Page MenuHomec4science

Main_Siamese.py
No OneTemporary

File Metadata

Created
Wed, Jan 15, 06:41

Main_Siamese.py

#https://github.com/adambielski/siamese-triplet
from torchvision.datasets import MNIST
from torchvision import transforms
import torch
from torch.optim import lr_scheduler
import torch.optim as optim
from torch.autograd import Variable
from trainer import fit
import numpy as np
cuda = torch.cuda.is_available()
print(torch.cuda.is_available())
from os import walk
import os
import matplotlib
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torchvision
from torchvision import datasets
from torch.utils.data import Dataset, DataLoader, random_split
from torch.optim.lr_scheduler import StepLR
from datasets import SiameseMNIST
from datasets import SiamesePlot
from matplotlib import animation
from Plots import *
#%%
#%%
# setting the root directories and categories of the images
#%% Folder pointing to the data
# Data--> https://polybox.ethz.ch/index.php/f/2870424101
root_dir = '../Data/' #place in a folder
traindir = root_dir + 'train/'
testdir = root_dir + 'test/'
anchordir = root_dir + 'Anchor/'
semisuperviseddir = root_dir + 'semisupervised_test/'
categories = [[folder, os.listdir(root_dir + folder)] for folder in os.listdir(root_dir) if not folder.startswith('.') ]
mnist_classes = ['0', '1', '2']
#%%
# Datasize preparation
# Set up data loaders
transformations = transforms.Compose([
torchvision.transforms.Resize((480,320)),
transforms.ToTensor()])
train_loader_folder = datasets.ImageFolder(root=traindir, transform=transformations)
test_loader_folder = datasets.ImageFolder(root=testdir, transform=transformations)
#%%
batch_size = 100
kwargs = {'num_workers': 0, 'pin_memory': True} if cuda else {}
trainloader = torch.utils.data.DataLoader(train_loader_folder, batch_size=batch_size, shuffle=True, **kwargs)
testloader = torch.utils.data.DataLoader(test_loader_folder, batch_size=batch_size, shuffle=True, **kwargs)
dataSize = len(trainloader.dataset) # self-defined dataset size
TRAIN_PCT = 0.9 # percentage of entire dataset for training
train_size = int(dataSize * TRAIN_PCT)
val_size = dataSize - train_size
siamese_train_dataset = SiameseMNIST(categories, root_dir, dataSize, transformations) # Returns pairs of images and target same/different
train_set, val_set = random_split(siamese_train_dataset, [train_size, val_size])
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=False, **kwargs)
#%%
# Setting up the network and training parameters
from networks import EmbeddingNet, SiameseNet
from losses import ContrastiveLoss
margin = 1.
embedding_net = EmbeddingNet(dropout=0.1)
model = SiameseNet(embedding_net)
if cuda:
model.cuda()
loss_fn = ContrastiveLoss(margin)
lr = 1e-3
# optimizer = optim.Adam(model.parameters(), lr=lr)
# scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1)
optimizer = torch.optim.SGD(model.parameters(),lr=0.0005,momentum=0.9)
scheduler = StepLR(optimizer, step_size = 200, gamma= 0.25 )
n_epochs = 200
log_interval = 250
#%%
#Training of the Network
train_losses,val_losses=fit(train_loader, test_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval)
train_plot = 'train_losses'+'_'+ '.npy'
val_plot = 'val_losses'+'_'+'.npy'
np.save(train_plot,train_losses, allow_pickle=True)
np.save(val_plot,val_losses, allow_pickle=True)
#%%
siamese_train = SiamesePlot(categories, root_dir, dataSize, transformations) # Returns pairs of images and target same/different
batch_size = 256
kwargs = {'num_workers': 0, 'pin_memory': True} if cuda else {}
train_loader_1 = torch.utils.data.DataLoader(siamese_train, batch_size=batch_size, shuffle=True, **kwargs)
for img1, img2, label in train_loader_1:
print()
if label[0] == 1.0:
plt.subplot(1,2,1)
plt.imshow(np.transpose(img1[0][0]))
plt.subplot(1,2,2)
plt.imshow(np.transpose(img2[0][0]))
plt.savefig('Same.png', dpi=600,bbox_inches='tight')
plt.show()
break
for img1, img2, label in train_loader_1:
print()
if label[0] == 0.0:
# print(img1[0])
plt.subplot(1,2,1)
plt.imshow(np.transpose(img1[0][0]))
plt.subplot(1,2,2)
plt.imshow(np.transpose(img2[0][0]))
plt.savefig('Different.png', dpi=600,bbox_inches='tight')
plt.show()
break
#%%
plt.xlabel('Epoch')
plt.ylabel('Loss values')
plt.plot(train_losses, c='b', label='Training Loss',linewidth =2.0)
# plt.plot(val_losses, label="Validation Loss",linewidth =2.0)
plt.legend( loc='upper right')
plt.savefig('Siamese_Loss_Siamese.png', dpi=600,bbox_inches='tight')
plt.show()
#%%
marker= ["d",">","o"]
color = [ 'purple', 'red', 'cyan']
mnist_classes = ['P6', 'P2', 'P4']
graph_name_2D='Training_Feature_2D' +'_'+'.png'
graph_title = "Feature space distribution"
def plot_embeddings(embeddings, targets, xlim=None, ylim=None):
plt.figure(figsize=(7,5))
j=0
for i in range(len(train_loader_folder.classes)):
print(i)
inds = np.where(targets==i)[0]
plt.scatter(embeddings[inds,0], embeddings[inds,1], alpha=0.7, color=color[j],marker=marker[j],s=100)
j=j+1
if xlim:
plt.xlim(xlim[0], xlim[1])
if ylim:
plt.ylim(ylim[0], ylim[1])
plt.legend(mnist_classes,bbox_to_anchor=(1.32, 1.05))
plt.xlabel ('Weights_1', labelpad=10)
plt.ylabel ('Weights_2', labelpad=10)
plt.title(str(graph_title),fontsize = 15)
plt.savefig(graph_name_2D, bbox_inches='tight',dpi=600)
plt.show()
def extract_embeddings(dataloader, model):
with torch.no_grad():
model.eval()
embeddings = np.zeros((len(dataloader.dataset), 4))
labels = np.zeros(len(dataloader.dataset))
k = 0
for images, target in dataloader:
images1 = images
target=target
if cuda:
images = images.cuda()
embeddings[k:k+len(images)] = model.get_embedding(images).data.cpu().numpy()
labels[k:k+len(images)] = target.numpy()
k += len(images)
return embeddings, labels
PATH = './Contrastive.pth'
torch.save(model.state_dict(), PATH)
torch.save(model, PATH)
#%%
train_embeddings_baseline, train_labels_baseline = extract_embeddings(trainloader, model)
train_embeddings_baseline=train_embeddings_baseline.astype(np.float64)
train_labels_baseline=train_labels_baseline.astype(np.float64)
train_embeddings = 'train_embeddings'+'_'+ '.npy'
train_labelsname = 'train_labels'+'_'+'.npy'
np.save(train_embeddings,train_embeddings_baseline, allow_pickle=True)
np.save(train_labelsname,train_labels_baseline, allow_pickle=True)
plot_embeddings(train_embeddings_baseline, train_labels_baseline)
test_embeddings_baseline, test_labels_baseline = extract_embeddings(testloader, model)
test_embeddings_baseline=test_embeddings_baseline.astype(np.float64)
test_labels_baseline=test_labels_baseline.astype(np.float64)
test_embeddings = 'test_embeddings'+'_'+ '.npy'
test_labelsname = 'test_labels'+'_'+'.npy'
np.save(test_embeddings,test_embeddings_baseline, allow_pickle=True)
np.save(test_labelsname,test_labels_baseline, allow_pickle=True)
#%%
graph_name='Training_Feature' +'_'+'.png'
ax,fig=Three_embeddings(train_embeddings_baseline, train_labels_baseline,graph_name,ang=45)
gif1_name= str('Training_Feature')+'.gif'
#%%
def rotate(angle):
ax.view_init(azim=angle)
angle = 3
ani = animation.FuncAnimation(fig, rotate, frames=np.arange(0, 360, angle), interval=50)
ani.save(gif1_name, writer=animation.PillowWriter(fps=20))
#%%
Anchor_loader_folder = datasets.ImageFolder(root=anchordir, transform=transformations)
batch_size = 1
kwargs = {'num_workers': 0, 'pin_memory': True} if cuda else {}
Anchor_loader = torch.utils.data.DataLoader(Anchor_loader_folder, batch_size=batch_size, shuffle=True, **kwargs)
Anchor_loader = iter(Anchor_loader)
Anchor,_= next(Anchor_loader)
Positive_loader_folder = datasets.ImageFolder(root=semisuperviseddir, transform=transformations)
batch_size = 1
kwargs = {'num_workers': 0, 'pin_memory': True} if cuda else {}
Positive_loader = torch.utils.data.DataLoader(Positive_loader_folder, batch_size=batch_size, shuffle=True, **kwargs)
#%%
import torch.nn.functional as F
Distance = []
target =[]
counter=0
for images, label in Positive_loader:
counter=counter+1
# print(counter)
# print(label)
if cuda:
images = images.cuda()
Anchor = Anchor.cuda()
output1,output2 = model.get_embedding(Anchor),model.get_embedding(images)
euclidean_distance = F.pairwise_distance(output1, output2)
# print(euclidean_distance)
pair=euclidean_distance.detach().cpu().numpy()
label=label.detach().cpu().numpy()
Distance.append(pair)
target.append(label)
Distance = np.asarray(Distance)
target = np.asarray(target)
dataset=Dataframe_Manipulation(Distance,target)
Distance_distribution = 'Distance_distribution'+'_'+'.npy'
np.save(Distance_distribution,dataset, allow_pickle=True)
#%%
class_2 = str("P2")
Threshold=Threshold_calculation(dataset,class_2)
P2=Semisupervised_prediction(dataset,class_2,Threshold,color='red')
print(Threshold)
plt.figure(figsize=(8, 6), dpi=800)
sns.distplot(P2, bins=50,rug_kws={"color": "w"}, kde=True,color="#f67203");
plt.axvline(x=Threshold, c='r', linestyle='--',linewidth=4)
plt.title(f'Threshold :{Threshold}')
plt.savefig('Construction_distribution.png',dpi=800)
plt.show()
plt.clf()
#%%
class_1 = str("P1")
P1=Semisupervised_prediction(dataset,class_1,Threshold,color='g')
#%%
class_3 = str("P3")
P3=Semisupervised_prediction(dataset,class_3,Threshold,color='b')
#%%
class_4= str("P4")
P4=Semisupervised_prediction(dataset,class_4,Threshold,color='cyan')
#%%
class_5= str("P5")
P5=Semisupervised_prediction(dataset,class_5,Threshold,color='orange')
#%%
class_6= str("P6")
P6=Semisupervised_prediction(dataset,class_6,Threshold,color='purple')
count_parameters(model)
#%%
df1,one=boxplotsupport(P1,'P1')
df2,two=boxplotsupport(P2,'P2')
df3,three=boxplotsupport(P3,'P3')
df4,four=boxplotsupport(P4,'P4')
df5,five=boxplotsupport(P5,'P5')
df6,six=boxplotsupport(P6,'P6')
categories=np.concatenate((df1,df2,df3,df4,df5,df6), axis=0)
classvalue=np.concatenate((one,two,three,four,five,six), axis=0)
categories = pd.DataFrame(categories)
classvalue = pd.DataFrame(classvalue)
boxplot_data = [classvalue, categories]
boxplot_data = pd.concat(boxplot_data,axis=1)
boxplot_data.columns = ['losses', 'classes']
plt.figure()
sns.boxplot(x = 'classes', y = 'losses', data = boxplot_data,linewidth=0.5,palette= [ 'g', 'r', 'blue', 'cyan','orange','purple'])
plt.savefig('losses_boxplot.png',bbox_inches='tight',pad_inches=0.1,dpi=800)
plt.show()

Event Timeline