Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120580134
test_modeling_roberta.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jul 5, 09:16
Size
20 KB
Mime Type
text/x-python
Expires
Mon, Jul 7, 09:16 (2 d)
Engine
blob
Format
Raw Data
Handle
27202965
Attached To
R11484 ADDI
test_modeling_roberta.py
View Options
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
transformers
import
is_torch_available
from
transformers.testing_utils
import
require_torch
,
slow
,
torch_device
from
.test_configuration_common
import
ConfigTester
from
.test_generation_utils
import
GenerationTesterMixin
from
.test_modeling_common
import
ModelTesterMixin
,
floats_tensor
,
ids_tensor
,
random_attention_mask
if
is_torch_available
():
import
torch
from
transformers
import
(
RobertaConfig
,
RobertaForCausalLM
,
RobertaForMaskedLM
,
RobertaForMultipleChoice
,
RobertaForQuestionAnswering
,
RobertaForSequenceClassification
,
RobertaForTokenClassification
,
RobertaModel
,
)
from
transformers.models.roberta.modeling_roberta
import
(
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
,
RobertaEmbeddings
,
create_position_ids_from_input_ids
,
)
class
RobertaModelTester
:
def
__init__
(
self
,
parent
,
):
self
.
parent
=
parent
self
.
batch_size
=
13
self
.
seq_length
=
7
self
.
is_training
=
True
self
.
use_input_mask
=
True
self
.
use_token_type_ids
=
True
self
.
use_labels
=
True
self
.
vocab_size
=
99
self
.
hidden_size
=
32
self
.
num_hidden_layers
=
5
self
.
num_attention_heads
=
4
self
.
intermediate_size
=
37
self
.
hidden_act
=
"gelu"
self
.
hidden_dropout_prob
=
0.1
self
.
attention_probs_dropout_prob
=
0.1
self
.
max_position_embeddings
=
512
self
.
type_vocab_size
=
16
self
.
type_sequence_label_size
=
2
self
.
initializer_range
=
0.02
self
.
num_labels
=
3
self
.
num_choices
=
4
self
.
scope
=
None
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
random_attention_mask
([
self
.
batch_size
,
self
.
seq_length
])
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
RobertaConfig
(
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
intermediate_size
=
self
.
intermediate_size
,
hidden_act
=
self
.
hidden_act
,
hidden_dropout_prob
=
self
.
hidden_dropout_prob
,
attention_probs_dropout_prob
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
type_vocab_size
=
self
.
type_vocab_size
,
initializer_range
=
self
.
initializer_range
,
)
return
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
def
prepare_config_and_inputs_for_decoder
(
self
):
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
)
=
self
.
prepare_config_and_inputs
()
config
.
is_decoder
=
True
encoder_hidden_states
=
floats_tensor
([
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
encoder_attention_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
return
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
encoder_hidden_states
,
encoder_attention_mask
,
)
def
create_and_check_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
RobertaModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
)
self
.
parent
.
assertEqual
(
result
.
last_hidden_state
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
))
self
.
parent
.
assertEqual
(
result
.
pooler_output
.
shape
,
(
self
.
batch_size
,
self
.
hidden_size
))
def
create_and_check_model_as_decoder
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
encoder_hidden_states
,
encoder_attention_mask
,
):
config
.
add_cross_attention
=
True
model
=
RobertaModel
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
encoder_hidden_states
=
encoder_hidden_states
,
encoder_attention_mask
=
encoder_attention_mask
,
)
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
encoder_hidden_states
=
encoder_hidden_states
,
)
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
)
self
.
parent
.
assertEqual
(
result
.
last_hidden_state
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
))
self
.
parent
.
assertEqual
(
result
.
pooler_output
.
shape
,
(
self
.
batch_size
,
self
.
hidden_size
))
def
create_and_check_for_causal_lm
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
encoder_hidden_states
,
encoder_attention_mask
,
):
model
=
RobertaForCausalLM
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
))
def
create_and_check_decoder_model_past_large_inputs
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
encoder_hidden_states
,
encoder_attention_mask
,
):
config
.
is_decoder
=
True
config
.
add_cross_attention
=
True
model
=
RobertaForCausalLM
(
config
=
config
)
.
to
(
torch_device
)
.
eval
()
# make sure that ids don't start with pad token
mask
=
input_ids
.
ne
(
config
.
pad_token_id
)
.
long
()
input_ids
=
input_ids
*
mask
# first forward pass
outputs
=
model
(
input_ids
,
attention_mask
=
input_mask
,
encoder_hidden_states
=
encoder_hidden_states
,
encoder_attention_mask
=
encoder_attention_mask
,
use_cache
=
True
,
)
past_key_values
=
outputs
.
past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens
=
ids_tensor
((
self
.
batch_size
,
3
),
config
.
vocab_size
)
# make sure that ids don't start with pad token
mask
=
next_tokens
.
ne
(
config
.
pad_token_id
)
.
long
()
next_tokens
=
next_tokens
*
mask
next_mask
=
ids_tensor
((
self
.
batch_size
,
3
),
vocab_size
=
2
)
# append to next input_ids and
next_input_ids
=
torch
.
cat
([
input_ids
,
next_tokens
],
dim
=-
1
)
next_attention_mask
=
torch
.
cat
([
input_mask
,
next_mask
],
dim
=-
1
)
output_from_no_past
=
model
(
next_input_ids
,
attention_mask
=
next_attention_mask
,
encoder_hidden_states
=
encoder_hidden_states
,
encoder_attention_mask
=
encoder_attention_mask
,
output_hidden_states
=
True
,
)[
"hidden_states"
][
0
]
output_from_past
=
model
(
next_tokens
,
attention_mask
=
next_attention_mask
,
encoder_hidden_states
=
encoder_hidden_states
,
encoder_attention_mask
=
encoder_attention_mask
,
past_key_values
=
past_key_values
,
output_hidden_states
=
True
,
)[
"hidden_states"
][
0
]
# select random slice
random_slice_idx
=
ids_tensor
((
1
,),
output_from_past
.
shape
[
-
1
])
.
item
()
output_from_no_past_slice
=
output_from_no_past
[:,
-
3
:,
random_slice_idx
]
.
detach
()
output_from_past_slice
=
output_from_past
[:,
:,
random_slice_idx
]
.
detach
()
self
.
parent
.
assertTrue
(
output_from_past_slice
.
shape
[
1
]
==
next_tokens
.
shape
[
1
])
# test that outputs are equal for slice
self
.
parent
.
assertTrue
(
torch
.
allclose
(
output_from_past_slice
,
output_from_no_past_slice
,
atol
=
1e-3
))
def
create_and_check_for_masked_lm
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
RobertaForMaskedLM
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
))
def
create_and_check_for_token_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
RobertaForTokenClassification
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
num_labels
))
def
create_and_check_for_multiple_choice
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_choices
=
self
.
num_choices
model
=
RobertaForMultipleChoice
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
multiple_choice_inputs_ids
=
input_ids
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
multiple_choice_token_type_ids
=
token_type_ids
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
multiple_choice_input_mask
=
input_mask
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
result
=
model
(
multiple_choice_inputs_ids
,
attention_mask
=
multiple_choice_input_mask
,
token_type_ids
=
multiple_choice_token_type_ids
,
labels
=
choice_labels
,
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
num_choices
))
def
create_and_check_for_question_answering
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
RobertaForQuestionAnswering
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
,
)
self
.
parent
.
assertEqual
(
result
.
start_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
self
.
parent
.
assertEqual
(
result
.
end_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
)
=
config_and_inputs
inputs_dict
=
{
"input_ids"
:
input_ids
,
"token_type_ids"
:
token_type_ids
,
"attention_mask"
:
input_mask
}
return
config
,
inputs_dict
@require_torch
class
RobertaModelTest
(
ModelTesterMixin
,
GenerationTesterMixin
,
unittest
.
TestCase
):
all_model_classes
=
(
(
RobertaForCausalLM
,
RobertaForMaskedLM
,
RobertaModel
,
RobertaForSequenceClassification
,
RobertaForTokenClassification
,
RobertaForMultipleChoice
,
RobertaForQuestionAnswering
,
)
if
is_torch_available
()
else
()
)
all_generative_model_classes
=
(
RobertaForCausalLM
,)
if
is_torch_available
()
else
()
def
setUp
(
self
):
self
.
model_tester
=
RobertaModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
RobertaConfig
,
hidden_size
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_model
(
*
config_and_inputs
)
def
test_model_various_embeddings
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
for
type
in
[
"absolute"
,
"relative_key"
,
"relative_key_query"
]:
config_and_inputs
[
0
]
.
position_embedding_type
=
type
self
.
model_tester
.
create_and_check_model
(
*
config_and_inputs
)
def
test_model_as_decoder
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs_for_decoder
()
self
.
model_tester
.
create_and_check_model_as_decoder
(
*
config_and_inputs
)
def
test_model_as_decoder_with_default_input_mask
(
self
):
# This regression test was failing with PyTorch < 1.3
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
encoder_hidden_states
,
encoder_attention_mask
,
)
=
self
.
model_tester
.
prepare_config_and_inputs_for_decoder
()
input_mask
=
None
self
.
model_tester
.
create_and_check_model_as_decoder
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
encoder_hidden_states
,
encoder_attention_mask
,
)
def
test_for_causal_lm
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs_for_decoder
()
self
.
model_tester
.
create_and_check_for_causal_lm
(
*
config_and_inputs
)
def
test_decoder_model_past_with_large_inputs
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs_for_decoder
()
self
.
model_tester
.
create_and_check_decoder_model_past_large_inputs
(
*
config_and_inputs
)
def
test_for_masked_lm
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_for_masked_lm
(
*
config_and_inputs
)
def
test_for_token_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_for_token_classification
(
*
config_and_inputs
)
def
test_for_multiple_choice
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_for_multiple_choice
(
*
config_and_inputs
)
def
test_for_question_answering
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_for_question_answering
(
*
config_and_inputs
)
@slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
model
=
RobertaModel
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
def
test_create_position_ids_respects_padding_index
(
self
):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is RobertaEmbeddings.padding_idx + 1
"""
config
=
self
.
model_tester
.
prepare_config_and_inputs
()[
0
]
model
=
RobertaEmbeddings
(
config
=
config
)
input_ids
=
torch
.
as_tensor
([[
12
,
31
,
13
,
model
.
padding_idx
]])
expected_positions
=
torch
.
as_tensor
(
[[
0
+
model
.
padding_idx
+
1
,
1
+
model
.
padding_idx
+
1
,
2
+
model
.
padding_idx
+
1
,
model
.
padding_idx
]]
)
position_ids
=
create_position_ids_from_input_ids
(
input_ids
,
model
.
padding_idx
)
self
.
assertEqual
(
position_ids
.
shape
,
expected_positions
.
shape
)
self
.
assertTrue
(
torch
.
all
(
torch
.
eq
(
position_ids
,
expected_positions
)))
def
test_create_position_ids_from_inputs_embeds
(
self
):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is RobertaEmbeddings.padding_idx + 1
"""
config
=
self
.
model_tester
.
prepare_config_and_inputs
()[
0
]
embeddings
=
RobertaEmbeddings
(
config
=
config
)
inputs_embeds
=
torch
.
Tensor
(
2
,
4
,
30
)
expected_single_positions
=
[
0
+
embeddings
.
padding_idx
+
1
,
1
+
embeddings
.
padding_idx
+
1
,
2
+
embeddings
.
padding_idx
+
1
,
3
+
embeddings
.
padding_idx
+
1
,
]
expected_positions
=
torch
.
as_tensor
([
expected_single_positions
,
expected_single_positions
])
position_ids
=
embeddings
.
create_position_ids_from_inputs_embeds
(
inputs_embeds
)
self
.
assertEqual
(
position_ids
.
shape
,
expected_positions
.
shape
)
self
.
assertTrue
(
torch
.
all
(
torch
.
eq
(
position_ids
,
expected_positions
)))
@require_torch
class
RobertaModelIntegrationTest
(
unittest
.
TestCase
):
@slow
def
test_inference_masked_lm
(
self
):
model
=
RobertaForMaskedLM
.
from_pretrained
(
"roberta-base"
)
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
expected_shape
=
torch
.
Size
((
1
,
11
,
50265
))
self
.
assertEqual
(
output
.
shape
,
expected_shape
)
# compare the actual values for a slice.
expected_slice
=
torch
.
tensor
(
[[[
33.8802
,
-
4.3103
,
22.7761
],
[
4.6539
,
-
2.8098
,
13.6253
],
[
1.8228
,
-
3.6898
,
8.8600
]]]
)
# roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
# roberta.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self
.
assertTrue
(
torch
.
allclose
(
output
[:,
:
3
,
:
3
],
expected_slice
,
atol
=
1e-4
))
@slow
def
test_inference_no_head
(
self
):
model
=
RobertaModel
.
from_pretrained
(
"roberta-base"
)
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
# compare the actual values for a slice.
expected_slice
=
torch
.
tensor
(
[[[
-
0.0231
,
0.0782
,
0.0074
],
[
-
0.1854
,
0.0540
,
-
0.0175
],
[
0.0548
,
0.0799
,
0.1687
]]]
)
# roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
# roberta.eval()
# expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach()
self
.
assertTrue
(
torch
.
allclose
(
output
[:,
:
3
,
:
3
],
expected_slice
,
atol
=
1e-4
))
@slow
def
test_inference_classification_head
(
self
):
model
=
RobertaForSequenceClassification
.
from_pretrained
(
"roberta-large-mnli"
)
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
expected_shape
=
torch
.
Size
((
1
,
3
))
self
.
assertEqual
(
output
.
shape
,
expected_shape
)
expected_tensor
=
torch
.
tensor
([[
-
0.9469
,
0.3913
,
0.5118
]])
# roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
# roberta.eval()
# expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach()
self
.
assertTrue
(
torch
.
allclose
(
output
,
expected_tensor
,
atol
=
1e-4
))
Event Timeline
Log In to Comment