1 Basic problem

Given a matrix $A \in \mathbb{R}_{\geq 0}^{n \times n}$, representing a target molecule and a database $B^{(i)} \in \mathbb{R}^{n_{i} \times n_{i}}, i \in$ $\{1, \ldots, k\}$. The n_{i} are usually small, around 7 .

A solution is a permutation $\pi \in S_{n}$, a multiset $S \subseteq\{1, \ldots, k\}$ and a mapping $p: S \rightarrow$ $\{1, \ldots, n\}$. The objective value of the solution is $\left\|A_{\pi}-A_{S, p}\right\|_{2}^{2}$, where A_{π} is the matrix stemming from A where the rows and columns were permuted by π and $A_{S_{p}}$ is the block-diagonal matrix that stems from the elements in S that are put with upper leftmost component on the corresponding position described by p.

A feasibility constraint is that S and p induce a partition of the set $\{1, \ldots, n\}$.
Overarching goal for Chemistry: Suggest new ways to synthesize a target molecule.

- Bigger database of pieces should make sense. Efficiency is a problem can be overcome. Also the pieces need a score (objective value) on the cost to synthesize them. This can be modeled in the objective function.
- Diversity of solutions: One way would be to list pareto optimal solutions using distance, sums of costs of pieces, Another way would be to model diversity
- Objective function should also model the number of smaller pieces. The more pieces in the solution, the more synthesis steps.

2 Optimal placement of molecules

The first goal is to find a way to optimally place a small molecule represented by the matrix $M \in \mathbb{R}^{m \times m}$ inside the target represented by the matrix $T \in \mathbb{R}^{n \times n}$. In other words, we want to find the mapping $\phi:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$. This is an index assignment problem where the indices $x_{i j} \in\{0,1\}$ are assigned:

$$
x_{i j}= \begin{cases}1 & \text { if } \phi(i)=j \\ 0 & \text { otherwise }\end{cases}
$$

under the constraints:

$$
\begin{aligned}
& \forall i \in\{1, \ldots, m\}: \sum_{j=1}^{n} x_{i j}=1 \\
& \forall j \in\{1, \ldots, n\}: \sum_{i=1}^{m} x_{i j} \leq 1
\end{aligned}
$$

This consists of minimising the objective function:

$$
\min \sum\left(m_{i j}-T_{k l}\right)^{2} x_{i k} * x_{j l}
$$

