Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F100165200
Classifier.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Jan 28, 16:51
Size
2 KB
Mime Type
text/x-python
Expires
Thu, Jan 30, 16:51 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
23914162
Attached To
R11789 DED Contrastive Learning
Classifier.py
View Options
import
numpy
as
np
import
pandas
as
pd
import
matplotlib.pyplot
as
plt
from
sklearn.ensemble
import
RandomForestClassifier
from
sklearn.metrics
import
confusion_matrix
from
sklearn.metrics
import
classification_report
,
confusion_matrix
import
itertools
import
os
from
sklearn
import
metrics
import
pydot
import
collections
import
pydotplus
import
os
import
pydotplus
from
sklearn.metrics
import
plot_confusion_matrix
from
sklearn.model_selection
import
RandomizedSearchCV
from
sklearn.feature_selection
import
SelectFromModel
import
joblib
from
sklearn.model_selection
import
cross_val_score
from
IPython.display
import
Image
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.model_selection
import
train_test_split
# implementing train-test-split
from
sklearn.metrics
import
classification_report
,
confusion_matrix
from
sklearn.neural_network
import
MLPClassifier
from
sklearn.decomposition
import
PCA
from
sklearn.model_selection
import
train_test_split
from
sklearn.linear_model
import
LogisticRegression
from
Plots
import
*
#%%
def
LR
(
X_train
,
X_test
,
y_train
,
y_test
):
model
=
LogisticRegression
(
max_iter
=
1000
,
random_state
=
123
)
model
.
fit
(
X_train
,
y_train
)
predictions
=
model
.
predict
(
X_test
)
print
(
"LogisticRegression Accuracy:"
,
metrics
.
accuracy_score
(
y_test
,
predictions
))
print
(
classification_report
(
y_test
,
predictions
))
print
(
confusion_matrix
(
y_test
,
predictions
))
graph_name1
=
'LR'
+
'_without normalization w/o Opt'
graph_name2
=
'Logistic Regression'
graph_1
=
'LR'
+
'_Confusion_Matrix'
+
'_'
+
'No_Opt'
+
'.png'
graph_2
=
'LR'
+
'_Confusion_Matrix'
+
'_'
+
'Opt'
+
'.png'
titles_options
=
[(
graph_name1
,
None
,
graph_1
),
(
graph_name2
,
'true'
,
graph_2
)]
for
title
,
normalize
,
graphname
in
titles_options
:
plt
.
figure
(
figsize
=
(
20
,
10
),
dpi
=
400
)
disp
=
plot_confusion_matrix
(
model
,
X_test
,
y_test
,
display_labels
=
[
'P1'
,
'P2'
,
'P3'
,
'P4'
,
'P5'
,
'P6'
],
cmap
=
plt
.
cm
.
RdPu
,
xticks_rotation
=
'vertical'
,
normalize
=
normalize
)
plt
.
title
(
title
,
size
=
12
)
plt
.
savefig
(
graphname
,
bbox_inches
=
'tight'
,
dpi
=
400
)
savemodel
=
'LR'
+
'_model'
+
'.sav'
joblib
.
dump
(
model
,
savemodel
)
#%%
train_embeddings
=
'train_embeddings'
+
'_'
+
'.npy'
train_labelsname
=
'train_labels'
+
'_'
+
'.npy'
test_embeddings
=
'test_embeddings'
+
'_'
+
'.npy'
test_labelsname
=
'test_labels'
+
'_'
+
'.npy'
X_train
=
np
.
load
(
train_embeddings
)
.
astype
(
np
.
float64
)
y_train
=
np
.
load
(
train_labelsname
)
.
astype
(
np
.
float64
)
y_train
=
Dataframe_Manipulation_Classifier
(
y_train
)
X_test
=
np
.
load
(
test_embeddings
)
.
astype
(
np
.
float64
)
y_test
=
np
.
load
(
test_labelsname
)
.
astype
(
np
.
float64
)
y_test
=
Dataframe_Manipulation_Classifier
(
y_test
)
#%%
LR
(
X_train
,
X_test
,
y_train
,
y_test
)
Event Timeline
Log In to Comment