Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120763694
test_modeling_openai.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 6, 21:22
Size
9 KB
Mime Type
text/x-python
Expires
Tue, Jul 8, 21:22 (2 d)
Engine
blob
Format
Raw Data
Handle
27206137
Attached To
R11484 ADDI
test_modeling_openai.py
View Options
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
transformers
import
is_torch_available
from
transformers.testing_utils
import
require_torch
,
slow
,
torch_device
from
.test_configuration_common
import
ConfigTester
from
.test_generation_utils
import
GenerationTesterMixin
from
.test_modeling_common
import
ModelTesterMixin
,
ids_tensor
if
is_torch_available
():
import
torch
from
transformers
import
(
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST
,
OpenAIGPTConfig
,
OpenAIGPTDoubleHeadsModel
,
OpenAIGPTForSequenceClassification
,
OpenAIGPTLMHeadModel
,
OpenAIGPTModel
,
)
class
OpenAIGPTModelTester
:
def
__init__
(
self
,
parent
,
):
self
.
parent
=
parent
self
.
batch_size
=
13
self
.
seq_length
=
7
self
.
is_training
=
True
self
.
use_token_type_ids
=
True
self
.
use_labels
=
True
self
.
vocab_size
=
99
self
.
hidden_size
=
32
self
.
num_hidden_layers
=
5
self
.
num_attention_heads
=
4
self
.
intermediate_size
=
37
self
.
hidden_act
=
"gelu"
self
.
hidden_dropout_prob
=
0.1
self
.
attention_probs_dropout_prob
=
0.1
self
.
max_position_embeddings
=
512
self
.
type_vocab_size
=
16
self
.
type_sequence_label_size
=
2
self
.
initializer_range
=
0.02
self
.
num_labels
=
3
self
.
num_choices
=
4
self
.
scope
=
None
self
.
pad_token_id
=
self
.
vocab_size
-
1
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
OpenAIGPTConfig
(
vocab_size
=
self
.
vocab_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_head
=
self
.
num_attention_heads
,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions
=
self
.
max_position_embeddings
,
n_ctx
=
self
.
max_position_embeddings
,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
pad_token_id
=
self
.
pad_token_id
,
)
head_mask
=
ids_tensor
([
self
.
num_hidden_layers
,
self
.
num_attention_heads
],
2
)
return
(
config
,
input_ids
,
head_mask
,
token_type_ids
,
sequence_labels
,
token_labels
,
choice_labels
,
)
def
create_and_check_openai_gpt_model
(
self
,
config
,
input_ids
,
head_mask
,
token_type_ids
,
*
args
):
model
=
OpenAIGPTModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
head_mask
=
head_mask
)
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
)
result
=
model
(
input_ids
)
self
.
parent
.
assertEqual
(
result
.
last_hidden_state
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
))
def
create_and_check_lm_head_model
(
self
,
config
,
input_ids
,
head_mask
,
token_type_ids
,
*
args
):
model
=
OpenAIGPTLMHeadModel
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
input_ids
)
self
.
parent
.
assertEqual
(
result
.
loss
.
shape
,
())
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
))
def
create_and_check_double_lm_head_model
(
self
,
config
,
input_ids
,
head_mask
,
token_type_ids
,
*
args
):
model
=
OpenAIGPTDoubleHeadsModel
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
input_ids
)
self
.
parent
.
assertEqual
(
result
.
loss
.
shape
,
())
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
))
def
create_and_check_openai_gpt_for_sequence_classification
(
self
,
config
,
input_ids
,
head_mask
,
token_type_ids
,
*
args
):
config
.
num_labels
=
self
.
num_labels
model
=
OpenAIGPTForSequenceClassification
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
# print(config.num_labels, sequence_labels.size())
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
result
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
sequence_labels
)
self
.
parent
.
assertEqual
(
result
.
logits
.
shape
,
(
self
.
batch_size
,
self
.
num_labels
))
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
head_mask
,
token_type_ids
,
sequence_labels
,
token_labels
,
choice_labels
,
)
=
config_and_inputs
inputs_dict
=
{
"input_ids"
:
input_ids
,
"token_type_ids"
:
token_type_ids
,
"head_mask"
:
head_mask
,
}
return
config
,
inputs_dict
@require_torch
class
OpenAIGPTModelTest
(
ModelTesterMixin
,
GenerationTesterMixin
,
unittest
.
TestCase
):
all_model_classes
=
(
(
OpenAIGPTModel
,
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
,
OpenAIGPTForSequenceClassification
)
if
is_torch_available
()
else
()
)
all_generative_model_classes
=
(
(
OpenAIGPTLMHeadModel
,)
if
is_torch_available
()
else
()
)
# TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
# special case for DoubleHeads model
def
_prepare_for_class
(
self
,
inputs_dict
,
model_class
,
return_labels
=
False
):
inputs_dict
=
super
()
.
_prepare_for_class
(
inputs_dict
,
model_class
,
return_labels
=
return_labels
)
if
return_labels
:
if
model_class
.
__name__
==
"OpenAIGPTDoubleHeadsModel"
:
inputs_dict
[
"labels"
]
=
torch
.
zeros
(
(
self
.
model_tester
.
batch_size
,
self
.
model_tester
.
num_choices
,
self
.
model_tester
.
seq_length
),
dtype
=
torch
.
long
,
device
=
torch_device
,
)
inputs_dict
[
"input_ids"
]
=
inputs_dict
[
"labels"
]
inputs_dict
[
"token_type_ids"
]
=
inputs_dict
[
"labels"
]
inputs_dict
[
"mc_token_ids"
]
=
torch
.
zeros
(
(
self
.
model_tester
.
batch_size
,
self
.
model_tester
.
num_choices
),
dtype
=
torch
.
long
,
device
=
torch_device
,
)
inputs_dict
[
"mc_labels"
]
=
torch
.
zeros
(
self
.
model_tester
.
batch_size
,
dtype
=
torch
.
long
,
device
=
torch_device
)
return
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
OpenAIGPTModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
OpenAIGPTConfig
,
n_embd
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_openai_gpt_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_openai_gpt_model
(
*
config_and_inputs
)
def
test_openai_gpt_lm_head_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_lm_head_model
(
*
config_and_inputs
)
def
test_openai_gpt_double_lm_head_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_double_lm_head_model
(
*
config_and_inputs
)
def
test_openai_gpt_classification_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_openai_gpt_for_sequence_classification
(
*
config_and_inputs
)
@slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
model
=
OpenAIGPTModel
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
@require_torch
class
OPENAIGPTModelLanguageGenerationTest
(
unittest
.
TestCase
):
@slow
def
test_lm_generate_openai_gpt
(
self
):
model
=
OpenAIGPTLMHeadModel
.
from_pretrained
(
"openai-gpt"
)
model
.
to
(
torch_device
)
input_ids
=
torch
.
tensor
([[
481
,
4735
,
544
]],
dtype
=
torch
.
long
,
device
=
torch_device
)
# the president is
expected_output_ids
=
[
481
,
4735
,
544
,
246
,
963
,
870
,
762
,
239
,
244
,
40477
,
244
,
249
,
719
,
881
,
487
,
544
,
240
,
244
,
603
,
481
,
]
# the president is a very good man. " \n " i\'m sure he is, " said the
output_ids
=
model
.
generate
(
input_ids
,
do_sample
=
False
)
self
.
assertListEqual
(
output_ids
[
0
]
.
tolist
(),
expected_output_ids
)
Event Timeline
Log In to Comment