Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F121995616
bwblkslv2.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Jul 15, 06:05
Size
5 KB
Mime Type
text/x-c
Expires
Thu, Jul 17, 06:05 (2 d)
Engine
blob
Format
Raw Data
Handle
27422254
Attached To
R1252 EMPoWER
bwblkslv2.c
View Options
/*
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include "mex.h"
#include "blkchol.h"
/* ============================================================
BACKWARD SOLVE:
============================================================ */
/* ************************************************************
PROCEDURE bwsolve -- Solve y from L'*y = b, where
L is lower-triangular.
INPUT
Ljc, Lir, Lpr - sparse lower triangular matrix
xsuper - starting column in L for each (dense) supernode.
nsuper - number of super nodes
UPDATED
y - full xsuper[nsuper]-vector, yOUTPUT = L' \ yINPUT.
************************************************************ */
void bwsolve(double *y, const mwIndex *Ljc, const mwIndex *Lir, const double *Lpr,
const mwIndex *xsuper, const mwIndex nsuper)
{
mwIndex jsup,j,inz,k;
double yj, ljj;
/* ------------------------------------------------------------
For each supernode jsup:
------------------------------------------------------------ */
j = xsuper[nsuper]; /* column after current snode (j=m)*/
for(jsup = nsuper; jsup > 0; jsup--){
for(k = 0; k < xsuper[jsup] - xsuper[jsup-1]; k++){
/* ------------------------------------------------------------
The equation L(:,j)'*yNEW = yOLD(j), yields
y(j) -= L(j+1:m,j)'*y.
------------------------------------------------------------ */
inz = Ljc[j-1];
inz++; /* jump over diagonal entry */
yj = realdot(Lpr+inz, y+j, k);
for(inz += k; inz < Ljc[j]; inz++)
yj += Lpr[inz] * y[Lir[inz]];
y[--j] -= yj;
}
}
}
/* ************************************************************
PROCEDURE partbwsolve -- Solve y from L(0:m-1,0:m-1)'*y = b, where
L is lower-triangular.
INPUT
L=(ljc,lpr,xlindx,lindx) - sparse lower triangular matrix
xsuper - starting column in L for each (dense) supernode.
nsuper - number of super nodes (for NW-subblock)
m - order of L'- (sub) block, xsuper[nsuper-1] < m <= xsuper[nsuper]
To solve with the complete L, choose m = xsuper[nsuper].
UPDATED
y - full m-vector, yOUT = L(0:m-1,0:m-1)'\yIN.
************************************************************ */
void partbwsolve(double *y, const mwIndex *ljc, const double *lpr,
const mwIndex *xlindx, const mwIndex *lindx, const mwIndex *xsuper,
const mwIndex nsuper, const mwIndex m)
{
mwIndex jsup,j,inz,k,i, ixfirst,ixnz;
double yj;
/* ------------------------------------------------------------
For each supernode jsup:
Let ixfirst point to the 1st row-subscript below current supernode.
------------------------------------------------------------ */
j = m; /* column/row after current entry */
for(jsup = nsuper; jsup > 0; jsup--){
ixfirst = xlindx[jsup-1] + (xsuper[jsup] - xsuper[jsup-1]);
/* ------------------------------------------------------------
Case 1: L has sparse nonzeros below current supernode, but not
beyond m:
------------------------------------------------------------ */
if(ixfirst < xlindx[jsup])
if(lindx[xlindx[jsup] - 1] < m)
for(k = 0; j > xsuper[jsup-1]; k++){
/* ------------------------------------------------------------
The equation L(:,j)'*y=b(j), yields
y(j) = b(j)-L(j+1:m,j)'*y.
------------------------------------------------------------ */
inz = ljc[j-1] + 1; /* jump over diagonal entry */
yj = realdot(lpr+inz, y+j, k);
for(inz += k, ixnz = ixfirst; inz < ljc[j]; inz++, ixnz++)
yj += lpr[inz] * y[lindx[ixnz]];
y[--j] -= yj;
}
else
/* ------------------------------------------------------------
2nd CASE: L(:,j) has nonzeros beyond the requested order m,
so use while i < m.
------------------------------------------------------------ */
for(k = 0; j > xsuper[jsup-1]; k++){
inz = ljc[j-1] + 1; /* jump over diagonal entry */
yj = realdot(lpr+inz, y+j, k);
inz += k; ixnz = ixfirst;
for(i=lindx[ixnz]; i < m; i = lindx[++ixnz])
yj += lpr[inz++] * y[i];
y[--j] -= yj;
}
else
/* ------------------------------------------------------------
3rd CASE: L(:,j) has only nonzeros in snode jsup: purely dense.
------------------------------------------------------------ */
for(k = 1, --j; j > xsuper[jsup-1]; k++){
yj = realdot(lpr + ljc[j-1] + 1, y+j, k);
y[--j] -= yj;
}
}
}
Event Timeline
Log In to Comment