Page MenuHomec4science

quickstart.html
No OneTemporary

File Metadata

Created
Thu, Jul 10, 00:32

quickstart.html

<!DOCTYPE HTML>
<html>
<head>
<meta charset="UTF-8">
<title>Examples from the CVX Users' guide</title>
<link rel="canonical" href="http://cvxr.com/cvx/examples/html/quickstart.html">
<link rel="stylesheet" href="../examples.css" type="text/css">
</head>
<body>
<div id="header">
<h1>Examples from the CVX Users' guide</h1>
Jump to:&nbsp;&nbsp;&nbsp;&nbsp;
<a href="#source">Source code</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="#output">Text output</a>
&nbsp;&nbsp;&nbsp;&nbsp;
<a href="#plots">Plots</a>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="../index.html">Library index</a>
</div>
<div id="content">
<a id="source"></a>
<pre class="codeinput">
has_quadprog = exist( <span class="string">'quadprog'</span> );
has_quadprog = has_quadprog == 2 | has_quadprog == 3;
has_linprog = exist( <span class="string">'linprog'</span> );
has_linprog = has_linprog == 2 | has_linprog == 3;
rnstate = randn( <span class="string">'state'</span> ); randn( <span class="string">'state'</span>, 1 );
s_quiet = cvx_quiet(true);
s_pause = cvx_pause(false);
cvx_clear; echo <span class="string">on</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% SECTION 2.1: LEAST SQUARES %</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% Input data</span>
m = 16; n = 8;
A = randn(m,n);
b = randn(m,1);
<span class="comment">% Matlab version</span>
x_ls = A \ b;
<span class="comment">% cvx version</span>
cvx_begin
variable <span class="string">x(n)</span>
minimize( norm(A*x-b) )
cvx_end
echo <span class="string">off</span>
<span class="comment">% Compare</span>
disp( sprintf( <span class="string">'\nResults:\n--------\nnorm(A*x_ls-b): %6.4f\nnorm(A*x-b): %6.4f\ncvx_optval: %6.4f\ncvx_status: %s\n'</span>, norm(A*x_ls-b), norm(A*x-b), cvx_optval, cvx_status ) );
disp( <span class="string">'Verify that x_ls == x:'</span> );
disp( [ <span class="string">' x_ls = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x_ls ), <span class="string">']'</span> ] );
disp( [ <span class="string">' x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x ), <span class="string">']'</span> ] );
disp( <span class="string">'Residual vector:'</span> );
disp( [ <span class="string">' A*x-b = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, A*x-b ), <span class="string">']'</span> ] );
disp( <span class="string">' '</span> );
<span class="keyword">try</span> input( <span class="string">'Press Enter/Return for the next example...'</span> ); clc; <span class="keyword">catch</span>, <span class="keyword">end</span>
echo <span class="string">on</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% SECTION 2.2: BOUND-CONSTRAINED LEAST SQUARES %</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% More input data</span>
bnds = randn(n,2);
l = min( bnds, [] ,2 );
u = max( bnds, [], 2 );
<span class="keyword">if</span> has_quadprog,
<span class="comment">% Quadprog version</span>
x_qp = quadprog( 2*A'*A, -2*A'*b, [], [], [], [], l, u );
<span class="keyword">else</span>
<span class="comment">% quadprog not present on this system.</span>
<span class="keyword">end</span>
<span class="comment">% cvx version</span>
cvx_begin
variable <span class="string">x(n)</span>
minimize( norm(A*x-b) )
subject <span class="string">to</span>
l &lt;= x &lt;= u
cvx_end
echo <span class="string">off</span>
<span class="comment">% Compare</span>
<span class="keyword">if</span> has_quadprog,
disp( sprintf( <span class="string">'\nResults:\n--------\nnorm(A*x_qp-b): %6.4f\nnorm(A*x-b): %6.4f\ncvx_optval: %6.4f\ncvx_status: %s\n'</span>, norm(A*x_qp-b), norm(A*x-b), cvx_optval, cvx_status ) );
disp( <span class="string">'Verify that l &lt;= x_qp == x &lt;= u:'</span> );
disp( [ <span class="string">' l = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, l ), <span class="string">']'</span> ] );
disp( [ <span class="string">' x_qp = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x_qp ), <span class="string">']'</span> ] );
disp( [ <span class="string">' x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x ), <span class="string">']'</span> ] );
disp( [ <span class="string">' u = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, u ), <span class="string">']'</span> ] );
<span class="keyword">else</span>
disp( sprintf( <span class="string">'\nResults:\n--------\nnorm(A*x-b): %6.4f\ncvx_optval: %6.4f\ncvx_status: %s\n'</span>, norm(A*x-b), cvx_optval, cvx_status ) );
disp( <span class="string">'Verify that l &lt;= x &lt;= u:'</span> );
disp( [ <span class="string">' l = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, l ), <span class="string">']'</span> ] );
disp( [ <span class="string">' x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x ), <span class="string">']'</span> ] );
disp( [ <span class="string">' u = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, u ), <span class="string">']'</span> ] );
<span class="keyword">end</span>
disp( <span class="string">'Residual vector:'</span> );
disp( [ <span class="string">' A*x-b = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, A*x-b ), <span class="string">']'</span> ] );
disp( <span class="string">' '</span> );
<span class="keyword">try</span> input( <span class="string">'Press Enter/Return for the next example...'</span> ); clc; <span class="keyword">catch</span>, <span class="keyword">end</span>
echo <span class="string">on</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% SECTION 2.3: OTHER NORMS AND FUNCTIONS: INFINITY NORM %</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="keyword">if</span> has_linprog,
<span class="comment">% linprog version</span>
f = [ zeros(n,1); 1 ];
Ane = [ +A, -ones(m,1) ; <span class="keyword">...</span>
-A, -ones(m,1) ];
bne = [ +b; -b ];
xt = linprog(f,Ane,bne);
x_lp = xt(1:n,:);
<span class="keyword">else</span>
<span class="comment">% linprog not present on this system.</span>
<span class="keyword">end</span>
<span class="comment">% cvx version</span>
cvx_begin
variable <span class="string">x(n)</span>
minimize( norm(A*x-b,Inf) )
cvx_end
echo <span class="string">off</span>
<span class="comment">% Compare</span>
<span class="keyword">if</span> has_linprog,
disp( sprintf( <span class="string">'\nResults:\n--------\nnorm(A*x_lp-b,Inf): %6.4f\nnorm(A*x-b,Inf): %6.4f\ncvx_optval: %6.4f\ncvx_status: %s\n'</span>, norm(A*x_lp-b,Inf), norm(A*x-b,Inf), cvx_optval, cvx_status ) );
disp( <span class="string">'Verify that x_lp == x:'</span> );
disp( [ <span class="string">' x_lp = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x_lp ), <span class="string">']'</span> ] );
disp( [ <span class="string">' x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x ), <span class="string">']'</span> ] );
<span class="keyword">else</span>
disp( sprintf( <span class="string">'\nResults:\n--------\nnorm(A*x-b,Inf): %6.4f\ncvx_optval: %6.4f\ncvx_status: %s\n'</span>, norm(A*x-b,Inf), cvx_optval, cvx_status ) );
disp( <span class="string">'Optimal vector:'</span> );
disp( [ <span class="string">' x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x ), <span class="string">']'</span> ] );
<span class="keyword">end</span>
disp( sprintf( <span class="string">'Residual vector; verify that the peaks match the objective (%6.4f):'</span>, cvx_optval ) );
disp( [ <span class="string">' A*x-b = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, A*x-b ), <span class="string">']'</span> ] );
disp( <span class="string">' '</span> );
<span class="keyword">try</span> input( <span class="string">'Press Enter/Return for the next example...'</span> ); clc; <span class="keyword">catch</span>, <span class="keyword">end</span>
echo <span class="string">on</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% SECTION 2.3: OTHER NORMS AND FUNCTIONS: ONE NORM %</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="keyword">if</span> has_linprog,
<span class="comment">% Matlab version</span>
f = [ zeros(n,1); ones(m,1); ones(m,1) ];
Aeq = [ A, -eye(m), +eye(m) ];
lb = [ -Inf*ones(n,1); zeros(m,1); zeros(m,1) ];
xzz = linprog(f,[],[], Aeq,b,lb,[]);
x_lp = xzz(1:n,:) - xzz(n+1:2*n,:);
<span class="keyword">else</span>
<span class="comment">% linprog not present on this system</span>
<span class="keyword">end</span>
<span class="comment">% cvx version</span>
cvx_begin
variable <span class="string">x(n)</span>
minimize( norm(A*x-b,1) )
cvx_end
echo <span class="string">off</span>
<span class="comment">% Compare</span>
<span class="keyword">if</span> has_linprog,
disp( sprintf( <span class="string">'\nResults:\n--------\nnorm(A*x_lp-b,1): %6.4f\nnorm(A*x-b,1): %6.4f\ncvx_optval: %6.4f\ncvx_status: %s\n'</span>, norm(A*x_lp-b,1), norm(A*x-b,1), cvx_optval, cvx_status ) );
disp( <span class="string">'Verify that x_lp == x:'</span> );
disp( [ <span class="string">' x_lp = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x_lp ), <span class="string">']'</span> ] );
disp( [ <span class="string">' x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x ), <span class="string">']'</span> ] );
<span class="keyword">else</span>
disp( sprintf( <span class="string">'\nResults:\n--------\nnorm(A*x-b,1): %6.4f\ncvx_optval: %6.4f\ncvx_status: %s\n'</span>, norm(A*x-b,1), cvx_optval, cvx_status ) );
disp( <span class="string">'Optimal vector:'</span> );
disp( [ <span class="string">' x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x ), <span class="string">']'</span> ] );
<span class="keyword">end</span>
disp( <span class="string">'Residual vector; verify the presence of several zero residuals:'</span> );
disp( [ <span class="string">' A*x-b = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, A*x-b ), <span class="string">']'</span> ] );
disp( <span class="string">' '</span> );
<span class="keyword">try</span> input( <span class="string">'Press Enter/Return for the next example...'</span> ); clc; <span class="keyword">catch</span>, <span class="keyword">end</span>
echo <span class="string">on</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% SECTION 2.3: OTHER NORMS AND FUNCTIONS: LARGEST-K NORM %</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% cvx specification</span>
k = 5;
cvx_begin
variable <span class="string">x(n)</span>
minimize( norm_largest(A*x-b,k) )
cvx_end
echo <span class="string">off</span>
<span class="comment">% Compare</span>
temp = sort(abs(A*x-b));
disp( sprintf( <span class="string">'\nResults:\n--------\nnorm_largest(A*x-b,k): %6.4f\ncvx_optval: %6.4f\ncvx_status: %s\n'</span>, norm_largest(A*x-b,k), cvx_optval, cvx_status ) );
disp( <span class="string">'Optimal vector:'</span> );
disp( [ <span class="string">' x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x ), <span class="string">']'</span> ] );
disp( sprintf( <span class="string">'Residual vector; verify a tie for %d-th place (%7.4f):'</span>, k, temp(end-k+1) ) );
disp( [ <span class="string">' A*x-b = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, A*x-b ), <span class="string">']'</span> ] );
disp( <span class="string">' '</span> );
<span class="keyword">try</span> input( <span class="string">'Press Enter/Return for the next example...'</span> ); clc; <span class="keyword">catch</span>, <span class="keyword">end</span>
echo <span class="string">on</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% SECTION 2.3: OTHER NORMS AND FUNCTIONS: HUBER PENALTY %</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% cvx specification</span>
cvx_begin
variable <span class="string">x(n)</span>
minimize( sum(huber(A*x-b)) )
cvx_end
echo <span class="string">off</span>
<span class="comment">% Compare</span>
disp( sprintf( <span class="string">'\nResults:\n--------\nsum(huber(A*x-b)): %6.4f\ncvx_optval: %6.4f\ncvx_status: %s\n'</span>, sum(huber(A*x-b)), cvx_optval, cvx_status ) );
disp( <span class="string">'Optimal vector:'</span> );
disp( [ <span class="string">' x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x ), <span class="string">']'</span> ] );
disp( <span class="string">'Residual vector:'</span> );
disp( [ <span class="string">' A*x-b = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, A*x-b ), <span class="string">']'</span> ] );
disp( <span class="string">' '</span> );
<span class="keyword">try</span> input( <span class="string">'Press Enter/Return for the next example...'</span> ); clc; <span class="keyword">catch</span>, <span class="keyword">end</span>
echo <span class="string">on</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% SECTION 2.4: OTHER CONSTRAINTS %</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% More input data</span>
p = 4;
C = randn(p,n);
d = randn(p,1);
<span class="comment">% cvx specification</span>
cvx_begin
variable <span class="string">x(n)</span>;
minimize( norm(A*x-b) )
subject <span class="string">to</span>
C*x == d
norm(x,Inf) &lt;= 1
cvx_end
echo <span class="string">off</span>
<span class="comment">% Compare</span>
disp( sprintf( <span class="string">'\nResults:\n--------\nnorm(A*x-b): %6.4f\ncvx_optval: %6.4f\ncvx_status: %s\n'</span>, norm(A*x-b), cvx_optval, cvx_status ) );
disp( <span class="string">'Optimal vector:'</span> );
disp( [ <span class="string">' x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, x ), <span class="string">']'</span> ] );
disp( <span class="string">'Residual vector:'</span> );
disp( [ <span class="string">' A*x-b = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, A*x-b ), <span class="string">']'</span> ] );
disp( <span class="string">'Equality constraints:'</span> );
disp( [ <span class="string">' C*x = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, C*x ), <span class="string">']'</span> ] );
disp( [ <span class="string">' d = [ '</span>, sprintf( <span class="string">'%7.4f '</span>, d ), <span class="string">']'</span> ] );
<span class="keyword">try</span> input( <span class="string">'Press Enter/Return for the next example...'</span> ); clc; <span class="keyword">catch</span>, <span class="keyword">end</span>
echo <span class="string">on</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% SECTION 2.5: AN OPTIMAL TRADEOFF CURVE %</span>
<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>
<span class="comment">% The basic problem:</span>
<span class="comment">% cvx_begin</span>
<span class="comment">% variable x(n)</span>
<span class="comment">% minimize( norm(A*x-b)+gamma(k)*norm(x,1) )</span>
<span class="comment">% cvx_end</span>
echo <span class="string">off</span>
disp( <span class="string">' '</span> );
disp( <span class="string">'Generating tradeoff curve...'</span> );
cvx_pause(false);
gamma = logspace( -2, 2, 20 );
l2norm = zeros(size(gamma));
l1norm = zeros(size(gamma));
fprintf( 1, <span class="string">' gamma norm(x,1) norm(A*x-b)\n'</span> );
fprintf( 1, <span class="string">'---------------------------------------\n'</span> );
<span class="keyword">for</span> k = 1:length(gamma),
fprintf( 1, <span class="string">'%8.4e'</span>, gamma(k) );
cvx_begin
variable <span class="string">x(n)</span>
minimize( norm(A*x-b)+gamma(k)*norm(x,1) )
cvx_end
l1norm(k) = norm(x,1);
l2norm(k) = norm(A*x-b);
fprintf( 1, <span class="string">' %8.4e %8.4e\n'</span>, l1norm(k), l2norm(k) );
<span class="keyword">end</span>
plot( l1norm, l2norm );
xlabel( <span class="string">'norm(x,1)'</span> );
ylabel( <span class="string">'norm(A*x-b)'</span> );
grid
disp( <span class="string">'Done. (Check out the graph!)'</span> );
randn( <span class="string">'state'</span>, rnstate );
cvx_quiet(s_quiet);
cvx_pause(s_pause);
</pre>
<a id="output"></a>
<pre class="codeoutput">
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SECTION 2.1: LEAST SQUARES %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Input data
m = 16; n = 8;
A = randn(m,n);
b = randn(m,1);
% Matlab version
x_ls = A \ b;
% cvx version
cvx_begin
variable x(n)
minimize( norm(A*x-b) )
cvx_end
echo off
Results:
--------
norm(A*x_ls-b): 2.0354
norm(A*x-b): 2.0354
cvx_optval: 2.0354
cvx_status: Solved
Verify that x_ls == x:
x_ls = [ -0.2628 0.8828 -0.0734 -1.0844 0.3249 -0.3330 0.0603 0.3802 ]
x = [ -0.2628 0.8828 -0.0734 -1.0844 0.3249 -0.3330 0.0603 0.3802 ]
Residual vector:
A*x-b = [ -0.3262 -0.0070 -0.9543 0.2447 -0.6418 -0.3426 -0.1870 0.2960 0.6024 -0.0440 0.6238 -0.7399 0.0849 0.9323 0.4799 -0.0762 ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SECTION 2.2: BOUND-CONSTRAINED LEAST SQUARES %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% More input data
bnds = randn(n,2);
l = min( bnds, [] ,2 );
u = max( bnds, [], 2 );
if has_quadprog,
else
% quadprog not present on this system.
end
% cvx version
cvx_begin
variable x(n)
minimize( norm(A*x-b) )
subject to
l &lt;= x &lt;= u
cvx_end
echo off
Results:
--------
norm(A*x-b): 4.1334
cvx_optval: 4.1334
cvx_status: Solved
Verify that l &lt;= x &lt;= u:
l = [ -0.5618 0.2760 -0.2277 -0.0290 -0.9287 0.4520 0.1014 -0.3658 ]
x = [ -0.0910 0.2918 0.2746 -0.0290 0.0828 0.4520 0.1014 0.6919 ]
u = [ -0.0910 0.7395 0.9403 0.1842 0.0828 0.7450 2.4881 0.6919 ]
Residual vector:
A*x-b = [ -0.1209 0.2155 -1.0903 -0.1312 -2.0952 1.6798 0.3784 -0.5592 1.0411 0.6937 1.6036 -0.0045 0.9935 0.2156 1.2186 -1.2228 ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SECTION 2.3: OTHER NORMS AND FUNCTIONS: INFINITY NORM %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if has_linprog,
else
% linprog not present on this system.
end
% cvx version
cvx_begin
variable x(n)
minimize( norm(A*x-b,Inf) )
cvx_end
echo off
Results:
--------
norm(A*x-b,Inf): 0.7079
cvx_optval: 0.7079
cvx_status: Solved
Optimal vector:
x = [ -0.0944 0.8498 -0.1119 -1.1311 0.3804 -0.3017 0.2201 0.2488 ]
Residual vector; verify that the peaks match the objective (0.7079):
A*x-b = [ -0.0431 -0.0539 -0.7079 0.7079 -0.7079 -0.7079 -0.1800 0.5049 0.7079 -0.0040 0.7079 -0.7079 -0.1010 0.7079 0.7079 -0.2187 ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SECTION 2.3: OTHER NORMS AND FUNCTIONS: ONE NORM %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if has_linprog,
else
% linprog not present on this system
end
% cvx version
cvx_begin
variable x(n)
minimize( norm(A*x-b,1) )
cvx_end
echo off
Results:
--------
norm(A*x-b,1): 5.3359
cvx_optval: 5.3359
cvx_status: Solved
Optimal vector:
x = [ -0.3550 0.8934 -0.0375 -1.1827 0.1694 -0.3870 -0.2148 0.6712 ]
Residual vector; verify the presence of several zero residuals:
A*x-b = [ -0.7666 0.0129 -1.4977 0.0000 -0.5074 -0.0000 -0.0000 0.0357 0.0000 0.0000 0.0299 -1.0842 -0.0000 1.4013 0.0000 -0.0000 ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SECTION 2.3: OTHER NORMS AND FUNCTIONS: LARGEST-K NORM %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cvx specification
k = 5;
cvx_begin
variable x(n)
minimize( norm_largest(A*x-b,k) )
cvx_end
echo off
Results:
--------
norm_largest(A*x-b,k): 3.5394
cvx_optval: 3.5394
cvx_status: Solved
Optimal vector:
x = [ -0.0944 0.8498 -0.1119 -1.1311 0.3804 -0.3017 0.2201 0.2488 ]
Residual vector; verify a tie for 5-th place ( 0.7079):
A*x-b = [ -0.0431 -0.0539 -0.7079 0.7079 -0.7079 -0.7079 -0.1800 0.5049 0.7079 -0.0040 0.7079 -0.7079 -0.1010 0.7079 0.7079 -0.2187 ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SECTION 2.3: OTHER NORMS AND FUNCTIONS: HUBER PENALTY %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cvx specification
cvx_begin
variable x(n)
minimize( sum(huber(A*x-b)) )
cvx_end
echo off
Results:
--------
sum(huber(A*x-b)): 4.1428
cvx_optval: 4.1428
cvx_status: Solved
Optimal vector:
x = [ -0.2628 0.8828 -0.0734 -1.0844 0.3249 -0.3330 0.0603 0.3802 ]
Residual vector:
A*x-b = [ -0.3262 -0.0070 -0.9543 0.2447 -0.6418 -0.3426 -0.1870 0.2960 0.6024 -0.0440 0.6238 -0.7399 0.0849 0.9323 0.4799 -0.0762 ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SECTION 2.4: OTHER CONSTRAINTS %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% More input data
p = 4;
C = randn(p,n);
d = randn(p,1);
% cvx specification
cvx_begin
variable x(n);
minimize( norm(A*x-b) )
subject to
C*x == d
norm(x,Inf) &lt;= 1
cvx_end
echo off
Results:
--------
norm(A*x-b): 5.9545
cvx_optval: 5.9545
cvx_status: Solved
Optimal vector:
x = [ 0.1173 1.0000 0.0979 -0.1256 0.5255 0.7102 -0.0127 0.8397 ]
Residual vector:
A*x-b = [ -0.7438 0.0763 -2.0376 -1.3110 -2.3956 0.2175 -1.2595 -0.7583 1.6970 1.9857 0.8180 1.0527 2.5150 -1.2068 2.1631 -0.1360 ]
Equality constraints:
C*x = [ 1.0035 -2.6761 0.0168 -1.4432 ]
d = [ 1.0035 -2.6761 0.0168 -1.4432 ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SECTION 2.5: AN OPTIMAL TRADEOFF CURVE %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The basic problem:
% cvx_begin
% variable x(n)
% minimize( norm(A*x-b)+gamma(k)*norm(x,1) )
% cvx_end
echo off
Generating tradeoff curve...
gamma norm(x,1) norm(A*x-b)
---------------------------------------
1.0000e-02 3.3796e+00 2.0355e+00
1.6238e-02 3.3658e+00 2.0357e+00
2.6367e-02 3.3433e+00 2.0362e+00
4.2813e-02 3.3068e+00 2.0374e+00
6.9519e-02 3.2473e+00 2.0408e+00
1.1288e-01 3.1498e+00 2.0497e+00
1.8330e-01 2.9878e+00 2.0737e+00
2.9764e-01 2.7617e+00 2.1280e+00
4.8329e-01 2.3445e+00 2.2924e+00
7.8476e-01 1.4081e+00 2.8895e+00
1.2743e+00 3.7687e-01 3.9510e+00
2.0691e+00 1.0114e-08 4.4813e+00
3.3598e+00 5.3229e-09 4.4813e+00
5.4556e+00 1.9095e-09 4.4813e+00
8.8587e+00 5.4562e-10 4.4813e+00
1.4384e+01 2.6802e-10 4.4813e+00
2.3357e+01 3.7102e-10 4.4813e+00
3.7927e+01 1.0869e-10 4.4813e+00
6.1585e+01 2.5093e-11 4.4813e+00
1.0000e+02 2.8798e-11 4.4813e+00
Done. (Check out the graph!)
</pre>
<a id="plots"></a>
<div id="plotoutput">
<img src="quickstart__01.png" alt="">
</div>
</div>
</body>
</html>

Event Timeline