Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F96402779
Main_Compute_Saliency.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Dec 26, 11:01
Size
2 KB
Mime Type
text/x-python
Expires
Sat, Dec 28, 11:01 (2 d)
Engine
blob
Format
Raw Data
Handle
23188324
Attached To
R12010 LPBF Variable Time-Scales
Main_Compute_Saliency.py
View Options
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 8 22:10:18 2020
---------------------------------------------------------------------
-- Author: Vigneashwara Pandiyan
---------------------------------------------------------------------
Main Utils file for saliency
"""
#%%
import
torch
from
torch
import
optim
,
cuda
import
torchvision.models
as
models
from
torchvision
import
datasets
import
torchvision
from
torch.optim.lr_scheduler
import
StepLR
from
torch.utils.data
import
Dataset
,
DataLoader
,
TensorDataset
torch
.
cuda
.
empty_cache
()
from
Utils
import
*
from
Network
import
*
from
Data_Manipulation
import
*
from
Saliency_Utils
import
*
#%%
device
=
torch
.
device
(
"cuda:0"
if
torch
.
cuda
.
is_available
()
else
"cpu"
)
print
(
device
)
PATH
=
'./CNN_LSTM_Multivariate'
+
'.pth'
net
=
torch
.
load
(
PATH
)
torch
.
backends
.
cudnn
.
enabled
=
False
net
.
to
(
device
)
#%% Testdataloader with batch size of 1
testset_2500
=
dataloading_funtion_saliency
(
'data'
,
2500
)
torch
.
save
(
testset_2500
,
'data/testset2500'
)
print
(
'done 2500'
)
testset_5000
=
dataloading_funtion_saliency
(
'data'
,
5000
)
torch
.
save
(
testset_5000
,
'data/testset5000'
)
print
(
'done 5000'
)
testset_7500
=
dataloading_funtion_saliency
(
'data'
,
7500
)
torch
.
save
(
testset_7500
,
'data/testset7500'
)
print
(
'done 7500'
)
testset_10000
=
dataloading_funtion_saliency
(
'data'
,
10000
)
torch
.
save
(
testset_10000
,
'data/testset10000'
)
print
(
'done 10000'
)
#%% Compute saliencies across windows
y_true2500
,
y_pred2500
,
saliencies2500
=
window_saliency_results
(
testset_2500
,
net
,
device
,
'2500'
)
y_true5000
,
y_pred5000
,
saliencies5000
=
window_saliency_results
(
testset_5000
,
net
,
device
,
'5000'
)
y_true7500
,
y_pred7500
,
saliencies7500
=
window_saliency_results
(
testset_7500
,
net
,
device
,
'7500'
)
y_true10000
,
y_pred10000
,
saliencies10000
=
window_saliency_results
(
testset_10000
,
net
,
device
,
'10000'
)
#%% Normalize across windows
testset_2500
=
torch
.
load
(
'data/testset2500'
)
testset_5000
=
torch
.
load
(
'data/testset5000'
)
testset_7500
=
torch
.
load
(
'data/testset7500'
)
testset_10000
=
torch
.
load
(
'data/testset10000'
)
saliencies2500
=
torch
.
cat
(
torch
.
load
(
'data/salienciesNorm2500'
),
0
)
.
cpu
()
saliencies5000
=
torch
.
cat
(
torch
.
load
(
'data/salienciesNorm5000'
),
0
)
.
cpu
()
saliencies7500
=
torch
.
cat
(
torch
.
load
(
'data/salienciesNorm7500'
),
0
)
.
cpu
()
saliencies10000
=
torch
.
cat
(
torch
.
load
(
'data/salienciesNorm10000'
),
0
)
.
cpu
()
#%%
saliencies2500PerCat
=
compute_normalize_window
(
saliencies2500
,
testset_2500
,
'data'
,
2500
)
saliencies5000PerCat
=
compute_normalize_window
(
saliencies5000
,
testset_5000
,
'data'
,
5000
)
saliencies7500PerCat
=
compute_normalize_window
(
saliencies7500
,
testset_7500
,
'data'
,
7500
)
saliencies1000PerCat
=
compute_normalize_window
(
saliencies10000
,
testset_10000
,
'data'
,
10000
)
distribution_plot
(
saliencies2500PerCat
,
"0.83"
)
distribution_plot
(
saliencies5000PerCat
,
"1.65"
)
distribution_plot
(
saliencies7500PerCat
,
"2.50"
)
distribution_plot
(
saliencies1000PerCat
,
"3.30"
)
Event Timeline
Log In to Comment