Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120626590
run_glue.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jul 5, 17:37
Size
22 KB
Mime Type
text/x-python
Expires
Mon, Jul 7, 17:37 (2 d)
Engine
blob
Format
Raw Data
Handle
27206298
Attached To
R11484 ADDI
run_glue.py
View Options
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE."""
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
import
logging
import
os
import
random
import
sys
from
dataclasses
import
dataclass
,
field
from
typing
import
Optional
import
numpy
as
np
from
datasets
import
load_dataset
,
load_metric
import
transformers
from
transformers
import
(
AutoConfig
,
AutoModelForSequenceClassification
,
AutoTokenizer
,
DataCollatorWithPadding
,
EvalPrediction
,
HfArgumentParser
,
PretrainedConfig
,
Trainer
,
TrainingArguments
,
default_data_collator
,
set_seed
,
)
from
transformers.trainer_utils
import
get_last_checkpoint
,
is_main_process
task_to_keys
=
{
"cola"
:
(
"sentence"
,
None
),
"mnli"
:
(
"premise"
,
"hypothesis"
),
"mrpc"
:
(
"sentence1"
,
"sentence2"
),
"qnli"
:
(
"question"
,
"sentence"
),
"qqp"
:
(
"question1"
,
"question2"
),
"rte"
:
(
"sentence1"
,
"sentence2"
),
"sst2"
:
(
"sentence"
,
None
),
"stsb"
:
(
"sentence1"
,
"sentence2"
),
"wnli"
:
(
"sentence1"
,
"sentence2"
),
}
logger
=
logging
.
getLogger
(
__name__
)
@dataclass
class
DataTrainingArguments
:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
task_name
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"The name of the task to train on: "
+
", "
.
join
(
task_to_keys
.
keys
())},
)
max_seq_length
:
int
=
field
(
default
=
128
,
metadata
=
{
"help"
:
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache
:
bool
=
field
(
default
=
False
,
metadata
=
{
"help"
:
"Overwrite the cached preprocessed datasets or not."
}
)
pad_to_max_length
:
bool
=
field
(
default
=
True
,
metadata
=
{
"help"
:
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples
:
Optional
[
int
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_val_samples
:
Optional
[
int
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
},
)
max_test_samples
:
Optional
[
int
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"For debugging purposes or quicker training, truncate the number of test examples to this "
"value if set."
},
)
train_file
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"A csv or a json file containing the training data."
}
)
validation_file
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"A csv or a json file containing the validation data."
}
)
test_file
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"A csv or a json file containing the test data."
})
def
__post_init__
(
self
):
if
self
.
task_name
is
not
None
:
self
.
task_name
=
self
.
task_name
.
lower
()
if
self
.
task_name
not
in
task_to_keys
.
keys
():
raise
ValueError
(
"Unknown task, you should pick one in "
+
","
.
join
(
task_to_keys
.
keys
()))
elif
self
.
train_file
is
None
or
self
.
validation_file
is
None
:
raise
ValueError
(
"Need either a GLUE task or a training/validation file."
)
else
:
train_extension
=
self
.
train_file
.
split
(
"."
)[
-
1
]
assert
train_extension
in
[
"csv"
,
"json"
],
"`train_file` should be a csv or a json file."
validation_extension
=
self
.
validation_file
.
split
(
"."
)[
-
1
]
assert
(
validation_extension
==
train_extension
),
"`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class
ModelArguments
:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path
:
str
=
field
(
metadata
=
{
"help"
:
"Path to pretrained model or model identifier from huggingface.co/models"
}
)
config_name
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"Pretrained config name or path if not the same as model_name"
}
)
tokenizer_name
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"Pretrained tokenizer name or path if not the same as model_name"
}
)
cache_dir
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"Where do you want to store the pretrained models downloaded from huggingface.co"
},
)
use_fast_tokenizer
:
bool
=
field
(
default
=
True
,
metadata
=
{
"help"
:
"Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
},
)
model_revision
:
str
=
field
(
default
=
"main"
,
metadata
=
{
"help"
:
"The specific model version to use (can be a branch name, tag name or commit id)."
},
)
use_auth_token
:
bool
=
field
(
default
=
False
,
metadata
=
{
"help"
:
"Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
def
main
():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser
=
HfArgumentParser
((
ModelArguments
,
DataTrainingArguments
,
TrainingArguments
))
if
len
(
sys
.
argv
)
==
2
and
sys
.
argv
[
1
]
.
endswith
(
".json"
):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args
,
data_args
,
training_args
=
parser
.
parse_json_file
(
json_file
=
os
.
path
.
abspath
(
sys
.
argv
[
1
]))
else
:
model_args
,
data_args
,
training_args
=
parser
.
parse_args_into_dataclasses
()
# Detecting last checkpoint.
last_checkpoint
=
None
if
os
.
path
.
isdir
(
training_args
.
output_dir
)
and
training_args
.
do_train
and
not
training_args
.
overwrite_output_dir
:
last_checkpoint
=
get_last_checkpoint
(
training_args
.
output_dir
)
if
last_checkpoint
is
None
and
len
(
os
.
listdir
(
training_args
.
output_dir
))
>
0
:
raise
ValueError
(
f
"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif
last_checkpoint
is
not
None
:
logger
.
info
(
f
"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging
.
basicConfig
(
format
=
"
%(asctime)s
-
%(levelname)s
-
%(name)s
-
%(message)s
"
,
datefmt
=
"%m/
%d
/%Y %H:%M:%S"
,
handlers
=
[
logging
.
StreamHandler
(
sys
.
stdout
)],
)
logger
.
setLevel
(
logging
.
INFO
if
is_main_process
(
training_args
.
local_rank
)
else
logging
.
WARN
)
# Log on each process the small summary:
logger
.
warning
(
f
"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+
f
"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if
is_main_process
(
training_args
.
local_rank
):
transformers
.
utils
.
logging
.
set_verbosity_info
()
transformers
.
utils
.
logging
.
enable_default_handler
()
transformers
.
utils
.
logging
.
enable_explicit_format
()
logger
.
info
(
f
"Training/evaluation parameters {training_args}"
)
# Set seed before initializing model.
set_seed
(
training_args
.
seed
)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
# label if at least two columns are provided.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if
data_args
.
task_name
is
not
None
:
# Downloading and loading a dataset from the hub.
datasets
=
load_dataset
(
"glue"
,
data_args
.
task_name
)
else
:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
data_files
=
{
"train"
:
data_args
.
train_file
,
"validation"
:
data_args
.
validation_file
}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if
training_args
.
do_predict
:
if
data_args
.
test_file
is
not
None
:
train_extension
=
data_args
.
train_file
.
split
(
"."
)[
-
1
]
test_extension
=
data_args
.
test_file
.
split
(
"."
)[
-
1
]
assert
(
test_extension
==
train_extension
),
"`test_file` should have the same extension (csv or json) as `train_file`."
data_files
[
"test"
]
=
data_args
.
test_file
else
:
raise
ValueError
(
"Need either a GLUE task or a test file for `do_predict`."
)
for
key
in
data_files
.
keys
():
logger
.
info
(
f
"load a local file for {key}: {data_files[key]}"
)
if
data_args
.
train_file
.
endswith
(
".csv"
):
# Loading a dataset from local csv files
datasets
=
load_dataset
(
"csv"
,
data_files
=
data_files
)
else
:
# Loading a dataset from local json files
datasets
=
load_dataset
(
"json"
,
data_files
=
data_files
)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
if
data_args
.
task_name
is
not
None
:
is_regression
=
data_args
.
task_name
==
"stsb"
if
not
is_regression
:
label_list
=
datasets
[
"train"
]
.
features
[
"label"
]
.
names
num_labels
=
len
(
label_list
)
else
:
num_labels
=
1
else
:
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression
=
datasets
[
"train"
]
.
features
[
"label"
]
.
dtype
in
[
"float32"
,
"float64"
]
if
is_regression
:
num_labels
=
1
else
:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list
=
datasets
[
"train"
]
.
unique
(
"label"
)
label_list
.
sort
()
# Let's sort it for determinism
num_labels
=
len
(
label_list
)
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config
=
AutoConfig
.
from_pretrained
(
model_args
.
config_name
if
model_args
.
config_name
else
model_args
.
model_name_or_path
,
num_labels
=
num_labels
,
finetuning_task
=
data_args
.
task_name
,
cache_dir
=
model_args
.
cache_dir
,
revision
=
model_args
.
model_revision
,
use_auth_token
=
True
if
model_args
.
use_auth_token
else
None
,
)
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_args
.
tokenizer_name
if
model_args
.
tokenizer_name
else
model_args
.
model_name_or_path
,
cache_dir
=
model_args
.
cache_dir
,
use_fast
=
model_args
.
use_fast_tokenizer
,
revision
=
model_args
.
model_revision
,
use_auth_token
=
True
if
model_args
.
use_auth_token
else
None
,
)
model
=
AutoModelForSequenceClassification
.
from_pretrained
(
model_args
.
model_name_or_path
,
from_tf
=
bool
(
".ckpt"
in
model_args
.
model_name_or_path
),
config
=
config
,
cache_dir
=
model_args
.
cache_dir
,
revision
=
model_args
.
model_revision
,
use_auth_token
=
True
if
model_args
.
use_auth_token
else
None
,
)
# Preprocessing the datasets
if
data_args
.
task_name
is
not
None
:
sentence1_key
,
sentence2_key
=
task_to_keys
[
data_args
.
task_name
]
else
:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names
=
[
name
for
name
in
datasets
[
"train"
]
.
column_names
if
name
!=
"label"
]
if
"sentence1"
in
non_label_column_names
and
"sentence2"
in
non_label_column_names
:
sentence1_key
,
sentence2_key
=
"sentence1"
,
"sentence2"
else
:
if
len
(
non_label_column_names
)
>=
2
:
sentence1_key
,
sentence2_key
=
non_label_column_names
[:
2
]
else
:
sentence1_key
,
sentence2_key
=
non_label_column_names
[
0
],
None
# Padding strategy
if
data_args
.
pad_to_max_length
:
padding
=
"max_length"
else
:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding
=
False
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id
=
None
if
(
model
.
config
.
label2id
!=
PretrainedConfig
(
num_labels
=
num_labels
)
.
label2id
and
data_args
.
task_name
is
not
None
and
not
is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id
=
{
k
.
lower
():
v
for
k
,
v
in
model
.
config
.
label2id
.
items
()}
if
list
(
sorted
(
label_name_to_id
.
keys
()))
==
list
(
sorted
(
label_list
)):
label_to_id
=
{
i
:
int
(
label_name_to_id
[
label_list
[
i
]])
for
i
in
range
(
num_labels
)}
else
:
logger
.
warn
(
"Your model seems to have been trained with labels, but they don't match the dataset: "
,
f
"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"
\n
Ignoring the model labels as a result."
,
)
elif
data_args
.
task_name
is
None
and
not
is_regression
:
label_to_id
=
{
v
:
i
for
i
,
v
in
enumerate
(
label_list
)}
if
data_args
.
max_seq_length
>
tokenizer
.
model_max_length
:
logger
.
warn
(
f
"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f
"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length
=
min
(
data_args
.
max_seq_length
,
tokenizer
.
model_max_length
)
def
preprocess_function
(
examples
):
# Tokenize the texts
args
=
(
(
examples
[
sentence1_key
],)
if
sentence2_key
is
None
else
(
examples
[
sentence1_key
],
examples
[
sentence2_key
])
)
result
=
tokenizer
(
*
args
,
padding
=
padding
,
max_length
=
max_seq_length
,
truncation
=
True
)
# Map labels to IDs (not necessary for GLUE tasks)
if
label_to_id
is
not
None
and
"label"
in
examples
:
result
[
"label"
]
=
[(
label_to_id
[
l
]
if
l
!=
-
1
else
-
1
)
for
l
in
examples
[
"label"
]]
return
result
datasets
=
datasets
.
map
(
preprocess_function
,
batched
=
True
,
load_from_cache_file
=
not
data_args
.
overwrite_cache
)
if
training_args
.
do_train
:
if
"train"
not
in
datasets
:
raise
ValueError
(
"--do_train requires a train dataset"
)
train_dataset
=
datasets
[
"train"
]
if
data_args
.
max_train_samples
is
not
None
:
train_dataset
=
train_dataset
.
select
(
range
(
data_args
.
max_train_samples
))
if
training_args
.
do_eval
:
if
"validation"
not
in
datasets
and
"validation_matched"
not
in
datasets
:
raise
ValueError
(
"--do_eval requires a validation dataset"
)
eval_dataset
=
datasets
[
"validation_matched"
if
data_args
.
task_name
==
"mnli"
else
"validation"
]
if
data_args
.
max_val_samples
is
not
None
:
eval_dataset
=
eval_dataset
.
select
(
range
(
data_args
.
max_val_samples
))
if
training_args
.
do_predict
or
data_args
.
task_name
is
not
None
or
data_args
.
test_file
is
not
None
:
if
"test"
not
in
datasets
and
"test_matched"
not
in
datasets
:
raise
ValueError
(
"--do_predict requires a test dataset"
)
test_dataset
=
datasets
[
"test_matched"
if
data_args
.
task_name
==
"mnli"
else
"test"
]
if
data_args
.
max_test_samples
is
not
None
:
test_dataset
=
test_dataset
.
select
(
range
(
data_args
.
max_test_samples
))
# Log a few random samples from the training set:
if
training_args
.
do_train
:
for
index
in
random
.
sample
(
range
(
len
(
train_dataset
)),
3
):
logger
.
info
(
f
"Sample {index} of the training set: {train_dataset[index]}."
)
# Get the metric function
if
data_args
.
task_name
is
not
None
:
metric
=
load_metric
(
"glue"
,
data_args
.
task_name
)
# TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from
# compute_metrics
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def
compute_metrics
(
p
:
EvalPrediction
):
preds
=
p
.
predictions
[
0
]
if
isinstance
(
p
.
predictions
,
tuple
)
else
p
.
predictions
preds
=
np
.
squeeze
(
preds
)
if
is_regression
else
np
.
argmax
(
preds
,
axis
=
1
)
if
data_args
.
task_name
is
not
None
:
result
=
metric
.
compute
(
predictions
=
preds
,
references
=
p
.
label_ids
)
if
len
(
result
)
>
1
:
result
[
"combined_score"
]
=
np
.
mean
(
list
(
result
.
values
()))
.
item
()
return
result
elif
is_regression
:
return
{
"mse"
:
((
preds
-
p
.
label_ids
)
**
2
)
.
mean
()
.
item
()}
else
:
return
{
"accuracy"
:
(
preds
==
p
.
label_ids
)
.
astype
(
np
.
float32
)
.
mean
()
.
item
()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if
data_args
.
pad_to_max_length
:
data_collator
=
default_data_collator
elif
training_args
.
fp16
:
data_collator
=
DataCollatorWithPadding
(
tokenizer
,
pad_to_multiple_of
=
8
)
else
:
data_collator
=
None
# Initialize our Trainer
trainer
=
Trainer
(
model
=
model
,
args
=
training_args
,
train_dataset
=
train_dataset
if
training_args
.
do_train
else
None
,
eval_dataset
=
eval_dataset
if
training_args
.
do_eval
else
None
,
compute_metrics
=
compute_metrics
,
tokenizer
=
tokenizer
,
data_collator
=
data_collator
,
)
# Training
if
training_args
.
do_train
:
checkpoint
=
None
if
last_checkpoint
is
not
None
:
checkpoint
=
last_checkpoint
elif
os
.
path
.
isdir
(
model_args
.
model_name_or_path
):
# Check the config from that potential checkpoint has the right number of labels before using it as a
# checkpoint.
if
AutoConfig
.
from_pretrained
(
model_args
.
model_name_or_path
)
.
num_labels
==
num_labels
:
checkpoint
=
model_args
.
model_name_or_path
train_result
=
trainer
.
train
(
resume_from_checkpoint
=
checkpoint
)
metrics
=
train_result
.
metrics
max_train_samples
=
(
data_args
.
max_train_samples
if
data_args
.
max_train_samples
is
not
None
else
len
(
train_dataset
)
)
metrics
[
"train_samples"
]
=
min
(
max_train_samples
,
len
(
train_dataset
))
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
if
training_args
.
do_eval
:
logger
.
info
(
"*** Evaluate ***"
)
# Loop to handle MNLI double evaluation (matched, mis-matched)
tasks
=
[
data_args
.
task_name
]
eval_datasets
=
[
eval_dataset
]
if
data_args
.
task_name
==
"mnli"
:
tasks
.
append
(
"mnli-mm"
)
eval_datasets
.
append
(
datasets
[
"validation_mismatched"
])
for
eval_dataset
,
task
in
zip
(
eval_datasets
,
tasks
):
metrics
=
trainer
.
evaluate
(
eval_dataset
=
eval_dataset
)
max_val_samples
=
data_args
.
max_val_samples
if
data_args
.
max_val_samples
is
not
None
else
len
(
eval_dataset
)
metrics
[
"eval_samples"
]
=
min
(
max_val_samples
,
len
(
eval_dataset
))
trainer
.
log_metrics
(
"eval"
,
metrics
)
trainer
.
save_metrics
(
"eval"
,
metrics
)
if
training_args
.
do_predict
:
logger
.
info
(
"*** Test ***"
)
# Loop to handle MNLI double evaluation (matched, mis-matched)
tasks
=
[
data_args
.
task_name
]
test_datasets
=
[
test_dataset
]
if
data_args
.
task_name
==
"mnli"
:
tasks
.
append
(
"mnli-mm"
)
test_datasets
.
append
(
datasets
[
"test_mismatched"
])
for
test_dataset
,
task
in
zip
(
test_datasets
,
tasks
):
# Removing the `label` columns because it contains -1 and Trainer won't like that.
test_dataset
.
remove_columns_
(
"label"
)
predictions
=
trainer
.
predict
(
test_dataset
=
test_dataset
)
.
predictions
predictions
=
np
.
squeeze
(
predictions
)
if
is_regression
else
np
.
argmax
(
predictions
,
axis
=
1
)
output_test_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
f
"test_results_{task}.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_test_file
,
"w"
)
as
writer
:
logger
.
info
(
f
"***** Test results {task} *****"
)
writer
.
write
(
"index
\t
prediction
\n
"
)
for
index
,
item
in
enumerate
(
predictions
):
if
is_regression
:
writer
.
write
(
f
"{index}
\t
{item:3.3f}
\n
"
)
else
:
item
=
label_list
[
item
]
writer
.
write
(
f
"{index}
\t
{item}
\n
"
)
def
_mp_fn
(
index
):
# For xla_spawn (TPUs)
main
()
if
__name__
==
"__main__"
:
main
()
Event Timeline
Log In to Comment