Page MenuHomec4science

test_tokenization_barthez.py
No OneTemporary

File Metadata

Created
Fri, Jul 4, 18:05

test_tokenization_barthez.py

# coding=utf-8
# Copyright 2020 Ecole Polytechnique and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from .test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow
class BarthezTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = BarthezTokenizer
rust_tokenizer_class = BarthezTokenizerFast
test_rust_tokenizer = True
def setUp(self):
super().setUp()
tokenizer = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez")
tokenizer.save_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname, legacy_format=False)
self.tokenizer = tokenizer
@require_torch
def test_prepare_batch(self):
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
expected_src_tokens = [0, 57, 3018, 70307, 91, 2]
batch = self.tokenizer(
src_text, max_length=len(expected_src_tokens), padding=True, truncation=True, return_tensors="pt"
)
self.assertIsInstance(batch, BatchEncoding)
self.assertEqual((2, 6), batch.input_ids.shape)
self.assertEqual((2, 6), batch.attention_mask.shape)
result = batch.input_ids.tolist()[0]
self.assertListEqual(expected_src_tokens, result)
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "I was born in 92000, and this is falsé."
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)

Event Timeline