Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120648754
test_tokenization_bart.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jul 5, 23:10
Size
8 KB
Mime Type
text/x-python
Expires
Mon, Jul 7, 23:10 (2 d)
Engine
blob
Format
Raw Data
Handle
27198765
Attached To
R11484 ADDI
test_tokenization_bart.py
View Options
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
json
import
os
import
unittest
from
transformers
import
BartTokenizer
,
BartTokenizerFast
,
BatchEncoding
from
transformers.file_utils
import
cached_property
from
transformers.models.roberta.tokenization_roberta
import
VOCAB_FILES_NAMES
from
transformers.testing_utils
import
require_tokenizers
,
require_torch
from
.test_tokenization_common
import
TokenizerTesterMixin
,
filter_roberta_detectors
@require_tokenizers
class
TestTokenizationBart
(
TokenizerTesterMixin
,
unittest
.
TestCase
):
tokenizer_class
=
BartTokenizer
rust_tokenizer_class
=
BartTokenizerFast
test_rust_tokenizer
=
True
from_pretrained_filter
=
filter_roberta_detectors
# from_pretrained_kwargs = {'add_prefix_space': True}
def
setUp
(
self
):
super
()
.
setUp
()
vocab
=
[
"l"
,
"o"
,
"w"
,
"e"
,
"r"
,
"s"
,
"t"
,
"i"
,
"d"
,
"n"
,
"
\u0120
"
,
"
\u0120
l"
,
"
\u0120
n"
,
"
\u0120
lo"
,
"
\u0120
low"
,
"er"
,
"
\u0120
lowest"
,
"
\u0120
newer"
,
"
\u0120
wider"
,
"<unk>"
,
]
vocab_tokens
=
dict
(
zip
(
vocab
,
range
(
len
(
vocab
))))
merges
=
[
"#version: 0.2"
,
"
\u0120
l"
,
"
\u0120
l o"
,
"
\u0120
lo w"
,
"e r"
,
""
]
self
.
special_tokens_map
=
{
"unk_token"
:
"<unk>"
}
self
.
vocab_file
=
os
.
path
.
join
(
self
.
tmpdirname
,
VOCAB_FILES_NAMES
[
"vocab_file"
])
self
.
merges_file
=
os
.
path
.
join
(
self
.
tmpdirname
,
VOCAB_FILES_NAMES
[
"merges_file"
])
with
open
(
self
.
vocab_file
,
"w"
,
encoding
=
"utf-8"
)
as
fp
:
fp
.
write
(
json
.
dumps
(
vocab_tokens
)
+
"
\n
"
)
with
open
(
self
.
merges_file
,
"w"
,
encoding
=
"utf-8"
)
as
fp
:
fp
.
write
(
"
\n
"
.
join
(
merges
))
def
get_tokenizer
(
self
,
**
kwargs
):
kwargs
.
update
(
self
.
special_tokens_map
)
return
self
.
tokenizer_class
.
from_pretrained
(
self
.
tmpdirname
,
**
kwargs
)
def
get_rust_tokenizer
(
self
,
**
kwargs
):
kwargs
.
update
(
self
.
special_tokens_map
)
return
self
.
rust_tokenizer_class
.
from_pretrained
(
self
.
tmpdirname
,
**
kwargs
)
def
get_input_output_texts
(
self
,
tokenizer
):
return
"lower newer"
,
"lower newer"
@cached_property
def
default_tokenizer
(
self
):
return
BartTokenizer
.
from_pretrained
(
"facebook/bart-large"
)
@cached_property
def
default_tokenizer_fast
(
self
):
return
BartTokenizerFast
.
from_pretrained
(
"facebook/bart-large"
)
@require_torch
def
test_prepare_batch
(
self
):
src_text
=
[
"A long paragraph for summarization."
,
"Another paragraph for summarization."
]
expected_src_tokens
=
[
0
,
250
,
251
,
17818
,
13
,
39186
,
1938
,
4
,
2
]
for
tokenizer
in
[
self
.
default_tokenizer
,
self
.
default_tokenizer_fast
]:
batch
=
tokenizer
(
src_text
,
max_length
=
len
(
expected_src_tokens
),
padding
=
True
,
return_tensors
=
"pt"
)
self
.
assertIsInstance
(
batch
,
BatchEncoding
)
self
.
assertEqual
((
2
,
9
),
batch
.
input_ids
.
shape
)
self
.
assertEqual
((
2
,
9
),
batch
.
attention_mask
.
shape
)
result
=
batch
.
input_ids
.
tolist
()[
0
]
self
.
assertListEqual
(
expected_src_tokens
,
result
)
# Test that special tokens are reset
@require_torch
def
test_prepare_batch_empty_target_text
(
self
):
src_text
=
[
"A long paragraph for summarization."
,
"Another paragraph for summarization."
]
for
tokenizer
in
[
self
.
default_tokenizer
,
self
.
default_tokenizer_fast
]:
batch
=
tokenizer
(
src_text
,
padding
=
True
,
return_tensors
=
"pt"
)
# check if input_ids are returned and no labels
self
.
assertIn
(
"input_ids"
,
batch
)
self
.
assertIn
(
"attention_mask"
,
batch
)
self
.
assertNotIn
(
"labels"
,
batch
)
self
.
assertNotIn
(
"decoder_attention_mask"
,
batch
)
@require_torch
def
test_as_target_tokenizer_target_length
(
self
):
tgt_text
=
[
"Summary of the text."
,
"Another summary."
,
]
for
tokenizer
in
[
self
.
default_tokenizer
,
self
.
default_tokenizer_fast
]:
with
tokenizer
.
as_target_tokenizer
():
targets
=
tokenizer
(
tgt_text
,
max_length
=
32
,
padding
=
"max_length"
,
return_tensors
=
"pt"
)
self
.
assertEqual
(
32
,
targets
[
"input_ids"
]
.
shape
[
1
])
@require_torch
def
test_prepare_batch_not_longer_than_maxlen
(
self
):
for
tokenizer
in
[
self
.
default_tokenizer
,
self
.
default_tokenizer_fast
]:
batch
=
tokenizer
(
[
"I am a small frog"
*
1024
,
"I am a small frog"
],
padding
=
True
,
truncation
=
True
,
return_tensors
=
"pt"
)
self
.
assertIsInstance
(
batch
,
BatchEncoding
)
self
.
assertEqual
(
batch
.
input_ids
.
shape
,
(
2
,
1024
))
@require_torch
def
test_special_tokens
(
self
):
src_text
=
[
"A long paragraph for summarization."
]
tgt_text
=
[
"Summary of the text."
,
]
for
tokenizer
in
[
self
.
default_tokenizer
,
self
.
default_tokenizer_fast
]:
inputs
=
tokenizer
(
src_text
,
return_tensors
=
"pt"
)
with
tokenizer
.
as_target_tokenizer
():
targets
=
tokenizer
(
tgt_text
,
return_tensors
=
"pt"
)
input_ids
=
inputs
[
"input_ids"
]
labels
=
targets
[
"input_ids"
]
self
.
assertTrue
((
input_ids
[:,
0
]
==
tokenizer
.
bos_token_id
)
.
all
()
.
item
())
self
.
assertTrue
((
labels
[:,
0
]
==
tokenizer
.
bos_token_id
)
.
all
()
.
item
())
self
.
assertTrue
((
input_ids
[:,
-
1
]
==
tokenizer
.
eos_token_id
)
.
all
()
.
item
())
self
.
assertTrue
((
labels
[:,
-
1
]
==
tokenizer
.
eos_token_id
)
.
all
()
.
item
())
def
test_pretokenized_inputs
(
self
):
pass
def
test_embeded_special_tokens
(
self
):
for
tokenizer
,
pretrained_name
,
kwargs
in
self
.
tokenizers_list
:
with
self
.
subTest
(
"{} ({})"
.
format
(
tokenizer
.
__class__
.
__name__
,
pretrained_name
)):
tokenizer_r
=
self
.
rust_tokenizer_class
.
from_pretrained
(
pretrained_name
,
**
kwargs
)
tokenizer_p
=
self
.
tokenizer_class
.
from_pretrained
(
pretrained_name
,
**
kwargs
)
sentence
=
"A, <mask> AllenNLP sentence."
tokens_r
=
tokenizer_r
.
encode_plus
(
sentence
,
add_special_tokens
=
True
,
return_token_type_ids
=
True
)
tokens_p
=
tokenizer_p
.
encode_plus
(
sentence
,
add_special_tokens
=
True
,
return_token_type_ids
=
True
)
# token_type_ids should put 0 everywhere
self
.
assertEqual
(
sum
(
tokens_r
[
"token_type_ids"
]),
sum
(
tokens_p
[
"token_type_ids"
]))
# attention_mask should put 1 everywhere, so sum over length should be 1
self
.
assertEqual
(
sum
(
tokens_r
[
"attention_mask"
])
/
len
(
tokens_r
[
"attention_mask"
]),
sum
(
tokens_p
[
"attention_mask"
])
/
len
(
tokens_p
[
"attention_mask"
]),
)
tokens_r_str
=
tokenizer_r
.
convert_ids_to_tokens
(
tokens_r
[
"input_ids"
])
tokens_p_str
=
tokenizer_p
.
convert_ids_to_tokens
(
tokens_p
[
"input_ids"
])
# Rust correctly handles the space before the mask while python doesnt
self
.
assertSequenceEqual
(
tokens_p
[
"input_ids"
],
[
0
,
250
,
6
,
50264
,
3823
,
487
,
21992
,
3645
,
4
,
2
])
self
.
assertSequenceEqual
(
tokens_r
[
"input_ids"
],
[
0
,
250
,
6
,
50264
,
3823
,
487
,
21992
,
3645
,
4
,
2
])
self
.
assertSequenceEqual
(
tokens_p_str
,
[
"<s>"
,
"A"
,
","
,
"<mask>"
,
"ĠAllen"
,
"N"
,
"LP"
,
"Ġsentence"
,
"."
,
"</s>"
]
)
self
.
assertSequenceEqual
(
tokens_r_str
,
[
"<s>"
,
"A"
,
","
,
"<mask>"
,
"ĠAllen"
,
"N"
,
"LP"
,
"Ġsentence"
,
"."
,
"</s>"
]
)
Event Timeline
Log In to Comment