Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91572004
run_clm.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 12, 07:52
Size
18 KB
Mime Type
text/x-python
Expires
Thu, Nov 14, 07:52 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22285193
Attached To
R11484 ADDI
run_clm.py
View Options
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=causal-lm
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import
logging
import
math
import
os
import
sys
from
dataclasses
import
dataclass
,
field
from
typing
import
Optional
from
datasets
import
load_dataset
import
transformers
from
transformers
import
(
CONFIG_MAPPING
,
MODEL_FOR_CAUSAL_LM_MAPPING
,
AutoConfig
,
AutoModelForCausalLM
,
AutoTokenizer
,
HfArgumentParser
,
Trainer
,
TrainingArguments
,
default_data_collator
,
set_seed
,
)
from
transformers.trainer_utils
import
get_last_checkpoint
,
is_main_process
logger
=
logging
.
getLogger
(
__name__
)
MODEL_CONFIG_CLASSES
=
list
(
MODEL_FOR_CAUSAL_LM_MAPPING
.
keys
())
MODEL_TYPES
=
tuple
(
conf
.
model_type
for
conf
in
MODEL_CONFIG_CLASSES
)
@dataclass
class
ModelArguments
:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
model_type
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"If training from scratch, pass a model type from the list: "
+
", "
.
join
(
MODEL_TYPES
)},
)
config_name
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"Pretrained config name or path if not the same as model_name"
}
)
tokenizer_name
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"Pretrained tokenizer name or path if not the same as model_name"
}
)
cache_dir
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"Where do you want to store the pretrained models downloaded from huggingface.co"
},
)
use_fast_tokenizer
:
bool
=
field
(
default
=
True
,
metadata
=
{
"help"
:
"Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
},
)
model_revision
:
str
=
field
(
default
=
"main"
,
metadata
=
{
"help"
:
"The specific model version to use (can be a branch name, tag name or commit id)."
},
)
use_auth_token
:
bool
=
field
(
default
=
False
,
metadata
=
{
"help"
:
"Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
@dataclass
class
DataTrainingArguments
:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"The name of the dataset to use (via the datasets library)."
}
)
dataset_config_name
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"The configuration name of the dataset to use (via the datasets library)."
}
)
train_file
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"The input training data file (a text file)."
})
validation_file
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"An optional input evaluation data file to evaluate the perplexity on (a text file)."
},
)
max_train_samples
:
Optional
[
int
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_val_samples
:
Optional
[
int
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
},
)
block_size
:
Optional
[
int
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
},
)
overwrite_cache
:
bool
=
field
(
default
=
False
,
metadata
=
{
"help"
:
"Overwrite the cached training and evaluation sets"
}
)
validation_split_percentage
:
Optional
[
int
]
=
field
(
default
=
5
,
metadata
=
{
"help"
:
"The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers
:
Optional
[
int
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"The number of processes to use for the preprocessing."
},
)
def
__post_init__
(
self
):
if
self
.
dataset_name
is
None
and
self
.
train_file
is
None
and
self
.
validation_file
is
None
:
raise
ValueError
(
"Need either a dataset name or a training/validation file."
)
else
:
if
self
.
train_file
is
not
None
:
extension
=
self
.
train_file
.
split
(
"."
)[
-
1
]
assert
extension
in
[
"csv"
,
"json"
,
"txt"
],
"`train_file` should be a csv, a json or a txt file."
if
self
.
validation_file
is
not
None
:
extension
=
self
.
validation_file
.
split
(
"."
)[
-
1
]
assert
extension
in
[
"csv"
,
"json"
,
"txt"
],
"`validation_file` should be a csv, a json or a txt file."
def
main
():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser
=
HfArgumentParser
((
ModelArguments
,
DataTrainingArguments
,
TrainingArguments
))
if
len
(
sys
.
argv
)
==
2
and
sys
.
argv
[
1
]
.
endswith
(
".json"
):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args
,
data_args
,
training_args
=
parser
.
parse_json_file
(
json_file
=
os
.
path
.
abspath
(
sys
.
argv
[
1
]))
else
:
model_args
,
data_args
,
training_args
=
parser
.
parse_args_into_dataclasses
()
# Detecting last checkpoint.
last_checkpoint
=
None
if
os
.
path
.
isdir
(
training_args
.
output_dir
)
and
training_args
.
do_train
and
not
training_args
.
overwrite_output_dir
:
last_checkpoint
=
get_last_checkpoint
(
training_args
.
output_dir
)
if
last_checkpoint
is
None
and
len
(
os
.
listdir
(
training_args
.
output_dir
))
>
0
:
raise
ValueError
(
f
"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif
last_checkpoint
is
not
None
:
logger
.
info
(
f
"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging
.
basicConfig
(
format
=
"
%(asctime)s
-
%(levelname)s
-
%(name)s
-
%(message)s
"
,
datefmt
=
"%m/
%d
/%Y %H:%M:%S"
,
handlers
=
[
logging
.
StreamHandler
(
sys
.
stdout
)],
)
logger
.
setLevel
(
logging
.
INFO
if
is_main_process
(
training_args
.
local_rank
)
else
logging
.
WARN
)
# Log on each process the small summary:
logger
.
warning
(
f
"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+
f
"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if
is_main_process
(
training_args
.
local_rank
):
transformers
.
utils
.
logging
.
set_verbosity_info
()
transformers
.
utils
.
logging
.
enable_default_handler
()
transformers
.
utils
.
logging
.
enable_explicit_format
()
logger
.
info
(
"Training/evaluation parameters
%s
"
,
training_args
)
# Set seed before initializing model.
set_seed
(
training_args
.
seed
)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if
data_args
.
dataset_name
is
not
None
:
# Downloading and loading a dataset from the hub.
datasets
=
load_dataset
(
data_args
.
dataset_name
,
data_args
.
dataset_config_name
)
if
"validation"
not
in
datasets
.
keys
():
datasets
[
"validation"
]
=
load_dataset
(
data_args
.
dataset_name
,
data_args
.
dataset_config_name
,
split
=
f
"train[:{data_args.validation_split_percentage}%]"
,
)
datasets
[
"train"
]
=
load_dataset
(
data_args
.
dataset_name
,
data_args
.
dataset_config_name
,
split
=
f
"train[{data_args.validation_split_percentage}%:]"
,
)
else
:
data_files
=
{}
if
data_args
.
train_file
is
not
None
:
data_files
[
"train"
]
=
data_args
.
train_file
if
data_args
.
validation_file
is
not
None
:
data_files
[
"validation"
]
=
data_args
.
validation_file
extension
=
(
data_args
.
train_file
.
split
(
"."
)[
-
1
]
if
data_args
.
train_file
is
not
None
else
data_args
.
validation_file
.
split
(
"."
)[
-
1
]
)
if
extension
==
"txt"
:
extension
=
"text"
datasets
=
load_dataset
(
extension
,
data_files
=
data_files
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs
=
{
"cache_dir"
:
model_args
.
cache_dir
,
"revision"
:
model_args
.
model_revision
,
"use_auth_token"
:
True
if
model_args
.
use_auth_token
else
None
,
}
if
model_args
.
config_name
:
config
=
AutoConfig
.
from_pretrained
(
model_args
.
config_name
,
**
config_kwargs
)
elif
model_args
.
model_name_or_path
:
config
=
AutoConfig
.
from_pretrained
(
model_args
.
model_name_or_path
,
**
config_kwargs
)
else
:
config
=
CONFIG_MAPPING
[
model_args
.
model_type
]()
logger
.
warning
(
"You are instantiating a new config instance from scratch."
)
tokenizer_kwargs
=
{
"cache_dir"
:
model_args
.
cache_dir
,
"use_fast"
:
model_args
.
use_fast_tokenizer
,
"revision"
:
model_args
.
model_revision
,
"use_auth_token"
:
True
if
model_args
.
use_auth_token
else
None
,
}
if
model_args
.
tokenizer_name
:
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_args
.
tokenizer_name
,
**
tokenizer_kwargs
)
elif
model_args
.
model_name_or_path
:
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_args
.
model_name_or_path
,
**
tokenizer_kwargs
)
else
:
raise
ValueError
(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if
model_args
.
model_name_or_path
:
model
=
AutoModelForCausalLM
.
from_pretrained
(
model_args
.
model_name_or_path
,
from_tf
=
bool
(
".ckpt"
in
model_args
.
model_name_or_path
),
config
=
config
,
cache_dir
=
model_args
.
cache_dir
,
revision
=
model_args
.
model_revision
,
use_auth_token
=
True
if
model_args
.
use_auth_token
else
None
,
)
else
:
logger
.
info
(
"Training new model from scratch"
)
model
=
AutoModelForCausalLM
.
from_config
(
config
)
model
.
resize_token_embeddings
(
len
(
tokenizer
))
# Preprocessing the datasets.
# First we tokenize all the texts.
if
training_args
.
do_train
:
column_names
=
datasets
[
"train"
]
.
column_names
else
:
column_names
=
datasets
[
"validation"
]
.
column_names
text_column_name
=
"text"
if
"text"
in
column_names
else
column_names
[
0
]
def
tokenize_function
(
examples
):
return
tokenizer
(
examples
[
text_column_name
])
tokenized_datasets
=
datasets
.
map
(
tokenize_function
,
batched
=
True
,
num_proc
=
data_args
.
preprocessing_num_workers
,
remove_columns
=
column_names
,
load_from_cache_file
=
not
data_args
.
overwrite_cache
,
)
if
data_args
.
block_size
is
None
:
block_size
=
tokenizer
.
model_max_length
if
block_size
>
1024
:
logger
.
warn
(
f
"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx."
)
block_size
=
1024
else
:
if
data_args
.
block_size
>
tokenizer
.
model_max_length
:
logger
.
warn
(
f
"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f
"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size
=
min
(
data_args
.
block_size
,
tokenizer
.
model_max_length
)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def
group_texts
(
examples
):
# Concatenate all texts.
concatenated_examples
=
{
k
:
sum
(
examples
[
k
],
[])
for
k
in
examples
.
keys
()}
total_length
=
len
(
concatenated_examples
[
list
(
examples
.
keys
())[
0
]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
total_length
=
(
total_length
//
block_size
)
*
block_size
# Split by chunks of max_len.
result
=
{
k
:
[
t
[
i
:
i
+
block_size
]
for
i
in
range
(
0
,
total_length
,
block_size
)]
for
k
,
t
in
concatenated_examples
.
items
()
}
result
[
"labels"
]
=
result
[
"input_ids"
]
.
copy
()
return
result
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
lm_datasets
=
tokenized_datasets
.
map
(
group_texts
,
batched
=
True
,
num_proc
=
data_args
.
preprocessing_num_workers
,
load_from_cache_file
=
not
data_args
.
overwrite_cache
,
)
if
training_args
.
do_train
:
if
"train"
not
in
tokenized_datasets
:
raise
ValueError
(
"--do_train requires a train dataset"
)
train_dataset
=
lm_datasets
[
"train"
]
if
data_args
.
max_train_samples
is
not
None
:
train_dataset
=
train_dataset
.
select
(
range
(
data_args
.
max_train_samples
))
if
training_args
.
do_eval
:
if
"validation"
not
in
tokenized_datasets
:
raise
ValueError
(
"--do_eval requires a validation dataset"
)
eval_dataset
=
lm_datasets
[
"validation"
]
if
data_args
.
max_val_samples
is
not
None
:
eval_dataset
=
eval_dataset
.
select
(
range
(
data_args
.
max_val_samples
))
# Initialize our Trainer
trainer
=
Trainer
(
model
=
model
,
args
=
training_args
,
train_dataset
=
train_dataset
if
training_args
.
do_train
else
None
,
eval_dataset
=
eval_dataset
if
training_args
.
do_eval
else
None
,
tokenizer
=
tokenizer
,
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator
=
default_data_collator
,
)
# Training
if
training_args
.
do_train
:
if
last_checkpoint
is
not
None
:
checkpoint
=
last_checkpoint
elif
model_args
.
model_name_or_path
is
not
None
and
os
.
path
.
isdir
(
model_args
.
model_name_or_path
):
checkpoint
=
model_args
.
model_name_or_path
else
:
checkpoint
=
None
train_result
=
trainer
.
train
(
resume_from_checkpoint
=
checkpoint
)
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
metrics
=
train_result
.
metrics
max_train_samples
=
(
data_args
.
max_train_samples
if
data_args
.
max_train_samples
is
not
None
else
len
(
train_dataset
)
)
metrics
[
"train_samples"
]
=
min
(
max_train_samples
,
len
(
train_dataset
))
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
if
training_args
.
do_eval
:
logger
.
info
(
"*** Evaluate ***"
)
metrics
=
trainer
.
evaluate
()
max_val_samples
=
data_args
.
max_val_samples
if
data_args
.
max_val_samples
is
not
None
else
len
(
eval_dataset
)
metrics
[
"eval_samples"
]
=
min
(
max_val_samples
,
len
(
eval_dataset
))
perplexity
=
math
.
exp
(
metrics
[
"eval_loss"
])
metrics
[
"perplexity"
]
=
perplexity
trainer
.
log_metrics
(
"eval"
,
metrics
)
trainer
.
save_metrics
(
"eval"
,
metrics
)
def
_mp_fn
(
index
):
# For xla_spawn (TPUs)
main
()
if
__name__
==
"__main__"
:
main
()
Event Timeline
Log In to Comment