Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120509786
test_modeling_deberta.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Jul 4, 21:49
Size
11 KB
Mime Type
text/x-python
Expires
Sun, Jul 6, 21:49 (2 d)
Engine
blob
Format
Raw Data
Handle
27195643
Attached To
R11484 ADDI
test_modeling_deberta.py
View Options
# coding=utf-8
# Copyright 2018 Microsoft Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
transformers
import
is_torch_available
from
transformers.testing_utils
import
require_sentencepiece
,
require_tokenizers
,
require_torch
,
slow
,
torch_device
from
.test_configuration_common
import
ConfigTester
from
.test_modeling_common
import
ModelTesterMixin
,
ids_tensor
if
is_torch_available
():
import
torch
from
transformers
import
(
DebertaConfig
,
DebertaForMaskedLM
,
DebertaForQuestionAnswering
,
DebertaForSequenceClassification
,
DebertaForTokenClassification
,
DebertaModel
,
)
from
transformers.models.deberta.modeling_deberta
import
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
@require_torch
class
DebertaModelTest
(
ModelTesterMixin
,
unittest
.
TestCase
):
all_model_classes
=
(
(
DebertaModel
,
DebertaForMaskedLM
,
DebertaForSequenceClassification
,
DebertaForTokenClassification
,
DebertaForQuestionAnswering
,
)
if
is_torch_available
()
else
()
)
test_torchscript
=
False
test_pruning
=
False
test_head_masking
=
False
is_encoder_decoder
=
False
class
DebertaModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_input_mask
=
True
,
use_token_type_ids
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
relative_attention
=
False
,
position_biased_input
=
True
,
pos_att_type
=
"None"
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_mask
=
use_input_mask
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
relative_attention
=
relative_attention
self
.
position_biased_input
=
position_biased_input
self
.
pos_att_type
=
pos_att_type
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
DebertaConfig
(
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
intermediate_size
=
self
.
intermediate_size
,
hidden_act
=
self
.
hidden_act
,
hidden_dropout_prob
=
self
.
hidden_dropout_prob
,
attention_probs_dropout_prob
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
type_vocab_size
=
self
.
type_vocab_size
,
initializer_range
=
self
.
initializer_range
,
relative_attention
=
self
.
relative_attention
,
position_biased_input
=
self
.
position_biased_input
,
pos_att_type
=
self
.
pos_att_type
,
)
return
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
def
check_loss_output
(
self
,
result
):
self
.
parent
.
assertListEqual
(
list
(
result
.
loss
.
size
()),
[])
def
create_and_check_deberta_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
DebertaModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
sequence_output
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
)[
0
]
sequence_output
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
)[
0
]
sequence_output
=
model
(
input_ids
)[
0
]
self
.
parent
.
assertListEqual
(
list
(
sequence_output
.
size
()),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
]
)
def
create_and_check_deberta_for_masked_lm
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
DebertaForMaskedLM
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
))
def
create_and_check_deberta_for_sequence_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
DebertaForSequenceClassification
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
sequence_labels
)
self
.
parent
.
assertListEqual
(
list
(
result
.
logits
.
size
()),
[
self
.
batch_size
,
self
.
num_labels
])
self
.
check_loss_output
(
result
)
def
create_and_check_deberta_for_token_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
DebertaForTokenClassification
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
num_labels
))
def
create_and_check_deberta_for_question_answering
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
DebertaForQuestionAnswering
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
,
)
self
.
parent
.
assertEqual
(
result
.
start_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
self
.
parent
.
assertEqual
(
result
.
end_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
)
=
config_and_inputs
inputs_dict
=
{
"input_ids"
:
input_ids
,
"token_type_ids"
:
token_type_ids
,
"attention_mask"
:
input_mask
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
DebertaModelTest
.
DebertaModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
DebertaConfig
,
hidden_size
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_deberta_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_deberta_model
(
*
config_and_inputs
)
def
test_for_sequence_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_deberta_for_sequence_classification
(
*
config_and_inputs
)
def
test_for_masked_lm
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_deberta_for_masked_lm
(
*
config_and_inputs
)
def
test_for_question_answering
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_deberta_for_question_answering
(
*
config_and_inputs
)
def
test_for_token_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_deberta_for_token_classification
(
*
config_and_inputs
)
@slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
model
=
DebertaModel
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
@require_torch
@require_sentencepiece
@require_tokenizers
class
DebertaModelIntegrationTest
(
unittest
.
TestCase
):
@unittest.skip
(
reason
=
"Model not available yet"
)
def
test_inference_masked_lm
(
self
):
pass
@slow
def
test_inference_no_head
(
self
):
model
=
DebertaModel
.
from_pretrained
(
"microsoft/deberta-base"
)
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
attention_mask
=
torch
.
tensor
([[
0
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
]])
output
=
model
(
input_ids
,
attention_mask
=
attention_mask
)[
0
]
# compare the actual values for a slice.
expected_slice
=
torch
.
tensor
(
[[[
-
0.5986
,
-
0.8055
,
-
0.8462
],
[
1.4484
,
-
0.9348
,
-
0.8059
],
[
0.3123
,
0.0032
,
-
1.4131
]]]
)
self
.
assertTrue
(
torch
.
allclose
(
output
[:,
1
:
4
,
1
:
4
],
expected_slice
,
atol
=
1e-4
),
f
"{output[:, 1:4, 1:4]}"
)
Event Timeline
Log In to Comment