysRevX.7.031055}, number = {3}, journal = {Physical Review X}, author = {Sudhir, V. and Schilling, R. and Fedorov, S. A. and Schütz, H. and Wilson, D. J. and Kippenberg, T. J.}, month = sep, year = {2017}, pages = {031055} } @article{miao_standard_2009, title = {Standard {Quantum} {Limit} for {Probing} {Mechanical} {Energy} {Quantization}}, volume = {103}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.103.100402}, doi = {10.1103/PhysRevLett.103.100402}, number = {10}, journal = {Physical Review Letters}, author = {Miao, Haixing and Danilishin, Stefan and Corbitt, Thomas and Chen, Yanbei}, month = sep, year = {2009}, keywords = {QND measurement, membrane in the middle}, pages = {100402} } @article{khalili_preparing_2010, title = {Preparing a {Mechanical} {Oscillator} in {Non}-{Gaussian} {Quantum} {States}}, volume = {105}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.105.070403}, doi = {10.1103/PhysRevLett.105.070403}, number = {7}, urldate = {2019-11-18}, journal = {Physical Review Letters}, author = {Khalili, Farid and Danilishin, Stefan and Miao, Haixing and Müller-Ebhardt, Helge and Yang, Huan and Chen, Yanbei}, month = aug, year = {2010}, pages = {070403} } @article{bodiya_sub-hertz_2019, title = {Sub-hertz optomechanically induced transparency with a kilogram-scale mechanical oscillator}, volume = {100}, url = {https://link.aps.org/doi/10.1103/PhysRevA.100.013853}, doi = {10.1103/PhysRevA.100.013853}, number = {1}, urldate = {2019-08-14}, journal = {Physical Review A}, author = {Bodiya, T. and Sudhir, V. and Wipf, C. and Smith, N. and Buikema, A. and Kontos, A. and Yu, H. and Mavalvala, N.}, month = jul, year = {2019}, pages = {013853} } @article{sapoval_acoustical_1997, title = {Acoustical properties of irregular and fractal cavities}, volume = {102}, issn = {0001-4966}, url = {https://asa.scitation.org/doi/10.1121/1.419653}, doi = {10.1121/1.419653}, number = {4}, urldate = {2019-09-09}, journal = {The Journal of the Acoustical Society of America}, author = {Sapoval, B. and Haeberlé, O. and Russ, S.}, month = oct, year = {1997}, pages = {2014--2019} } @article{sapoval_vibrations_1991, title = {Vibrations of fractal drums}, volume = {67}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.67.2974}, doi = {10.1103/PhysRevLett.67.2974}, number = {21}, urldate = {2019-09-09}, journal = {Physical Review Letters}, author = {Sapoval, B. and Gobron, Th. and Margolina, A.}, month = nov, year = {1991}, keywords = {self-similar structures}, pages = {2974--2977} } @article{hobiki_spectral_1996, title = {Spectral characteristics in resonators with fractal boundaries}, volume = {54}, url = {https://link.aps.org/doi/10.1103/PhysRevE.54.1997}, doi = {10.1103/PhysRevE.54.1997}, number = {2}, urldate = {2019-09-09}, journal = {Physical Review E}, author = {Hobiki, Yutaka and Yakubo, Kousuke and Nakayama, Tsuneyoshi}, month = aug, year = {1996}, pages = {1997--2004} } @article{alexander_density_1982, title = {Density of states on fractals : « fractons »}, volume = {43}, issn = {0302-072X}, shorttitle = {Density of states on fractals}, url = {http://dx.doi.org/10.1051/jphyslet:019820043017062500}, doi = {10.1051/jphyslet:019820043017062500}, abstract = {Journal de Physique Letttres, Journal de Physique Archives représente une mine dinformations facile à consulter sur la manière dont la physique a été publiée depuis 1872.}, language = {en}, number = {17}, urldate = {2019-09-09}, journal = {Journal de Physique Lettres}, author = {Alexander, S. and Orbach, R.}, month = sep, year = {1982}, pages = {625--631} } @article{mandelbrot_how_1967, title = {How {Long} {Is} the {Coast} of {Britain}? {Statistical} {Self}-{Similarity} and {Fractional} {Dimension}}, volume = {156}, copyright = {© 1967}, issn = {0036-8075, 1095-9203}, shorttitle = {How {Long} {Is} the {Coast} of {Britain}?}, url = {https://science.sciencemag.org/content/156/3775/636}, doi = {10.1126/science.156.3775.636}, language = {en}, number = {3775}, urldate = {2019-09-07}, journal = {Science}, author = {Mandelbrot, Benoit}, month = may, year = {1967}, pmid = {17837158}, pages = {636--638} } @article{rayneau-kirkhope_ultralight_2012, title = {Ultralight {Fractal} {Structures} from {Hollow} {Tubes}}, volume = {109}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.109.204301}, doi = {10.1103/PhysRevLett.109.204301}, number = {20}, urldate = {2019-07-14}, journal = {Physical Review Letters}, author = {Rayneau-Kirkhope, Daniel and Mao, Yong and Farr, Robert}, month = nov, year = {2012}, pages = {204301} } @article{lakes_materials_1993, title = {Materials with structural hierarchy}, volume = {361}, copyright = {1993 Nature Publishing Group}, issn = {1476-4687}, url = {https://www.nature.com/articles/361511a0}, doi = {10.1038/361511a0}, language = {En}, number = {6412}, urldate = {2019-07-14}, journal = {Nature}, author = {Lakes, Roderic}, month = feb, year = {1993}, keywords = {metamaterial}, pages = {511} } @article{bagci_optical_2014, title = {Optical detection of radio waves through a nanomechanical transducer}, volume = {507}, copyright = {© 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.}, issn = {0028-0836}, url = {http://www.nature.com/nature/journal/v507/n7490/abs/nature13029.html}, doi = {10.1038/nature13029}, language = {en}, number = {7490}, urldate = {2016-09-28}, journal = {Nature}, author = {Bagci, T. and Simonsen, A. and Schmid, S. and Villanueva, L. G. and Zeuthen, E. and Appel, J. and Taylor, J. M. and Sørensen, A. and Usami, K. and Schliesser, A. and Polzik, E. S.}, month = mar, year = {2014}, keywords = {Optomechanics}, pages = {81--85} } @article{fischer_spin_2019, title = {Spin detection with a micromechanical trampoline: towards magnetic resonance microscopy harnessing cavity optomechanics}, volume = {21}, issn = {1367-2630}, shorttitle = {Spin detection with a micromechanical trampoline}, url = {https://doi.org/10.1088%2F1367-2630%2Fab117a}, doi = {10.1088/1367-2630/ab117a}, language = {en}, number = {4}, urldate = {2019-08-18}, journal = {New Journal of Physics}, author = {Fischer, R. and McNally, D. P. and Reetz, C. and Assumpção, G. G. T. and Knief, T. and Lin, Y. and Regal, C. A.}, month = apr, year = {2019}, keywords = {sensing}, pages = {043049} } @article{andrews_bidirectional_2014, title = {Bidirectional and efficient conversion between microwave and optical light}, volume = {10}, copyright = {© 2014 Nature Publishing Group}, issn = {1745-2473}, url = {http://www.nature.com/nphys/journal/v10/n4/abs/nphys2911.html}, doi = {10.1038/nphys2911}, language = {en}, number = {4}, urldate = {2016-10-02}, journal = {Nature Physics}, author = {Andrews, R. W. and Peterson, R. W. and Purdy, T. P. and Cicak, K. and Simmonds, R. W. and Regal, C. A. and Lehnert, K. W.}, month = apr, year = {2014}, keywords = {Microwave photonics, Optomechanics, Photonic devices}, pages = {321--326} } @article{garcia-sanchez_casimir_2012, title = {Casimir {Force} and {In} {Situ} {Surface} {Potential} {Measurements} on {Nanomembranes}}, volume = {109}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.109.027202}, doi = {10.1103/PhysRevLett.109.027202}, number = {2}, urldate = {2017-05-10}, journal = {Physical Review Letters}, author = {Garcia-Sanchez, Daniel and Fong, King Yan and Bhaskaran, Harish and Lamoreaux, Steve and Tang, Hong X.}, month = jul, year = {2012}, pages = {027202} } @article{unterreithmeier_damping_2010, title = {Damping of {Nanomechanical} {Resonators}}, volume = {105}, url = {http://link.aps.org/doi/10.1103/PhysRevLett.105.027205}, doi = {10.1103/PhysRevLett.105.027205}, number = {2}, urldate = {2016-10-01}, journal = {Physical Review Letters}, author = {Unterreithmeier, Quirin P. and Faust, Thomas and Kotthaus, Jörg P.}, month = jul, year = {2010}, keywords = {SiN damping}, pages = {027205} } @article{unterreithmeier_universal_2009, title = {Universal transduction scheme for nanomechanical systems based on dielectric forces}, volume = {458}, copyright = {2009 Nature Publishing Group}, issn = {1476-4687}, url = {https://www.nature.com/articles/nature07932}, doi = {10.1038/nature07932}, language = {en}, number = {7241}, urldate = {2018-07-18}, journal = {Nature}, author = {Unterreithmeier, Quirin P. and Weig, Eva M. and Kotthaus, Jörg P.}, month = apr, year = {2009}, pages = {1001--1004} } @article{verbridge_high_2006, title = {High quality factor resonance at room temperature with nanostrings under high tensile stress}, volume = {99}, issn = {0021-8979}, url = {https://aip.scitation.org/doi/abs/10.1063/1.2204829}, doi = {10.1063/1.2204829}, number = {12}, urldate = {2018-07-18}, journal = {Journal of Applied Physics}, author = {Verbridge, Scott S. and Parpia, Jeevak M. and Reichenbach, Robert B. and Bellan, Leon M. and Craighead, H. G.}, month = jun, year = {2006}, pages = {124304} } @article{sadeghi_influence_2019, title = {Influence of clamp-widening on the quality factor of nanomechanical silicon nitride resonators}, url = {http://arxiv.org/abs/1905.06730}, urldate = {2019-08-18}, journal = {arXiv:1905.06730 [cond-mat, physics:physics]}, author = {Sadeghi, Pedram and Tanzer, Manuel and Christensen, Simon L. and Schmid, Silvan}, month = may, year = {2019}, note = {arXiv: 1905.06730}, keywords = {74B10, Condensed Matter - Mesoscale and Nanoscale Physics, Physics - Applied Physics} } @article{corbitt_measurement_2006, title = {Measurement of radiation-pressure-induced optomechanical dynamics in a suspended {Fabry}-{Perot} cavity}, volume = {74}, url = {https://link.aps.org/doi/10.1103/PhysRevA.74.021802}, doi = {10.1103/PhysRevA.74.021802}, number = {2}, urldate = {2019-08-14}, journal = {Physical Review A}, author = {Corbitt, Thomas and Ottaway, David and Innerhofer, Edith and Pelc, Jason and Mavalvala, Nergis}, month = aug, year = {2006}, pages = {021802} } @article{corbitt_optical_2007, title = {Optical {Dilution} and {Feedback} {Cooling} of a {Gram}-{Scale} {Oscillator} to 6.9 {mK}}, volume = {99}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.99.160801}, doi = {10.1103/PhysRevLett.99.160801}, number = {16}, journal = {Physical Review Letters}, author = {Corbitt, Thomas and Wipf, Christopher and Bodiya, Timothy and Ottaway, David and Sigg, Daniel and Smith, Nicolas and Whitcomb, Stanley and Mavalvala, Nergis}, month = oct, year = {2007}, keywords = {Q dilution}, pages = {160801} } @article{rossi_measurement-based_2018, title = {Measurement-based quantum control of mechanical motion}, volume = {563}, copyright = {2018 Springer Nature Limited}, issn = {1476-4687}, url = {https://www.nature.com/articles/s41586-018-0643-8}, doi = {10.1038/s41586-018-0643-8}, language = {En}, number = {7729}, urldate = {2019-01-09}, journal = {Nature}, author = {Rossi, Massimiliano and Mason, David and Chen, Junxin and Tsaturyan, Yeghishe and Schliesser, Albert}, month = nov, year = {2018}, pages = {53} } @article{choi_self-similar_2017, title = {Self-{Similar} {Nanocavity} {Design} with {Ultrasmall} {Mode} {Volume} for {Single}-{Photon} {Nonlinearities}}, volume = {118}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.118.223605}, doi = {10.1103/PhysRevLett.118.223605}, number = {22}, journal = {Physical Review Letters}, author = {Choi, Hyeongrak and Heuck, Mikkel and Englund, Dirk}, month = may, year = {2017}, pages = {223605} } @article{ligo2015, title = {Advanced LIGO}, volume = {32}, issn = {0264-9381}, url = {http://stacks.iop.org/0264-9381/32/i=7/a=074001}, doi = {10.1088/0264-9381/32/7/074001}, language = {en}, number = {7}, urldate = {2018-11-19}, journal = {Classical and Quantum Gravity}, author = {The LIGO Scientific Collaboration}, year = {2015}, pages = {074001} } @article{bereyhi_clamp-tapering_2019, title = {Clamp-{Tapering} {Increases} the {Quality} {Factor} of {Stressed} {Nanobeams}}, volume = {19}, issn = {1530-6984}, url = {https://doi.org/10.1021/acs.nanolett.8b04942}, doi = {10.1021/acs.nanolett.8b04942}, number = {4}, urldate = {2019-07-13}, journal = {Nano Letters}, author = {Bereyhi, Mohammad. J. and Beccari, Alberto and Fedorov, Sergey A. and Ghadimi, Amir H. and Schilling, Ryan and Wilson, Dalziel J. and Engelsen, Nils J. and Kippenberg, Tobias J.}, month = apr, year = {2019}, pages = {2329--2333} } @article{fedorov_generalized_2019, title = {Generalized dissipation dilution in strained mechanical resonators}, volume = {99}, url = {https://link.aps.org/doi/10.1103/PhysRevB.99.054107}, doi = {10.1103/PhysRevB.99.054107}, number = {5}, urldate = {2019-02-28}, journal = {Physical Review B}, author = {Fedorov, S. A. and Engelsen, N. J. and Ghadimi, A. H. and Bereyhi, M. J. and Schilling, R. and Wilson, D. J. and Kippenberg, T. J.}, month = feb, year = {2019}, pages = {054107} } @article{ni_enhancement_2012, title = {Enhancement of {Mechanical} \${Q}\$ {Factors} by {Optical} {Trapping}}, volume = {108}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.108.214302}, doi = {10.1103/PhysRevLett.108.214302}, number = {21}, journal = {Physical Review Letters}, author = {Ni, K.-K. and Norte, R. and Wilson, D. J. and Hood, J. D. and Chang, D. E. and Painter, O. and Kimble, H. J.}, month = may, year = {2012}, pages = {214302} } @article{gajo_strong_2017, title = {Strong 4-mode coupling of nanomechanical string resonators}, volume = {111}, issn = {0003-6951}, url = {http://aip.scitation.org/doi/full/10.1063/1.4995230}, doi = {10.1063/1.4995230}, number = {13}, urldate = {2018-01-31}, journal = {Applied Physics Letters}, author = {Gajo, Katrin and Schüz, Simon and Weig, Eva M.}, month = sep, year = {2017}, pages = {133109} } @article{capelle_polarimetric_2017, title = {Polarimetric analysis of stress anisotropy in nanomechanical silicon nitride resonators}, volume = {110}, issn = {0003-6951}, url = {http://aip.scitation.org/doi/full/10.1063/1.4982876}, doi = {10.1063/1.4982876}, number = {18}, urldate = {2017-12-14}, journal = {Applied Physics Letters}, author = {Capelle, T. and Tsaturyan, Y. and Barg, A. and Schliesser, A.}, month = may, year = {2017}, pages = {181106} } @article{ghadimi_radiation_2017, title = {Radiation and {Internal} {Loss} {Engineering} of {High}-{Stress} {Silicon} {Nitride} {Nanobeams}}, issn = {1530-6984}, url = {http://dx.doi.org/10.1021/acs.nanolett.7b00573}, doi = {10.1021/acs.nanolett.7b00573}, urldate = {2017-05-13}, journal = {Nano Letters}, author = {Ghadimi, Amir Hossein and Wilson, Dalziel Joseph and Kippenberg, Tobias J.}, month = mar, year = {2017} } @article{reinhardt_ultralow-noise_2016, title = {Ultralow-{Noise} {SiN} {Trampoline} {Resonators} for {Sensing} and {Optomechanics}}, volume = {6}, url = {http://link.aps.org/doi/10.1103/PhysRevX.6.021001}, doi = {10.1103/PhysRevX.6.021001}, number = {2}, urldate = {2016-09-19}, journal = {Physical Review X}, author = {Reinhardt, Christoph and Müller, Tina and Bourassa, Alexandre and Sankey, Jack C.}, month = apr, year = {2016}, keywords = {SiN damping}, pages = {021001} } @article{tsaturyan_ultracoherent_2017, title = {Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution}, volume = {12}, copyright = {2017 Nature Publishing Group}, issn = {1748-3395}, url = {https://www.nature.com/articles/nnano.2017.101}, doi = {10.1038/nnano.2017.101}, language = {En}, number = {8}, urldate = {2017-12-01}, journal = {Nature Nanotechnology}, author = {Tsaturyan, Y. and Barg, A. and Polzik, E. S. and Schliesser, A.}, month = aug, year = {2017}, pages = {776}, } @article{Purdy13b, Author = {Purdy, T P and Yu, P and Peterson, R W and Kampel, N S and Regal, C A}, Date-Added = {2017-04-18 19:38:55 +0000}, Date-Modified = {2017-04-18 19:39:00 +0000}, Doi = {10.1103/PhysRevX.3.031012}, File = {Purdy et al. - 2013 - Physical Review X:/Users/vivisheksudhir/Documents/Papers/Zotero/storage/BGDEDS99/Purdy et al. - 2013 - Physical Review X.pdf:application/pdf}, Journal = {Physical Review X}, Keywords = {optomechanics, squeezed state}, Pages = {031012}, Title = {Strong {Optomechanical} {Squeezing} of {Light}}, Volume = {3}, Year = {2013}, Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevX.3.031012}} @article{saulson_thermal_1990, Author = {Saulson, Peter R}, Date-Added = {2017-01-20 13:44:45 +0000}, Date-Modified = {2017-01-20 13:44:45 +0000}, File = {Saulson - 1990 - Physical Review D:/Users/vivisheksudhir/Documents/Papers/Zotero/storage/PHHA4NPW/Saulson - 1990 - Physical Review D.pdf:application/pdf}, Journal = {Physical Review D}, Month = feb, Pages = {2437--2445}, Title = {Thermal noise in mechanical experiments}, Url = {http://journals.aps.org/prd/abstract/10.1103/PhysRevD.42.2437}, Volume = {42}, Year = {1990}, Bdsk-Url-1 = {http://journals.aps.org/prd/abstract/10.1103/PhysRevD.42.2437}} @article{gonzalez_brownian_1995, Abstract = {We constructed a torsion pendulum in which the dissipation is dominated by internal friction in the fiber. We compare the measured thermal noise spectrum with the prediction from the fluctuation-dissipation theorem. The agreement is excellent. The spectrum exhibits an approximately 1f slope below resonance. We discuss the implications for interferometric gravitational wave detectors.}, Author = {Gonz{\'a}lez, Gabriela I. and Saulson, Peter R.}, Doi = {10.1016/0375-9601(95)00194-8}, Issn = {0375-9601}, Journal = {Physics Letters A}, Month = may, Number = {1}, Pages = {12--18}, Title = {Brownian motion of a torsion pendulum with internal friction}, Url = {http://www.sciencedirect.com/science/article/pii/0375960195001948}, Urldate = {2016-12-07}, Volume = {201}, Year = {1995}, Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/0375960195001948}, Bdsk-Url-2 = {http://dx.doi.org/10.1016/0375-9601(95)00194-8}} @article{gonzalez_brownian_1994, Abstract = {The theory of elasticity and the fluctuation‐dissipation theorem were used to calculate the thermal noise power spectrum of an extended mass suspended by an anelastic wire. The implications for interferometric detectors of gravitational waves are discussed.}, Author = {Gonz{\'a}lez, Gabriela I. and Saulson, Peter R.}, Date-Modified = {2017-01-20 19:40:31 +0000}, Doi = {10.1121/1.410467}, Journal = {The Journal of the Acoustical Society of America}, Journaltitle = {The Journal of the Acoustical Society of America}, Pages = {207--212}, Title = {Brownian motion of a mass suspended by an anelastic wire}, Url = {http://scitation.aip.org/content/asa/journal/jasa/96/1/10.1121/1.410467}, Volume = {96}, Year = {1994}, Bdsk-Url-1 = {http://scitation.aip.org/content/asa/journal/jasa/96/1/10.1121/1.410467}, Bdsk-Url-2 = {http://dx.doi.org/10.1121/1.410467}} @article{aspelmeyer_cavity_2014, Author = {Aspelmeyer, Markus and Kippenberg, Tobias J. and Marquardt, Florian}, Date-Modified = {2017-01-20 19:32:20 +0000}, Doi = {10.1103/RevModPhys.86.1391}, Journal = {Reviews of Modern Physics}, Number = {4}, Pages = {1391}, Shortjournal = {Rev. Mod. Phys.}, Title = {Cavity optomechanics}, Url = {http://link.aps.org/doi/10.1103/RevModPhys.86.1391}, Volume = {86}, Year = {2014}, Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.86.1391}, Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.86.1391}} @article{wilson_measurement-based_2015, Author = {Wilson, D. J. and Sudhir, V. and Piro, N. and Schilling, R. and Ghadimi, A. and Kippenberg, T. J.}, Date-Modified = {2017-01-20 19:33:38 +0000}, Doi = {10.1038/nature14672}, Journal = {Nature}, Journaltitle = {Nature}, Number = {7565}, Pages = {325}, Title = {Measurement-based control of a mechanical oscillator at its thermal decoherence rate}, Url = {http://www.nature.com/nature/journal/v524/n7565/full/nature14672.html}, Volume = {524}, Year = {2015}, Bdsk-Url-1 = {http://www.nature.com/nature/journal/v524/n7565/full/nature14672.html}, Bdsk-Url-2 = {http://dx.doi.org/10.1038/nature14672}} @article{schilling_near-field_2016, Author = {Schilling, R. and Sch{\"u}tz, H. and Ghadimi, A. H. and Sudhir, V. and Wilson, D. J. and Kippenberg, T. J.}, Date-Modified = {2017-01-20 19:40:55 +0000}, Doi = {10.1103/PhysRevApplied.5.054019}, Journal = {Physical Review Applied}, Number = {5}, Pages = {054019}, Title = {Near-Field Integration of a {SiN} Nanobeam and a \$\{{\textbackslash}mathrm\{{SiO}\}\}\_\{2\}\$ Microcavity for Heisenberg-Limited Displacement Sensing}, Url = {http://link.aps.org/doi/10.1103/PhysRevApplied.5.054019}, Volume = {5}, Year = {2016}, Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevApplied.5.054019}, Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevApplied.5.054019}} @article{villanueva_surface_loss_2014, Author = {Villanueva, L. G. and Schmid, S.}, Date-Modified = {2017-01-20 19:39:27 +0000}, Doi = {10.1103/PhysRevLett.113.227201}, Journal = {Physical Review Letters}, Number = {22}, Pages = {227201}, Shortjournal = {Phys. Rev. Lett.}, Title = {Evidence of Surface Loss as Ubiquitous Limiting Damping Mechanism in {SiN} Micro- and Nanomechanical Resonators}, Url = {http://link.aps.org/doi/10.1103/PhysRevLett.113.227201}, Volume = {113}, Year = {2014}, Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.113.227201}, Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.113.227201}} @article{ghadimi_strain_2017, title = {Elastic strain engineering for ultralow mechanical dissipation}, volume = {360}, copyright = {Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. http://www.sciencemag.org/about/science-licenses-journal-article-reuseThis is an article distributed under the terms of the Science Journals Default License.}, issn = {0036-8075, 1095-9203}, url = {http://science.sciencemag.org/content/360/6390/764}, doi = {10.1126/science.aar6939}, language = {en}, number = {6390}, urldate = {2018-05-18}, journal = {Science}, author = {Ghadimi, A. H. and Fedorov, S. A. and Engelsen, N. J. and Bereyhi, M. J. and Schilling, R. and Wilson, D. J. and Kippenberg, T. J.}, month = may, year = {2018}, pmid = {29650701}, pages = {764--768} } @book{landau_theory_1970, title = {Theory of elasticity}, url = {https://trove.nla.gov.au/work/14292840}, abstract = {A comprehensive textbook covering not only the ordinary theory of the deformation of solids, but also some topics not usually found in textbooks on the subject, such as thermal conduction and viscosity in solids.}, urldate = {2017-12-15}, publisher = {London Pergamon Press}, author = {Landau, L. D. and Lifshitz, E. M.}, year = {1970}, keywords = {Conjugate variables (thermodynamics), Elasticity (physics), Föppl–von Kármán equations, Helmholtz free energy, Internal energy, Kinetic theory of solids, Lev Landau, Linear elasticity, Solid mechanics}, } @article{yu_control_2012, title = {Control of {Material} {Damping} in {High}-\${Q}\$ {Membrane} {Microresonators}}, volume = {108}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.108.083603}, doi = {10.1103/PhysRevLett.108.083603}, abstract = {We study the mechanical quality factors of bilayer aluminum–silicon-nitride membranes. By coating ultrahigh-Q Si3N4 membranes with a more lossy metal, we can precisely measure the effect of material loss on Q’s of tensioned resonator modes over a large range of frequencies. We develop a theoretical model that interprets our results and predicts the damping can be reduced significantly by patterning the metal film. Using such patterning, we fabricate Al-Si3N4 membranes with ultrahigh Q at room temperature. Our work elucidates the role of material loss in the Q of membrane resonators and informs the design of hybrid mechanical oscillators for optical-electrical-mechanical quantum interfaces.}, number = {8}, urldate = {2018-02-21}, journal = {Physical Review Letters}, author = {Yu, P.-L. and Purdy, T. P. and Regal, C. A.}, month = feb, year = {2012}, pages = {083603} } @article{gretarsson_dissipation_1999, title = {Dissipation of mechanical energy in fused silica fibers}, volume = {70}, issn = {0034-6748}, url = {http://aip.scitation.org/doi/abs/10.1063/1.1150040}, doi = {10.1063/1.1150040}, number = {10}, urldate = {2018-02-21}, journal = {Review of Scientific Instruments}, author = {Gretarsson, Andri M. and Harry, Gregory M.}, month = sep, year = {1999}, pages = {4081--4087} } @article{zwickl_high_2008, title = {High quality mechanical and optical properties of commercial silicon nitride membranes}, volume = {92}, issn = {0003-6951}, url = {https://aip.scitation.org/doi/10.1063/1.2884191}, doi = {10.1063/1.2884191}, number = {10}, urldate = {2018-05-09}, journal = {Applied Physics Letters}, author = {Zwickl, B. M. and Shanks, W. E. and Jayich, A. M. and Yang, C. and Bleszynski Jayich, A. C. and Thompson, J. D. and Harris, J. G. E.}, month = mar, year = {2008}, pages = {103125} } @book{braginsky_systems_1985, title = {Systems with Small Dissipation}, url = {http://www.press.uchicago.edu/ucp/books/book/chicago/S/bo5973099.html}, abstract = {Electromagnetic and mechanical oscillators are crucial in such diverse fields as electrical engineering, microwave technology, optical technology, and experimental physics. For example, such oscillators are the key elements in instruments for detecting extremely weak mechanical forces and electromagnetic signals are essential to highly stable standards of time and frequency. The central problem in developing such instruments is to construct oscillators that are as perfectly simple harmonic as possible; the largest obstacle is the oscillator's dissipation and the fluctuating forces associated with it. This book, first published in Russian in 1981 and updated with new data for this English edition, is a treatise on the sources of dissipation and other defects in mechanical and electromagnetic oscillators and on practical techniques for minimizing such defects. Written by a team of researchers from Moscow State University who are leading experts in the field, the book is a virtual encyclopedia of theoretical formulas, experimental techniques, and practical lore derived from twenty-five years of experience. Intended for the experimenter who wishes to construct near-perfect instrumentation, the book provides information on everything from the role of phonon-phonon scattering as a fundamental source of dissipation to the effectiveness of a thin film of pork fat in reducing the friction between a support wire and a mechanically oscillating sapphire crystal. The researchers that V. B. Braginsky has led since the mid-1960s are best known in the West for their contributions to the technology of gravitational-wave detection, their experimental search for quarks, their test of the equivalency principle, and their invention of new experimental techniques for high-precision measurement, including "quantum nondemolition movements." Here, for the first time, they provide a thorough overview of the practical knowledge and experimental methods that have earned them a worldwide reputation for ingenuity, talent, and successful technique.}, urldate = {2018-04-04}, publisher = {University of Chicago Press}, author = {Braginsky, V. B. and Mitrofanov, V. P. and Panov, V. I.}, year = {1985} } @article{thompson_strong_2008, title = {Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane}, volume = {452}, copyright = {© 2008 Nature Publishing Group}, issn = {0028-0836}, url = {http://www.nature.com/nature/journal/v452/n7183/abs/nature06715.html}, doi = {10.1038/nature06715}, abstract = {Macroscopic mechanical objects and electromagnetic degrees of freedom can couple to each other through radiation pressure. Optomechanical systems in which this coupling is sufficiently strong are predicted to show quantum effects and are a topic of considerable interest. Devices in this regime would offer new types of control over the quantum state of both light and matter, and would provide a new arena in which to explore the boundary between quantum and classical physics. Experiments so far have achieved sufficient optomechanical coupling to laser-cool mechanical devices, but have not yet reached the quantum regime. The outstanding technical challenge in this field is integrating sensitive micromechanical elements (which must be small, light and flexible) into high-finesse cavities (which are typically rigid and massive) without compromising the mechanical or optical properties of either. A second, and more fundamental, challenge is to read out the mechanical element{\textbar}[rsquo]{\textbar}s energy eigenstate. Displacement measurements (no matter how sensitive) cannot determine an oscillator{\textbar}[rsquo]{\textbar}s energy eigenstate, and measurements coupling to quantities other than displacement have been difficult to realize in practice. Here we present an optomechanical system that has the potential to resolve both of these challenges. We demonstrate a cavity which is detuned by the motion of a 50-nm-thick dielectric membrane placed between two macroscopic, rigid, high-finesse mirrors. This approach segregates optical and mechanical functionality to physically distinct structures and avoids compromising either. It also allows for direct measurement of the square of the membrane{\textbar}[rsquo]{\textbar}s displacement, and thus in principle the membrane{\textbar}[rsquo]{\textbar}s energy eigenstate. We estimate that it should be practical to use this scheme to observe quantum jumps of a mechanical system, an important goal in the field of quantum measurement.}, language = {en}, number = {7183}, urldate = {2016-12-02}, journal = {Nature}, author = {Thompson, J. D. and Zwickl, B. M. and Jayich, A. M. and Marquardt, Florian and Girvin, S. M. and Harris, J. G. E.}, month = mar, year = {2008}, pages = {72--75} } @article{wilson_cavity_2009, title = {Cavity {Optomechanics} with {Stoichiometric} {SiN} {Films}}, volume = {103}, url = {http://link.aps.org/doi/10.1103/PhysRevLett.103.207204}, doi = {10.1103/PhysRevLett.103.207204}, abstract = {We study high-stress SiN films for reaching the quantum regime with mesoscopic oscillators connected to a room-temperature thermal bath, for which there are stringent requirements on the oscillators’ quality factors and frequencies. Our SiN films support mechanical modes with unprecedented products of mechanical quality factor Qm and frequency νm reaching Qmνm≃2×1013 Hz. The SiN membranes exhibit a low optical absorption characterized by Im(n)≲10−5 at 935 nm, representing a 15 times reduction for SiN membranes. We have developed an apparatus to simultaneously cool the motion of multiple mechanical modes based on a short, high-finesse Fabry-Perot cavity and present initial cooling results along with future possibilities.}, number = {20}, urldate = {2016-12-22}, journal = {Physical Review Letters}, author = {Wilson, D. J. and Regal, C. A. and Papp, S. B. and Kimble, H. J.}, month = nov, year = {2009}, pages = {207204} } @article{purdy_observation_2013, title = {Observation of {Radiation} {Pressure} {Shot} {Noise} on a {Macroscopic} {Object}}, volume = {339}, copyright = {Copyright © 2013, American Association for the Advancement of Science}, issn = {0036-8075, 1095-9203}, url = {http://science.sciencemag.org/content/339/6121/801}, doi = {10.1126/science.1231282}, abstract = {The quantum mechanics of position measurement of a macroscopic object is typically inaccessible because of strong coupling to the environment and classical noise. In this work, we monitor a mechanical resonator subject to an increasingly strong continuous position measurement and observe a quantum mechanical back-action force that rises in accordance with the Heisenberg uncertainty limit. For our optically based position measurements, the back-action takes the form of a fluctuating radiation pressure from the Poisson-distributed photons in the coherent measurement field, termed radiation pressure shot noise. We demonstrate a back-action force that is comparable in magnitude to the thermal forces in our system. Additionally, we observe a temporal correlation between fluctuations in the radiation force and in the position of the resonator. A light, visible-to-the-naked-eye membrane is observed to fluctuate in step with the photons used to measure its position. [Also see Perspective by Milburn] A light, visible-to-the-naked-eye membrane is observed to fluctuate in step with the photons used to measure its position. [Also see Perspective by Milburn]}, language = {en}, number = {6121}, urldate = {2016-09-05}, journal = {Science}, author = {Purdy, T. P. and Peterson, R. W. and Regal, C. A.}, month = feb, year = {2013}, pmid = {23413350}, pages = {801--804} } @article{wilson_measurement-based_2015, title = {Measurement-based control of a mechanical oscillator at its thermal decoherence rate}, volume = {524}, copyright = {© 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.}, issn = {0028-0836}, url = {http://www.nature.com/nature/journal/v524/n7565/full/nature14672.html}, doi = {10.1038/nature14672}, abstract = {In real-time quantum feedback protocols, the record of a continuous measurement is used to stabilize a desired quantum state. Recent years have seen successful applications of these protocols in a variety of well-isolated micro-systems, including microwave photons and superconducting qubits. However, stabilizing the quantum state of a tangibly massive object, such as a mechanical oscillator, remains very challenging: the main obstacle is environmental decoherence, which places stringent requirements on the timescale in which the state must be measured. Here we describe a position sensor that is capable of resolving the zero-point motion of a solid-state, 4.3-megahertz nanomechanical oscillator in the timescale of its thermal decoherence, a basic requirement for real-time (Markovian) quantum feedback control tasks, such as ground-state preparation. The sensor is based on evanescent optomechanical coupling to a high-Q microcavity, and achieves an imprecision four orders of magnitude below that at the standard quantum limit for a weak continuous position measurement—a 100-fold improvement over previous reports—while maintaining an imprecision–back-action product that is within a factor of five of the Heisenberg uncertainty limit. As a demonstration of its utility, we use the measurement as an error signal with which to feedback cool the oscillator. Using radiation pressure as an actuator, the oscillator is cold damped with high efficiency: from a cryogenic-bath temperature of 4.4 kelvin to an effective value of 1.1 ± 0.1 millikelvin, corresponding to a mean phonon number of 5.3 ± 0.6 (that is, a ground-state probability of 16 per cent). Our results set a new benchmark for the performance of a linear position sensor, and signal the emergence of mechanical oscillators as practical subjects for measurement-based quantum control.}, language = {en}, number = {7565}, urldate = {2016-09-28}, journal = {Nature}, author = {Wilson, D. J. and Sudhir, V. and Piro, N. and Schilling, R. and Ghadimi, A. and Kippenberg, T. J.}, month = aug, year = {2015}, keywords = {NEMS, Quantum metrology, Quantum optics}, pages = {325--329} } @article{regal_measuring_2008, title = {Measuring nanomechanical motion with a microwave cavity interferometer}, volume = {4}, copyright = {2008 Nature Publishing Group}, issn = {1745-2481}, url = {https://www.nature.com/articles/nphys974}, doi = {10.1038/nphys974}, abstract = {A mechanical resonator is a physicist’s most tangible example of a harmonic oscillator. With the advent of micro and nanoscale mechanical resonators, researchers are rapidly progressing towards a tangible harmonic oscillator with motion that requires a quantum description. Challenges include freezing out the thermomechanical motion to leave only zero-point quantum fluctuations δxzp and, equally importantly, realizing a Heisenberg-limited displacement detector. Here, we introduce a detector that can be in principle quantum limited and is also capable of efficiently coupling to the motion of small-mass, nanoscale objects, which have the most accessible zero-point motion. Specifically, we measure the displacement of a nanomechanical beam using a superconducting transmission-line microwave cavity. We realize excellent mechanical force sensitivity (3 aN Hz−1/2), detect thermal motion at tens of millikelvin temperatures and achieve a displacement imprecision of 30 times the standard quantum limit.}, language = {en}, number = {7}, urldate = {2018-04-10}, journal = {Nature Physics}, author = {Regal, C. A. and Teufel, J. D. and Lehnert, K. W.}, month = jul, year = {2008}, pages = {555--560} } @article{lee_measurement_2008, title = {Measurement of the {Elastic} {Properties} and {Intrinsic} {Strength} of {Monolayer} {Graphene}}, volume = {321}, copyright = {American Association for the Advancement of Science}, issn = {0036-8075, 1095-9203}, url = {http://science.sciencemag.org/content/321/5887/385}, doi = {10.1126/science.1157996}, abstract = {We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m–1) and –690 Nm–1, respectively. The breaking strength is 42 N m–1 and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = –2.0 terapascals, and intrinsic strength of σint = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime. Measurements of the elastic properties of graphene agree with calculations for a defect-free material and show that it is indeed stronger than other materials. Measurements of the elastic properties of graphene agree with calculations for a defect-free material and show that it is indeed stronger than other materials.}, language = {en}, number = {5887}, urldate = {2018-04-10}, journal = {Science}, author = {Lee, Changgu and Wei, Xiaoding and Kysar, Jeffrey W. and Hone, James}, month = jul, year = {2008}, pmid = {18635798}, keywords = {2D materials, stress/strain engineering}, pages = {385--388} } @article{schmid_damping_2011, title = {Damping mechanisms in high-\${Q}\$ micro and nanomechanical string resonators}, volume = {84}, url = {https://link.aps.org/doi/10.1103/PhysRevB.84.165307}, doi = {10.1103/PhysRevB.84.165307}, number = {16}, journal = {Physical Review B}, author = {Schmid, S. and Jensen, K. D. and Nielsen, K. H. and Boisen, A.}, month = oct, year = {2011}, pages = {165307} } @article{yamaguchi2017gaas, title={GaAs-based micro/nanomechanical resonators}, author={Yamaguchi, Hiroshi}, journal={Semiconductor Science and Technology}, volume={32}, number={10}, pages={103003}, year={2017}, publisher={IOP Publishing}, url={http://iopscience.iop.org/article/10.1088/1361-6641/aa857a/meta} } @article{cole2014tensile, title={Tensile-strained InxGa1- xP membranes for cavity optomechanics}, author={Cole, Garrett D and Yu, Pen-Li and G{\"a}rtner, Claus and Siquans, Karoline and Moghadas Nia, Ramon and Schm{\"o}le, Jonas and Hoelscher-Obermaier, Jason and Purdy, Thomas P and Wieczorek, Witlef and Regal, Cindy A and others}, journal={App. Phys. Lett.}, volume={104}, number={20}, pages={201908}, year={2014}, publisher={AIP}, url = {http://aip.scitation.org/doi/abs/10.1063/1.4879755} } @article{zabel_top-down_2017, title = {Top-down method to introduce ultra-high elastic strain}, volume = {32}, issn = {0884-2914, 2044-5326}, url = {https://www.cambridge.org/core/journals/journal-of-materials-research/article/div-classtitletop-down-method-to-introduce-ultra-high-elastic-straindiv/890627230AABEAD8FC0B49DC2612A261}, doi = {10.1557/jmr.2017.31}, language = {en}, number = {4}, urldate = {2018-05-15}, journal = {Journal of Materials Research}, author = {Zabel, Thomas and Geiger, Richard and Marin, Esteban and Müller, Elisabeth and Diaz, Ana and Bonzon, Christopher and Süess, Martin J. and Spolenak, Ralph and Faist, Jérôme and Sigg, Hans}, month = feb, year = {2017}, keywords = {semiconducting, stress/strain engineering, elastic properties, microstructure}, pages = {726--736} } @article{minamisawa_top-down_2012, title = {Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5\%}, volume = {3}, copyright = {2012 Nature Publishing Group}, issn = {2041-1723}, url = {https://www.nature.com/articles/ncomms2102}, doi = {10.1038/ncomms2102}, language = {en}, urldate = {2018-05-15}, journal = {Nature Communications}, author = {Minamisawa, R. A. and Süess, M. J. and Spolenak, R. and Faist, J. and David, C. and Gobrecht, J. and Bourdelle, K. K. and Sigg, H.}, month = oct, year = {2012}, keywords = {stress/strain engineering}, pages = {1096} } @article{moridi_residual_2013, title = {Residual stresses in thin film systems: {Effects} of lattice mismatch, thermal mismatch and interface dislocations}, volume = {50}, issn = {0020-7683}, shorttitle = {Residual stresses in thin film systems}, url = {http://www.sciencedirect.com/science/article/pii/S0020768313002722}, doi = {10.1016/j.ijsolstr.2013.06.022}, number = {22}, urldate = {2018-05-15}, journal = {International Journal of Solids and Structures}, author = {Moridi, Alireza and Ruan, Haihui and Zhang, L. C. and Liu, Mei}, month = oct, year = {2013}, pages = {3562--3569} } @article{corbitt_optical_2007, title = {Optical {Dilution} and {Feedback} {Cooling} of a {Gram}-{Scale} {Oscillator} to 6.9 {mK}}, volume = {99}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.99.160801}, doi = {10.1103/PhysRevLett.99.160801}, number = {16}, journal = {Physical Review Letters}, author = {Corbitt, Thomas and Wipf, Christopher and Bodiya, Timothy and Ottaway, David and Sigg, Daniel and Smith, Nicolas and Whitcomb, Stanley and Mavalvala, Nergis}, month = oct, year = {2007}, keywords = {Q dilution}, pages = {160801} } @article{wilson-rae_high-q_2011, title = {High-\${Q}\$ {Nanomechanics} via {Destructive} {Interference} of {Elastic} {Waves}}, volume = {106}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.106.047205}, doi = {10.1103/PhysRevLett.106.047205}, number = {4}, journal = {Physical Review Letters}, author = {Wilson-Rae, I. and Barton, R. A. and Verbridge, S. S. and Southworth, D. R. and Ilic, B. and Craighead, H. G. and Parpia, J. M.}, month = jan, year = {2011}, pages = {047205} } @article{cole_phonon-tunnelling_2011, title = {Phonon-tunnelling dissipation in mechanical resonators}, volume = {2}, copyright = {2011 Nature Publishing Group}, issn = {2041-1723}, url = {https://www.nature.com/articles/ncomms1212}, doi = {10.1038/ncomms1212}, language = {en}, urldate = {2018-05-18}, journal = {Nature Communications}, author = {Cole, Garrett D. and Wilson-Rae, Ignacio and Werbach, Katharina and Vanner, Michael R. and Aspelmeyer, Markus}, month = mar, year = {2011}, pages = {231} } @misc{zenodo_repos, howpublished = {Raw measurements data, analysis code to repoduce the manuscript figures, and the GDS designs of PnC membranes are available on zenodo.org, DOI:.../zenodo....} } @misc{specta_notations, howpublished = {We use two-sided spectral densities, denoted as $S_{xx}[\omega]$, in theoretical derivations and one-sided spectral densities, denoted as $S_{x}[\omega]=2S_{xx}[\omega]$ for $\omega>2$, for the presentation of experimental data.} } diff --git a/supplementary/SI.dvi b/supplementary/SI.dvi deleted file mode 100644 index 337685d..0000000 Binary files a/supplementary/SI.dvi and /dev/null differ diff --git a/supplementary/SI.fdb_latexmk b/supplementary/SI.fdb_latexmk deleted file mode 100644 index d44ca73..0000000 --- a/supplementary/SI.fdb_latexmk +++ /dev/null @@ -1,261 +0,0 @@ -# Fdb version 3 -["bibtex SI"] 1584707785 "SI.aux" "SI.bbl" "SI" 1584707886 - "/usr/local/texlive/2019/texmf-dist/bibtex/bst/revtex/apsrev4-1.bst" 1547851249 71518 fec93f06df0c073f83d2330456bd19c2 "" - "SI.aux" 1584707787 8417 3b7605d7fc2fd92d0a447d1640492ec8 "pdflatex" - "SINotes.bib" 1584707787 103 48ad29797468f16e2853d8797278d7af "pdflatex" - "supp_references.bib" 1584707446 3965 fbf9b434977ed5dfaf2f8b5e957c3064 "" - (generated) - "SI.blg" - "SI.bbl" -["pdflatex"] 1584707785 "SI.tex" "SI.pdf" "SI" 1584707886 - "/dev/null" 1584707885 0 d41d8cd98f00b204e9800998ecf8427e "" - "/usr/local/texlive/2019/texmf-dist/fonts/enc/dvips/cm-super/cm-super-ts1.enc" 1136849721 2900 1537cc8184ad1792082cd229ecc269f4 "" - "/usr/local/texlive/2019/texmf-dist/fonts/map/fontname/texfonts.map" 1511824771 3332 103109f5612ad95229751940c61aada0 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/jknappen/ec/tcrm0500.tfm" 1136768653 1536 b3387106d9afecbfe14bde2de6eadf47 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/jknappen/ec/tcrm0700.tfm" 1136768653 1536 73da8e8f1d2a4c957d51ca133585586b "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/jknappen/ec/tcrm1000.tfm" 1136768653 1536 e07581a4bb3136ece9eeb4c3ffab8233 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmbsy5.tfm" 1246382020 1120 1e8878807317373affa7f7bba4cf2f6a "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmbsy6.tfm" 1246382020 1124 14ccf5552bc7f77ca02a8a402bea8bfb "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmbsy7.tfm" 1246382020 1120 7f9f170e8aa57527ad6c49feafd45d54 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmbsy8.tfm" 1246382020 1120 200be8b775682cdf80acad4be5ef57e4 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmbsy9.tfm" 1246382020 1112 cbc11b646ccc26599775160605aaee3a "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm" 1246382020 1004 54797486969f23fa377b128694d548df "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex8.tfm" 1246382020 988 bdf658c3bfc2d96d3c8b02cfc1c94c20 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex9.tfm" 1246382020 996 a18840b13b499c08ac2de96a99eda4bc "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmmib5.tfm" 1246382020 1496 c79f6914c6d39ffb3759967363d1be79 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmmib6.tfm" 1246382020 1516 a3bf6a5e7ec4401b1f52092dfaaed242 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmmib7.tfm" 1246382020 1508 6e807ff901c35a5f1fde0ca275533df8 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmmib8.tfm" 1246382020 1528 dab402b9d3774ca98baa037071cee7ae "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmmib9.tfm" 1246382020 1528 159d57adcba064aab4277245c826577d "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm" 1246382020 916 f87d7c45f9c908e672703b83b72241a3 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam5.tfm" 1246382020 924 9904cf1d39e9767e7a3622f2a125a565 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam7.tfm" 1246382020 928 2dc8d444221b7a635bb58038579b861a "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm10.tfm" 1246382020 908 2921f8a10601f252058503cc6570e581 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm5.tfm" 1246382020 940 75ac932a52f80982a9f8ea75d03a34cf "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm7.tfm" 1246382020 940 228d6584342e91276bf566bcf9716b83 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbsy10.tfm" 1136768653 1116 4e6ba9d7914baa6482fd69f67d126380 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx10.tfm" 1136768653 1328 c834bbb027764024c09d3d2bf908b5f0 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx12.tfm" 1136768653 1324 c910af8c371558dc20f2d7822f66fe64 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx5.tfm" 1136768653 1332 f817c21a1ba54560425663374f1b651a "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx6.tfm" 1136768653 1344 8a0be4fe4d376203000810ad4dc81558 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx7.tfm" 1136768653 1336 3125ccb448c1a09074e3aa4a9832f130 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx8.tfm" 1136768653 1332 1fde11373e221473104d6cc5993f046e "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx9.tfm" 1136768653 1328 5442e22a7072966dbaf88ca900acf3f0 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmmi6.tfm" 1136768653 1512 f21f83efb36853c0b70002322c1ab3ad "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmmi8.tfm" 1136768653 1520 eccf95517727cb11801f4f1aee3a21b4 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmmi9.tfm" 1136768653 1524 d89e2d087a9828407a196f428428ef4a "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmmib10.tfm" 1136768653 1524 554068197b70979a55370e6c6495f441 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm" 1136768653 1296 45809c5a464d5f32c8f98ba97c1bb47f "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr12.tfm" 1136768653 1288 655e228510b4c2a1abe905c368440826 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr6.tfm" 1136768653 1300 b62933e007d01cfd073f79b963c01526 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr8.tfm" 1136768653 1292 21c1c5bfeaebccffdb478fd231a0997d "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr9.tfm" 1136768653 1292 6b21b9c2c7bebb38aa2273f7ca0fb3af "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmss10.tfm" 1136768653 1316 b636689f1933f24d1294acdf6041daaa "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmss8.tfm" 1136768653 1296 d77f431d10d47c8ea2cc18cf45346274 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmss9.tfm" 1136768653 1320 49357c421c0d469f88b867dd0c3d10e8 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmsy6.tfm" 1136768653 1116 933a60c408fc0a863a92debe84b2d294 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmsy8.tfm" 1136768653 1120 8b7d695260f3cff42e636090a8002094 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmsy9.tfm" 1136768653 1116 25a7bf822c58caf309a702ef79f4afbb "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmti9.tfm" 1136768653 1476 cccc6cc4935c18ec3d5623b77ecb8b74 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmtt10.tfm" 1136768653 768 1321e9409b4137d6fb428ac9dc956269 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmtt8.tfm" 1136768653 768 d7b9a2629a0c353102ad947dc9221d49 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmtt9.tfm" 1136768653 764 c98a2af25c99b73a368cf7336e255190 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/latex-fonts/lasy6.tfm" 1136768653 520 4889cce2180234b97cad636b6039c722 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm" 1229303445 688 37338d6ab346c2f1466b29e195316aa4 "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/rsfs/rsfs5.tfm" 1229303445 684 3a51bd4fd9600428d5264cf25f04bb9a "" - "/usr/local/texlive/2019/texmf-dist/fonts/tfm/public/rsfs/rsfs7.tfm" 1229303445 692 1b6510779f0f05e9cbf03e0f6c8361e6 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb" 1248133631 32080 340ef9bf63678554ee606688e7b5339d "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx9.pfb" 1248133631 32298 c6d25bb16d1eac01ebdc6d7084126a1e "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb" 1248133631 30251 6afa5cb1d0204815a708a080681d4674 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb" 1248133631 36299 5f9df58c2139e7edcf37c8fca4bd384d "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi7.pfb" 1248133631 36281 c355509802a035cadc5f15869451dcee "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi9.pfb" 1248133631 36094 798f80770b3b148ceedd006d487db67c "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb" 1248133631 35752 024fb6c41858982481f6968b5fc26508 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr5.pfb" 1248133631 31809 8670ca339bf94e56da1fc21c80635e2a "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr6.pfb" 1248133631 32734 69e00a6b65cedb993666e42eedb3d48f "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb" 1248133631 32762 224316ccc9ad3ca0423a14971cfa7fc1 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb" 1248133631 32726 0a1aea6fcd6468ee2cf64d891f5c43c8 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr9.pfb" 1248133631 33993 9b89b85fd2d9df0482bd47194d1d3bf3 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb" 1248133631 32569 5e5ddc8df908dea60932f3c484a54c0d "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy6.pfb" 1248133631 32587 1788b0c1c5b39540c96f5e42ccd6dae8 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb" 1248133631 32716 08e384dc442464e7285e891af9f45947 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy9.pfb" 1248133631 32442 c975af247b6702f7ca0c299af3616b80 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmti9.pfb" 1248133631 36310 f5ddc6715cc60deb16d9db5ded6a9391 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/symbols/msam10.pfb" 1248133631 31764 459c573c03a4949a528c2cc7f557e217 "" - "/usr/local/texlive/2019/texmf-dist/fonts/type1/public/cm-super/sfrm1000.pfb" 1215737283 138258 6525c253f16cededa14c7fd0da7f67b2 "" - "/usr/local/texlive/2019/texmf-dist/tex/context/base/mkii/supp-pdf.mkii" 1461363279 71627 94eb9990bed73c364d7f53f960cc8c5b "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/babel-english/english.ldf" 1496785618 7008 9ff5fdcc865b01beca2b0fe4a46231d4 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/babel/babel.def" 1557004175 78303 c54368864528e704f6f347e670e631cd "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/babel/babel.sty" 1557004175 17694 218403ecedc79eb72e8ecde7bc3b3f87 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/babel/switch.def" 1557004175 14454 24b05ffde1fce7ca761904a613e8ce1f "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/babel/txtbabel.def" 1554327732 7435 ef73091c345c1e2e85b0f9a441eb1f7d "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/ifxetex/ifxetex.sty" 1284331290 1458 43ab4710dc82f3edeabecd0d099626b2 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/gettitlestring.sty" 1463608860 8237 3b62ef1f7e2c23a328c814b3893bc11f "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty" 1536701967 185392 b99a6d53180e04300c35e18725f31231 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty" 1465595255 70864 bcd5b216757bd619ae692a151d90085d "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex" 1546728038 969 03f6c464fd951d8725b3a4959f4c6de0 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex" 1546728038 43820 bc6cf5aa959817914ace33f5c6232161 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex" 1557092330 19324 c9a64402f22bd8d81821141a357af653 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex" 1546728038 6038 d639d02574be9a72f3c602c2a3510e02 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex" 1546728038 6948 284bbe3c9a7ca0a826c1c03895e69b9f "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex" 1546728038 4883 a6f3eb1f71d8c4affaf43a169828b043 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex" 1546728038 2544 3b1b198fd49f01e328adc9162a07b213 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex" 1546728038 44195 134d5eb267e64d2a6b6dc75008e7c5fd "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex" 1546728038 17311 3092579be20ef0f229c42ad3f09da85c "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex" 1546728038 21302 d6c4b340248adbe650ebf6ca76bdccca "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex" 1546728038 9541 9d1ee06aeaf948a30f150e450eb2d944 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex" 1557092330 33356 19ca73d4aa24857120b230a5d06f6b4c "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex" 1546728038 2965 502761b60f43ab2de5ecb2f4625163ae "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex" 1546728038 5196 f8c5c775d4d6e2cb050392127cabda72 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex" 1557092330 20817 1763e1bd1795e073004fa1b1d2d3a6ff "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex" 1557092330 23633 7f8db199ac2ca8f3c6b168005e7899a6 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex" 1546728038 21989 266e83c51fe41eb8b8d5e6896dc71cc1 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex" 1546728038 8842 5cc856e132fac404805c6da091779283 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfadings.code.tex" 1546728038 1179 bb12be2a349da04542eb1820d6ef2546 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarypositioning.code.tex" 1546728038 3937 20cd45386ca23052ce976464f0ada984 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshadows.code.tex" 1546728038 2889 cc480f49ed20c2fcdee5258286919df6 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex" 1546728038 11605 3cfbfe82478675de992de878ae30cba4 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex" 1557092330 184062 a6b2d8312f7efd5877ebedbd98dd55c1 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.meta.code.tex" 1546728038 58801 c503519b1e019b14dc7fb801de6de024 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/libraries/pgflibraryfadings.code.tex" 1546728038 2563 97c355d55617296f2e7ef7030bada827 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex" 1546728038 32995 a4d54c043ae5274ceaaddeb36ad43a6f "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex" 1557092330 521 c70cf6ad609de83a27ee7929eb356332 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex" 1557092330 13391 933cab19c6d27039dbfc487330d1005a "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex" 1557092330 104938 15f2d8bdabd6bf9ca70f62cd8e3d4940 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex" 1557092330 10157 218d58ab074e5bd0d027de45ec64cc00 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex" 1557092330 28177 7c47c337a1d5dbef1983ad718b752780 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex" 1557092330 9191 47b66ae56123e441ad9b781149e62b61 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.tex" 1557092330 3865 cddf7ddc80f018587c55afdcc79fc333 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics.code.tex" 1557092330 3177 27d85c44fbfe09ff3b2cf2879e3ea434 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex" 1557092330 10925 df50b8a6e5660a585e3a2bf55726dcc8 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex" 1557092330 7757 7705f3e11ccd6e3eb3ad082230465f1a "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex" 1557092330 3379 cbd0948a550bd7a495a160ca6beee9ed "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code.tex" 1557092330 92405 bba89470858d7b0788a9c09331c39653 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex" 1557092330 36369 b9fc998228b00ac0e98c7a5cc552e6f2 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex" 1557092330 7431 af3d75e118d051d25f998b340bda2432 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex" 1557092330 20905 32f5da2d6cf180962acc32cfde9fb2bc "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex" 1557092330 16121 9e240115374a8d489f2f786115df83a9 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex" 1557092330 43313 34802317aa5ec625495eb059ee22dac1 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/pgf.revision.tex" 1557092330 463 c46c7c3cfa252697c376a7f3b9edf4e1 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg" 1557092330 926 70ff613fabeb70f5d1673dc0c93987bd "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def" 1557092330 5546 3586827e6032c95512b2a6682d2979a3 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def" 1557092330 13604 c814ee30f2c783aac5aa5f1fa9bd5d8f "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex" 1557092330 60235 95c0c3ec344c91e1862f00113848c7fd "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex" 1557092330 1896 82c274ff520f9e450ccea4e3ef4edc12 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex" 1557092330 7778 a25a32a10ca820357491d4c7b3ac02ea "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex" 1557092330 23747 e2b4752cd808d28181c87a5a827014a7 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex" 1557092330 36444 cdc8278aa457606d7592c10e8ba76822 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.tex" 1557092330 37552 0e8604fe25a87d19012c76fcfb85271c "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex" 1557092330 4197 7d1ede1330228937d4e18809b2ca0e1f "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.tex" 1557092330 7250 03b2b9fb5fa38e7ca5cc3c45860fb210 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex" 1557092330 26759 caa1a6483e91bb5d06dda1802f7a6f32 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def" 1557092330 6162 fdfa536d094720cfb975ddffdc71c331 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/ulem/ulem.sty" 1338588421 23756 854c01b779030ff5b2aad88ba7a119f2 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/unicode-data/UnicodeData.txt" 1552169639 1797715 6221effa1dd15524745a467f7366233d "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/xkeyval/keyval.tex" 1403829539 2725 fc34ef3ccb37ba15a640e8fca6190bca "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/xkeyval/xkeyval.tex" 1417732693 19231 26434a5656c684f5ffb1f26f98006baa "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/xkeyval/xkvutils.tex" 1403829539 7677 6f5ce7c1124cad7ec57d05b2562bd8fe "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/xstring/xstring.sty" 1544223003 123 a302f2c651a95033260db60e51527ae8 "" - "/usr/local/texlive/2019/texmf-dist/tex/generic/xstring/xstring.tex" 1549403660 47762 87512aefe2c24c8c3ff58ba167aba4d9 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/amsfonts.sty" 1359763108 5949 3f3fd50a8cc94c3d4cbf4fc66cd3df1c "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/amssymb.sty" 1359763108 13829 94730e64147574077f8ecfea9bb69af4 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/umsa.fd" 1359763108 961 6518c6525a34feb5e8250ffa91731cff "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/umsb.fd" 1359763108 961 d02606146ba5601b5645f987c92e6193 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsbsy.sty" 1523134290 2211 ca7ce284ab93c8eecdc6029dc5ccbd73 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsgen.sty" 1523134290 4161 7f6eb9092061a11f87d08ed13515b48d "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsmath.sty" 1544567569 85093 77cfa18ddbae4d9b74ade33d843686d3 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsopn.sty" 1523134290 4116 32e6abd27229755a83a8b7f18e583890 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amstext.sty" 1523134290 2432 8ff93b1137020e8f21930562a874ae66 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/base/ifthen.sty" 1523050425 5161 c004ea5a189d4bdcf42e86754ad75a58 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/base/textcomp.sty" 1544567569 16156 a293f9cfd4f8552bb5d1028389f53e72 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1cmr.fd" 1523050425 2433 cdefd2509a12ba58001f2024f63aae9a "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1enc.def" 1523050425 7769 97b639552068544f7c98d557abb19f41 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1enc.dfu" 1544567569 4973 923be56c54607ca99f7cc085a8c7e52b "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/changes/changes.sty" 1548629298 31898 fb8fa05f9adf546383ce6c7c84d5a51e "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/chemformula/chemformula.sty" 1490304492 131153 43285a109b90e0e3883e011c96f970a7 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/doublestroke/dsfont.sty" 1137110062 230 7bc61880b468bfd38aedc173be7c3486 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/float/float.sty" 1137110151 6749 16d2656a1984957e674b149555f1ea1d "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/color.cfg" 1459978653 1213 620bba36b25224fa9b7e1ccb4ecb76fd "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/graphics.cfg" 1465944070 1224 978390e9c2234eab29404bc21b268d1e "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-def/pdftex.def" 1515537368 17334 520b9b85ad8a2a48eda3f643e27a5179 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/graphics.sty" 1523134385 15272 5a97061616e0c8b2aa79c6615ff769f4 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/graphicx.sty" 1523134385 9063 d0a305975932762117cd1f06a582f896 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/trig.sty" 1523134385 3977 cb9221976ed8a183afad65b59aa8629a "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/hpdftex.def" 1543704539 51744 477aad43ad6a7ba8c462d20c3e0808e0 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/hyperref.sty" 1543704539 236074 d994150943d35d6af0d586a60cc78dd1 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/nameref.sty" 1465687530 12949 81e4e808884a8f0e276b69410e234656 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/pd1enc.def" 1543704539 14098 b4e1ecab4699a0341b8e1349e4c53fb1 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/ifmtarg/ifmtarg.sty" 1525197427 318 019510c713feab56160631df4423d2aa "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/jknapltx/mathrsfs.sty" 1137110241 300 12fa6f636b617656f2810ee82cb05015 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/jknapltx/ursfs.fd" 1137110241 548 cc4e3557704bfed27c7002773fad6c90 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/koma-script/scrlfile.sty" 1549234198 15778 6cd4024c756f36926e3648af5491b355 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/l3kernel/expl3-code.tex" 1557258869 991574 8b7565870250a7658dcde6c4ff0ce02b "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/l3kernel/expl3.sty" 1557258869 9894 5fcfbd505b33f7ebb4d0c166a863a8b6 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/l3kernel/l3pdfmode.def" 1557258869 21257 26dd8561ccc206a222835055475c0b12 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/l3keys2e/l3keys2e.sty" 1556922606 4520 0716f6a7b68cb2917349764402d33f2d "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/xfrac/xfrac.sty" 1556922606 14694 3b6a38d21c09291045814ed163afee36 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/xparse/xparse.sty" 1556922606 81617 00424b5835d3059b1495f2efccecaf6c "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/xtemplate/xtemplate.sty" 1556922606 48197 dc3c1bc641e56a565c79a3124fe8f371 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg" 1279039959 678 4792914a8f45be57bb98413425e4c7af "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/latexconfig/hyperref.cfg" 1254097189 235 6031e5765137be07eed51a510b2b8fb7 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/mathtools/mathtools.sty" 1515449928 53430 0411f0481da6078e76fd7de46531d2e0 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/mathtools/mhsetup.sty" 1496786006 5317 cf75154a8a7e6436f05a5be497f0b05e "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/ms/everyshi.sty" 1177890616 3878 6aa7c08ff2621006e0603349e40a30a8 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/natbib/natbib.sty" 1291685959 45456 1c8843383c0bd05870c45fa0ebea6cc2 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/auxhook.sty" 1463608860 3834 4363110eb0ef1eb2b71c8fcbcdb6c357 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty" 1463608860 12095 5337833c991d80788a43d3ce26bd1c46 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/grfext.sty" 1463608860 7075 2fe3d848bba95f139de11ded085e74aa "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/kvoptions.sty" 1463608860 22417 1d9df1eb66848aa31b18a593099cf45c "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/pdfcolmk.sty" 1463608860 11548 5747071fb49b31177f7d600e84775322 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty" 1463608860 9581 023642318cef9f4677efe364de1e2a27 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty" 1546728038 1090 d20f587ea9464d1841bd0d13d3ff9856 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty" 1288312291 410 5bf12ea7330e5f12c445332a4fe9a263 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty" 1546728038 21013 e98e1aaaf40d31632787c2bd25d24b57 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty" 1546728038 989 2cf3da8e8ec55131c49389428d565e37 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty" 1203877327 339 592cf35cba3d400082b8a9a5d0199d70 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/pgf/math/pgfmath.sty" 1393459310 306 0796eafca5e159e6ec2167a6d22d81b1 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty" 1393459310 443 0b2e781830192df35c0fd357cf13e26e "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/pgf/utilities/pgffor.sty" 1393459310 348 8927fde343487e003b01a4c2ca34073b "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty" 1203727794 274 4cad6e665cc93ac2ac979039a94fa1e1 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty" 1203877327 325 2bcd023400636339210573e2b3ee298b "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/revtex/aps10pt4-1.rtx" 1547851249 4343 a0275f592f8d74cb0d60b78294d10c2e "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/revtex/aps4-1.rtx" 1547851249 15227 2888c3e94449d608adb6fe4ee6f4121d "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/revtex/revsymb4-1.sty" 1547851249 5191 68f8787861a9ba3c4a5a4959a687ef10 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/revtex/revtex4-1.cls" 1547851249 199798 166dddb5ba2b6c918ce38d92ad67794f "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/siunitx/siunitx-abbreviations.cfg" 1520891397 4745 4153fed01bfa3d89ec4de9502b341d60 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/siunitx/siunitx.sty" 1526677777 276785 6e39f76222b0ccef1eae562690ea396e "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/textcase/textcase.sty" 1137110938 2022 79a2c3efd954daff1698214872b6ca46 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/todonotes/todonotes.sty" 1548458676 20203 358629b844d5836b09788bf66f4e806b "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/tools/array.sty" 1546812253 12527 31ab547f6520657998ecf91709f950ac "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/tools/bm.sty" 1523050425 12626 7d9d99d0bbe65f44cc0bb90f67262000 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/tools/calc.sty" 1523050425 10212 357072c1d20578a30d6387d8a22e72ab "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/translator/translator-basic-dictionary-English.dict" 1512078926 3435 0a4d096dde3f8fe682c2aedd33b8137d "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/translator/translator.sty" 1515274380 8690 269ca424c32d015df5d558ef9752619d "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/truncate/truncate.sty" 1276385404 6657 bba86b8809c129cc7edd6da64c0c1e43 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/units/nicefrac.sty" 1137111039 4029 0462ee5ab265cf59dc15a41a3b883101 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/url/url.sty" 1388531844 12796 8edb7d69a20b857904dd0ea757c14ec9 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/xcolor/xcolor.sty" 1463002160 55589 34128738f682d033422ca125f82e5d62 "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/xifthen/xifthen.sty" 1448319911 5689 1bfa68243e89a54479e7d0580773c57e "" - "/usr/local/texlive/2019/texmf-dist/tex/latex/xkeyval/xkeyval.sty" 1417732693 4962 9c1069474ff71dbc47d5006555e352d3 "" - "/usr/local/texlive/2019/texmf-dist/web2c/texmf.cnf" 1557092114 35484 cb1661360667bf4db662a8895053b554 "" - "/usr/local/texlive/2019/texmf-var/fonts/map/pdftex/updmap/pdftex.map" 1557342064 3277517 23507ed665b4dd9046f0f2a94bbef2be "" - "/usr/local/texlive/2019/texmf-var/web2c/pdftex/pdflatex.fmt" 1562959594 4259636 8c8e0ae6b16cd3a5ff01c4b4d4cb8d15 "" - "/usr/local/texlive/2019/texmf.cnf" 1557341546 577 d150fef99ac436ad1156e86b0892f6ef "" - "SI.aux" 1584707787 8417 3b7605d7fc2fd92d0a447d1640492ec8 "pdflatex" - "SI.bbl" 1584707785 8946 8bffc809f43dce5b13271be5e804c41e "bibtex SI" - "SI.out" 1584707787 778 12881c743a9f45421ebdada1d48bb922 "pdflatex" - "SI.tex" 1584707886 21515 743866cde85362dfd7c3ecd6bde68384 "" - "SI.toc" 1584707787 977 aa806605f439a722e9d87b1525f7cb50 "pdflatex" - "fig_ext_rect_mbr.pdf" 1583259033 212996 5948c0972fc2e6a9699175d549e02a7a "" - "fig_mirror_noise.pdf" 1583259033 260378 4005f3360496b3ce93440a3d8b9a915f "" - "fig_power_sweep.pdf" 1583259033 649442 6c612999ad7255e0d1655c5308f60881 "" - "fig_process_flow.pdf" 1583189910 10443 23d792754fd0c398f58c8c8f3f3da33e "" - (generated) - "SI.out" - "SI.log" - "SI.toc" - "SINotes.bib" - "SI.loc" - "SI.pdf" - "SI.soc" - "SI.aux" diff --git a/supplementary/SI.fls b/supplementary/SI.fls deleted file mode 100644 index d0aa91b..0000000 --- a/supplementary/SI.fls +++ /dev/null @@ -1,411 +0,0 @@ -PWD /Users/amiraliarabmoheghi/Desktop/K-lab/TIN_Manuscript/optomechanicalintermodulationnoise/supplementary -INPUT /usr/local/texlive/2019/texmf.cnf -INPUT /usr/local/texlive/2019/texmf-dist/web2c/texmf.cnf -INPUT /usr/local/texlive/2019/texmf-var/web2c/pdftex/pdflatex.fmt -INPUT SI.tex -OUTPUT SI.log -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/revtex/revtex4-1.cls -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/revtex/revtex4-1.cls -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/revtex/aps4-1.rtx -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/revtex/aps4-1.rtx -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/revtex/aps4-1.rtx -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/revtex/aps10pt4-1.rtx -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/revtex/aps10pt4-1.rtx -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/textcase/textcase.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/textcase/textcase.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/url/url.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/url/url.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/natbib/natbib.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/natbib/natbib.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/revtex/revsymb4-1.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/revtex/revsymb4-1.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/babel/babel.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/babel/babel.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/babel/switch.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/babel-english/english.ldf -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/babel-english/english.ldf -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/babel/babel.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/babel/txtbabel.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsmath.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsmath.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amstext.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amstext.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsgen.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsgen.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsbsy.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsbsy.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsopn.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsopn.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/amssymb.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/amssymb.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/amsfonts.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/amsfonts.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/changes/changes.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/changes/changes.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/xkeyval/xkeyval.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/xkeyval/xkeyval.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/xkeyval/xkeyval.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/xkeyval/xkvutils.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/xkeyval/keyval.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/xifthen/xifthen.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/xifthen/xifthen.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/tools/calc.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/tools/calc.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/base/ifthen.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/base/ifthen.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/ifmtarg/ifmtarg.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/ifmtarg/ifmtarg.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/xstring/xstring.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/xstring/xstring.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/xstring/xstring.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/xcolor/xcolor.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/xcolor/xcolor.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/color.cfg -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/color.cfg -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics-def/pdftex.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics-def/pdftex.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/pdfcolmk.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/pdfcolmk.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/ulem/ulem.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/ulem/ulem.sty -INPUT /usr/local/texlive/2019/texmf-dist/fonts/map/fontname/texfonts.map -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/latex-fonts/lasy6.tfm -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/todonotes/todonotes.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/todonotes/todonotes.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/ms/everyshi.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/ms/everyshi.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/pgf.revision.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/pgf.revision.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics/graphicx.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics/graphicx.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics/graphics.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics/graphics.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics/trig.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics/trig.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/graphics.cfg -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/graphics.cfg -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/utilities/pgffor.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/utilities/pgffor.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/math/pgfmath.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/pgf/math/pgfmath.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarypositioning.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarypositioning.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshadows.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshadows.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfadings.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfadings.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/libraries/pgflibraryfadings.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/libraries/pgflibraryfadings.code.tex -OUTPUT SI.pdf -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/truncate/truncate.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/truncate/truncate.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/tools/bm.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/tools/bm.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/doublestroke/dsfont.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/doublestroke/dsfont.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/jknapltx/mathrsfs.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/jknapltx/mathrsfs.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/mathtools/mathtools.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/mathtools/mathtools.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/mathtools/mhsetup.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/mathtools/mhsetup.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/float/float.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/float/float.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/hyperref.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/hyperref.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/ifxetex/ifxetex.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/ifxetex/ifxetex.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/auxhook.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/auxhook.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/kvoptions.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/kvoptions.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/pd1enc.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/pd1enc.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/latexconfig/hyperref.cfg -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/latexconfig/hyperref.cfg -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/hpdftex.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/hpdftex.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/chemformula/chemformula.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/chemformula/chemformula.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3kernel/expl3.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3kernel/expl3.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3kernel/expl3-code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3kernel/expl3-code.tex -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/unicode-data/UnicodeData.txt -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/unicode-data/UnicodeData.txt -INPUT /dev/null -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3kernel/l3pdfmode.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3kernel/l3pdfmode.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/xparse/xparse.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/xparse/xparse.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/l3keys2e/l3keys2e.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/l3keys2e/l3keys2e.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/xfrac/xfrac.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/xfrac/xfrac.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/base/textcomp.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/base/textcomp.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1enc.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1enc.def -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1enc.dfu -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1enc.dfu -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/xtemplate/xtemplate.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/l3packages/xtemplate/xtemplate.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/units/nicefrac.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/units/nicefrac.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/koma-script/scrlfile.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/koma-script/scrlfile.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.meta.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.meta.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.meta.code.tex -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/siunitx/siunitx.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/siunitx/siunitx.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/tools/array.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/tools/array.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/translator/translator.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/translator/translator.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/translator/translator.sty -INPUT SI.aux -INPUT SI.aux -OUTPUT SI.aux -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1cmr.fd -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1cmr.fd -INPUT /usr/local/texlive/2019/texmf-dist/tex/context/base/mkii/supp-pdf.mkii -INPUT /usr/local/texlive/2019/texmf-dist/tex/context/base/mkii/supp-pdf.mkii -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/grfext.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/grfext.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/nameref.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/nameref.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/gettitlestring.sty -INPUT /usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/gettitlestring.sty -INPUT SI.out -INPUT SI.out -INPUT SI.out -INPUT SI.out -INPUT ./SI.out -INPUT ./SI.out -OUTPUT SI.out -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/translator/translator-basic-dictionary-English.dict -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/translator/translator-basic-dictionary-English.dict -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/siunitx/siunitx-abbreviations.cfg -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/siunitx/siunitx-abbreviations.cfg -OUTPUT SINotes.bib -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/umsa.fd -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/umsa.fd -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam5.tfm -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/umsb.fd -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/umsb.fd -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm5.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx5.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmmib10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmmib7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmmib5.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbsy10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmbsy7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmbsy5.tfm -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/jknapltx/ursfs.fd -INPUT /usr/local/texlive/2019/texmf-dist/tex/latex/jknapltx/ursfs.fd -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/rsfs/rsfs7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/rsfs/rsfs5.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmss10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmss8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmss8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmtt10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmtt8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmtt8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr12.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx12.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr9.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmti9.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmr6.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmmi8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmmi6.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmsy8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmsy6.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmss8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmss8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmtt8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmtt8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm7.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx6.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmmib8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmmib6.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmbsy8.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmbsy6.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/rsfs/rsfs5.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmbx9.tfm -INPUT SI.toc -INPUT SI.toc -OUTPUT SI.toc -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/jknappen/ec/tcrm1000.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/jknappen/ec/tcrm0700.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/jknappen/ec/tcrm0500.tfm -INPUT /usr/local/texlive/2019/texmf-var/fonts/map/pdftex/updmap/pdftex.map -INPUT fig_process_flow.pdf -INPUT ./fig_process_flow.pdf -INPUT ./fig_process_flow.pdf -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmmi9.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmsy9.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex9.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmss9.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/cm/cmtt9.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm10.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmmib9.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmbsy9.tfm -INPUT /usr/local/texlive/2019/texmf-dist/fonts/tfm/public/rsfs/rsfs10.tfm -INPUT fig_power_sweep.pdf -INPUT ./fig_power_sweep.pdf -INPUT ./fig_power_sweep.pdf -INPUT fig_ext_rect_mbr.pdf -INPUT ./fig_ext_rect_mbr.pdf -INPUT ./fig_ext_rect_mbr.pdf -INPUT fig_mirror_noise.pdf -INPUT ./fig_mirror_noise.pdf -INPUT ./fig_mirror_noise.pdf -INPUT SI.bbl -INPUT SI.bbl -OUTPUT SI.soc -OUTPUT SI.loc -INPUT SI.aux -INPUT ./SI.out -INPUT ./SI.out -INPUT /usr/local/texlive/2019/texmf-dist/fonts/enc/dvips/cm-super/cm-super-ts1.enc -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx9.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi7.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi9.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr5.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr6.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr9.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy6.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy9.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmti9.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/amsfonts/symbols/msam10.pfb -INPUT /usr/local/texlive/2019/texmf-dist/fonts/type1/public/cm-super/sfrm1000.pfb diff --git a/supplementary/SI.loc b/supplementary/SI.loc deleted file mode 100644 index e69de29..0000000 diff --git a/supplementary/SI.pdf b/supplementary/SI.pdf deleted file mode 100644 index 9afd9f1..0000000 Binary files a/supplementary/SI.pdf and /dev/null differ diff --git a/supplementary/SI.tex b/supplementary/SI.tex deleted file mode 100644 index eb0a49a..0000000 --- a/supplementary/SI.tex +++ /dev/null @@ -1,280 +0,0 @@ -\documentclass[aps,a4paper,notitlepage,aps,pra]{revtex4-1} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PACKAGE CONFIG. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%start the SI figur labeling with S -\usepackage[english]{babel} -%\addto\captionsenglish{\renewcommand{\figurename}{Figure}} -\renewcommand{\thefigure}{S\arabic{figure}} -\renewcommand{\theequation}{S\arabic{equation}} - -\usepackage{amsmath,amssymb,amsfonts} % standard AMS packages -\usepackage{changes} - -\usepackage{bm} % bold symbols in math mode \bm{...} -\renewcommand{\mathbf}{\bm} -\usepackage{dsfont} % proper mathbb format -\renewcommand{\mathbb}{\mathds} % redefine \mathbb - -\usepackage{mathrsfs} % use \mathscr{} for script letters in math - -\usepackage{mathtools} % for proper typesetting of := and =: -\newcommand{\eqdef}{\vcentcolon=\,} -\newcommand{\defeq}{=\vcentcolon\,} - -\usepackage{graphicx,float} -\usepackage[colorlinks, - linkcolor=red, - citecolor=blue, - urlcolor=red]{hyperref} - -\usepackage{chemformula} -\usepackage{siunitx} - -\interfootnotelinepenalty=10000 % prevents footnotes from splitting across pages - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CUSTOM MACROS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -% macros for physics objects -\newcommand{\ket}[1]{\vert{#1}\rangle} -\newcommand{\bra}[1]{\langle{#1}\vert} -\newcommand{\op}[1]{\hat{#1}} -\newcommand{\tr}{\mathrm{Tr}} -\newcommand{\avg}[1]{\left\langle{#1}\right\rangle} - -% macros for math objects -\newcommand{\re}{\mathrm{Re}\,} -\newcommand{\im}{\mathrm{Im}\,} -\newcommand{\abs}[1]{\left\vert{#1}\right\vert} -\newcommand{\symtext}[2]{\ensuremath{\stackrel{{#2}}{{#1}}}} - -% specific macros for this document -\renewcommand{\t}[1]{\mathrm{#1}} -\newcommand{\SiN}{Si$_3$N$_4\,$} - -% useful reference macros -\newcommand{\figref}[1]{Fig.~\ref{#1}} -\renewcommand{\eqref}[1]{Eq.~\ref{#1}} -\newcommand{\secref}[1]{Sec.~\ref{#1}} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN DOCUMENT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\begin{document} - -\title{Supplementary information\\ - ``Optomechanical thermal intermodulation noise''} - -\author{S. A. Fedorov} -\thanks{These authors contributed equally} -\affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} - -\author{A. Beccari} -\thanks{These authors contributed equally} -\affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} - -\author{A. Arabmoheghi} -\affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} - -%\author{\\M. J. Bereyhi} -%\affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} - -\author{D. J. Wilson} -\affiliation{College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA} - -\author{N. J. Engelsen} -\affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} - -\author{T. J. Kippenberg} -\email{tobias.kippenberg@epfl.ch} -\affiliation{Institute of Physics (IPHYS), {\'E}cole Polytechnique F{\'e}d{\'e}rale de Lausanne, 1015 Lausanne, Switzerland} - -\maketitle - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATTER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\tableofcontents -\addtocontents{toc}{\protect\setcounter{tocdepth}{1}} - -\section{Membrane fabrication} - -Patterned and unpatterned membrane samples are fabricated on the same \SI{100}{\milli \meter} wafer. Stoichiometric, high stress \ch{Si_3N_4} is grown by low pressure chemical vapor deposition (LPCVD) on both sides of a \SI{200}{\micro \meter}-thick silicon wafer. The initial deposition stress is estimated a posteriori from the observation of membrane resonant frequencies, and varies in the range \SI{900}{}-\SI{1100}{MPa}, changing slightly with deposition run. - -The fabrication process relies on bulk wet etching of silicon in \ch{KOH} through the whole wafer thickness, to create openings for optical access to the membranes samples \cite{tsaturyan2017ultracoherent,reinhardt2016ultralow,norte2016mechanical,gartner2018integrated}. The extremely high selectivity of \ch{Si_3N_4} to \ch{Si} during \ch{KOH} etching allows the use of the backside nitride layer as a mask, to define the outline of the membranes on the frontside. - -Initially, the frontside nitride (\ch{Si_3N_4}) layer is patterned with h-line photolithography and \ch{CHF_3}/\ch{SF6}-based reactive ion etching (RIE) (steps 2-3 of figure \ref{fig:processflow}). The photoresist film is then stripped with a sequence of hot N-Methyl-2-pyrrolidone (NMP) and \ch{O_2} plasma; this procedure is carefully repeated after each etching step. The frontside nitride layer is then protected by spinning a thick layer of negative-tone photoresist (MicroChemicals AZ\textregistered 15nXT), prior to flipping the wafer and beginning the patterning of membrane windows on the backside nitride layer (steps 4-5). We noticed a reduction in the occurrence of local defects and increased overall membrane yield when the unreleased membranes on the frontside were protected from contact with hot plates, spin-coaters and plasma etchers chucks. The backside layer is then patterned with membrane windows, in a completely analogous way. The exposure step requires a wafer thickness-dependent rescaling of membrane windows, to account for the slope of slow-etching planes in \ch{KOH}, and careful alignment with frontside features. - -After stripping the photoresist, the wafer is installed in a PTFE holder for the first wet etching step in \ch{KOH} at $\approx \SI{75}{\celsius}$ (step 6). The holder clamps the wafer along its rim, sealing off the wafer frontside with a rubber O-ring, while exposing the backside to chemical etching by \ch{KOH}. This procedure is necessary to ensure that PnC membranes are suspended correctly: we noticed that releasing PnC samples by etching from both sides of the wafer produced a large number of defects in the phononic crystal, probably due to the particular dynamics of undercut and stress relaxation in the film. The wafer is etched until \SI{30}{}-\SI{40}{\micro\meter} of silicon remains, leaving the samples robust during the subsequent fabrication steps. The wafer is then removed from the KOH bath and the PTFE holder, rinsed and cleaned in concentrated \ch{HCl} at room temperature for 2 hours \cite{nielsen2004particle}. - -Subsequently, the wafer is coated with thick, protective photoresist and diced into $\SI{8.75}{mm}\times\SI{8.75}{mm}$ chips, and the remainder of the process is carried on chip-wise. Chips are cleaned again with hot solvents and \ch{O_2} plasma, and the membrane release is completed by exposing chips to \ch{KOH} from both sides (step 7). The temperature of the solution is lowered ($\approx \SI{55}{}-\SI{60}{\celsius}$), to mitigate the perturbation of fragile samples by buoyant \ch{N_2} bubbles, a byproduct of the etching reaction. After the undercut is complete, the samples are carefully rinsed, cleaned in \ch{HCl}, transferred to an ethanol bath and gently dried in a critical point dryer (CPD). - -\begin{figure}[t] -\includegraphics[width=0.6\textwidth]{fig_process_flow.pdf} -\centering -\caption{\small{Main steps of the fabrication process. Magenta - \ch{Si_3N_4}; gray - Si; green - photoresist.}} -\label{fig:processflow} -\end{figure} - -\section{Quadratic mechanical displacement transduction by the optical cavity versus quadratic optomechanical coupling} - -Nonlinear cavity transduction can produce signals, quadratic in mechanic displacement, that are orders of magnitude stronger than those due $\partial^2 \omega_c/\partial x^2$ terms that were ever experimentally demonstrated \cite{Brawley_2016}. Below we derive the classical dynamics of optical field in an optomechanical cavity taking into account terms that are quadratic in displacement. We show that in membrane in the middle cavity typical quadratic signals originating from the nonlinear transduction are $r\mathcal{F}$ larger than the signals due to the nonlinear optomechanical coupling, $\partial^2 \omega_c/\partial x^2$. - -The fluctuations of $\nu$ due to the mechanical displacement are given by -\begin{equation} -\delta\nu(t)\approx 2\frac{G}{\kappa} x(t)+\frac{G_2}{\kappa} x(t)^2, -\end{equation} -where $G=-\partial \omega_c/\partial x$ and $G_2=-\partial^2 \omega_c/\partial^2 x$ are the linear and quadratic optomechanical coupling, respectively, and the total displacement $x$ is composed by partial contributions of different modes $x_n$ -\begin{equation} -x(t) = \sum_n x_n(t). -\end{equation} -For resonant lase probe we can find the intracavity field as -\begin{equation}\label{eq:aResDisp} -a(t)\approx 2\sqrt{\frac{\eta_1}{\kappa}}(1 -i\nu(t) -\nu(t)^2) s_\t{in,1}=2\sqrt{\frac{\eta_1}{\kappa}}\left(1 -2i\frac{G}{\kappa} x(t) -\left(\left(2\frac{G}{\kappa} \right)^2+i\frac{G_2}{\kappa}\right) x(t)^2\right) s_\t{in,1}. -\end{equation} -It is instructive to compare the magnitudes of the two contributions to the prefactor of $x(t)^2$. The typical value for $G$ (assuming the membrane to be not very close to one of the mirrors) is -\begin{equation} -G\sim 2r \frac{\omega_c}{l_c}, -\end{equation} -while the typical value for $G_2$ is \cite{thompson_strong_2008} -\begin{equation} -G_2\sim 4 \frac{r \omega_c^2}{c \, l_c}, -\end{equation} -where $c$ is the speed of light, $r$ is the membrane reflectivity and $l_c$ is the cavity length. The ratio of the two contributions is evaluated as -\begin{equation} -\left. \left(2\frac{G}{\kappa} \right)^2\right/\left(\frac{G_2}{\kappa}\right)\sim\mathcal{F}r. -\end{equation} -As the cavity finesse $\mathcal{F}$ is typically large, on on the order of $10^3$ to $10^5$, and the membrane reflectivity $r$ is between $0.1$ and $0.5$, we conclude that linear optomechanical coupling needs to extremely well suppressed in order for the quadratic coupling $G_2$ to contribute. - -\section{Dissipative coupling} -In an optomechanical membrane-in-the-middle cavity dissipative coupling, $\partial \kappa/\partial x$, exists in addition to the dispersive coupling, $\partial \omega_c/\partial x$. Dissipative coupling modulates the optical decay rate, both external coupling and intrinsic loss, and potentially can produce intensity noise in a resonantly locked probe laser. However, for the parameters of our experiment the dissipative coupling is negligible. - -The noise due to dissipative coupling can be upper-bound as follows. The cavity linewidth cannot change by more than $\kappa$ as the membrane is translated by $\lambda$ inside the cavity, and therefore the dissipative coupling rate is limited by -\begin{equation} -\frac{\partial \kappa}{\partial x}\lesssim \frac{\kappa}{\lambda}= \frac{1}{\mathcal{F}}\frac{\omega_c}{2l_c}\sim \frac{G}{\mathcal{F}}, -\end{equation} -where in the last transition it was assumed that the membrane reflectivity is not very much smaller than one. - -Resonant intracavity field modulated by dissipative coupling only is given by -\begin{equation} -a(t)\approx 2\sqrt{\frac{\eta_1}{\kappa}}\left(1 - \frac{1}{2\kappa}\frac{\partial \kappa}{\partial x} x(t)\right) s_\t{in,1}. -\end{equation} -Comparing to \eqref{eq:aResDisp}, we find that the noise produced by dissipative coupling is negligible compared to the intermodulation noise if -\begin{equation} -\frac{G}{\kappa}x \gg \frac{1}{\mathcal{F}}. -\end{equation} -In all the experiments presented in this work this condition is satisfied, $Gx/\kappa$ ranges from \textcolor{red}{0.1 to 0.01 [verify exact numbers]}, whereas $1/\mathcal{F}$ is always less than $10^{-4}$. - -\section{Details of TIN calculations} - -%%%%%%%%%%%%%%% - - -\noindent For an optomechanical system, the cavity resonance frequency shifts due to a displacement field $\vec{u}(\vec r)$ is up to linear term given by \cite{Lai_perturbation_1990, Gorodetksy_vacuum_2010} - -\begin{equation} - \frac{\Delta\omega_c}{\omega_c} = \frac{1}{2}\frac{\int |\vec E{(\vec r)}|^2\nabla\epsilon(\vec r)\cdot \vec{u}(\vec r)}{\int |\vec E{(\vec r)}|^2\epsilon(\vec r)} -\end{equation} - where $\epsilon(\vec r)$ is the dielectric constant. For membrane in the middle systems the gradient of the dielectric constant is constant over the displacement field region. Therefore, the resonance frequency shift and correspondingly the linear optomechanical coupling constant ($G$) is only proportional to the average of the displacement field over the cavity mode shape at the position of the membrane. Hence, the optomechanical coupling constant for different flexural modes of a membrane can be written in the form $G_n = \eta_n\cdot G$, where $n$ denotes the mode number, $G$ is a constant and $\eta_n$ are the overlap factors, proportional to the average of the mode shape on the cavity mode. For a membrane (in the x-y plane) with flexural modes $\{u_n(x,y)\}$, by choosing $G$ to be equal to the coupling constant for the fundamental mode ($G_1$) the overlap factors have the form - - \begin{equation} - \eta_n = \frac{\int_{membrane}u_n(x,y)I(x,y)}{\int_{membrane}u_1(x,y)I(x,y)}, - \end{equation} -where $u_1$ denotes the fundamental mode and $I(x,y) = |\vec E{(x,y)}|^2$ is the cavity mode shape. For the fundamental mode of a Fabry-Perot cavity the mode shape is given by a Gaussian profile with -\begin{equation} - I(x,y) = \sqrt{\frac{2}{\pi w^2}} e^{-2((x-x_0)^2+(y-y_0)^2)/w^2} -\end{equation} -with $w$ being the waist of the mode shape at the position of the membrane and $x_0$ and $y_0$ being the posistion on the membrane the beam is focused on. We normalize the coupling constants to the value for the fundamental mode since in the actual experiment we calibrate the coupling constant using the fundamental mode. With $x_n(t)$ being the amplitude of the $n_{th}$ mode, total fluctuations of the cavity normalized detuning is given by -\begin{equation} - \delta\nu(t) = \frac{2G}{\kappa} \sum_n \eta_n x_n(t). -\end{equation} -Comparing to Eq.. (12) of the main text total displacement, $x(t)$ is defined as -\begin{equation} - x(t) = \sum_n \eta_n x_n(t). -\end{equation} -Spectrum of the linear fluctuations of $x$, $S_{xx}^{(1)}[\omega]$, is linear combination of thermal spectra of each mode, $S_{xx,n}^{(1)}[\omega]$, due to the fact that Brownian motion of different modes are statistically independent. $S_{xx,n}^{(1)}[\omega]$ is also given by the fluctuation-dissipation theorem. - -\begin{equation}\label{S_xx} - S_{xx}^{(1)}[\omega] = \sum_n \eta_n^2 S_{xx,n}^{(1)}[\omega] = \sum_n \eta_n^2 \frac{2kT}{\omega}\Im{\chi_n[\omega]} -\end{equation} -where $\chi_n[\omega]$ is the susceptibility of mode $n$. The quadratic fluctuations of $x$ can be calculated using a relation similar to Eq. (11) of the main text - -\begin{equation}\label{S_xx2} - S_{xx}^{(2)}[\omega] = 2\pi\langle x^2\rangle \delta[\omega] + \frac{1}{\pi}\int_{-\infty}^{\infty}S_{xx}^{(1)}[\omega']S_{xx}^{(1)}[\omega-\omega']d\omega' -\end{equation} -Having computed the linear and quadratic spectra of displacement fluctuations, the linear and quadratic frequency fluctuations are also calculated accordingly using the Eq. (13) and (14) of the main text, and finally the total photocurrent spectrum can be calculated from Eq. (18). - -For a thin high stress sqaure membrane with side L, the flexural modes are given by sine waves as -\begin{equation} - u_{nm} = \frac{2}{L}\sin{(\frac{2\pi x}{L})}\sin{(\frac{2\pi y}{L})}, -\end{equation} -with the mode frequencies are $\Omega_{nm} = \frac{\pi c}{L}\sqrt{n^2 + m^2}$ where $L$ is the side of the square and $c=\sqrt{\frac{\sigma}{\rho}}$ is the speed of the acoustic wave in a film with density of $\rho$ and stress $\sigma$. The effective mass for all modes is equal to $M/4$, a quarter of the total mass of the membrane. In the data presented in Fig. (3) of the main text, the membrane in under a rather high pressure, so that the damping process is dominated by the viscous damping which means constant damping rate given by $\Gamma_{nm} = \Omega_{nm}/Q_{nm}$. Piecing it all together, the susceptibility of the mode ${nm}$ is given by - -\begin{equation} - \chi_{nm}[\omega] = \frac{1}{M/4}\frac{1}{\Omega_{nm}^2 - \omega^2 - i\Gamma_{nm}\omega}. -\end{equation} - -Finally, we can analytically calculate the linear spectrum using Eq. (\ref{S_xx}) and then find the TIN by numerically computing the convolution integral in Eq. (\ref{S_xx2}). - - -%%%%%%%%%%%%%%% - -\section{The model of detuning dependence of total output light noise for MiM cavity with PnC membrane} -As shown in the main manuscript text, the intensity of light, $I(t)$, and therefore the photodiode signal, is related to the linear ($\delta\nu(t)$) and quadratic ($\delta\nu(t)^2$) fluctuations of the cavity frequency as -\begin{equation} -I(t)=|s_\t{out,2}(t)|^2\propto -|L(\nu_0)|^2 \left(1-\frac{2\nu_0}{1+\nu_0^2}\delta\nu(t)+\frac{3\nu_0^2-1}{(1+\nu_0^2)^2}\delta\nu(t)^2\right), -\end{equation} -where $\nu_0=2\Delta_0/\kappa$ is normalized detuning. The spectrum of intensity fluctuations of the output light is given by, -\begin{equation} -S_{II}[\omega]\propto \frac{4 \nu_0^2}{(1+\nu_0^2)^2} S_{\nu\nu}[\omega]+\frac{(3\nu_0^2-1)^2}{(1+\nu_0^2)^4} S_{\nu\nu,2}[\omega]. -\end{equation} -In an optomechanical cavity operated at high input power $S_{\nu\nu}$ and $S_{\nu\nu,2}$ in general are detuning-dependent because of the dynamic backaction of light, most importantly because of the laser cooling/amplification of mechanical motion. - -In order to find the dependence of $S_{II}$ on $\Delta$ some specific assumptions need to be made about the operation regime and the frequency of interest. Considering the case of data in Fig.~5b of the main text, here the noise level is estimated at the bandgap frequency and therefore only the mirror noise is expected to contribute to $S_{\nu\nu}$. The mechanical modes of the mirrors are relatively weakly coupled to the intracavity light and therefore the dynamical backaction for them can be neglected, resulting in detuning-independent $S_{\nu\nu}$. The intermodulation noise contribution, on the contrary, is significantly affected by laser cooling. It is natural to suggest (and it is advocated for by the very good agreement of our conclusions with experimental data) that TIN at bandgap frequencies is dominated by the mixing products of resonant and off-resonant parts of the membrane thermomechanical spectrum. Dynamical backaction reduces the mechanical spectral density on resonance $\propto 1/\Gamma_\t{DBA}$, where $\Gamma_\t{DBA}$ is the optical damping rate and $\Gamma_\t{DBA}\gg \Gamma_m$ is assumed, and it does not affect the off-resonant spectral density. In unresolved-sideband regime, which is typically well fulfilled in our measurements, the optical damping rate is given by -\begin{equation} -%\Gamma_\t{DBA}=-8\Omega_m\left(\frac{2g_0}{\kappa}\right)^2 \frac{\nu_0}{(1+\nu_0^2)^2}n_c -\Gamma_\t{DBA}= -32\frac{\Omega_m}{\kappa}\left(\frac{2g_0}{\kappa}\right)^2\frac{\nu_0}{(1+\nu_0^2)^3} \eta_1|s_\t{in,1}|^2, -\end{equation} -and under our assumptions the spectral density of quadratic frequency fluctuations at PnC bandgap frequencies follows the detuning dependence of $1/\Gamma_\t{DBA}$, -\begin{equation} - S_{\nu\nu,2}\propto \frac{(1+\nu_0^2)^3}{|\nu_0|}, -\end{equation} -for $\nu_0<0$. - -Motivated by this consideration, the experimental data in Fig.~5b is fitted with the model -\begin{equation} -S_{II}\propto \frac{4 \nu_0^2}{(1+\nu_0^2)^2} C_1+\frac{1}{|\nu_0|}\frac{(3\nu_0^2-1)^2}{1+\nu_0^2} C_2, -\end{equation} -where $C_1$ and $C_2$ are free parameters. It was found that the model very well reproduces the observed variation of output noise with detuning and the value of $C_1$ found from the fit is indeed consistent with independently measured mirror noise, as shown in \figref{fig:mirrorNoise}. - - -\section{Extended data} -\textcolor{red}{[This section is a draft]} - -\textcolor{red}{[Add a calibrated measurement of the amplitude noise of Ti:Sa laser]} - -\begin{figure}[t] -\includegraphics[width=\textwidth]{fig_power_sweep.pdf} -\centering -\caption{\small{a) Spectra of resonant relative intensity noise for a 2mm$\times$2mm square unpatterned membrane (resonance wavelength 837.7 nm, $g_0/2\pi=84$ Hz, $\kappa/2\pi=9.9$ MHz) at different input powers. The inset shows the same plot zoomed in at low frequencies. The RIN levels plotted in Fig. 2 of main manuscript are averaged over the frequency range shaded gray. b) The reproduction of the average RIN from Fig. 2 of main manuscript.}} -\label{fig:powerSweep} -\end{figure} -The spectra of resonant RIN taken at different powers (shown in \figref{fig:powerSweep}a) show that the transmission signal is shot noise-limited at the frequency $\gtrsim 15$ MHz and therefore validates the shot noise estimate in Fig 2 of the main text. - -\begin{figure}[t] -\includegraphics[width=\textwidth]{fig_ext_rect_mbr.pdf} -\centering -\caption{\small{a) Low frequency zoom-in of the data in Fig. 2 of the main text. b) Green points---measured linewidths of different optical resonances of MIM cavity with a 2mm$\times$2mm$\times$20nm unpatterned membrane, the dashed line is a guide to eye. Orange line---linewidth of an empty cavity with the same -length.}} -\label{fig:extRectMbr} -\end{figure} - -\begin{figure}[t] -\includegraphics[width=\textwidth]{fig_mirror_noise.pdf} -\centering -\caption{\small{a) Spectrum of detuning fluctuations due to the mirror noise. b) Mirror noise overlapped with a trace from detuning sweep presented in Fig. 5 of the main text corresponding to $2\Delta/\kappa=-0.51$.}} -\label{fig:mirrorNoise} -\end{figure} - - -\bibliography{supp_references} -\end{document} diff --git a/supplementary/supp_references.bib b/supplementary/supp_references.bib deleted file mode 100644 index 28c7456..0000000 --- a/supplementary/supp_references.bib +++ /dev/null @@ -1,117 +0,0 @@ -@article{nielsen2004particle, - title={Particle precipitation in connection with KOH etching of silicon}, - author={Nielsen, C Bergenstof and Christensen, Carsten and Pedersen, Casper and Thomsen, Erik Vilain}, - journal={Journal of The Electrochemical Society}, - volume={151}, - number={5}, - pages={G338--G342}, - year={2004}, - publisher={The Electrochemical Society} -} - -@article{Brawley_2016, - title={Nonlinear optomechanical measurement of mechanical motion}, - volume={7}, - ISSN={2041-1723}, - url={http://dx.doi.org/10.1038/ncomms10988}, - DOI={10.1038/ncomms10988}, - number={1}, - journal={Nature Communications}, - publisher={Springer Science and Business Media LLC}, - author={Brawley, G. A. and Vanner, M. R. and Larsen, P. E. and Schmid, S. and Boisen, A. and Bowen, W. P.}, - year={2016}, - month={Mar} -} - - -@article{thompson_strong_2008, - title={Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane}, - volume={452}, - ISSN={1476-4687}, - url={http://dx.doi.org/10.1038/nature06715}, - DOI={10.1038/nature06715}, - number={7183}, - journal={Nature}, - publisher={Springer Science and Business Media LLC}, - author={Thompson, J. D. and Zwickl, B. M. and Jayich, A. M. and Marquardt, Florian and Girvin, S. M. and Harris, J. G. E.}, - year={2008}, - month={Mar}, - pages={72–75} -} - -@article{tsaturyan2017ultracoherent, - title={Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution}, - author={Tsaturyan, Yeghishe and Barg, Andreas and Polzik, Eugene S and Schliesser, Albert}, - journal={Nature Nanotechnology}, - volume={12}, - number={8}, - pages={776}, - year={2017}, - publisher={Nature Publishing Group} -} - -@article{reinhardt2016ultralow, - title={Ultralow-noise SiN trampoline resonators for sensing and optomechanics}, - author={Reinhardt, Christoph and M{\"u}ller, Tina and Bourassa, Alexandre and Sankey, Jack C}, - journal={Physical Review X}, - volume={6}, - number={2}, - pages={021001}, - year={2016}, - publisher={APS} -} - -@article{norte2016mechanical, - title={Mechanical resonators for quantum optomechanics experiments at room temperature}, - author={Norte, Richard A and Moura, Joao P and Gr{\"o}blacher, Simon}, - journal={Physical Review Letters}, - volume={116}, - number={14}, - pages={147202}, - year={2016}, - publisher={APS} -} - -@article{gartner2018integrated, - title={Integrated optomechanical arrays of two high reflectivity SiN membranes}, - author={Gärtner, Claus and Moura, Jo{\~a}o P and Haaxman, Wouter and Norte, Richard A and Gröblacher, Simon}, - journal={Nano Letters}, - volume={18}, - number={11}, - pages={7171--7175}, - year={2018}, - publisher={ACS Publications} -} - -@article{Lai_perturbation_1990, - title = {Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets}, - author = {Lai, H. M. and Leung, P. T. and Young, K. and Barber, P. W. and Hill, S. C.}, - journal = {Phys. Rev. A}, - volume = {41}, - issue = {9}, - pages = {5187--5198}, - numpages = {0}, - year = {1990}, - month = {May}, - publisher = {American Physical Society}, - doi = {10.1103/PhysRevA.41.5187}, - url = {https://link.aps.org/doi/10.1103/PhysRevA.41.5187} -} - - - -@article{Gorodetksy_vacuum_2010, -author = {M. L. Gorodetksy and A. Schliesser and G. Anetsberger and S. Deleglise and T. J. Kippenberg}, -journal = {Opt. Express}, -keywords = {Phase measurement; Fluctuations, relaxations, and noise; Optical microelectromechanical devices; Cavity quantum electrodynamics; Discrete Fourier transforms; Frequency modulation; Optical systems; Optomechanics; Phase modulation}, -number = {22}, -pages = {23236--23246}, -publisher = {OSA}, -title = {Determination of the vacuum optomechanical coupling rate using frequency noise calibration}, -volume = {18}, -month = {Oct}, -year = {2010}, -url = {http://www.opticsexpress.org/abstract.cfm?URI=oe-18-22-23236}, -doi = {10.1364/OE.18.023236}, -} - diff --git a/supplementary/supp_references.log b/supplementary/supp_references.log deleted file mode 100644 index ccc23a3..0000000 --- a/supplementary/supp_references.log +++ /dev/null @@ -1,37 +0,0 @@ -This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019) (preloaded format=pdflatex 2019.7.12) 20 MAR 2020 10:31 -entering extended mode - restricted \write18 enabled. - file:line:error style messages enabled. - %&-line parsing enabled. -**supp_references.bib -(./supp_references.bib -LaTeX2e <2018-12-01> - -./supp_references.bib:1: LaTeX Error: Missing \begin{document}. - -See the LaTeX manual or LaTeX Companion for explanation. -Type H for immediate help. - ... - -l.1 @ - article{nielsen2004particle, -? -./supp_references.bib:1: Emergency stop. - ... - -l.1 @ - article{nielsen2004particle, -You're in trouble here. Try typing to proceed. -If that doesn't work, type X to quit. - - -Here is how much of TeX's memory you used: - 7 strings out of 492616 - 296 string characters out of 6129481 - 57569 words of memory out of 5000000 - 4025 multiletter control sequences out of 15000+600000 - 3640 words of font info for 14 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 5i,0n,4p,51b,14s stack positions out of 5000i,500n,10000p,200000b,80000s -./supp_references.bib:1: ==> Fatal error occurred, no output PDF file produced -!