Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F121690120
auxgivens.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 13, 04:51
Size
7 KB
Mime Type
text/x-c
Expires
Tue, Jul 15, 04:51 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27361071
Attached To
R1252 EMPoWER
auxgivens.c
View Options
/*
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include "givens.h"
/* ************************************************************
PROCEDURE givensrot - apply sequence of givens rotations to
a vector.
INPUT
g - length n: each entry is a givens rotation [x, y;y,-x], x^2+y^2=1.
We apply first g[n-1] to z[n-1:n], up to g[0] to z[0:1].
n - order of g, i.e. number of givens rotations.
UPDATED
z - length n+1 vector, to be rotated n times.
************************************************************ */
void
givensrot
(
double
*
z
,
const
twodouble
*
g
,
const
mwIndex
n
)
{
twodouble
gi
;
double
z1
,
z2
;
mwIndex
i
;
z2
=
z
[
n
];
for
(
i
=
n
;
i
>
0
;
i
--
){
gi
=
g
[
i
-
1
];
z1
=
z
[
i
-
1
];
/* ------------------------------------------------------------
[z1NEW; [x, y; [z1;
z2NEW] := y, -x] * z2]
------------------------------------------------------------ */
z
[
i
]
=
gi
.
y
*
z1
-
gi
.
x
*
z2
;
/* z2NEW */
z2
=
gi
.
x
*
z1
+
gi
.
y
*
z2
;
/* z1NEW, is z2 in iter --i */
}
z
[
0
]
=
z2
;
}
/* ************************************************************
PROCEDURE prpigivensrot - apply sequence of givens rotations to
a vector. Complex case.
INPUT
g - length n: each entry is a givens rotation [conj(x), y;y,-x],
|x|^2+y^2=1. y is real.
We apply first g[n-1] to z[n-1:n], up to g[0] to z[0:1].
n - order of g, i.e. number of givens rotations.
UPDATED
z,zpi - length n+1 vector, to be rotated n times.
************************************************************ */
void
prpigivensrot
(
double
*
z
,
double
*
zpi
,
const
tridouble
*
g
,
const
mwIndex
n
)
{
tridouble
gi
;
double
z1
,
z2
,
z1im
,
z2im
;
mwIndex
i
;
z2
=
z
[
n
];
z2im
=
zpi
[
n
];
for
(
i
=
n
;
i
>
0
;
i
--
){
gi
=
g
[
i
-
1
];
z1
=
z
[
i
-
1
];
z1im
=
zpi
[
i
-
1
];
/* ------------------------------------------------------------
[z1NEW; [conj(x), y; [z1;
z2NEW] := y, -x] * z2]
------------------------------------------------------------ */
/* z2NEW = y*z1 - x*z2 , y is real. */
z
[
i
]
=
gi
.
y
*
z1
-
gi
.
x
*
z2
+
gi
.
xim
*
z2im
;
zpi
[
i
]
=
gi
.
y
*
z1im
-
gi
.
x
*
z2im
-
gi
.
xim
*
z2
;
/* z1NEW, is z2 in iter --i. z1NEW = conj(x)*z1 + y*z2, y is real. */
z2
=
gi
.
x
*
z1
+
gi
.
xim
*
z1im
+
gi
.
y
*
z2
;
z2im
=
gi
.
x
*
z1im
-
gi
.
xim
*
z1
+
gi
.
y
*
z2im
;
}
z
[
0
]
=
z2
;
zpi
[
0
]
=
z2im
;
}
/* ************************************************************
PROCEDURE givensrotuj - apply sequence of givens rotations to
a vector, whose last affected entry is now 0. Typical for
re-inserting columns in a U-factor. Same as "givensrot", except that
z[n]=0 by assumption on input.
INPUT
g - length n: each entry is a givens rotation [x, y;y,-x], x^2+y^2=1.
We apply first g[n-1] to z[n-1:n], up to g[0] to z[0:1].
n - order of g, i.e. number of givens rotations.
UPDATED
z - length n+1 vector, to be rotated n times. On input, z[n] = 0
by assumption (actual contents irrelevant).
************************************************************ */
void
givensrotuj
(
double
*
z
,
const
twodouble
*
g
,
const
mwIndex
n
)
{
twodouble
gi
;
double
z1
,
z2
;
mwIndex
i
;
if
(
n
<
1
)
return
;
/* ------------------------------------------------------------
[z2; [x, y; [z[n-1];
z[n]] := y, -x] * 0] = z[n-1] * [x;y]
------------------------------------------------------------ */
z2
=
z
[
n
-
1
];
z
[
n
]
=
z2
*
((
g
+
n
-
1
)
->
y
);
z2
*=
(
g
+
n
-
1
)
->
x
;
for
(
i
=
n
-
1
;
i
>
0
;
i
--
){
gi
=
g
[
i
-
1
];
z1
=
z
[
i
-
1
];
/* ------------------------------------------------------------
[z1NEW; [x, y; [z1;
z2NEW] := y, -x] * z2]
------------------------------------------------------------ */
z
[
i
]
=
gi
.
y
*
z1
-
gi
.
x
*
z2
;
/* z2NEW */
z2
=
gi
.
x
*
z1
+
gi
.
y
*
z2
;
/* z1NEW, is z2 in iter --i */
}
z
[
0
]
=
z2
;
}
/* ************************************************************
PROCEDURE prpigivensrotuj - apply sequence of givens rotations to
a vector, whose last affected entry is now 0, and the preceding
entry is real. On output, the last effected entry will be real.
Typical for re-inserting columns in a U-factor. Same as "givensrot",
except that z[n-1] is real and z[n]=0 by assumption on input.
INPUT
g - length n: each entry is a givens rotation [conj(x), y;y,-x],
|x|^2+y^2=1, y is real.
We apply first g[n-1] to z[n-1:n], up to g[0] to z[0:1].
n - order of g, i.e. number of givens rotations.
UPDATED
z - length n+1 vector, to be rotated n times. On input,
{zpi[n-1],z[n],zpi[n]} = 0 by assumption (actual contents irrelevant).
************************************************************ */
void
prpigivensrotuj
(
double
*
z
,
double
*
zpi
,
const
tridouble
*
g
,
const
mwIndex
n
)
{
tridouble
gi
;
double
z1
,
z2
,
z1im
,
z2im
;
mwIndex
i
;
if
(
n
<
1
)
return
;
/* ------------------------------------------------------------
[z2; [conj(x), y; [z[n-1];
z[n]] := y, -x] * 0] = z[n-1] * [conj(x);y],
where z[n-1] is real.
------------------------------------------------------------ */
z2
=
z
[
n
-
1
];
z
[
n
]
=
z2
*
((
g
+
n
-
1
)
->
y
);
z2im
=
-
z2
*
(
g
+
n
-
1
)
->
xim
;
/* z[n-1] * conj(x) */
z2
*=
(
g
+
n
-
1
)
->
x
;
for
(
i
=
n
-
1
;
i
>
0
;
i
--
){
gi
=
g
[
i
-
1
];
z1
=
z
[
i
-
1
];
z1im
=
zpi
[
i
-
1
];
/* ------------------------------------------------------------
[z1NEW; [conj(x), y; [z1;
z2NEW] := y, -x] * z2]
------------------------------------------------------------ */
/* z2NEW = y*z1 - x*z2 , y is real. */
z
[
i
]
=
gi
.
y
*
z1
-
gi
.
x
*
z2
+
gi
.
xim
*
z2im
;
zpi
[
i
]
=
gi
.
y
*
z1im
-
gi
.
x
*
z2im
-
gi
.
xim
*
z2
;
/* z1NEW, is z2 in iter --i. z1NEW = conj(x)*z1 + y*z2, y is real. */
z2
=
gi
.
x
*
z1
+
gi
.
xim
*
z1im
+
gi
.
y
*
z2
;
z2im
=
gi
.
x
*
z1im
-
gi
.
xim
*
z1
+
gi
.
y
*
z2im
;
}
z
[
0
]
=
z2
;
zpi
[
0
]
=
z2im
;
}
Event Timeline
Log In to Comment