Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120750069
test_modeling_mt5.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 6, 18:45
Size
2 KB
Mime Type
text/x-python
Expires
Tue, Jul 8, 18:45 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27202893
Attached To
R11484 ADDI
test_modeling_mt5.py
View Options
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
transformers
import
is_torch_available
from
transformers.testing_utils
import
require_sentencepiece
,
require_tokenizers
,
require_torch
,
slow
,
torch_device
if
is_torch_available
():
from
transformers
import
AutoModelForSeq2SeqLM
,
AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class
MT5IntegrationTest
(
unittest
.
TestCase
):
@slow
def
test_small_integration_test
(
self
):
"""
For comparision run:
>>> import t5 # pip install t5==0.7.1
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
>>> path_to_mtf_small_mt5_checkpoint = '<fill_in>'
>>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None)
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path)
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model
=
AutoModelForSeq2SeqLM
.
from_pretrained
(
"google/mt5-small"
,
return_dict
=
True
)
.
to
(
torch_device
)
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"google/mt5-small"
)
input_ids
=
tokenizer
(
"Hello there"
,
return_tensors
=
"pt"
)
.
input_ids
labels
=
tokenizer
(
"Hi I am"
,
return_tensors
=
"pt"
)
.
input_ids
loss
=
model
(
input_ids
.
to
(
torch_device
),
labels
=
labels
.
to
(
torch_device
))
.
loss
mtf_score
=
-
(
labels
.
shape
[
-
1
]
*
loss
.
item
())
EXPECTED_SCORE
=
-
84.9127
self
.
assertTrue
(
abs
(
mtf_score
-
EXPECTED_SCORE
)
<
1e-4
)
Event Timeline
Log In to Comment