Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120732370
test_modeling_mobilebert.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 6, 15:52
Size
14 KB
Mime Type
text/x-python
Expires
Tue, Jul 8, 15:52 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27202832
Attached To
R11484 ADDI
test_modeling_mobilebert.py
View Options
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
transformers
import
is_torch_available
from
transformers.testing_utils
import
require_sentencepiece
,
require_tokenizers
,
require_torch
,
slow
,
torch_device
from
.test_configuration_common
import
ConfigTester
from
.test_modeling_common
import
ModelTesterMixin
,
ids_tensor
,
random_attention_mask
if
is_torch_available
():
import
torch
from
transformers
import
(
MODEL_FOR_PRETRAINING_MAPPING
,
MobileBertConfig
,
MobileBertForMaskedLM
,
MobileBertForMultipleChoice
,
MobileBertForNextSentencePrediction
,
MobileBertForPreTraining
,
MobileBertForQuestionAnswering
,
MobileBertForSequenceClassification
,
MobileBertForTokenClassification
,
MobileBertModel
,
)
class
MobileBertModelTester
:
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_input_mask
=
True
,
use_token_type_ids
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
hidden_size
=
64
,
embedding_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_mask
=
use_input_mask
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
embedding_size
=
embedding_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
random_attention_mask
([
self
.
batch_size
,
self
.
seq_length
])
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
MobileBertConfig
(
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
intermediate_size
=
self
.
intermediate_size
,
embedding_size
=
self
.
embedding_size
,
hidden_act
=
self
.
hidden_act
,
hidden_dropout_prob
=
self
.
hidden_dropout_prob
,
attention_probs_dropout_prob
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
type_vocab_size
=
self
.
type_vocab_size
,
is_decoder
=
False
,
initializer_range
=
self
.
initializer_range
,
)
return
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
def
create_and_check_mobilebert_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
MobileBertModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
)
self
.
parent
.
assertEqual
(
result
.
last_hidden_state
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
))
self
.
parent
.
assertEqual
(
result
.
pooler_output
.
shape
,
(
self
.
batch_size
,
self
.
hidden_size
))
def
create_and_check_mobilebert_for_masked_lm
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
MobileBertForMaskedLM
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
))
def
create_and_check_mobilebert_for_next_sequence_prediction
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
MobileBertForNextSentencePrediction
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
sequence_labels
,
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
2
))
def
create_and_check_mobilebert_for_pretraining
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
MobileBertForPreTraining
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
,
next_sentence_label
=
sequence_labels
,
)
self
.
parent
.
assertEqual
(
result
.
prediction_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
))
self
.
parent
.
assertEqual
(
result
.
seq_relationship_logits
.
shape
,
(
self
.
batch_size
,
2
))
def
create_and_check_mobilebert_for_question_answering
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
MobileBertForQuestionAnswering
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
,
)
self
.
parent
.
assertEqual
(
result
.
start_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
self
.
parent
.
assertEqual
(
result
.
end_logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
))
def
create_and_check_mobilebert_for_sequence_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
MobileBertForSequenceClassification
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
sequence_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
num_labels
))
def
create_and_check_mobilebert_for_token_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
MobileBertForTokenClassification
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
num_labels
))
def
create_and_check_mobilebert_for_multiple_choice
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_choices
=
self
.
num_choices
model
=
MobileBertForMultipleChoice
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
multiple_choice_inputs_ids
=
input_ids
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
multiple_choice_token_type_ids
=
token_type_ids
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
multiple_choice_input_mask
=
input_mask
.
unsqueeze
(
1
)
.
expand
(
-
1
,
self
.
num_choices
,
-
1
)
.
contiguous
()
result
=
model
(
multiple_choice_inputs_ids
,
attention_mask
=
multiple_choice_input_mask
,
token_type_ids
=
multiple_choice_token_type_ids
,
labels
=
choice_labels
,
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
num_choices
))
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
,
)
=
config_and_inputs
inputs_dict
=
{
"input_ids"
:
input_ids
,
"token_type_ids"
:
token_type_ids
,
"attention_mask"
:
input_mask
}
return
config
,
inputs_dict
@require_torch
class
MobileBertModelTest
(
ModelTesterMixin
,
unittest
.
TestCase
):
all_model_classes
=
(
(
MobileBertModel
,
MobileBertForMaskedLM
,
MobileBertForMultipleChoice
,
MobileBertForNextSentencePrediction
,
MobileBertForPreTraining
,
MobileBertForQuestionAnswering
,
MobileBertForSequenceClassification
,
MobileBertForTokenClassification
,
)
if
is_torch_available
()
else
()
)
# special case for ForPreTraining model
def
_prepare_for_class
(
self
,
inputs_dict
,
model_class
,
return_labels
=
False
):
inputs_dict
=
super
()
.
_prepare_for_class
(
inputs_dict
,
model_class
,
return_labels
=
return_labels
)
if
return_labels
:
if
model_class
in
MODEL_FOR_PRETRAINING_MAPPING
.
values
():
inputs_dict
[
"labels"
]
=
torch
.
zeros
(
(
self
.
model_tester
.
batch_size
,
self
.
model_tester
.
seq_length
),
dtype
=
torch
.
long
,
device
=
torch_device
)
inputs_dict
[
"next_sentence_label"
]
=
torch
.
zeros
(
self
.
model_tester
.
batch_size
,
dtype
=
torch
.
long
,
device
=
torch_device
)
return
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
MobileBertModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
MobileBertConfig
,
hidden_size
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_mobilebert_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_mobilebert_model
(
*
config_and_inputs
)
def
test_for_masked_lm
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_mobilebert_for_masked_lm
(
*
config_and_inputs
)
def
test_for_multiple_choice
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_mobilebert_for_multiple_choice
(
*
config_and_inputs
)
def
test_for_next_sequence_prediction
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_mobilebert_for_next_sequence_prediction
(
*
config_and_inputs
)
def
test_for_pretraining
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_mobilebert_for_pretraining
(
*
config_and_inputs
)
def
test_for_question_answering
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_mobilebert_for_question_answering
(
*
config_and_inputs
)
def
test_for_sequence_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_mobilebert_for_sequence_classification
(
*
config_and_inputs
)
def
test_for_token_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_mobilebert_for_token_classification
(
*
config_and_inputs
)
def
_long_tensor
(
tok_lst
):
return
torch
.
tensor
(
tok_lst
,
dtype
=
torch
.
long
,
device
=
torch_device
,
)
TOLERANCE
=
1e-3
@require_torch
@require_sentencepiece
@require_tokenizers
class
MobileBertModelIntegrationTests
(
unittest
.
TestCase
):
@slow
def
test_inference_no_head
(
self
):
model
=
MobileBertModel
.
from_pretrained
(
"google/mobilebert-uncased"
)
.
to
(
torch_device
)
input_ids
=
_long_tensor
([[
101
,
7110
,
1005
,
1056
,
2023
,
11333
,
17413
,
1029
,
102
]])
with
torch
.
no_grad
():
output
=
model
(
input_ids
)[
0
]
expected_shape
=
torch
.
Size
((
1
,
9
,
512
))
self
.
assertEqual
(
output
.
shape
,
expected_shape
)
expected_slice
=
torch
.
tensor
(
[
[
[
-
2.4736526e07
,
8.2691656e04
,
1.6521838e05
],
[
-
5.7541704e-01
,
3.9056022e00
,
4.4011507e00
],
[
2.6047359e00
,
1.5677652e00
,
-
1.7324188e-01
],
]
],
device
=
torch_device
,
)
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
lower_bound
=
torch
.
all
((
expected_slice
/
output
[
...
,
:
3
,
:
3
])
>=
1
-
TOLERANCE
)
upper_bound
=
torch
.
all
((
expected_slice
/
output
[
...
,
:
3
,
:
3
])
<=
1
+
TOLERANCE
)
self
.
assertTrue
(
lower_bound
and
upper_bound
)
Event Timeline
Log In to Comment