Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120532928
test_modeling_convbert.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jul 5, 01:39
Size
17 KB
Mime Type
text/x-python
Expires
Mon, Jul 7, 01:39 (2 d)
Engine
blob
Format
Raw Data
Handle
27170839
Attached To
R11484 ADDI
test_modeling_convbert.py
View Options
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ConvBERT model. """
import
unittest
from
tests.test_modeling_common
import
floats_tensor
from
transformers
import
is_torch_available
from
transformers.testing_utils
import
require_torch
,
slow
,
torch_device
from
.test_configuration_common
import
ConfigTester
from
.test_modeling_common
import
ModelTesterMixin
,
ids_tensor
,
random_attention_mask
if
is_torch_available
():
import
torch
from
transformers
import
(
MODEL_FOR_QUESTION_ANSWERING_MAPPING
,
ConvBertConfig
,
ConvBertForMaskedLM
,
ConvBertForMultipleChoice
,
ConvBertForQuestionAnswering
,
ConvBertForSequenceClassification
,
ConvBertForTokenClassification
,
ConvBertModel
,
)
from
transformers.models.convbert.modeling_convbert
import
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class
ConvBertModelTester
:
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_input_mask
=
True
,
use_token_type_ids
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_mask
=
use_input_mask
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
random_attention_mask
([
self
.
batch_size
,
self
.
seq_length
])
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
ConvBertConfig
(
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
intermediate_size
=
self
.
intermediate_size
,
hidden_act
=
self
.
hidden_act
,
hidden_dropout_prob
=
self
.
hidden_dropout_prob
,
attention_probs_dropout_prob
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
type_vocab_size
=
self
.
type_vocab_size
,
is_decoder
=
False
,
initializer_range
=
self
.
initializer_range
,
)
return
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
def
prepare_config_and_inputs_for_decoder
(
self
):
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
)
=
self
.
prepare_config_and_inputs
()
config
.
is_decoder
=
True
encoder_hidden_states
=
floats_tensor
([
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
encoder_attention_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
return
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
encoder_hidden_states
,
encoder_attention_mask
,
)
def
create_and_check_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
ConvBertModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
)
self
.
parent
.
assertEqual
(
result
.
last_hidden_state
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
))
def
create_and_check_for_masked_lm
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
ConvBertForMaskedLM
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
))
def
create_and_check_for_question_answering
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
ConvBertForQuestionAnswering
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
,
)
self
.
parent
.
assertEqual
(
result
.
start_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
self
.
parent
.
assertEqual
(
result
.
end_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
def
create_and_check_for_sequence_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
ConvBertForSequenceClassification
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
sequence_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
num_labels
))
def
create_and_check_for_token_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
ConvBertForTokenClassification
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
num_labels
))
def
create_and_check_for_multiple_choice
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_choices
=
self
.
num_choices
model
=
ConvBertForMultipleChoice
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
multiple_choice_inputs_ids
=
input_ids
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
multiple_choice_token_type_ids
=
token_type_ids
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
multiple_choice_input_mask
=
input_mask
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
result
=
model
(
multiple_choice_inputs_ids
,
attention_mask
=
multiple_choice_input_mask
,
token_type_ids
=
multiple_choice_token_type_ids
,
labels
=
choice_labels
,
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
num_choices
))
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
)
=
config_and_inputs
inputs_dict
=
{
"input_ids"
:
input_ids
,
"token_type_ids"
:
token_type_ids
,
"attention_mask"
:
input_mask
}
return
config
,
inputs_dict
@require_torch
class
ConvBertModelTest
(
ModelTesterMixin
,
unittest
.
TestCase
):
all_model_classes
=
(
(
ConvBertModel
,
ConvBertForMaskedLM
,
ConvBertForMultipleChoice
,
ConvBertForQuestionAnswering
,
ConvBertForSequenceClassification
,
ConvBertForTokenClassification
,
)
if
is_torch_available
()
else
()
)
test_pruning
=
False
test_head_masking
=
False
def
setUp
(
self
):
self
.
model_tester
=
ConvBertModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
ConvBertConfig
,
hidden_size
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_model
(
*
config_and_inputs
)
def
test_for_masked_lm
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_for_masked_lm
(
*
config_and_inputs
)
def
test_for_multiple_choice
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_for_multiple_choice
(
*
config_and_inputs
)
def
test_for_question_answering
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_for_question_answering
(
*
config_and_inputs
)
def
test_for_sequence_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_for_sequence_classification
(
*
config_and_inputs
)
def
test_for_token_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_for_token_classification
(
*
config_and_inputs
)
@slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
model
=
ConvBertModel
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
def
test_attention_outputs
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
.
return_dict
=
True
seq_len
=
getattr
(
self
.
model_tester
,
"seq_length"
,
None
)
decoder_seq_length
=
getattr
(
self
.
model_tester
,
"decoder_seq_length"
,
seq_len
)
encoder_seq_length
=
getattr
(
self
.
model_tester
,
"encoder_seq_length"
,
seq_len
)
decoder_key_length
=
getattr
(
self
.
model_tester
,
"decoder_key_length"
,
decoder_seq_length
)
encoder_key_length
=
getattr
(
self
.
model_tester
,
"key_length"
,
encoder_seq_length
)
chunk_length
=
getattr
(
self
.
model_tester
,
"chunk_length"
,
None
)
if
chunk_length
is
not
None
and
hasattr
(
self
.
model_tester
,
"num_hashes"
):
encoder_seq_length
=
encoder_seq_length
*
self
.
model_tester
.
num_hashes
for
model_class
in
self
.
all_model_classes
:
inputs_dict
[
"output_attentions"
]
=
True
inputs_dict
[
"output_hidden_states"
]
=
False
config
.
return_dict
=
True
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
with
torch
.
no_grad
():
outputs
=
model
(
**
self
.
_prepare_for_class
(
inputs_dict
,
model_class
))
attentions
=
outputs
.
encoder_attentions
if
config
.
is_encoder_decoder
else
outputs
.
attentions
self
.
assertEqual
(
len
(
attentions
),
self
.
model_tester
.
num_hidden_layers
)
# check that output_attentions also work using config
del
inputs_dict
[
"output_attentions"
]
config
.
output_attentions
=
True
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
with
torch
.
no_grad
():
outputs
=
model
(
**
self
.
_prepare_for_class
(
inputs_dict
,
model_class
))
attentions
=
outputs
.
encoder_attentions
if
config
.
is_encoder_decoder
else
outputs
.
attentions
self
.
assertEqual
(
len
(
attentions
),
self
.
model_tester
.
num_hidden_layers
)
if
chunk_length
is
not
None
:
self
.
assertListEqual
(
list
(
attentions
[
0
]
.
shape
[
-
4
:]),
[
self
.
model_tester
.
num_attention_heads
/
2
,
encoder_seq_length
,
chunk_length
,
encoder_key_length
],
)
else
:
self
.
assertListEqual
(
list
(
attentions
[
0
]
.
shape
[
-
3
:]),
[
self
.
model_tester
.
num_attention_heads
/
2
,
encoder_seq_length
,
encoder_key_length
],
)
out_len
=
len
(
outputs
)
if
self
.
is_encoder_decoder
:
correct_outlen
=
5
# loss is at first position
if
"labels"
in
inputs_dict
:
correct_outlen
+=
1
# loss is added to beginning
# Question Answering model returns start_logits and end_logits
if
model_class
in
MODEL_FOR_QUESTION_ANSWERING_MAPPING
.
values
():
correct_outlen
+=
1
# start_logits and end_logits instead of only 1 output
if
"past_key_values"
in
outputs
:
correct_outlen
+=
1
# past_key_values have been returned
self
.
assertEqual
(
out_len
,
correct_outlen
)
# decoder attentions
decoder_attentions
=
outputs
.
decoder_attentions
self
.
assertIsInstance
(
decoder_attentions
,
(
list
,
tuple
))
self
.
assertEqual
(
len
(
decoder_attentions
),
self
.
model_tester
.
num_hidden_layers
)
self
.
assertListEqual
(
list
(
decoder_attentions
[
0
]
.
shape
[
-
3
:]),
[
self
.
model_tester
.
num_attention_heads
,
decoder_seq_length
,
decoder_key_length
],
)
# cross attentions
cross_attentions
=
outputs
.
cross_attentions
self
.
assertIsInstance
(
cross_attentions
,
(
list
,
tuple
))
self
.
assertEqual
(
len
(
cross_attentions
),
self
.
model_tester
.
num_hidden_layers
)
self
.
assertListEqual
(
list
(
cross_attentions
[
0
]
.
shape
[
-
3
:]),
[
self
.
model_tester
.
num_attention_heads
,
decoder_seq_length
,
encoder_key_length
,
],
)
# Check attention is always last and order is fine
inputs_dict
[
"output_attentions"
]
=
True
inputs_dict
[
"output_hidden_states"
]
=
True
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
with
torch
.
no_grad
():
outputs
=
model
(
**
self
.
_prepare_for_class
(
inputs_dict
,
model_class
))
if
hasattr
(
self
.
model_tester
,
"num_hidden_states_types"
):
added_hidden_states
=
self
.
model_tester
.
num_hidden_states_types
elif
self
.
is_encoder_decoder
:
added_hidden_states
=
2
else
:
added_hidden_states
=
1
self
.
assertEqual
(
out_len
+
added_hidden_states
,
len
(
outputs
))
self_attentions
=
outputs
.
encoder_attentions
if
config
.
is_encoder_decoder
else
outputs
.
attentions
self
.
assertEqual
(
len
(
self_attentions
),
self
.
model_tester
.
num_hidden_layers
)
if
chunk_length
is
not
None
:
self
.
assertListEqual
(
list
(
self_attentions
[
0
]
.
shape
[
-
4
:]),
[
self
.
model_tester
.
num_attention_heads
/
2
,
encoder_seq_length
,
chunk_length
,
encoder_key_length
],
)
else
:
self
.
assertListEqual
(
list
(
self_attentions
[
0
]
.
shape
[
-
3
:]),
[
self
.
model_tester
.
num_attention_heads
/
2
,
encoder_seq_length
,
encoder_key_length
],
)
@require_torch
class
ConvBertModelIntegrationTest
(
unittest
.
TestCase
):
@slow
def
test_inference_no_head
(
self
):
model
=
ConvBertModel
.
from_pretrained
(
"YituTech/conv-bert-base"
)
input_ids
=
torch
.
tensor
([[
1
,
2
,
3
,
4
,
5
,
6
]])
output
=
model
(
input_ids
)[
0
]
expected_shape
=
torch
.
Size
((
1
,
6
,
768
))
self
.
assertEqual
(
output
.
shape
,
expected_shape
)
expected_slice
=
torch
.
tensor
(
[[[
-
0.0864
,
-
0.4898
,
-
0.3677
],
[
0.1434
,
-
0.2952
,
-
0.7640
],
[
-
0.0112
,
-
0.4432
,
-
0.5432
]]]
)
self
.
assertTrue
(
torch
.
allclose
(
output
[:,
:
3
,
:
3
],
expected_slice
,
atol
=
1e-4
))
Event Timeline
Log In to Comment