Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120462578
test_modeling_dpr.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Jul 4, 13:58
Size
10 KB
Mime Type
text/x-python
Expires
Sun, Jul 6, 13:58 (2 d)
Engine
blob
Format
Raw Data
Handle
27188832
Attached To
R11484 ADDI
test_modeling_dpr.py
View Options
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
transformers
import
is_torch_available
from
transformers.testing_utils
import
require_torch
,
slow
,
torch_device
from
.test_configuration_common
import
ConfigTester
from
.test_modeling_common
import
ModelTesterMixin
,
ids_tensor
,
random_attention_mask
if
is_torch_available
():
import
torch
from
transformers
import
DPRConfig
,
DPRContextEncoder
,
DPRQuestionEncoder
,
DPRReader
,
DPRReaderTokenizer
from
transformers.models.dpr.modeling_dpr
import
(
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST
,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST
,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST
,
)
class
DPRModelTester
:
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
False
,
use_input_mask
=
True
,
use_token_type_ids
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
projection_dim
=
0
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_mask
=
use_input_mask
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
self
.
projection_dim
=
projection_dim
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
random_attention_mask
([
self
.
batch_size
,
self
.
seq_length
])
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
DPRConfig
(
projection_dim
=
self
.
projection_dim
,
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
intermediate_size
=
self
.
intermediate_size
,
hidden_act
=
self
.
hidden_act
,
hidden_dropout_prob
=
self
.
hidden_dropout_prob
,
attention_probs_dropout_prob
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
type_vocab_size
=
self
.
type_vocab_size
,
initializer_range
=
self
.
initializer_range
,
)
return
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
def
create_and_check_context_encoder
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
DPRContextEncoder
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
)
self
.
parent
.
assertEqual
(
result
.
pooler_output
.
shape
,
(
self
.
batch_size
,
self
.
projection_dim
or
self
.
hidden_size
))
def
create_and_check_question_encoder
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
DPRQuestionEncoder
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
)
self
.
parent
.
assertEqual
(
result
.
pooler_output
.
shape
,
(
self
.
batch_size
,
self
.
projection_dim
or
self
.
hidden_size
))
def
create_and_check_reader
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
DPRReader
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
)
self
.
parent
.
assertEqual
(
result
.
start_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
self
.
parent
.
assertEqual
(
result
.
end_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
self
.
parent
.
assertEqual
(
result
.
relevance_logits
.
shape
,
(
self
.
batch_size
,))
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
)
=
config_and_inputs
inputs_dict
=
{
"input_ids"
:
input_ids
}
return
config
,
inputs_dict
@require_torch
class
DPRModelTest
(
ModelTesterMixin
,
unittest
.
TestCase
):
all_model_classes
=
(
(
DPRContextEncoder
,
DPRQuestionEncoder
,
DPRReader
,
)
if
is_torch_available
()
else
()
)
test_resize_embeddings
=
False
test_missing_keys
=
False
# why?
test_pruning
=
False
test_head_masking
=
False
def
setUp
(
self
):
self
.
model_tester
=
DPRModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
DPRConfig
,
hidden_size
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_context_encoder_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_context_encoder
(
*
config_and_inputs
)
def
test_question_encoder_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_question_encoder
(
*
config_and_inputs
)
def
test_reader_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_reader
(
*
config_and_inputs
)
@slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
model
=
DPRContextEncoder
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
for
model_name
in
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
model
=
DPRContextEncoder
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
for
model_name
in
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
model
=
DPRQuestionEncoder
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
for
model_name
in
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
model
=
DPRReader
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
@require_torch
class
DPRModelIntegrationTest
(
unittest
.
TestCase
):
@slow
def
test_inference_no_head
(
self
):
model
=
DPRQuestionEncoder
.
from_pretrained
(
"facebook/dpr-question_encoder-single-nq-base"
,
return_dict
=
False
)
model
.
to
(
torch_device
)
input_ids
=
torch
.
tensor
(
[[
101
,
7592
,
1010
,
2003
,
2026
,
3899
,
10140
,
1029
,
102
]],
dtype
=
torch
.
long
,
device
=
torch_device
)
# [CLS] hello, is my dog cute? [SEP]
output
=
model
(
input_ids
)[
0
]
# embedding shape = (1, 768)
# compare the actual values for a slice.
expected_slice
=
torch
.
tensor
(
[
[
0.03236253
,
0.12753335
,
0.16818509
,
0.00279786
,
0.3896933
,
0.24264945
,
0.2178971
,
-
0.02335227
,
-
0.08481959
,
-
0.14324117
,
]
],
dtype
=
torch
.
float
,
device
=
torch_device
,
)
self
.
assertTrue
(
torch
.
allclose
(
output
[:,
:
10
],
expected_slice
,
atol
=
1e-4
))
@slow
def
test_reader_inference
(
self
):
tokenizer
=
DPRReaderTokenizer
.
from_pretrained
(
"facebook/dpr-reader-single-nq-base"
)
model
=
DPRReader
.
from_pretrained
(
"facebook/dpr-reader-single-nq-base"
)
model
.
to
(
torch_device
)
encoded_inputs
=
tokenizer
(
questions
=
"What is love ?"
,
titles
=
"Haddaway"
,
texts
=
"What Is Love is a song recorded by the artist Haddaway"
,
padding
=
True
,
return_tensors
=
"pt"
,
)
encoded_inputs
.
to
(
torch_device
)
outputs
=
model
(
**
encoded_inputs
)
# compare the actual values for a slice.
expected_start_logits
=
torch
.
tensor
(
[[
-
10.3005
,
-
10.7765
,
-
11.4872
,
-
11.6841
,
-
11.9312
,
-
10.3002
,
-
9.8544
,
-
11.7378
,
-
12.0821
,
-
10.2975
]],
dtype
=
torch
.
float
,
device
=
torch_device
,
)
expected_end_logits
=
torch
.
tensor
(
[[
-
11.0684
,
-
11.7041
,
-
11.5397
,
-
10.3465
,
-
10.8791
,
-
6.8443
,
-
11.9959
,
-
11.0364
,
-
10.0096
,
-
6.8405
]],
dtype
=
torch
.
float
,
device
=
torch_device
,
)
self
.
assertTrue
(
torch
.
allclose
(
outputs
.
start_logits
[:,
:
10
],
expected_start_logits
,
atol
=
1e-4
))
self
.
assertTrue
(
torch
.
allclose
(
outputs
.
end_logits
[:,
:
10
],
expected_end_logits
,
atol
=
1e-4
))
Event Timeline
Log In to Comment