Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120626150
test_modeling_camembert.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jul 5, 17:31
Size
1 KB
Mime Type
text/x-python
Expires
Mon, Jul 7, 17:31 (2 d)
Engine
blob
Format
Raw Data
Handle
27202925
Attached To
R11484 ADDI
test_modeling_camembert.py
View Options
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
transformers
import
is_torch_available
from
transformers.testing_utils
import
require_sentencepiece
,
require_tokenizers
,
require_torch
,
slow
,
torch_device
if
is_torch_available
():
import
torch
from
transformers
import
CamembertModel
@require_torch
@require_sentencepiece
@require_tokenizers
class
CamembertModelIntegrationTest
(
unittest
.
TestCase
):
@slow
def
test_output_embeds_base_model
(
self
):
model
=
CamembertModel
.
from_pretrained
(
"camembert-base"
)
model
.
to
(
torch_device
)
input_ids
=
torch
.
tensor
(
[[
5
,
121
,
11
,
660
,
16
,
730
,
25543
,
110
,
83
,
6
]],
device
=
torch_device
,
dtype
=
torch
.
long
,
)
# J'aime le camembert !
output
=
model
(
input_ids
)[
"last_hidden_state"
]
expected_shape
=
torch
.
Size
((
1
,
10
,
768
))
self
.
assertEqual
(
output
.
shape
,
expected_shape
)
# compare the actual values for a slice.
expected_slice
=
torch
.
tensor
(
[[[
-
0.0254
,
0.0235
,
0.1027
],
[
0.0606
,
-
0.1811
,
-
0.0418
],
[
-
0.1561
,
-
0.1127
,
0.2687
]]],
device
=
torch_device
,
dtype
=
torch
.
float
,
)
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self
.
assertTrue
(
torch
.
allclose
(
output
[:,
:
3
,
:
3
],
expected_slice
,
atol
=
1e-4
))
Event Timeline
Log In to Comment