Page MenuHomec4science

dpr1fact.c
No OneTemporary

File Metadata

Created
Sun, Jul 13, 09:01

dpr1fact.c

/*
% [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)
% DPR1FACT Factor d[iag] p[lus] r[ank] 1:
% [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)
% Computes fi and d such that
% diag(d_IN) + x*diag(smult)*x' =
%(PI_{i=1}^n L(p_OUT^i,beta_i)) * diag(d_OUT) * (PI_{i=1}^n L(p_OUT^i,beta_i))'
% where L(p,beta) = eye(n) + tril(p*beta',-1).
%
% Lden.dopiv(k) = 1 if p(:,k) has been reordered, with permutation in
% Lden.pivperm.
% We reorder if otherwise |p(i,k)*beta(j,k)| > maxu.
%
% SEE ALSO fwdpr1,bwdpr1,sedumi
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
function [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include <math.h>
#include <string.h>
#include "mex.h"
#include "blksdp.h"
#define LDEN_OUT myplhs[0]
#define D_OUT myplhs[1]
#define NPAROUT 2
#define X_IN prhs[0]
#define D_IN prhs[1]
#define LSYMB_IN prhs[2]
#define SMULT_IN prhs[3]
#define MAXU_IN prhs[4]
#define NPARIN 5
/* ============================================================
DPR1FACT-subroutines: Compact Cholesky for X = diag(d) + p*p'.
several versions, to allow sequential or permuted ordering.
============================================================ */
/* ************************************************************
dpr1fact - Compact Cholesky for X = diag(d) + p*p'/t to
X = L(p,beta) * diag(d_OUT) * L(p,beta)'
where L(p,beta) = eye(m) + tril(p*beta',-1)
INPUT:
n - Order of beta. n = min(m,idep), where idep is the
1st entry where d(idep) = 0 on input. Caller then needs to finish by
pivoting on idep by itself.
mu - mu(m) = 0, mu(i) = max(psqr(i+1:mk)), for i=1:mk-1.
maxu - Controls stability check: we postpone rows such that
max(abs(L)) <= maxu.
UPDATED:
d - Length n vector: the diagonal entries. On input, the old ones,
d(1:n) > 0. On output the updated ones after the factorization.
Remain positive if t > 0.
fi - on input, contains the vector x (=p.^2),
on output it is such that beta(j) = p(j) / fi(j), for
j not in ph2psqr.i.
t - Initial t: set t = 1 for D+p*p', set t = -1 for D-p*p'.
OUTPUT
ph2psqr - The postponed rows j, with corresponding psqr(j). Controled
by maxu.
REMARK:
Since L=eye(m)+tril(p*beta'), beta(n-1) and fi(n-1) are useful only
if m > n: it'll be used in rows n:m-1.
RETURNS: nph2, number of postponed nodes = length(ph2psqr).
************************************************************ */
mwIndex dpr1fact(double *fi, double *d, keydouble *ph2psqr, double *pt, const mwIndex n,
const double *mu, const double maxu)
{
mwIndex nph2;
double dj,fij, muph2, t;
keydouble p2j;
/* ------------------------------------------------------------
fi(j) = x(j) + t*d(j), d_new(j) = fi(j)/t, tnew = fi(j)/d_old(j)
Store j in p2j.k
------------------------------------------------------------ */
t = *pt;
nph2 = 0;
muph2 = 0.0; /* muph2 = max(psqr(postponed_nodes)) */
for(p2j.k = 0; p2j.k < n; p2j.k++){
/* ------------------------------------------------------------
Step j: remains to factor diag(d(j:end)) + p(j:end)*p(j:end)'/t.
The pivot is d(j) + p(j)^2/t = (t*d(j)+x(j))/t.
------------------------------------------------------------ */
dj = d[p2j.k];
p2j.r = fi[p2j.k]; /* p2j = {j, p_j^2} */
fij = p2j.r + t*dj; /* fi(j) = p_j^2 + t*d_j */
/* ------------------------------------------------------------
max SQR of below-diag = [pj^2 * max(p(j+1:end).^2)] / t^2
This should not exceed maxu^2 * pivot^2.
------------------------------------------------------------ */
if(p2j.r * MAX(muph2, mu[p2j.k]) <= SQR(maxu * fij)){
fi[p2j.k] = fij; /* pivot j is stable */
d[p2j.k] = fij / t; /* d(j;NEW) = d_j + (p_j^2 / t). */
t = fij / dj; /* Compute new t for next iter. */
}
else{
ph2psqr[nph2++] = p2j; /* Postpone to phase 2 */
muph2 = MAX(muph2, p2j.r); /* max(ph2psqr.r) */
}
}
*pt = t;
return nph2;
}
/* ************************************************************
dpr1factperm - Compact Cholesky for X = diag(d) + p*p' to
X = L(p,beta) * diag(d_OUT) * L(p,beta)'
where L(p,beta) = eye(m) + tril(p*beta',-1).
Follows the sequence given in "perm"; realligns accepted pivots
from start of "perm", stores rejected ones in ph2psqr.
INPUT:
n - Order of beta. n = min(m,idep), where idep is the
1st entry where d(idep) = 0 on input. Caller then needs to finish by
pivoting on idep by itself.
t - Initial t: set t = 1 for D+p*p', set t = -1 for D-p*p'.
maxu - Controls stability check: we postpone rows such that
max(abs(L)) <= maxu.
mu - max(psqr(perm[i+1:m-1])) for all i=1:n (n <= m). NB: in perm-order.
UPDATED:
perm - pivot sequence. Evaluate pivots perm(0:n-1). On output,
perm(0:n-nph2-1) are the accepted pivots.
d - Length n vector: the diagonal entries. On input, the old ones,
d(1:n) > 0. On output the updated ones after the factorization.
Remain positive if t > 0.
fi - on input, contains the vector x (=p.^2),
on output s.t. beta(j) = p(j) / fi(j) for j=perm[0:n-nph2-1].
OUTPUT
ph2psqr - The postponed rows j, with corresponding psqr(j). Controled
by maxu.
REMARK:
Since L=eye(m)+tril(p*beta'), beta(n-1) and fi(n-1) are useful only
if m > n: it'll be used in rows n:m-1.
RETURNS: nph2, number of postponed nodes = length(ph2psqr).
************************************************************ */
mwIndex dpr1factperm(double *fi, double *d, keydouble *ph2psqr, double *pt,
mwIndex *perm, const mwIndex n, const double *mu, const double maxu)
{
mwIndex i, jnz, nph2;
double dj,fij, muph2, t;
keydouble p2j;
/* ------------------------------------------------------------
fi(j) = x(j) + t*d(j), d_new(j) = fi(j)/t, tnew = fi(j)/d_old(j)
Store j in p2j.k
------------------------------------------------------------ */
t = *pt;
nph2 = 0;
muph2 = 0.0;
jnz = 0; /* index into perm_OUT, for accepted pivots */
for(i = 0; i < n; i++){
p2j.k = perm[i];
dj = d[p2j.k];
p2j.r = fi[p2j.k]; /* p2j = {j, p_j^2} */
fij = p2j.r + t*dj; /* fi(j) = p_j^2 + t*d_j */
if(p2j.r * MAX(muph2, mu[i]) <= SQR(maxu * fij)){
fi[p2j.k] = fij; /* pivot j is stable */
perm[jnz++] = p2j.k;
d[p2j.k] = fij / t; /* d(j;NEW) = d_j + (p_j^2 / t). */
t = fij / dj; /* Compute new t for next iter. */
}
else{
ph2psqr[nph2++] = p2j; /* Postpone to phase 2 */
muph2 = MAX(muph2, p2j.r); /* max(ph2psqr.r) */
}
}
mxAssert(jnz + nph2 == n, "");
*pt = t;
return nph2;
}
/* ************************************************************
ph2dpr1fact - Compact Cholesky for X = diag(d) + p*p' to
X = L(p,beta) * diag(d_OUT) * L(p,beta)'
where L(p,beta) = eye(m) + tril(p*beta',-1)
INPUT:
n - Order of psqr (number of phase-2 rows).
t - Initial t: output from 1st phase; is mon. incr.
t >= 1 for D+p*p', whereas -1 <= t < 0 for D-p*p'.
UPDATED:
psqr - Contains the sparse vector (p.^2), where the row-indices
are the postponed row numbers. On output, the r-values are
replaced by fi (so that beta = p ./ fi).
d - the diagonal entries. On input, the old ones,
on output the updated ones after the factorization.
Only those with psqr.i-indices are changed (should be
all positive already on input).
REMARK:
Since L=eye(m)+tril(p*beta'), beta(n-1) and fi(n-1) are useful only
if m > n: it'll be used in rows n:m-1.
************************************************************ */
void ph2dpr1fact(keydouble *psqr, double *d, double *pt, const mwIndex n)
{
mwIndex j, jnz;
double dj,fij,t;
t = *pt;
/* ------------------------------------------------------------
fi(j) = x(j) + t*d(j), d_new(j) = fi(j)/t, tnew = fi(j)/d_old(j)
------------------------------------------------------------ */
for(jnz = 0; jnz < n; jnz++){
j = (psqr+jnz)->k;
dj = d[j];
fij = ((psqr+jnz)->r += t*dj); /* fi(j) = p_j^2 + t*d_j */
d[j] = fij / t; /* d(j;NEW) = d_j + (p_j^2 / t). */
t = fij / dj; /* Compute new t for next iter. */
}
*pt = t;
}
/* ============================================================
MAIN routine for Compact Cholesky for X = diag(d) + p*p'.
redirects to the dpr1fact subroutines.
============================================================ */
/* ************************************************************
PROCEDURE dodpr1fact - Factors diag +/- rank-1:
(D+t*p*p')(perm) = L * diag(d_NEW(perm)) * L',
L = I+tril(p(perm)*beta',-1).
INPUT
p - length m. We've to factor diag(d)+ (1/t) * p*p'.
t - scalar: 1 for adding p*p', -1 for subtracting p*p'.
maxu - scalar >= 1: The factor L(p,beta) = I+tril(p(perm)*beta',-1)
will be such that max(abs(L)) <= maxu by choosing perm-ordering.
m - length(p).
UPDATED
d - length m. The diagonal. This factors
diag(d_OLD)+t*p*p' = L(p,beta) * diag(d_NEW) * L(p,beta)'
OUTPUT
beta - Length <= m (actual length returned in *pm).
perm - Length m. Only written if RETURN=1, which means that the
original ordering was not maxu-stable. Pivot ordering on p,d.
pn - *pn = length(beta) <= m; n<m only if there are dependent rows.
dep - Length ndep+1. Lists rows i where d(i) == 0. Indices are
ascending, and dep[ndep] >= m is tail of this list. On output,
one entry may be removed, and stored in dep[ndep_OLD].
*pndep - Cardinality of dep. May be decremented on output, if a
dependency could be removed, i.e. if t > 0 and p(dep) != 0.
WORK
psqr - length m float working array, for p.^2 and later "fi".
kdwork - length m working array for storing postponed
rows (rowno and psqr(rowno)), which have to be sorted.
RETURNS 1 if reordered rows into perm; 0 means that we used
the sequential 0:m-1 ordering.
CAUTION: If t < 0, one dependency may be added by the
rank-1 subtraction. The caller should therefore call findnewdep
afterwards (for t < 0).
************************************************************ */
char dodpr1fact(double *beta, mwIndex *perm, double *d, double t, const double *p,
const mwIndex m, mwIndex *pn, mwIndex *dep, mwIndex *pndep,
const double maxu, double *psqr, keydouble *kdwork)
{
mwIndex ndep, n, i, j, nph2, nextj, idep;
double psqrdep, h;
double *mu;
char deldep;
/* ------------------------------------------------------------
If t = 0, then factor diag(d)+0*p*p' = I*diag(d)*I, i.e. beta=0.
------------------------------------------------------------ */
if(t == 0.0){
*pn = 0; /* number of nonzeros in beta */
return 0;
}
/* ------------------------------------------------------------
t is nonzero, replace by tnew := 1/t.
We've to factor diag(d) + p*p' / tnew.
------------------------------------------------------------ */
t = 1/t;
ndep = *pndep;
/* ------------------------------------------------------------
Use beta temporarily as mu(1:m), which lists max(psqr(i+1:m)).
mu will be used only to select stable pivots, before writing beta.
------------------------------------------------------------ */
mu = beta;
/* ------------------------------------------------------------
Let psqr = p(1:m).^2
------------------------------------------------------------ */
realHadamard(psqr, p, p, m);
/* ------------------------------------------------------------
Case A: d(1:mk) > 0 (no dep). Then n = m.
------------------------------------------------------------ */
if(dep[0] >= m){
*pn = m;
/* ------------------------------------------------------------
Let mu(m) = 0, mu(i) = max(psqr(i+1:mk)), for i=1:mk-1.
------------------------------------------------------------ */
for(h = 0.0, i = m ; i > 0; i--){
mu[i-1] = h;
h = MAX(h, psqr[i-1]);
}
/* ------------------------------------------------------------
1st round: pivot sequentially on 1:m, skipping instable ones.
------------------------------------------------------------ */
nph2 = dpr1fact(psqr, d, kdwork, &t, m, mu, maxu);
/* ------------------------------------------------------------
Write results 1st round: beta = p ./ psqr.
------------------------------------------------------------ */
if(!nph2){ /* all 1:m handled */
realHadadiv(beta, p, psqr, m);
return 0;
}
else{ /* skipped kdwork.k */
for(i = 0, j = 0; i < nph2; i++){
nextj = (kdwork+i)->k;
fromto(perm+j, j, nextj); /* perm[j-i:nextj-i] = j:nextj */
realHadadiv(beta + j, p + j, psqr + j, nextj - j);
j = nextj + 1; /* skip nextj == (kdwork+i)->k */
--perm; --beta; /* keep j valid index */
}
fromto(perm+j, j, m); /* perm[j-i:nextj-i] = j:nextj */
realHadadiv(beta + j, p + j, psqr + j, m - j);
perm += m; /* point just behind accepted pivots */
beta += m;
/* ------------------------------------------------------------
Sort rejected nodes in decreasing order of p.^2.
------------------------------------------------------------ */
kdsortdec(kdwork, nph2);
/* ------------------------------------------------------------
2nd round factorization: ordered.
------------------------------------------------------------ */
ph2dpr1fact(kdwork, d, &t, nph2);
for(i = 0; i < nph2; i++){
j = (kdwork+i)->k;
perm[i] = j;
beta[i] = p[j] / (kdwork+i)->r;
}
return 1;
} /* if nph2 > 0 */
} /* if !dep */
/* ------------------------------------------------------------
If d(1:mk) is NOT positive:
Let (j,psqrdep) = max{psqr(i) | d(i)==0.0, i=1:m}
------------------------------------------------------------ */
else{
psqrdep = 0.0;
for(i = 0; dep[i] < m; i++)
if(psqr[dep[i]] > psqrdep){
j = i;
psqrdep = psqr[dep[i]];
}
mxAssert(i <= ndep, "");
/* ------------------------------------------------------------
Threshold h = maxu^2 * psqrdep
If all psqr>h have been factorized, we'll pivot on dep[k], if
t * psqrdep > 0 (otherwise we view this as being zero).
------------------------------------------------------------ */
if(psqrdep > 0.0){ /* we'll remove dependency at idep=dep[j] */
idep = dep[j];
/* ------------------------------------------------------------
If psqrdep>0, we can remove dependency idep=dep[j].
Let dep[j:ndep-1] = dep[j+1:ndep] (incl tail dep[ndep]), then
let dep[ndep] = idep, and --ndep. For Lorentz cones, removed
dependencies may get dependent again at the t=-1 step.
------------------------------------------------------------ */
if(t > 0.0){
deldep = 1;
memmove(dep+j, dep+j+1, (ndep - j) * sizeof(mwIndex));
h = SQR(maxu) * psqrdep;
dep[ndep] = idep; /* remember removed dependency */
*pndep = --ndep;
}
/* ------------------------------------------------------------
If we're subtracting a rank-1 factor (t<0), then psqrdep should
be zero (up to rounding errors)
------------------------------------------------------------ */
else{ /* D - p*p' should be psd, so */
h = psqrdep; /* we've to round [0,psqrdep] to 0 */
deldep = 0;
}
}
else{
idep = dep[0]; /* psqr(dep) == 0: remains dependent */
h = 0.0;
deldep = 0;
}
/* ------------------------------------------------------------
PARTITION: perm = [find(psqr > h), idep, remainder].
Then let n be j = length(find(psqr > h)).
Temporarily use nph2 = m-length(remainder).
------------------------------------------------------------ */
for(i = 0, j = 0, nph2 = m; i < idep; i++)
if(psqr[i] > h)
perm[j++] = i;
else
perm[--nph2] = i;
for(++i; i < m; i++) /* skip over i = idep */
if(psqr[i] > h)
perm[j++] = i;
else
perm[--nph2] = i;
mxAssert(j == nph2-1,"");
perm[j] = idep; /* finally insert idep */
n = j; /* length(find(psqr > h)) */
*pn = j + deldep; /* cardinality of beta */
/* ------------------------------------------------------------
Now h=max(psqr(perm(n+1:m))).
Let mu(i) = max(psqr(perm(i+1:m))).
------------------------------------------------------------ */
for(i = n ; i > 0; i--){
mu[i-1] = h;
h = MAX(h, psqr[perm[i-1]]);
}
/* ------------------------------------------------------------
1st round: pivot sequentially on perm(1:n), skipping instable ones.
The stable pivots are re-alligned at start of perm.
------------------------------------------------------------ */
nph2 = dpr1factperm(psqr, d, kdwork, &t, perm, n, mu, maxu);
/* ------------------------------------------------------------
Write results 1st round: beta = p(perm(1:n-nph2)) ./ psqr(perm(1:n-nph2)).
------------------------------------------------------------ */
n -= nph2; /* cardinality 1st round */
for(i = 0; i < n; i++){
j = perm[i];
beta[i] = p[j] / psqr[j];
}
perm += n; /* handled 1st round */
beta += n;
/* ------------------------------------------------------------
Sort rejected nodes in decreasing order of p.^2.
------------------------------------------------------------ */
if(nph2){
kdsortdec(kdwork, nph2);
/* ------------------------------------------------------------
2nd round factorization: ordered.
------------------------------------------------------------ */
ph2dpr1fact(kdwork, d, &t, nph2);
for(i = 0; i < nph2; i++){
j = (kdwork+i)->k;
perm[i] = j;
beta[i] = p[j] / (kdwork+i)->r;
}
}
/* ------------------------------------------------------------
If psqrdep > 0, we can now finish off the factorization by
pivoting on idep == perm[nph2]:
d_new(i) = p_i^2/t, beta = 1/p_i.
------------------------------------------------------------ */
if(deldep){
d[idep] = psqr[idep] / t;
beta[nph2] = 1.0 / p[idep];
}
}
return 1;
}
/* ************************************************************
PROCEDURE findnewdep - CAUTION: this searches only over previously
removed dependencies. The rank reduction could however have happened
elsewehere, viz. last pivot location!!
INPUT
ndep - Number of dependent nodes, d[dep[0:ndep-1]] == 0.
maxndep - dep is length maxndep+1. dep[ndep+1:maxndep] are previously
removed dependencies.
d - length m vector, m = dep[ndep].
UPDATED
dep - length maxndep+1 array. If d[dep[i]] <= 0 for some i > ndep,
then dep[i] is inserted into dep(0:ndep), so that dep(0:ndep+1) remains
sorted.
RETURNS 1 if ndep has to be incremented, i.e. an entry of
dep(ndep+1:maxndep) is inserted into dep(0:ndep). Otherwise returns 0.
************************************************************ */
mwIndex findnewdep(mwIndex *dep, const mwIndex ndep, const mwIndex maxndep, const double *d)
{
mwIndex i, j, idep;
for(i = ndep + 1; i <= maxndep; i++)
if(d[dep[i]] <= 0.0)
break;
if(i <= maxndep){
idep = dep[i];
j = 0;
intbsearch(&j, dep, ndep, idep); /* first j s.t. dep[j] > idep */
memmove(dep+j+1, dep+j, (i - j) * sizeof(mwIndex));
dep[j] = idep;
return 1;
}
else
return 0;
}
/* ============================================================
PRODFORMFACT does a dpr1fact for each rank-1 update.
============================================================ */
/* ************************************************************
PROCEDURE prodformfact
INPUT
xsuper - column k consists of rows 0:xsuper(k+1)-1.
n - number of (dense) columns
smult - Length n vector. the k-th step adds (D+smult(k)*pk*pk').
firstpiv - Length n array, first affecting pivot.
colperm - Length n array, column permutation for smult and firstpiv.
maxu - max_k(max abs(Lk)) will be at most maxu. Rows may be
reordered to achieve this.
UPDATED
p - Length(p) = sum(xsuper). On input, contains the dense columns
as in X = diag(d) + P*diag(smult(colperm))*P'. On output, a
product-form forward solve has been made to p(:,2:n).
d - length xsuper[n] nonnegative vector. On input, the diagonal w/o dense
columns. On output, the diagonal in the final product form Cholesky.
dep - Length ndep+1 list of entries where d(i)=0; dep(0) < dep(1)...;
dep[ndep] = xsuper[n], the tail.
pndep - length of dep, may be decreased on output, if dependencies
are removed by adding the rank-1 updates..
OUTPUT
perm - sum_j(xsuper(j+1)|ordered(j)=1) array, contains a stable pivot
ordering for those columns where ordered[j]=1.
beta - Length length(p). Such that L_k = eye(m) + tril(pk * betak, -1).
betajc - Length n+1. start of betak. nnz(beta) <= nnz(p).
ordered - length n. Ordered[j]==1 iff the rows of column j are
reordered for numerical stability (controled by maxu).
WORK
fwork - length xsuper[n] float working array.
kdwork - length xsuper[n] (i,r)-working array.
************************************************************ */
void prodformfact(double *p, mwIndex *perm, double *beta, mwIndex *betajc,
double *d, char *ordered, const mwIndex *xsuper,
const mwIndex *colperm, const mwIndex *firstpiv,
const double *smult, const mwIndex n, mwIndex *dep, mwIndex *pndep,
const double maxu, double *fwork, keydouble *kdwork)
{
mwIndex k, colk, mk, nk, j, inz, maxndep;
double *betak, *pk, *pj;
char useperm;
/* ------------------------------------------------------------
Initialize. inz points to next avl. place in beta,
perm is used to store pivot ordering,
------------------------------------------------------------ */
inz = 0;
maxndep = *pndep;
/* ------------------------------------------------------------
For all columns k, mk = length(pk), nk = length(betak).
------------------------------------------------------------ */
for(k = 0, pk = p; k < n; k++){
colk = colperm[k]; /* pointer into smult, firstpiv */
betajc[k] = inz;
mk = xsuper[k+1];
betak = beta + inz;
pk += xsuper[k];
useperm = dodpr1fact(betak, perm, d, smult[colk], pk, mk, &nk, dep, pndep,
maxu, fwork, kdwork);
ordered[k] = useperm;
if(smult[colk] < 0.0)
*pndep += findnewdep(dep,*pndep,maxndep,d);
/* ------------------------------------------------------------
Forward solve on columns p(k+1:n)
------------------------------------------------------------ */
if(smult[colk] != 0.0){
if(useperm){
for(j = k+1, pj = pk; j < n; j++){ /* with pivoting */
pj += xsuper[j];
if(firstpiv[colperm[j]] <= k) /*Only if overlapping nzs*/
fwipr1o(pj, perm, pk, betak, mk, nk); /* o = ordered */
}
perm += mk; /* full length permutation */
}
else
for(j = k+1, pj = pk; j < n; j++){ /* without pivoting */
pj += xsuper[j];
if(firstpiv[colperm[j]] <= k)
fwipr1(pj, pk, betak, mk, nk);
}
}
/* ------------------------------------------------------------
Point to next column
------------------------------------------------------------ */
inz += nk;
}
/* ------------------------------------------------------------
In total, we wrote inz <= length(p) nonzeros in beta.
------------------------------------------------------------ */
betajc[n] = inz;
#ifdef DO_SUPER_SAFE
/* ------------------------------------------------------------
If smult[i] < 0 for some i, then let dep = find(d<=0), and d(dep) = 0.
Note: length(d) = m = xsuper[n].
------------------------------------------------------------ */
mk = xsuper[n];
inz = 0;
for(j = 0; j < mk; j++)
if(d[j] <= 0.0){
d[j] = 0.0;
dep[inz++] = j;
mxAssert(inz <= maxndep, "Fatal numerical error in dpr1fact.");
}
*pndep = inz;
#endif
}
#define NLDEN_FIELDS 5
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
************************************************************ */
void mexFunction(const int nlhs, mxArray *plhs[],
const int nrhs, const mxArray *prhs[])
{
mxArray *MY_FIELD;
mxArray *myplhs[NPAROUT];
mwIndex m,n,ndep,i,j, permj, pnnz, dznnz, permnnz;
char *ordered;
mwIndex *dep, *colperm, *invrowperm, *betajc, *pivperm, *firstpiv;
double *beta, *d,*betajcPr, *pj, *orderedPr, *fwork, *p, *permPr, *lab;
const double *colpermPr, *smult, *firstPr;
const char *LdenFieldnames[] = {"betajc","beta","p","pivperm","dopiv"};
keydouble *kdwork;
double maxu;
jcir x,dz;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert(nrhs >= NPARIN, "dpr1fact requires more input arguments");
mxAssert(nlhs <= NPAROUT, "dpr1fact produces less output arguments");
/* ------------------------------------------------------------
Get inputs (x, lab=d, smult, maxu)
------------------------------------------------------------ */
m = mxGetM(X_IN); /* x */
n = mxGetN(X_IN);
mxAssert(mxIsSparse(X_IN), "x should be sparse.");
x.jc = mxGetJc(X_IN);
x.ir = mxGetIr(X_IN);
x.pr = mxGetPr(X_IN);
mxAssert( mxGetM(D_IN) * mxGetN(D_IN) == m, "Size mismatch d."); /* d */
mxAssert( mxGetM(SMULT_IN) * mxGetN(SMULT_IN) == n, "Size mismatch smult."); /* smult */
smult = mxGetPr(SMULT_IN);
maxu = mxGetScalar(MAXU_IN); /* maxu */
/* ------------------------------------------------------------
DISASSEMBLE structure Lsymb.{dz,perm,first}
------------------------------------------------------------ */
mxAssert(mxIsStruct(LSYMB_IN), "Lsymb should be a structure.");
MY_FIELD = mxGetField(LSYMB_IN,(mwIndex)0,"dz"); /* Lsymb.dz */
mxAssert( MY_FIELD != NULL, "Missing field Lsymb.dz.");
mxAssert(mxGetM(MY_FIELD) == m && mxGetN(MY_FIELD) == n, "Lsymb.dz size mismatch.");
mxAssert(mxIsSparse(MY_FIELD), "Lsymb.dz must be sparse.");
dz.jc = mxGetJc(MY_FIELD);
dz.ir = mxGetIr(MY_FIELD); /* (rowperm) */
MY_FIELD = mxGetField(LSYMB_IN,(mwIndex)0,"perm"); /* Lsymb.perm */
mxAssert(MY_FIELD != NULL, "Missing field Lsymb.perm.");
mxAssert(mxGetM(MY_FIELD) * mxGetN(MY_FIELD) == n, "Size mismatch Lsymb.perm."); /* (colperm) */
colpermPr = mxGetPr(MY_FIELD);
MY_FIELD = mxGetField(LSYMB_IN,(mwIndex)0,"first"); /* Lsymb.first */
mxAssert( MY_FIELD != NULL, "Missing field Lsymb.first.");
mxAssert( mxGetM(MY_FIELD) * mxGetN(MY_FIELD) == n, "Size mismatch Lsymb.first.");
firstPr = mxGetPr(MY_FIELD);
/* ------------------------------------------------------------
Let pnnz = sum(dz.jc), dznnz = dz.jc[n].
------------------------------------------------------------ */
for(i = 1, pnnz = 0; i <= n; i++)
pnnz += dz.jc[i];
dznnz = dz.jc[n];
/* ------------------------------------------------------------
Allocate working arrays:
mwIndex: colperm(n), firstpiv(n), dep(m+1), betajc(n+1), pivperm(pnnz),
invrowperm(m).
char: ordered(n)
double: fwork(dznnz), d(dznnz),
keydouble: kdwork(dznnz).
------------------------------------------------------------ */
firstpiv= (mwIndex *) mxCalloc(MAX(n,1), sizeof(mwIndex));
colperm = (mwIndex *) mxCalloc(MAX(n,1), sizeof(mwIndex));
dep = (mwIndex *) mxCalloc(m+1, sizeof(mwIndex));
betajc = (mwIndex *) mxCalloc(n+1, sizeof(mwIndex));
invrowperm = (mwIndex *) mxCalloc(MAX(m,1),sizeof(mwIndex));
pivperm = (mwIndex *) mxCalloc(MAX(pnnz,1), sizeof(mwIndex)); /* pivperm */
ordered = (char *) mxCalloc(MAX(n,1), sizeof(char)); /* boolean */
fwork = (double *) mxCalloc(MAX(dznnz,1), sizeof(double)); /* float */
d = (double *) mxCalloc(MAX(dznnz,1), sizeof(double));
kdwork = (keydouble *) mxCalloc(MAX(dznnz,1), sizeof(keydouble)); /*(i,r)*/
/* ------------------------------------------------------------
ALLOCATE vectors p(pnnz+m), beta(pnnz), .
NB1: will be assigned to output vectors later.
NB2: The +m for p is temporary. This will avoid memory problems when
initializing p(invperm,:) = x, if Lsymb.dz is invalid.
------------------------------------------------------------ */
p = (double *) mxCalloc(MAX(pnnz + m,1), sizeof(double)); /* p */
beta = (double *) mxCalloc(MAX(pnnz,1), sizeof(double)); /* beta */
/* ------------------------------------------------------------
Convert colperm and firstpiv to integer
------------------------------------------------------------ */
for(i = 0; i < n; i++){ /* colperm(0:n-1) */
j = colpermPr[i];
colperm[i] = --j;
}
for(i = 0; i < n; i++){
j = firstPr[i];
firstpiv[i] = --j;
}
/* ------------------------------------------------------------
CREATE OUTPUT vector lab := dOUT = dIN (duplicate)
------------------------------------------------------------ */
D_OUT = mxDuplicateArray(D_IN);
lab = mxGetPr(D_OUT);
/* ------------------------------------------------------------
Let d(1:dznnz) = lab(dz.ir).
------------------------------------------------------------ */
for(i = 0; i < dznnz; i++)
d[i] = lab[dz.ir[i]];
/* ------------------------------------------------------------
dep = [find(d<=0), m], ndep = length(find(d==0)
------------------------------------------------------------ */
ndep = 0;
for(i = 0; i < dznnz; i++) /* dep = find(d <= 0) */
if(d[i] <= 0.0)
dep[ndep++] = i;
dep[ndep] = m; /* tail of dep */
/* ------------------------------------------------------------
Let invrowperm(dz.ir) = 0:dznnz-1, where dznnz = dz.jc[n] <= m
------------------------------------------------------------ */
mxAssert(dznnz <= m,"");
for(i = 0; i < dznnz; i++)
invrowperm[dz.ir[i]] = i;
/* ------------------------------------------------------------
Let p(invrowperm,:) = x(:,colperm)
------------------------------------------------------------ */
for(j = 0, pj = p; j < n; j++){
pj += dz.jc[j];
permj = colperm[j];
for(i = x.jc[permj]; i < x.jc[permj+1]; i++)
pj[invrowperm[x.ir[i]]] = x.pr[i];
}
/* ------------------------------------------------------------
Create output structure Lden
------------------------------------------------------------ */
LDEN_OUT = mxCreateStructMatrix((mwSize)1, (mwSize)1, NLDEN_FIELDS, LdenFieldnames);
/* ------------------------------------------------------------
Create LDEN.P(pnnz), and realloc p to the size it should have, i.e. pnnz
------------------------------------------------------------ */
MY_FIELD = mxCreateDoubleMatrix(pnnz, (mwSize)1, mxREAL);
mxSetField(LDEN_OUT, (mwIndex)0,"p", MY_FIELD);
if(pnnz > 0){
mxFree(mxGetPr(MY_FIELD));
if((p = (double *) mxRealloc(p, pnnz * sizeof(double))) == NULL)
mexErrMsgTxt("Memory allocation error");
mxSetPr(MY_FIELD, p);
}
else
mxFree(p);
/* ------------------------------------------------------------
The actual job is done here:
Adding n rank-1 updates, with a multiple smult(1:n).
------------------------------------------------------------ */
prodformfact(p, pivperm, beta, betajc, d, ordered, dz.jc, colperm,
firstpiv, smult, n, dep, &ndep, maxu, fwork, kdwork);
/* ------------------------------------------------------------
THE DIAGONAL IS PERMUTED BACK:
Bring d back in original ordering: lab(dz.ir) = d(1:dznnz).
------------------------------------------------------------ */
for(i = 0; i < dznnz; i++)
lab[dz.ir[i]] = d[i];
/* ------------------------------------------------------------
Let permnnz = sum{dz.jc[j] | ordered[j]==1}, and set
Lden.pivperm = pivperm (mwIndex to double, but C-form)
------------------------------------------------------------ */
for(i = 0, permnnz = 0; i < n; i++)
permnnz += ordered[i] * dz.jc[i+1];
mxAssert(permnnz <= pnnz, "");
MY_FIELD = mxCreateDoubleMatrix(permnnz, (mwSize)1, mxREAL);
mxSetField(LDEN_OUT, (mwIndex)0,"pivperm", MY_FIELD);
permPr = mxGetPr(MY_FIELD);
for(i = 0; i < permnnz; i++)
permPr[i] = pivperm[i]; /* mwIndex to double */
/* ------------------------------------------------------------
Create LDEN.BETAJC(n+1)
------------------------------------------------------------ */
MY_FIELD = mxCreateDoubleMatrix(n + 1, (mwSize)1, mxREAL);
mxSetField(LDEN_OUT, (mwIndex)0,"betajc", MY_FIELD);
betajcPr = mxGetPr(MY_FIELD);
for(i = 0; i <= n; i++){
j = betajc[i];
betajcPr[i] = ++j;
}
/* ------------------------------------------------------------
Create LDEN.BETA(betajc[n])
------------------------------------------------------------ */
MY_FIELD = mxCreateDoubleMatrix(betajc[n], (mwSize)1, mxREAL);
mxSetField(LDEN_OUT, (mwIndex)0,"beta", MY_FIELD);
if(betajc[n] > 0){
mxFree(mxGetPr(MY_FIELD));
if((beta = (double *) mxRealloc(beta, betajc[n] * sizeof(double))) == NULL)
mexErrMsgTxt("Memory allocation error");
mxSetPr(MY_FIELD, beta);
}
else
mxFree(beta);
/* ------------------------------------------------------------
Create LDEN.DOPIV(n)
------------------------------------------------------------ */
MY_FIELD = mxCreateDoubleMatrix(n, (mwSize)1, mxREAL);
mxSetField(LDEN_OUT, (mwIndex)0,"dopiv", MY_FIELD);
orderedPr = mxGetPr(MY_FIELD);
for(i = 0; i < n; i++)
orderedPr[i] = ordered[i];
/* ------------------------------------------------------------
Release working arrays
------------------------------------------------------------ */
mxFree(kdwork);
mxFree(d);
mxFree(fwork);
mxFree(ordered);
mxFree(pivperm);
mxFree(invrowperm);
mxFree(betajc);
mxFree(dep);
mxFree(colperm);
mxFree(firstpiv);
/* ------------------------------------------------------------
Copy requested output parameters (at least 1), release others.
------------------------------------------------------------ */
i = MAX(nlhs, 1);
memcpy(plhs,myplhs, i * sizeof(mxArray *));
for(; i < NPAROUT; i++)
mxDestroyArray(myplhs[i]);
}

Event Timeline