Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120535433
test_modeling_flaubert.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jul 5, 02:02
Size
14 KB
Mime Type
text/x-python
Expires
Mon, Jul 7, 02:02 (2 d)
Engine
blob
Format
Raw Data
Handle
27195639
Attached To
R11484 ADDI
test_modeling_flaubert.py
View Options
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
transformers
import
is_torch_available
from
transformers.testing_utils
import
require_torch
,
slow
,
torch_device
from
.test_configuration_common
import
ConfigTester
from
.test_modeling_common
import
ModelTesterMixin
,
ids_tensor
,
random_attention_mask
if
is_torch_available
():
import
torch
from
transformers
import
(
FlaubertConfig
,
FlaubertForMultipleChoice
,
FlaubertForQuestionAnswering
,
FlaubertForQuestionAnsweringSimple
,
FlaubertForSequenceClassification
,
FlaubertForTokenClassification
,
FlaubertModel
,
FlaubertWithLMHeadModel
,
)
from
transformers.models.flaubert.modeling_flaubert
import
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class
FlaubertModelTester
(
object
):
def
__init__
(
self
,
parent
,
):
self
.
parent
=
parent
self
.
batch_size
=
13
self
.
seq_length
=
7
self
.
is_training
=
True
self
.
use_input_lengths
=
True
self
.
use_token_type_ids
=
True
self
.
use_labels
=
True
self
.
gelu_activation
=
True
self
.
sinusoidal_embeddings
=
False
self
.
causal
=
False
self
.
asm
=
False
self
.
n_langs
=
2
self
.
vocab_size
=
99
self
.
n_special
=
0
self
.
hidden_size
=
32
self
.
num_hidden_layers
=
5
self
.
num_attention_heads
=
4
self
.
hidden_dropout_prob
=
0.1
self
.
attention_probs_dropout_prob
=
0.1
self
.
max_position_embeddings
=
512
self
.
type_vocab_size
=
12
self
.
type_sequence_label_size
=
2
self
.
initializer_range
=
0.02
self
.
num_labels
=
3
self
.
num_choices
=
4
self
.
summary_type
=
"last"
self
.
use_proj
=
None
self
.
scope
=
None
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
random_attention_mask
([
self
.
batch_size
,
self
.
seq_length
])
input_lengths
=
None
if
self
.
use_input_lengths
:
input_lengths
=
(
ids_tensor
([
self
.
batch_size
],
vocab_size
=
2
)
+
self
.
seq_length
-
2
)
# small variation of seq_length
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
n_langs
)
sequence_labels
=
None
token_labels
=
None
is_impossible_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
is_impossible_labels
=
ids_tensor
([
self
.
batch_size
],
2
)
.
float
()
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
FlaubertConfig
(
vocab_size
=
self
.
vocab_size
,
n_special
=
self
.
n_special
,
emb_dim
=
self
.
hidden_size
,
n_layers
=
self
.
num_hidden_layers
,
n_heads
=
self
.
num_attention_heads
,
dropout
=
self
.
hidden_dropout_prob
,
attention_dropout
=
self
.
attention_probs_dropout_prob
,
gelu_activation
=
self
.
gelu_activation
,
sinusoidal_embeddings
=
self
.
sinusoidal_embeddings
,
asm
=
self
.
asm
,
causal
=
self
.
causal
,
n_langs
=
self
.
n_langs
,
max_position_embeddings
=
self
.
max_position_embeddings
,
initializer_range
=
self
.
initializer_range
,
summary_type
=
self
.
summary_type
,
use_proj
=
self
.
use_proj
,
)
return
(
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
choice_labels
,
input_mask
,
)
def
create_and_check_flaubert_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
choice_labels
,
input_mask
,
):
model
=
FlaubertModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
lengths
=
input_lengths
,
langs
=
token_type_ids
)
result
=
model
(
input_ids
,
langs
=
token_type_ids
)
result
=
model
(
input_ids
)
self
.
parent
.
assertEqual
(
result
.
last_hidden_state
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
))
def
create_and_check_flaubert_lm_head
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
choice_labels
,
input_mask
,
):
model
=
FlaubertWithLMHeadModel
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
loss
.
shape
,
())
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
))
def
create_and_check_flaubert_simple_qa
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
choice_labels
,
input_mask
,
):
model
=
FlaubertForQuestionAnsweringSimple
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
)
result
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
)
self
.
parent
.
assertEqual
(
result
.
start_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
self
.
parent
.
assertEqual
(
result
.
end_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
def
create_and_check_flaubert_qa
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
choice_labels
,
input_mask
,
):
model
=
FlaubertForQuestionAnswering
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
)
result_with_labels
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
,
cls_index
=
sequence_labels
,
is_impossible
=
is_impossible_labels
,
p_mask
=
input_mask
,
)
result_with_labels
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
,
cls_index
=
sequence_labels
,
is_impossible
=
is_impossible_labels
,
)
(
total_loss
,)
=
result_with_labels
.
to_tuple
()
result_with_labels
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
)
(
total_loss
,)
=
result_with_labels
.
to_tuple
()
self
.
parent
.
assertEqual
(
result_with_labels
.
loss
.
shape
,
())
self
.
parent
.
assertEqual
(
result
.
start_top_log_probs
.
shape
,
(
self
.
batch_size
,
model
.
config
.
start_n_top
))
self
.
parent
.
assertEqual
(
result
.
start_top_index
.
shape
,
(
self
.
batch_size
,
model
.
config
.
start_n_top
))
self
.
parent
.
assertEqual
(
result
.
end_top_log_probs
.
shape
,
(
self
.
batch_size
,
model
.
config
.
start_n_top
*
model
.
config
.
end_n_top
)
)
self
.
parent
.
assertEqual
(
result
.
end_top_index
.
shape
,
(
self
.
batch_size
,
model
.
config
.
start_n_top
*
model
.
config
.
end_n_top
)
)
self
.
parent
.
assertEqual
(
result
.
cls_logits
.
shape
,
(
self
.
batch_size
,))
def
create_and_check_flaubert_sequence_classif
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
choice_labels
,
input_mask
,
):
model
=
FlaubertForSequenceClassification
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
)
result
=
model
(
input_ids
,
labels
=
sequence_labels
)
self
.
parent
.
assertEqual
(
result
.
loss
.
shape
,
())
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
type_sequence_label_size
))
def
create_and_check_flaubert_token_classif
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
choice_labels
,
input_mask
,
):
config
.
num_labels
=
self
.
num_labels
model
=
FlaubertForTokenClassification
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
num_labels
))
def
create_and_check_flaubert_multiple_choice
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
choice_labels
,
input_mask
,
):
config
.
num_choices
=
self
.
num_choices
model
=
FlaubertForMultipleChoice
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
multiple_choice_inputs_ids
=
input_ids
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
multiple_choice_token_type_ids
=
token_type_ids
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
multiple_choice_input_mask
=
input_mask
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
result
=
model
(
multiple_choice_inputs_ids
,
attention_mask
=
multiple_choice_input_mask
,
token_type_ids
=
multiple_choice_token_type_ids
,
labels
=
choice_labels
,
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
num_choices
))
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
choice_labels
,
input_mask
,
)
=
config_and_inputs
inputs_dict
=
{
"input_ids"
:
input_ids
,
"token_type_ids"
:
token_type_ids
,
"lengths"
:
input_lengths
}
return
config
,
inputs_dict
@require_torch
class
FlaubertModelTest
(
ModelTesterMixin
,
unittest
.
TestCase
):
all_model_classes
=
(
(
FlaubertModel
,
FlaubertWithLMHeadModel
,
FlaubertForQuestionAnswering
,
FlaubertForQuestionAnsweringSimple
,
FlaubertForSequenceClassification
,
FlaubertForTokenClassification
,
FlaubertForMultipleChoice
,
)
if
is_torch_available
()
else
()
)
# Flaubert has 2 QA models -> need to manually set the correct labels for one of them here
def
_prepare_for_class
(
self
,
inputs_dict
,
model_class
,
return_labels
=
False
):
inputs_dict
=
super
()
.
_prepare_for_class
(
inputs_dict
,
model_class
,
return_labels
=
return_labels
)
if
return_labels
:
if
model_class
.
__name__
==
"FlaubertForQuestionAnswering"
:
inputs_dict
[
"start_positions"
]
=
torch
.
zeros
(
self
.
model_tester
.
batch_size
,
dtype
=
torch
.
long
,
device
=
torch_device
)
inputs_dict
[
"end_positions"
]
=
torch
.
zeros
(
self
.
model_tester
.
batch_size
,
dtype
=
torch
.
long
,
device
=
torch_device
)
return
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
FlaubertModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
FlaubertConfig
,
emb_dim
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_flaubert_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_flaubert_model
(
*
config_and_inputs
)
def
test_flaubert_lm_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_flaubert_lm_head
(
*
config_and_inputs
)
def
test_flaubert_simple_qa
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_flaubert_simple_qa
(
*
config_and_inputs
)
def
test_flaubert_qa
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_flaubert_qa
(
*
config_and_inputs
)
def
test_flaubert_sequence_classif
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_flaubert_sequence_classif
(
*
config_and_inputs
)
def
test_flaubert_token_classif
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_flaubert_token_classif
(
*
config_and_inputs
)
def
test_flaubert_multiple_choice
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_flaubert_multiple_choice
(
*
config_and_inputs
)
@slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
model
=
FlaubertModel
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
@require_torch
class
FlaubertModelIntegrationTest
(
unittest
.
TestCase
):
@slow
def
test_inference_no_head_absolute_embedding
(
self
):
model
=
FlaubertModel
.
from_pretrained
(
"flaubert/flaubert_base_cased"
)
input_ids
=
torch
.
tensor
([[
0
,
345
,
232
,
328
,
740
,
140
,
1695
,
69
,
6078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
expected_shape
=
torch
.
Size
((
1
,
11
,
768
))
self
.
assertEqual
(
output
.
shape
,
expected_shape
)
expected_slice
=
torch
.
tensor
(
[[[
-
2.6251
,
-
1.4298
,
-
0.0227
],
[
-
2.8510
,
-
1.6387
,
0.2258
],
[
-
2.8114
,
-
1.1832
,
-
0.3066
]]]
)
self
.
assertTrue
(
torch
.
allclose
(
output
[:,
:
3
,
:
3
],
expected_slice
,
atol
=
1e-4
))
Event Timeline
Log In to Comment