Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F122104928
bwblkslv.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Jul 15, 19:36
Size
11 KB
Mime Type
text/x-c
Expires
Thu, Jul 17, 19:36 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27394363
Attached To
R1252 EMPoWER
bwblkslv.c
View Options
/*
y = bwblkslv(L,b, [y])
Given block sparse Cholesky structure L, as generated by
SPARCHOL, this solves the equation "L.L' * y(L.perm) = b",
i.e. y(L.perm) = L.L'\b. The diagonal of L.L is taken to
be all-1, i.e. it uses eye(n) + tril(L.L,-1).
CAUTION: If y and b are SPARSE, then L.perm is NOT used, i.e. y = L.L'\b.
If b is SPARSE, then the 3rd argument (y) must give the sparsity
structure of the output variable y. See symbbwslv.c
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include "mex.h"
#include "blksdp.h"
#include <string.h>
#define Y_OUT plhs[0]
#define L_IN prhs[0]
#define B_IN prhs[1]
#define MINNPARIN 2
#define Y_IN prhs[2]
#define NPARIN 3
/* ============================================================
BACKWARD SOLVE:
============================================================ */
/* ************************************************************
PROCEDURE bwsolve -- Solve y from L'*y = b, where
L is lower-triangular.
INPUT
Ljc, Lir, Lpr - sparse lower triangular matrix
xsuper - starting column in L for each (dense) supernode.
nsuper - number of super nodes
UPDATED
y - full xsuper[nsuper]-vector, yOUTPUT = L' \ yINPUT.
WORKING ARRAY
fwork - length max(collen[i] - superlen[i]) <= m-1, where
collen[i] := L.jc[xsuper[i]+1]-L.jc[xsuper[i]] and
superlen[i] := xsuper[i+1]-xsuper[i].
************************************************************ */
void bwsolve(double *y, const mwIndex *Ljc, const mwIndex *Lir, const double *Lpr,
const mwIndex *xsuper, const mwIndex nsuper, double *fwork)
{
mwIndex jsup,i,j,inz,k,jnnz;
double yj;
/* ------------------------------------------------------------
For each supernode jsup:
------------------------------------------------------------ */
j = xsuper[nsuper]; /* column after current snode (j=m)*/
for(jsup = nsuper; jsup > 0; jsup--){
i = j;
mxAssert(j == xsuper[jsup],"");
inz = Ljc[--j];
inz++; /* jump over diagonal entry */
if(j <= xsuper[jsup-1]){
/* ------------------------------------------------------------
If supernode is singleton j, then simply y[j] -= L(j+1:m,j)'*y(j+1:m)
------------------------------------------------------------ */
if(inz < Ljc[i]){
yj = Lpr[inz] * y[Lir[inz]];
for(++inz; inz < Ljc[i]; inz++)
yj += Lpr[inz] * y[Lir[inz]];
y[j] -= yj;
}
}
else{
/* ------------------------------------------------------------
For a "real" supernode: Let fwork = sparse(y(i:m)),
then let y[j] -= L(i:m,j)'*fwork for all j in supernode
------------------------------------------------------------ */
for(jnnz = 0; inz < Ljc[i]; inz++)
fwork[jnnz++] = y[Lir[inz]];
if(jnnz > 0)
while(i > xsuper[jsup-1]){
yj = realdot(Lpr+Ljc[i]-jnnz, fwork, jnnz);
mxAssert(i>0,"");
y[--i] -= yj;
}
k = 1;
do{
/* ------------------------------------------------------------
It remains to do a dense bwsolve on nodes j-1:-1:xsuper[jsup]
The equation L(:,j)'*yNEW = yOLD(j), yields
y(j) -= L(j+(1:k),j)'*y(j+(1:k)), k=1:i-xsuper[jsup]-1.
------------------------------------------------------------ */
mxAssert(j>0,"");
--j;
y[j] -= realdot(Lpr+Ljc[j]+1, y+j+1, k++);
} while(j > xsuper[jsup-1]);
}
}
}
/* ************************************************************
PROCEDURE selbwsolve -- Solve ynew from L'*y = yold, where
L is lower-triangular and y is SPARSE.
INPUT
Ljc, Lir, Lpr - sparse lower triangular matrix
xsuper - length nsuper+1, start of each (dense) supernode.
nsuper - number of super nodes
snode - length m array, mapping each node to the supernode containing it.
yir - length ynnz array, listing all possible nonzeros entries in y.
ynnz - number of nonzeros in y (from symbbwslv).
UPDATED
y - full vector, on input y = rhs, on output y = L'\rhs.
only the yir(0:ynnz-1) entries are used and defined.
************************************************************ */
void selbwsolve(double *y, const mwIndex *Ljc, const mwIndex *Lir, const double *Lpr,
const mwIndex *xsuper, const mwIndex nsuper,
const mwIndex *snode, const mwIndex *yir, const mwIndex ynnz)
{
mwIndex jsup,j,inz,jnz,nk, k;
double yj;
if(ynnz <= 0)
return;
/* ------------------------------------------------------------
Backward solve on each nonzero supernode snode[yir[jnz]] (=jsup-1).
------------------------------------------------------------ */
jnz = ynnz; /* point just beyond last nonzero (super)node in y */
while(jnz > 0){
j = yir[--jnz]; /* j is last subnode to be used */
jsup = snode[j];
nk = j - xsuper[jsup]; /* nk+1 = length supernode jsup in y */
jnz -= nk; /* point just beyond prev. nonzero supernode */
for(k = 0; k <= nk; k++, j--){
/* ------------------------------------------------------------
The equation L(:,j)'*yNEW = yOLD(j), yields
y(j) -= L(j+1:m,j)'*y.
------------------------------------------------------------ */
inz = Ljc[j];
inz++; /* jump over diagonal entry */
yj = realdot(Lpr+inz, y+j+1, k); /* super-nodal part */
for(inz += k; inz < Ljc[j+1]; inz++)
yj += Lpr[inz] * y[Lir[inz]]; /* sparse part */
y[j] -= yj;
}
}
}
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
y = bwblksolve(L,b, [y])
y(L.fullperm) = L.L' \ b
************************************************************ */
void mexFunction(const int nlhs, mxArray *plhs[],
const int nrhs, const mxArray *prhs[])
{
const mxArray *L_FIELD;
mwIndex m,n, j, k, nsuper, inz;
double *y, *fwork;
const double *permPr, *b, *xsuperPr;
const mwIndex *yjc, *yir, *bjc, *bir;
mwIndex *perm, *xsuper, *iwork, *snode;
jcir L;
char bissparse;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert(nrhs >= MINNPARIN, "fwblkslv requires more input arguments.");
mxAssert(nlhs == 1, "fwblkslv generates only 1 output argument.");
/* ------------------------------------------------------------
Disassemble block Cholesky structure L
------------------------------------------------------------ */
mxAssert(mxIsStruct(L_IN), "Parameter `L' should be a structure.");
L_FIELD = mxGetField(L_IN,(mwIndex)0,"perm"); /* L.perm */
mxAssert( L_FIELD != NULL, "Missing field L.perm.");
m = mxGetM(L_FIELD) * mxGetN(L_FIELD);
permPr = mxGetPr(L_FIELD);
L_FIELD = mxGetField(L_IN,(mwIndex)0,"L"); /* L.L */
mxAssert( L_FIELD != NULL, "Missing field L.L.");
mxAssert( m == mxGetM(L_FIELD) && m == mxGetN(L_FIELD), "Size L.L mismatch.");
mxAssert(mxIsSparse(L_FIELD), "L.L should be sparse.");
L.jc = mxGetJc(L_FIELD);
L.ir = mxGetIr(L_FIELD);
L.pr = mxGetPr(L_FIELD);
L_FIELD = mxGetField(L_IN,(mwIndex)0,"xsuper"); /* L.xsuper */
mxAssert( L_FIELD != NULL, "Missing field L.xsuper.");
nsuper = mxGetM(L_FIELD) * mxGetN(L_FIELD) - 1;
mxAssert( nsuper <= m, "Size L.xsuper mismatch.");
xsuperPr = mxGetPr(L_FIELD);
/* ------------------------------------------------------------
Get rhs matrix b.
If it is sparse, then we also need the sparsity structure of y.
------------------------------------------------------------ */
b = mxGetPr(B_IN);
mxAssert( mxGetM(B_IN) == m, "Size mismatch b.");
n = mxGetN(B_IN);
if( (bissparse = mxIsSparse(B_IN)) ){
bjc = mxGetJc(B_IN);
bir = mxGetIr(B_IN);
mxAssert(nrhs >= NPARIN, "bwblkslv requires more inputs in case of sparse b.");
mxAssert(mxGetM(Y_IN) == m && mxGetN(Y_IN) == n, "Size mismatch y.");
mxAssert(mxIsSparse(Y_IN), "y should be sparse.");
}
/* ------------------------------------------------------------
Allocate output y. If bissparse, then Y_IN gives the sparsity structure.
------------------------------------------------------------ */
if(!bissparse)
Y_OUT = mxCreateDoubleMatrix(m, n, mxREAL);
else{
yjc = mxGetJc(Y_IN);
yir = mxGetIr(Y_IN);
Y_OUT = mxCreateSparse(m,n, yjc[n],mxREAL);
memcpy(mxGetJc(Y_OUT), yjc, (n+1) * sizeof(mwIndex));
memcpy(mxGetIr(Y_OUT), yir, yjc[n] * sizeof(mwIndex));
}
y = mxGetPr(Y_OUT);
/* ------------------------------------------------------------
Allocate working arrays
------------------------------------------------------------ */
fwork = (double *) mxCalloc(m, sizeof(double));
iwork = (mwIndex *) mxCalloc(2*m+nsuper+1, sizeof(mwIndex));
perm = iwork; /* m */
xsuper = iwork + m; /*nsuper+1*/
snode = xsuper + (nsuper+1); /* m */
/* ------------------------------------------------------------
Convert real to integer array, and from Fortran to C style.
------------------------------------------------------------ */
for(k = 0; k < m; k++)
perm[k] = permPr[k] - 1;
for(k = 0; k <= nsuper; k++)
xsuper[k] = xsuperPr[k] - 1;
/* ------------------------------------------------------------
In case of sparse b, we also create snode, which maps each subnode
to the supernode containing it.
------------------------------------------------------------ */
if(bissparse)
for(j = 0, k = 0; k < nsuper; k++)
while(j < xsuper[k+1])
snode[j++] = k;
/* ------------------------------------------------------------
The actual job is done here: y(perm) = L'\b.
------------------------------------------------------------ */
if(!bissparse)
for(j = 0; j < n; j++){
memcpy(fwork,b, m * sizeof(double));
bwsolve(fwork,L.jc,L.ir,L.pr,xsuper,nsuper,y); /* y(m) as work */
for(k = 0; k < m; k++) /* y(perm) = fwork */
y[perm[k]] = fwork[k];
y += m; b += m;
}
else{ /* sparse y,b: don't use perm */
fzeros(fwork,m);
for(j = 0; j < n; j++){
inz = yjc[j];
for(k = bjc[j]; k < bjc[j+1]; k++) /* fwork = b */
fwork[bir[k]] = b[k];
selbwsolve(fwork,L.jc,L.ir,L.pr,xsuper,nsuper, snode,
yir+inz,yjc[j+1]-inz);
for(k = inz; k < yjc[j+1]; k++)
y[k] = fwork[yir[k]];
for(k = inz; k < yjc[j+1]; k++) /* fwork = all-0 */
fwork[yir[k]] = 0.0;
}
}
/* ------------------------------------------------------------
RELEASE WORKING ARRAYS.
------------------------------------------------------------ */
mxFree(fwork);
mxFree(iwork);
}
Event Timeline
Log In to Comment