{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Homework \\#1 template" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 8x8 Haar matrix\n", "H = np.array([\n", " [1, -1, 0, 0, 0, 0, 0, 0],\n", " [0, 0, 1, -1, 0, 0, 0, 0],\n", " [0, 0, 0, 0, 1, -1, 0, 0],\n", " [0, 0, 0, 0, 0, 0, 1, -1],\n", " [1, 1, -1, -1, 0, 0, 0, 0],\n", " [0, 0, 0, 0, 1, 1, -1, -1],\n", " [1, 1, 1, 1, -1, -1, -1, -1],\n", " [1, 1, 1, 1, 1, 1, 1, 1]\n", "])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# b) show that the rows are linearly independent\n", "# ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# c) verify that HH^T is symmetric\n", "# ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# d) compute a basis expansion\n", "x = np.ones((8,1)) # note that we specify the shape to obtain a column vector\n", "\n", "# ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# e) compute a basis expansion\n", "y = ..." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.10" } }, "nbformat": 4, "nbformat_minor": 4 }