Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F121710683
dpr1fact.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 13, 09:01
Size
35 KB
Mime Type
text/x-c
Expires
Tue, Jul 15, 09:01 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27378266
Attached To
R1252 EMPoWER
dpr1fact.c
View Options
/*
% [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)
% DPR1FACT Factor d[iag] p[lus] r[ank] 1:
% [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)
% Computes fi and d such that
% diag(d_IN) + x*diag(smult)*x' =
%(PI_{i=1}^n L(p_OUT^i,beta_i)) * diag(d_OUT) * (PI_{i=1}^n L(p_OUT^i,beta_i))'
% where L(p,beta) = eye(n) + tril(p*beta',-1).
%
% Lden.dopiv(k) = 1 if p(:,k) has been reordered, with permutation in
% Lden.pivperm.
% We reorder if otherwise |p(i,k)*beta(j,k)| > maxu.
%
% SEE ALSO fwdpr1,bwdpr1,sedumi
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
function [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include <math.h>
#include <string.h>
#include "mex.h"
#include "blksdp.h"
#define LDEN_OUT myplhs[0]
#define D_OUT myplhs[1]
#define NPAROUT 2
#define X_IN prhs[0]
#define D_IN prhs[1]
#define LSYMB_IN prhs[2]
#define SMULT_IN prhs[3]
#define MAXU_IN prhs[4]
#define NPARIN 5
/* ============================================================
DPR1FACT-subroutines: Compact Cholesky for X = diag(d) + p*p'.
several versions, to allow sequential or permuted ordering.
============================================================ */
/* ************************************************************
dpr1fact - Compact Cholesky for X = diag(d) + p*p'/t to
X = L(p,beta) * diag(d_OUT) * L(p,beta)'
where L(p,beta) = eye(m) + tril(p*beta',-1)
INPUT:
n - Order of beta. n = min(m,idep), where idep is the
1st entry where d(idep) = 0 on input. Caller then needs to finish by
pivoting on idep by itself.
mu - mu(m) = 0, mu(i) = max(psqr(i+1:mk)), for i=1:mk-1.
maxu - Controls stability check: we postpone rows such that
max(abs(L)) <= maxu.
UPDATED:
d - Length n vector: the diagonal entries. On input, the old ones,
d(1:n) > 0. On output the updated ones after the factorization.
Remain positive if t > 0.
fi - on input, contains the vector x (=p.^2),
on output it is such that beta(j) = p(j) / fi(j), for
j not in ph2psqr.i.
t - Initial t: set t = 1 for D+p*p', set t = -1 for D-p*p'.
OUTPUT
ph2psqr - The postponed rows j, with corresponding psqr(j). Controled
by maxu.
REMARK:
Since L=eye(m)+tril(p*beta'), beta(n-1) and fi(n-1) are useful only
if m > n: it'll be used in rows n:m-1.
RETURNS: nph2, number of postponed nodes = length(ph2psqr).
************************************************************ */
mwIndex
dpr1fact
(
double
*
fi
,
double
*
d
,
keydouble
*
ph2psqr
,
double
*
pt
,
const
mwIndex
n
,
const
double
*
mu
,
const
double
maxu
)
{
mwIndex
nph2
;
double
dj
,
fij
,
muph2
,
t
;
keydouble
p2j
;
/* ------------------------------------------------------------
fi(j) = x(j) + t*d(j), d_new(j) = fi(j)/t, tnew = fi(j)/d_old(j)
Store j in p2j.k
------------------------------------------------------------ */
t
=
*
pt
;
nph2
=
0
;
muph2
=
0.0
;
/* muph2 = max(psqr(postponed_nodes)) */
for
(
p2j
.
k
=
0
;
p2j
.
k
<
n
;
p2j
.
k
++
){
/* ------------------------------------------------------------
Step j: remains to factor diag(d(j:end)) + p(j:end)*p(j:end)'/t.
The pivot is d(j) + p(j)^2/t = (t*d(j)+x(j))/t.
------------------------------------------------------------ */
dj
=
d
[
p2j
.
k
];
p2j
.
r
=
fi
[
p2j
.
k
];
/* p2j = {j, p_j^2} */
fij
=
p2j
.
r
+
t
*
dj
;
/* fi(j) = p_j^2 + t*d_j */
/* ------------------------------------------------------------
max SQR of below-diag = [pj^2 * max(p(j+1:end).^2)] / t^2
This should not exceed maxu^2 * pivot^2.
------------------------------------------------------------ */
if
(
p2j
.
r
*
MAX
(
muph2
,
mu
[
p2j
.
k
])
<=
SQR
(
maxu
*
fij
)){
fi
[
p2j
.
k
]
=
fij
;
/* pivot j is stable */
d
[
p2j
.
k
]
=
fij
/
t
;
/* d(j;NEW) = d_j + (p_j^2 / t). */
t
=
fij
/
dj
;
/* Compute new t for next iter. */
}
else
{
ph2psqr
[
nph2
++
]
=
p2j
;
/* Postpone to phase 2 */
muph2
=
MAX
(
muph2
,
p2j
.
r
);
/* max(ph2psqr.r) */
}
}
*
pt
=
t
;
return
nph2
;
}
/* ************************************************************
dpr1factperm - Compact Cholesky for X = diag(d) + p*p' to
X = L(p,beta) * diag(d_OUT) * L(p,beta)'
where L(p,beta) = eye(m) + tril(p*beta',-1).
Follows the sequence given in "perm"; realligns accepted pivots
from start of "perm", stores rejected ones in ph2psqr.
INPUT:
n - Order of beta. n = min(m,idep), where idep is the
1st entry where d(idep) = 0 on input. Caller then needs to finish by
pivoting on idep by itself.
t - Initial t: set t = 1 for D+p*p', set t = -1 for D-p*p'.
maxu - Controls stability check: we postpone rows such that
max(abs(L)) <= maxu.
mu - max(psqr(perm[i+1:m-1])) for all i=1:n (n <= m). NB: in perm-order.
UPDATED:
perm - pivot sequence. Evaluate pivots perm(0:n-1). On output,
perm(0:n-nph2-1) are the accepted pivots.
d - Length n vector: the diagonal entries. On input, the old ones,
d(1:n) > 0. On output the updated ones after the factorization.
Remain positive if t > 0.
fi - on input, contains the vector x (=p.^2),
on output s.t. beta(j) = p(j) / fi(j) for j=perm[0:n-nph2-1].
OUTPUT
ph2psqr - The postponed rows j, with corresponding psqr(j). Controled
by maxu.
REMARK:
Since L=eye(m)+tril(p*beta'), beta(n-1) and fi(n-1) are useful only
if m > n: it'll be used in rows n:m-1.
RETURNS: nph2, number of postponed nodes = length(ph2psqr).
************************************************************ */
mwIndex
dpr1factperm
(
double
*
fi
,
double
*
d
,
keydouble
*
ph2psqr
,
double
*
pt
,
mwIndex
*
perm
,
const
mwIndex
n
,
const
double
*
mu
,
const
double
maxu
)
{
mwIndex
i
,
jnz
,
nph2
;
double
dj
,
fij
,
muph2
,
t
;
keydouble
p2j
;
/* ------------------------------------------------------------
fi(j) = x(j) + t*d(j), d_new(j) = fi(j)/t, tnew = fi(j)/d_old(j)
Store j in p2j.k
------------------------------------------------------------ */
t
=
*
pt
;
nph2
=
0
;
muph2
=
0.0
;
jnz
=
0
;
/* index into perm_OUT, for accepted pivots */
for
(
i
=
0
;
i
<
n
;
i
++
){
p2j
.
k
=
perm
[
i
];
dj
=
d
[
p2j
.
k
];
p2j
.
r
=
fi
[
p2j
.
k
];
/* p2j = {j, p_j^2} */
fij
=
p2j
.
r
+
t
*
dj
;
/* fi(j) = p_j^2 + t*d_j */
if
(
p2j
.
r
*
MAX
(
muph2
,
mu
[
i
])
<=
SQR
(
maxu
*
fij
)){
fi
[
p2j
.
k
]
=
fij
;
/* pivot j is stable */
perm
[
jnz
++
]
=
p2j
.
k
;
d
[
p2j
.
k
]
=
fij
/
t
;
/* d(j;NEW) = d_j + (p_j^2 / t). */
t
=
fij
/
dj
;
/* Compute new t for next iter. */
}
else
{
ph2psqr
[
nph2
++
]
=
p2j
;
/* Postpone to phase 2 */
muph2
=
MAX
(
muph2
,
p2j
.
r
);
/* max(ph2psqr.r) */
}
}
mxAssert
(
jnz
+
nph2
==
n
,
""
);
*
pt
=
t
;
return
nph2
;
}
/* ************************************************************
ph2dpr1fact - Compact Cholesky for X = diag(d) + p*p' to
X = L(p,beta) * diag(d_OUT) * L(p,beta)'
where L(p,beta) = eye(m) + tril(p*beta',-1)
INPUT:
n - Order of psqr (number of phase-2 rows).
t - Initial t: output from 1st phase; is mon. incr.
t >= 1 for D+p*p', whereas -1 <= t < 0 for D-p*p'.
UPDATED:
psqr - Contains the sparse vector (p.^2), where the row-indices
are the postponed row numbers. On output, the r-values are
replaced by fi (so that beta = p ./ fi).
d - the diagonal entries. On input, the old ones,
on output the updated ones after the factorization.
Only those with psqr.i-indices are changed (should be
all positive already on input).
REMARK:
Since L=eye(m)+tril(p*beta'), beta(n-1) and fi(n-1) are useful only
if m > n: it'll be used in rows n:m-1.
************************************************************ */
void
ph2dpr1fact
(
keydouble
*
psqr
,
double
*
d
,
double
*
pt
,
const
mwIndex
n
)
{
mwIndex
j
,
jnz
;
double
dj
,
fij
,
t
;
t
=
*
pt
;
/* ------------------------------------------------------------
fi(j) = x(j) + t*d(j), d_new(j) = fi(j)/t, tnew = fi(j)/d_old(j)
------------------------------------------------------------ */
for
(
jnz
=
0
;
jnz
<
n
;
jnz
++
){
j
=
(
psqr
+
jnz
)
->
k
;
dj
=
d
[
j
];
fij
=
((
psqr
+
jnz
)
->
r
+=
t
*
dj
);
/* fi(j) = p_j^2 + t*d_j */
d
[
j
]
=
fij
/
t
;
/* d(j;NEW) = d_j + (p_j^2 / t). */
t
=
fij
/
dj
;
/* Compute new t for next iter. */
}
*
pt
=
t
;
}
/* ============================================================
MAIN routine for Compact Cholesky for X = diag(d) + p*p'.
redirects to the dpr1fact subroutines.
============================================================ */
/* ************************************************************
PROCEDURE dodpr1fact - Factors diag +/- rank-1:
(D+t*p*p')(perm) = L * diag(d_NEW(perm)) * L',
L = I+tril(p(perm)*beta',-1).
INPUT
p - length m. We've to factor diag(d)+ (1/t) * p*p'.
t - scalar: 1 for adding p*p', -1 for subtracting p*p'.
maxu - scalar >= 1: The factor L(p,beta) = I+tril(p(perm)*beta',-1)
will be such that max(abs(L)) <= maxu by choosing perm-ordering.
m - length(p).
UPDATED
d - length m. The diagonal. This factors
diag(d_OLD)+t*p*p' = L(p,beta) * diag(d_NEW) * L(p,beta)'
OUTPUT
beta - Length <= m (actual length returned in *pm).
perm - Length m. Only written if RETURN=1, which means that the
original ordering was not maxu-stable. Pivot ordering on p,d.
pn - *pn = length(beta) <= m; n<m only if there are dependent rows.
dep - Length ndep+1. Lists rows i where d(i) == 0. Indices are
ascending, and dep[ndep] >= m is tail of this list. On output,
one entry may be removed, and stored in dep[ndep_OLD].
*pndep - Cardinality of dep. May be decremented on output, if a
dependency could be removed, i.e. if t > 0 and p(dep) != 0.
WORK
psqr - length m float working array, for p.^2 and later "fi".
kdwork - length m working array for storing postponed
rows (rowno and psqr(rowno)), which have to be sorted.
RETURNS 1 if reordered rows into perm; 0 means that we used
the sequential 0:m-1 ordering.
CAUTION: If t < 0, one dependency may be added by the
rank-1 subtraction. The caller should therefore call findnewdep
afterwards (for t < 0).
************************************************************ */
char
dodpr1fact
(
double
*
beta
,
mwIndex
*
perm
,
double
*
d
,
double
t
,
const
double
*
p
,
const
mwIndex
m
,
mwIndex
*
pn
,
mwIndex
*
dep
,
mwIndex
*
pndep
,
const
double
maxu
,
double
*
psqr
,
keydouble
*
kdwork
)
{
mwIndex
ndep
,
n
,
i
,
j
,
nph2
,
nextj
,
idep
;
double
psqrdep
,
h
;
double
*
mu
;
char
deldep
;
/* ------------------------------------------------------------
If t = 0, then factor diag(d)+0*p*p' = I*diag(d)*I, i.e. beta=0.
------------------------------------------------------------ */
if
(
t
==
0.0
){
*
pn
=
0
;
/* number of nonzeros in beta */
return
0
;
}
/* ------------------------------------------------------------
t is nonzero, replace by tnew := 1/t.
We've to factor diag(d) + p*p' / tnew.
------------------------------------------------------------ */
t
=
1
/
t
;
ndep
=
*
pndep
;
/* ------------------------------------------------------------
Use beta temporarily as mu(1:m), which lists max(psqr(i+1:m)).
mu will be used only to select stable pivots, before writing beta.
------------------------------------------------------------ */
mu
=
beta
;
/* ------------------------------------------------------------
Let psqr = p(1:m).^2
------------------------------------------------------------ */
realHadamard
(
psqr
,
p
,
p
,
m
);
/* ------------------------------------------------------------
Case A: d(1:mk) > 0 (no dep). Then n = m.
------------------------------------------------------------ */
if
(
dep
[
0
]
>=
m
){
*
pn
=
m
;
/* ------------------------------------------------------------
Let mu(m) = 0, mu(i) = max(psqr(i+1:mk)), for i=1:mk-1.
------------------------------------------------------------ */
for
(
h
=
0.0
,
i
=
m
;
i
>
0
;
i
--
){
mu
[
i
-
1
]
=
h
;
h
=
MAX
(
h
,
psqr
[
i
-
1
]);
}
/* ------------------------------------------------------------
1st round: pivot sequentially on 1:m, skipping instable ones.
------------------------------------------------------------ */
nph2
=
dpr1fact
(
psqr
,
d
,
kdwork
,
&
t
,
m
,
mu
,
maxu
);
/* ------------------------------------------------------------
Write results 1st round: beta = p ./ psqr.
------------------------------------------------------------ */
if
(
!
nph2
){
/* all 1:m handled */
realHadadiv
(
beta
,
p
,
psqr
,
m
);
return
0
;
}
else
{
/* skipped kdwork.k */
for
(
i
=
0
,
j
=
0
;
i
<
nph2
;
i
++
){
nextj
=
(
kdwork
+
i
)
->
k
;
fromto
(
perm
+
j
,
j
,
nextj
);
/* perm[j-i:nextj-i] = j:nextj */
realHadadiv
(
beta
+
j
,
p
+
j
,
psqr
+
j
,
nextj
-
j
);
j
=
nextj
+
1
;
/* skip nextj == (kdwork+i)->k */
--
perm
;
--
beta
;
/* keep j valid index */
}
fromto
(
perm
+
j
,
j
,
m
);
/* perm[j-i:nextj-i] = j:nextj */
realHadadiv
(
beta
+
j
,
p
+
j
,
psqr
+
j
,
m
-
j
);
perm
+=
m
;
/* point just behind accepted pivots */
beta
+=
m
;
/* ------------------------------------------------------------
Sort rejected nodes in decreasing order of p.^2.
------------------------------------------------------------ */
kdsortdec
(
kdwork
,
nph2
);
/* ------------------------------------------------------------
2nd round factorization: ordered.
------------------------------------------------------------ */
ph2dpr1fact
(
kdwork
,
d
,
&
t
,
nph2
);
for
(
i
=
0
;
i
<
nph2
;
i
++
){
j
=
(
kdwork
+
i
)
->
k
;
perm
[
i
]
=
j
;
beta
[
i
]
=
p
[
j
]
/
(
kdwork
+
i
)
->
r
;
}
return
1
;
}
/* if nph2 > 0 */
}
/* if !dep */
/* ------------------------------------------------------------
If d(1:mk) is NOT positive:
Let (j,psqrdep) = max{psqr(i) | d(i)==0.0, i=1:m}
------------------------------------------------------------ */
else
{
psqrdep
=
0.0
;
for
(
i
=
0
;
dep
[
i
]
<
m
;
i
++
)
if
(
psqr
[
dep
[
i
]]
>
psqrdep
){
j
=
i
;
psqrdep
=
psqr
[
dep
[
i
]];
}
mxAssert
(
i
<=
ndep
,
""
);
/* ------------------------------------------------------------
Threshold h = maxu^2 * psqrdep
If all psqr>h have been factorized, we'll pivot on dep[k], if
t * psqrdep > 0 (otherwise we view this as being zero).
------------------------------------------------------------ */
if
(
psqrdep
>
0.0
){
/* we'll remove dependency at idep=dep[j] */
idep
=
dep
[
j
];
/* ------------------------------------------------------------
If psqrdep>0, we can remove dependency idep=dep[j].
Let dep[j:ndep-1] = dep[j+1:ndep] (incl tail dep[ndep]), then
let dep[ndep] = idep, and --ndep. For Lorentz cones, removed
dependencies may get dependent again at the t=-1 step.
------------------------------------------------------------ */
if
(
t
>
0.0
){
deldep
=
1
;
memmove
(
dep
+
j
,
dep
+
j
+
1
,
(
ndep
-
j
)
*
sizeof
(
mwIndex
));
h
=
SQR
(
maxu
)
*
psqrdep
;
dep
[
ndep
]
=
idep
;
/* remember removed dependency */
*
pndep
=
--
ndep
;
}
/* ------------------------------------------------------------
If we're subtracting a rank-1 factor (t<0), then psqrdep should
be zero (up to rounding errors)
------------------------------------------------------------ */
else
{
/* D - p*p' should be psd, so */
h
=
psqrdep
;
/* we've to round [0,psqrdep] to 0 */
deldep
=
0
;
}
}
else
{
idep
=
dep
[
0
];
/* psqr(dep) == 0: remains dependent */
h
=
0.0
;
deldep
=
0
;
}
/* ------------------------------------------------------------
PARTITION: perm = [find(psqr > h), idep, remainder].
Then let n be j = length(find(psqr > h)).
Temporarily use nph2 = m-length(remainder).
------------------------------------------------------------ */
for
(
i
=
0
,
j
=
0
,
nph2
=
m
;
i
<
idep
;
i
++
)
if
(
psqr
[
i
]
>
h
)
perm
[
j
++
]
=
i
;
else
perm
[
--
nph2
]
=
i
;
for
(
++
i
;
i
<
m
;
i
++
)
/* skip over i = idep */
if
(
psqr
[
i
]
>
h
)
perm
[
j
++
]
=
i
;
else
perm
[
--
nph2
]
=
i
;
mxAssert
(
j
==
nph2
-
1
,
""
);
perm
[
j
]
=
idep
;
/* finally insert idep */
n
=
j
;
/* length(find(psqr > h)) */
*
pn
=
j
+
deldep
;
/* cardinality of beta */
/* ------------------------------------------------------------
Now h=max(psqr(perm(n+1:m))).
Let mu(i) = max(psqr(perm(i+1:m))).
------------------------------------------------------------ */
for
(
i
=
n
;
i
>
0
;
i
--
){
mu
[
i
-
1
]
=
h
;
h
=
MAX
(
h
,
psqr
[
perm
[
i
-
1
]]);
}
/* ------------------------------------------------------------
1st round: pivot sequentially on perm(1:n), skipping instable ones.
The stable pivots are re-alligned at start of perm.
------------------------------------------------------------ */
nph2
=
dpr1factperm
(
psqr
,
d
,
kdwork
,
&
t
,
perm
,
n
,
mu
,
maxu
);
/* ------------------------------------------------------------
Write results 1st round: beta = p(perm(1:n-nph2)) ./ psqr(perm(1:n-nph2)).
------------------------------------------------------------ */
n
-=
nph2
;
/* cardinality 1st round */
for
(
i
=
0
;
i
<
n
;
i
++
){
j
=
perm
[
i
];
beta
[
i
]
=
p
[
j
]
/
psqr
[
j
];
}
perm
+=
n
;
/* handled 1st round */
beta
+=
n
;
/* ------------------------------------------------------------
Sort rejected nodes in decreasing order of p.^2.
------------------------------------------------------------ */
if
(
nph2
){
kdsortdec
(
kdwork
,
nph2
);
/* ------------------------------------------------------------
2nd round factorization: ordered.
------------------------------------------------------------ */
ph2dpr1fact
(
kdwork
,
d
,
&
t
,
nph2
);
for
(
i
=
0
;
i
<
nph2
;
i
++
){
j
=
(
kdwork
+
i
)
->
k
;
perm
[
i
]
=
j
;
beta
[
i
]
=
p
[
j
]
/
(
kdwork
+
i
)
->
r
;
}
}
/* ------------------------------------------------------------
If psqrdep > 0, we can now finish off the factorization by
pivoting on idep == perm[nph2]:
d_new(i) = p_i^2/t, beta = 1/p_i.
------------------------------------------------------------ */
if
(
deldep
){
d
[
idep
]
=
psqr
[
idep
]
/
t
;
beta
[
nph2
]
=
1.0
/
p
[
idep
];
}
}
return
1
;
}
/* ************************************************************
PROCEDURE findnewdep - CAUTION: this searches only over previously
removed dependencies. The rank reduction could however have happened
elsewehere, viz. last pivot location!!
INPUT
ndep - Number of dependent nodes, d[dep[0:ndep-1]] == 0.
maxndep - dep is length maxndep+1. dep[ndep+1:maxndep] are previously
removed dependencies.
d - length m vector, m = dep[ndep].
UPDATED
dep - length maxndep+1 array. If d[dep[i]] <= 0 for some i > ndep,
then dep[i] is inserted into dep(0:ndep), so that dep(0:ndep+1) remains
sorted.
RETURNS 1 if ndep has to be incremented, i.e. an entry of
dep(ndep+1:maxndep) is inserted into dep(0:ndep). Otherwise returns 0.
************************************************************ */
mwIndex
findnewdep
(
mwIndex
*
dep
,
const
mwIndex
ndep
,
const
mwIndex
maxndep
,
const
double
*
d
)
{
mwIndex
i
,
j
,
idep
;
for
(
i
=
ndep
+
1
;
i
<=
maxndep
;
i
++
)
if
(
d
[
dep
[
i
]]
<=
0.0
)
break
;
if
(
i
<=
maxndep
){
idep
=
dep
[
i
];
j
=
0
;
intbsearch
(
&
j
,
dep
,
ndep
,
idep
);
/* first j s.t. dep[j] > idep */
memmove
(
dep
+
j
+
1
,
dep
+
j
,
(
i
-
j
)
*
sizeof
(
mwIndex
));
dep
[
j
]
=
idep
;
return
1
;
}
else
return
0
;
}
/* ============================================================
PRODFORMFACT does a dpr1fact for each rank-1 update.
============================================================ */
/* ************************************************************
PROCEDURE prodformfact
INPUT
xsuper - column k consists of rows 0:xsuper(k+1)-1.
n - number of (dense) columns
smult - Length n vector. the k-th step adds (D+smult(k)*pk*pk').
firstpiv - Length n array, first affecting pivot.
colperm - Length n array, column permutation for smult and firstpiv.
maxu - max_k(max abs(Lk)) will be at most maxu. Rows may be
reordered to achieve this.
UPDATED
p - Length(p) = sum(xsuper). On input, contains the dense columns
as in X = diag(d) + P*diag(smult(colperm))*P'. On output, a
product-form forward solve has been made to p(:,2:n).
d - length xsuper[n] nonnegative vector. On input, the diagonal w/o dense
columns. On output, the diagonal in the final product form Cholesky.
dep - Length ndep+1 list of entries where d(i)=0; dep(0) < dep(1)...;
dep[ndep] = xsuper[n], the tail.
pndep - length of dep, may be decreased on output, if dependencies
are removed by adding the rank-1 updates..
OUTPUT
perm - sum_j(xsuper(j+1)|ordered(j)=1) array, contains a stable pivot
ordering for those columns where ordered[j]=1.
beta - Length length(p). Such that L_k = eye(m) + tril(pk * betak, -1).
betajc - Length n+1. start of betak. nnz(beta) <= nnz(p).
ordered - length n. Ordered[j]==1 iff the rows of column j are
reordered for numerical stability (controled by maxu).
WORK
fwork - length xsuper[n] float working array.
kdwork - length xsuper[n] (i,r)-working array.
************************************************************ */
void
prodformfact
(
double
*
p
,
mwIndex
*
perm
,
double
*
beta
,
mwIndex
*
betajc
,
double
*
d
,
char
*
ordered
,
const
mwIndex
*
xsuper
,
const
mwIndex
*
colperm
,
const
mwIndex
*
firstpiv
,
const
double
*
smult
,
const
mwIndex
n
,
mwIndex
*
dep
,
mwIndex
*
pndep
,
const
double
maxu
,
double
*
fwork
,
keydouble
*
kdwork
)
{
mwIndex
k
,
colk
,
mk
,
nk
,
j
,
inz
,
maxndep
;
double
*
betak
,
*
pk
,
*
pj
;
char
useperm
;
/* ------------------------------------------------------------
Initialize. inz points to next avl. place in beta,
perm is used to store pivot ordering,
------------------------------------------------------------ */
inz
=
0
;
maxndep
=
*
pndep
;
/* ------------------------------------------------------------
For all columns k, mk = length(pk), nk = length(betak).
------------------------------------------------------------ */
for
(
k
=
0
,
pk
=
p
;
k
<
n
;
k
++
){
colk
=
colperm
[
k
];
/* pointer into smult, firstpiv */
betajc
[
k
]
=
inz
;
mk
=
xsuper
[
k
+
1
];
betak
=
beta
+
inz
;
pk
+=
xsuper
[
k
];
useperm
=
dodpr1fact
(
betak
,
perm
,
d
,
smult
[
colk
],
pk
,
mk
,
&
nk
,
dep
,
pndep
,
maxu
,
fwork
,
kdwork
);
ordered
[
k
]
=
useperm
;
if
(
smult
[
colk
]
<
0.0
)
*
pndep
+=
findnewdep
(
dep
,
*
pndep
,
maxndep
,
d
);
/* ------------------------------------------------------------
Forward solve on columns p(k+1:n)
------------------------------------------------------------ */
if
(
smult
[
colk
]
!=
0.0
){
if
(
useperm
){
for
(
j
=
k
+
1
,
pj
=
pk
;
j
<
n
;
j
++
){
/* with pivoting */
pj
+=
xsuper
[
j
];
if
(
firstpiv
[
colperm
[
j
]]
<=
k
)
/*Only if overlapping nzs*/
fwipr1o
(
pj
,
perm
,
pk
,
betak
,
mk
,
nk
);
/* o = ordered */
}
perm
+=
mk
;
/* full length permutation */
}
else
for
(
j
=
k
+
1
,
pj
=
pk
;
j
<
n
;
j
++
){
/* without pivoting */
pj
+=
xsuper
[
j
];
if
(
firstpiv
[
colperm
[
j
]]
<=
k
)
fwipr1
(
pj
,
pk
,
betak
,
mk
,
nk
);
}
}
/* ------------------------------------------------------------
Point to next column
------------------------------------------------------------ */
inz
+=
nk
;
}
/* ------------------------------------------------------------
In total, we wrote inz <= length(p) nonzeros in beta.
------------------------------------------------------------ */
betajc
[
n
]
=
inz
;
#ifdef DO_SUPER_SAFE
/* ------------------------------------------------------------
If smult[i] < 0 for some i, then let dep = find(d<=0), and d(dep) = 0.
Note: length(d) = m = xsuper[n].
------------------------------------------------------------ */
mk
=
xsuper
[
n
];
inz
=
0
;
for
(
j
=
0
;
j
<
mk
;
j
++
)
if
(
d
[
j
]
<=
0.0
){
d
[
j
]
=
0.0
;
dep
[
inz
++
]
=
j
;
mxAssert
(
inz
<=
maxndep
,
"Fatal numerical error in dpr1fact."
);
}
*
pndep
=
inz
;
#endif
}
#define NLDEN_FIELDS 5
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
************************************************************ */
void
mexFunction
(
const
int
nlhs
,
mxArray
*
plhs
[],
const
int
nrhs
,
const
mxArray
*
prhs
[])
{
mxArray
*
MY_FIELD
;
mxArray
*
myplhs
[
NPAROUT
];
mwIndex
m
,
n
,
ndep
,
i
,
j
,
permj
,
pnnz
,
dznnz
,
permnnz
;
char
*
ordered
;
mwIndex
*
dep
,
*
colperm
,
*
invrowperm
,
*
betajc
,
*
pivperm
,
*
firstpiv
;
double
*
beta
,
*
d
,
*
betajcPr
,
*
pj
,
*
orderedPr
,
*
fwork
,
*
p
,
*
permPr
,
*
lab
;
const
double
*
colpermPr
,
*
smult
,
*
firstPr
;
const
char
*
LdenFieldnames
[]
=
{
"betajc"
,
"beta"
,
"p"
,
"pivperm"
,
"dopiv"
};
keydouble
*
kdwork
;
double
maxu
;
jcir
x
,
dz
;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert
(
nrhs
>=
NPARIN
,
"dpr1fact requires more input arguments"
);
mxAssert
(
nlhs
<=
NPAROUT
,
"dpr1fact produces less output arguments"
);
/* ------------------------------------------------------------
Get inputs (x, lab=d, smult, maxu)
------------------------------------------------------------ */
m
=
mxGetM
(
X_IN
);
/* x */
n
=
mxGetN
(
X_IN
);
mxAssert
(
mxIsSparse
(
X_IN
),
"x should be sparse."
);
x
.
jc
=
mxGetJc
(
X_IN
);
x
.
ir
=
mxGetIr
(
X_IN
);
x
.
pr
=
mxGetPr
(
X_IN
);
mxAssert
(
mxGetM
(
D_IN
)
*
mxGetN
(
D_IN
)
==
m
,
"Size mismatch d."
);
/* d */
mxAssert
(
mxGetM
(
SMULT_IN
)
*
mxGetN
(
SMULT_IN
)
==
n
,
"Size mismatch smult."
);
/* smult */
smult
=
mxGetPr
(
SMULT_IN
);
maxu
=
mxGetScalar
(
MAXU_IN
);
/* maxu */
/* ------------------------------------------------------------
DISASSEMBLE structure Lsymb.{dz,perm,first}
------------------------------------------------------------ */
mxAssert
(
mxIsStruct
(
LSYMB_IN
),
"Lsymb should be a structure."
);
MY_FIELD
=
mxGetField
(
LSYMB_IN
,(
mwIndex
)
0
,
"dz"
);
/* Lsymb.dz */
mxAssert
(
MY_FIELD
!=
NULL
,
"Missing field Lsymb.dz."
);
mxAssert
(
mxGetM
(
MY_FIELD
)
==
m
&&
mxGetN
(
MY_FIELD
)
==
n
,
"Lsymb.dz size mismatch."
);
mxAssert
(
mxIsSparse
(
MY_FIELD
),
"Lsymb.dz must be sparse."
);
dz
.
jc
=
mxGetJc
(
MY_FIELD
);
dz
.
ir
=
mxGetIr
(
MY_FIELD
);
/* (rowperm) */
MY_FIELD
=
mxGetField
(
LSYMB_IN
,(
mwIndex
)
0
,
"perm"
);
/* Lsymb.perm */
mxAssert
(
MY_FIELD
!=
NULL
,
"Missing field Lsymb.perm."
);
mxAssert
(
mxGetM
(
MY_FIELD
)
*
mxGetN
(
MY_FIELD
)
==
n
,
"Size mismatch Lsymb.perm."
);
/* (colperm) */
colpermPr
=
mxGetPr
(
MY_FIELD
);
MY_FIELD
=
mxGetField
(
LSYMB_IN
,(
mwIndex
)
0
,
"first"
);
/* Lsymb.first */
mxAssert
(
MY_FIELD
!=
NULL
,
"Missing field Lsymb.first."
);
mxAssert
(
mxGetM
(
MY_FIELD
)
*
mxGetN
(
MY_FIELD
)
==
n
,
"Size mismatch Lsymb.first."
);
firstPr
=
mxGetPr
(
MY_FIELD
);
/* ------------------------------------------------------------
Let pnnz = sum(dz.jc), dznnz = dz.jc[n].
------------------------------------------------------------ */
for
(
i
=
1
,
pnnz
=
0
;
i
<=
n
;
i
++
)
pnnz
+=
dz
.
jc
[
i
];
dznnz
=
dz
.
jc
[
n
];
/* ------------------------------------------------------------
Allocate working arrays:
mwIndex: colperm(n), firstpiv(n), dep(m+1), betajc(n+1), pivperm(pnnz),
invrowperm(m).
char: ordered(n)
double: fwork(dznnz), d(dznnz),
keydouble: kdwork(dznnz).
------------------------------------------------------------ */
firstpiv
=
(
mwIndex
*
)
mxCalloc
(
MAX
(
n
,
1
),
sizeof
(
mwIndex
));
colperm
=
(
mwIndex
*
)
mxCalloc
(
MAX
(
n
,
1
),
sizeof
(
mwIndex
));
dep
=
(
mwIndex
*
)
mxCalloc
(
m
+
1
,
sizeof
(
mwIndex
));
betajc
=
(
mwIndex
*
)
mxCalloc
(
n
+
1
,
sizeof
(
mwIndex
));
invrowperm
=
(
mwIndex
*
)
mxCalloc
(
MAX
(
m
,
1
),
sizeof
(
mwIndex
));
pivperm
=
(
mwIndex
*
)
mxCalloc
(
MAX
(
pnnz
,
1
),
sizeof
(
mwIndex
));
/* pivperm */
ordered
=
(
char
*
)
mxCalloc
(
MAX
(
n
,
1
),
sizeof
(
char
));
/* boolean */
fwork
=
(
double
*
)
mxCalloc
(
MAX
(
dznnz
,
1
),
sizeof
(
double
));
/* float */
d
=
(
double
*
)
mxCalloc
(
MAX
(
dznnz
,
1
),
sizeof
(
double
));
kdwork
=
(
keydouble
*
)
mxCalloc
(
MAX
(
dznnz
,
1
),
sizeof
(
keydouble
));
/*(i,r)*/
/* ------------------------------------------------------------
ALLOCATE vectors p(pnnz+m), beta(pnnz), .
NB1: will be assigned to output vectors later.
NB2: The +m for p is temporary. This will avoid memory problems when
initializing p(invperm,:) = x, if Lsymb.dz is invalid.
------------------------------------------------------------ */
p
=
(
double
*
)
mxCalloc
(
MAX
(
pnnz
+
m
,
1
),
sizeof
(
double
));
/* p */
beta
=
(
double
*
)
mxCalloc
(
MAX
(
pnnz
,
1
),
sizeof
(
double
));
/* beta */
/* ------------------------------------------------------------
Convert colperm and firstpiv to integer
------------------------------------------------------------ */
for
(
i
=
0
;
i
<
n
;
i
++
){
/* colperm(0:n-1) */
j
=
colpermPr
[
i
];
colperm
[
i
]
=
--
j
;
}
for
(
i
=
0
;
i
<
n
;
i
++
){
j
=
firstPr
[
i
];
firstpiv
[
i
]
=
--
j
;
}
/* ------------------------------------------------------------
CREATE OUTPUT vector lab := dOUT = dIN (duplicate)
------------------------------------------------------------ */
D_OUT
=
mxDuplicateArray
(
D_IN
);
lab
=
mxGetPr
(
D_OUT
);
/* ------------------------------------------------------------
Let d(1:dznnz) = lab(dz.ir).
------------------------------------------------------------ */
for
(
i
=
0
;
i
<
dznnz
;
i
++
)
d
[
i
]
=
lab
[
dz
.
ir
[
i
]];
/* ------------------------------------------------------------
dep = [find(d<=0), m], ndep = length(find(d==0)
------------------------------------------------------------ */
ndep
=
0
;
for
(
i
=
0
;
i
<
dznnz
;
i
++
)
/* dep = find(d <= 0) */
if
(
d
[
i
]
<=
0.0
)
dep
[
ndep
++
]
=
i
;
dep
[
ndep
]
=
m
;
/* tail of dep */
/* ------------------------------------------------------------
Let invrowperm(dz.ir) = 0:dznnz-1, where dznnz = dz.jc[n] <= m
------------------------------------------------------------ */
mxAssert
(
dznnz
<=
m
,
""
);
for
(
i
=
0
;
i
<
dznnz
;
i
++
)
invrowperm
[
dz
.
ir
[
i
]]
=
i
;
/* ------------------------------------------------------------
Let p(invrowperm,:) = x(:,colperm)
------------------------------------------------------------ */
for
(
j
=
0
,
pj
=
p
;
j
<
n
;
j
++
){
pj
+=
dz
.
jc
[
j
];
permj
=
colperm
[
j
];
for
(
i
=
x
.
jc
[
permj
];
i
<
x
.
jc
[
permj
+
1
];
i
++
)
pj
[
invrowperm
[
x
.
ir
[
i
]]]
=
x
.
pr
[
i
];
}
/* ------------------------------------------------------------
Create output structure Lden
------------------------------------------------------------ */
LDEN_OUT
=
mxCreateStructMatrix
((
mwSize
)
1
,
(
mwSize
)
1
,
NLDEN_FIELDS
,
LdenFieldnames
);
/* ------------------------------------------------------------
Create LDEN.P(pnnz), and realloc p to the size it should have, i.e. pnnz
------------------------------------------------------------ */
MY_FIELD
=
mxCreateDoubleMatrix
(
pnnz
,
(
mwSize
)
1
,
mxREAL
);
mxSetField
(
LDEN_OUT
,
(
mwIndex
)
0
,
"p"
,
MY_FIELD
);
if
(
pnnz
>
0
){
mxFree
(
mxGetPr
(
MY_FIELD
));
if
((
p
=
(
double
*
)
mxRealloc
(
p
,
pnnz
*
sizeof
(
double
)))
==
NULL
)
mexErrMsgTxt
(
"Memory allocation error"
);
mxSetPr
(
MY_FIELD
,
p
);
}
else
mxFree
(
p
);
/* ------------------------------------------------------------
The actual job is done here:
Adding n rank-1 updates, with a multiple smult(1:n).
------------------------------------------------------------ */
prodformfact
(
p
,
pivperm
,
beta
,
betajc
,
d
,
ordered
,
dz
.
jc
,
colperm
,
firstpiv
,
smult
,
n
,
dep
,
&
ndep
,
maxu
,
fwork
,
kdwork
);
/* ------------------------------------------------------------
THE DIAGONAL IS PERMUTED BACK:
Bring d back in original ordering: lab(dz.ir) = d(1:dznnz).
------------------------------------------------------------ */
for
(
i
=
0
;
i
<
dznnz
;
i
++
)
lab
[
dz
.
ir
[
i
]]
=
d
[
i
];
/* ------------------------------------------------------------
Let permnnz = sum{dz.jc[j] | ordered[j]==1}, and set
Lden.pivperm = pivperm (mwIndex to double, but C-form)
------------------------------------------------------------ */
for
(
i
=
0
,
permnnz
=
0
;
i
<
n
;
i
++
)
permnnz
+=
ordered
[
i
]
*
dz
.
jc
[
i
+
1
];
mxAssert
(
permnnz
<=
pnnz
,
""
);
MY_FIELD
=
mxCreateDoubleMatrix
(
permnnz
,
(
mwSize
)
1
,
mxREAL
);
mxSetField
(
LDEN_OUT
,
(
mwIndex
)
0
,
"pivperm"
,
MY_FIELD
);
permPr
=
mxGetPr
(
MY_FIELD
);
for
(
i
=
0
;
i
<
permnnz
;
i
++
)
permPr
[
i
]
=
pivperm
[
i
];
/* mwIndex to double */
/* ------------------------------------------------------------
Create LDEN.BETAJC(n+1)
------------------------------------------------------------ */
MY_FIELD
=
mxCreateDoubleMatrix
(
n
+
1
,
(
mwSize
)
1
,
mxREAL
);
mxSetField
(
LDEN_OUT
,
(
mwIndex
)
0
,
"betajc"
,
MY_FIELD
);
betajcPr
=
mxGetPr
(
MY_FIELD
);
for
(
i
=
0
;
i
<=
n
;
i
++
){
j
=
betajc
[
i
];
betajcPr
[
i
]
=
++
j
;
}
/* ------------------------------------------------------------
Create LDEN.BETA(betajc[n])
------------------------------------------------------------ */
MY_FIELD
=
mxCreateDoubleMatrix
(
betajc
[
n
],
(
mwSize
)
1
,
mxREAL
);
mxSetField
(
LDEN_OUT
,
(
mwIndex
)
0
,
"beta"
,
MY_FIELD
);
if
(
betajc
[
n
]
>
0
){
mxFree
(
mxGetPr
(
MY_FIELD
));
if
((
beta
=
(
double
*
)
mxRealloc
(
beta
,
betajc
[
n
]
*
sizeof
(
double
)))
==
NULL
)
mexErrMsgTxt
(
"Memory allocation error"
);
mxSetPr
(
MY_FIELD
,
beta
);
}
else
mxFree
(
beta
);
/* ------------------------------------------------------------
Create LDEN.DOPIV(n)
------------------------------------------------------------ */
MY_FIELD
=
mxCreateDoubleMatrix
(
n
,
(
mwSize
)
1
,
mxREAL
);
mxSetField
(
LDEN_OUT
,
(
mwIndex
)
0
,
"dopiv"
,
MY_FIELD
);
orderedPr
=
mxGetPr
(
MY_FIELD
);
for
(
i
=
0
;
i
<
n
;
i
++
)
orderedPr
[
i
]
=
ordered
[
i
];
/* ------------------------------------------------------------
Release working arrays
------------------------------------------------------------ */
mxFree
(
kdwork
);
mxFree
(
d
);
mxFree
(
fwork
);
mxFree
(
ordered
);
mxFree
(
pivperm
);
mxFree
(
invrowperm
);
mxFree
(
betajc
);
mxFree
(
dep
);
mxFree
(
colperm
);
mxFree
(
firstpiv
);
/* ------------------------------------------------------------
Copy requested output parameters (at least 1), release others.
------------------------------------------------------------ */
i
=
MAX
(
nlhs
,
1
);
memcpy
(
plhs
,
myplhs
,
i
*
sizeof
(
mxArray
*
));
for
(;
i
<
NPAROUT
;
i
++
)
mxDestroyArray
(
myplhs
[
i
]);
}
Event Timeline
Log In to Comment