Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F121691228
fwblkslv.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 13, 05:03
Size
12 KB
Mime Type
text/x-c
Expires
Tue, Jul 15, 05:03 (2 d)
Engine
blob
Format
Raw Data
Handle
27375051
Attached To
R1252 EMPoWER
fwblkslv.c
View Options
/*
y = fwblkslv(L,b, [y])
Given block sparse Cholesky structure L, as generated by
SPARCHOL, this solves the equation "L.L * y = b(L.perm,:)",
i.e. y = L.L\b(L.perm,:). The diagonal of L.L is taken to
be all-1, i.e. it uses eye(n) + tril(L.L,-1).
If b is SPARSE, then the 3rd argument (y) must give the sparsity
structure of the output variable y.
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include <string.h>
#include "mex.h"
#include "blksdp.h"
#define Y_OUT plhs[0]
#define NPAROUT 1
#define L_IN prhs[0]
#define B_IN prhs[1]
#define MINNPARIN 2
#define Y_IN prhs[2]
#define NPARIN 3
/*typedef struct{
const double *pr, *pi;
const mwIndex *jc, *ir;
} jcir;*/
/* ============================================================
FORWARD SOLVE:
============================================================ */
/* ************************************************************
PROCEDURE fwsolve -- Solve ynew from L*y = yold, where
L is lower-triangular.
INPUT
L - sparse lower triangular matrix
xsuper - starting column in L for each (dense) supernode.
nsuper - number of super nodes
UPDATED
y - full vector, on input y = rhs, on output y = L\rhs.
WORK
fwork - length max(collen[i] - superlen[i]) <= m-1, where
collen[i] := L.jc[xsuper[i]+1]-L.jc[xsuper[i]] and
superlen[i] := xsuper[i+1]-xsuper[i].
************************************************************ */
void
fwsolve
(
double
*
y
,
const
mwIndex
*
Ljc
,
const
mwIndex
*
Lir
,
const
double
*
Lpr
,
const
mwIndex
*
xsuper
,
const
mwIndex
nsuper
,
double
*
fwork
)
{
mwIndex
jsup
,
i
,
j
,
inz
,
jnnz
;
double
yi
,
yj
;
/* ------------------------------------------------------------
For each supernode jsup:
------------------------------------------------------------ */
j
=
xsuper
[
0
];
/* 1st col of current snode (j=0)*/
inz
=
Ljc
[
0
];
/* 1st nonzero in L (inz = 0) */
for
(
jsup
=
1
;
jsup
<=
nsuper
;
jsup
++
){
/* ------------------------------------------------------------
The first equation, 1*y=b(j), yields y(j) = b(j).
------------------------------------------------------------ */
mxAssert
(
inz
==
Ljc
[
j
],
""
);
yj
=
y
[
j
++
];
++
inz
;
/* jump over diagonal entry */
if
(
j
>=
xsuper
[
jsup
])
/* ------------------------------------------------------------
If supernode is singleton, then simply set y(j+1:m)-=yj*L(j+1:m,j)
------------------------------------------------------------ */
for
(;
inz
<
Ljc
[
j
];
inz
++
)
y
[
Lir
[
inz
]]
-=
yj
*
Lpr
[
inz
];
else
{
/* ------------------------------------------------------------
Supernode contains multiple subnodes:
Remember (i,yi) = 1st subnode, then
perform dense forward solve within current supernode.
------------------------------------------------------------ */
i
=
j
;
yi
=
yj
;
do
{
subscalarmul
(
y
+
j
,
yj
,
Lpr
+
inz
,
xsuper
[
jsup
]
-
j
);
inz
=
Ljc
[
j
];
yj
=
y
[
j
++
];
++
inz
;
/* jump over diagonal entry */
}
while
(
j
<
xsuper
[
jsup
]);
jnnz
=
Ljc
[
j
]
-
inz
;
/* ------------------------------------------------------------
jnnz = number of later entries that are influenced by this supernode.
Compute the update in the array fwork(jnnz)
------------------------------------------------------------ */
if
(
jnnz
>
0
){
scalarmul
(
fwork
,
yj
,
Lpr
+
inz
,
jnnz
);
while
(
i
<
j
){
addscalarmul
(
fwork
,
yi
,
Lpr
+
Ljc
[
i
]
-
jnnz
,
jnnz
);
yi
=
y
[
i
++
];
}
/* ------------------------------------------------------------
Update y with fwork at the specified sparse locations
------------------------------------------------------------ */
for
(
i
=
0
;
i
<
jnnz
;
i
++
)
y
[
Lir
[
inz
++
]]
-=
fwork
[
i
];
}
}
}
}
/* ************************************************************
PROCEDURE selfwsolve -- Solve ynew from L*y = yold, where
L is lower-triangular and y is SPARSE.
INPUT
L - sparse lower triangular matrix
xsuper - length nsuper+1, start of each (dense) supernode.
nsuper - number of super nodes
snode - length m array, mapping each node to the supernode containing it.
yir - length ynnz array, listing all possible nonzeros entries in y.
ynnz - number of nonzeros in y (from symbfwslv).
UPDATED
y - full vector, on input y = rhs, on output y = L\rhs.
only the yir(0:ynnz-1) entries are used and defined.
************************************************************ */
void
selfwsolve
(
double
*
y
,
const
mwIndex
*
Ljc
,
const
mwIndex
*
Lir
,
const
double
*
Lpr
,
const
mwIndex
*
xsuper
,
const
mwIndex
nsuper
,
const
mwIndex
*
snode
,
const
mwIndex
*
yir
,
const
mwIndex
ynnz
)
{
mwIndex
jsup
,
j
,
inz
,
jnz
;
double
yj
;
if
(
ynnz
<=
0
)
return
;
/* ------------------------------------------------------------
Forward solve on each nonzero supernode snode[yir[jnz]] (=jsup-1).
------------------------------------------------------------ */
jnz
=
0
;
while
(
jnz
<
ynnz
){
j
=
yir
[
jnz
];
jsup
=
snode
[
j
]
+
1
;
jnz
+=
xsuper
[
jsup
]
-
j
;
/* point to next nonzero supernode */
while
(
j
<
xsuper
[
jsup
]){
/* ------------------------------------------------------------
Do dense computations on supernode.
The first equation, 1*y=b(j), yields y(j) = b(j).
------------------------------------------------------------ */
inz
=
Ljc
[
j
];
yj
=
y
[
j
++
];
++
inz
;
/* jump over diagonal entry */
/* ------------------------------------------------------------
Forward solution: y(j+1:m) -= yj * L(j+1:m,j)
------------------------------------------------------------ */
subscalarmul
(
y
+
j
,
yj
,
Lpr
+
inz
,
xsuper
[
jsup
]
-
j
);
for
(
inz
+=
xsuper
[
jsup
]
-
j
;
inz
<
Ljc
[
j
];
inz
++
)
y
[
Lir
[
inz
]]
-=
yj
*
Lpr
[
inz
];
}
}
}
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
y = fwblksolve(L,b, [y])
y = L.L \ b(L.perm)
************************************************************ */
void
mexFunction
(
const
int
nlhs
,
mxArray
*
plhs
[],
const
int
nrhs
,
const
mxArray
*
prhs
[])
{
const
mxArray
*
L_FIELD
;
mwIndex
m
,
n
,
j
,
k
,
nsuper
,
inz
;
double
*
y
,
*
fwork
;
const
double
*
permPr
,
*
b
,
*
xsuperPr
;
const
mwIndex
*
yjc
,
*
yir
,
*
bjc
,
*
bir
;
mwIndex
*
perm
,
*
invperm
,
*
snode
,
*
xsuper
,
*
iwork
;
jcir
L
;
char
bissparse
;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert
(
nrhs
>=
MINNPARIN
,
"fwblkslv requires more input arguments."
);
mxAssert
(
nlhs
<=
NPAROUT
,
"fwblkslv generates only 1 output argument."
);
/* ------------------------------------------------------------
Disassemble block Cholesky structure L
------------------------------------------------------------ */
mxAssert
(
mxIsStruct
(
L_IN
),
"Parameter `L' should be a structure."
);
if
(
(
L_FIELD
=
mxGetField
(
L_IN
,(
mwIndex
)
0
,
"perm"
))
==
NULL
)
/* L.perm */
mexErrMsgTxt
(
"Missing field L.perm."
);
m
=
mxGetM
(
L_FIELD
)
*
mxGetN
(
L_FIELD
);
permPr
=
mxGetPr
(
L_FIELD
);
if
(
(
L_FIELD
=
mxGetField
(
L_IN
,(
mwIndex
)
0
,
"L"
))
==
NULL
)
/* L.L */
mexErrMsgTxt
(
"Missing field L.L."
);
if
(
m
!=
mxGetM
(
L_FIELD
)
||
m
!=
mxGetN
(
L_FIELD
)
)
mexErrMsgTxt
(
"Size L.L mismatch."
);
if
(
!
mxIsSparse
(
L_FIELD
))
mexErrMsgTxt
(
"L.L should be sparse."
);
L
.
jc
=
mxGetJc
(
L_FIELD
);
L
.
ir
=
mxGetIr
(
L_FIELD
);
L
.
pr
=
mxGetPr
(
L_FIELD
);
if
(
(
L_FIELD
=
mxGetField
(
L_IN
,(
mwIndex
)
0
,
"xsuper"
))
==
NULL
)
/* L.xsuper */
mexErrMsgTxt
(
"Missing field L.xsuper."
);
nsuper
=
mxGetM
(
L_FIELD
)
*
mxGetN
(
L_FIELD
)
-
1
;
if
(
nsuper
>
m
)
mexErrMsgTxt
(
"Size L.xsuper mismatch."
);
xsuperPr
=
mxGetPr
(
L_FIELD
);
/* ------------------------------------------------------------
Get rhs matrix b.
If it is sparse, then we also need the sparsity structure of y.
------------------------------------------------------------ */
b
=
mxGetPr
(
B_IN
);
if
(
mxGetM
(
B_IN
)
!=
m
)
mexErrMsgTxt
(
"Size mismatch b."
);
n
=
mxGetN
(
B_IN
);
if
(
(
bissparse
=
mxIsSparse
(
B_IN
))
){
bjc
=
mxGetJc
(
B_IN
);
bir
=
mxGetIr
(
B_IN
);
if
(
nrhs
<
NPARIN
)
mexErrMsgTxt
(
"fwblkslv requires more inputs in case of sparse b."
);
if
(
mxGetM
(
Y_IN
)
!=
m
||
mxGetN
(
Y_IN
)
!=
n
)
mexErrMsgTxt
(
"Size mismatch y."
);
if
(
!
mxIsSparse
(
Y_IN
))
mexErrMsgTxt
(
"y should be sparse."
);
}
/* ------------------------------------------------------------
Allocate output y. If bissparse, then Y_IN gives the sparsity structure.
------------------------------------------------------------ */
if
(
!
bissparse
)
Y_OUT
=
mxCreateDoubleMatrix
(
m
,
n
,
mxREAL
);
else
{
yjc
=
mxGetJc
(
Y_IN
);
yir
=
mxGetIr
(
Y_IN
);
Y_OUT
=
mxCreateSparse
(
m
,
n
,
yjc
[
n
],
mxREAL
);
memcpy
(
mxGetJc
(
Y_OUT
),
yjc
,
(
n
+
1
)
*
sizeof
(
mwIndex
));
memcpy
(
mxGetIr
(
Y_OUT
),
yir
,
yjc
[
n
]
*
sizeof
(
mwIndex
));
}
y
=
mxGetPr
(
Y_OUT
);
/* ------------------------------------------------------------
Allocate working arrays fwork(m) and iwork(2*m + nsuper+1)
------------------------------------------------------------ */
fwork
=
(
double
*
)
mxCalloc
(
m
,
sizeof
(
double
));
iwork
=
(
mwIndex
*
)
mxCalloc
(
2
*
m
+
nsuper
+
1
,
sizeof
(
mwIndex
));
perm
=
iwork
;
invperm
=
perm
;
xsuper
=
iwork
+
m
;
snode
=
xsuper
+
(
nsuper
+
1
);
/* ------------------------------------------------------------
Convert real to integer array, and from Fortran to C style.
In case of sparse b, we store the inverse perm, instead of perm itself.
------------------------------------------------------------ */
for
(
k
=
0
;
k
<=
nsuper
;
k
++
)
xsuper
[
k
]
=
xsuperPr
[
k
]
-
1
;
if
(
!
bissparse
)
for
(
k
=
0
;
k
<
m
;
k
++
)
/* Get perm if !bissparse */
perm
[
k
]
=
permPr
[
k
]
-
1
;
else
{
for
(
k
=
0
;
k
<
m
;
k
++
){
/* Get invperm if bissparse */
j
=
permPr
[
k
];
invperm
[
--
j
]
=
k
;
}
/* ------------------------------------------------------------
In case of sparse b, we also create snode, which maps each subnode
to the supernode containing it.
------------------------------------------------------------ */
for
(
j
=
0
,
k
=
0
;
k
<
nsuper
;
k
++
)
while
(
j
<
xsuper
[
k
+
1
])
snode
[
j
++
]
=
k
;
}
/* ------------------------------------------------------------
The actual job is done here: y = L\b(perm).
------------------------------------------------------------ */
if
(
!
bissparse
)
for
(
j
=
0
;
j
<
n
;
j
++
){
for
(
k
=
0
;
k
<
m
;
k
++
)
/* y = b(perm) */
y
[
k
]
=
b
[
perm
[
k
]];
fwsolve
(
y
,
L
.
jc
,
L
.
ir
,
L
.
pr
,
xsuper
,
nsuper
,
fwork
);
y
+=
m
;
b
+=
m
;
}
else
for
(
j
=
0
,
inz
=
0
;
j
<
n
;
j
++
){
for
(
k
=
inz
;
k
<
yjc
[
j
+
1
];
k
++
)
/* fwork = all-0 */
fwork
[
yir
[
k
]]
=
0.0
;
for
(
k
=
bjc
[
j
];
k
<
bjc
[
j
+
1
];
k
++
)
/* fwork = b(perm) */
fwork
[
invperm
[
bir
[
k
]]]
=
b
[
k
];
selfwsolve
(
fwork
,
L
.
jc
,
L
.
ir
,
L
.
pr
,
xsuper
,
nsuper
,
snode
,
yir
+
inz
,
yjc
[
j
+
1
]
-
inz
);
for
(;
inz
<
yjc
[
j
+
1
];
inz
++
)
y
[
inz
]
=
fwork
[
yir
[
inz
]];
}
/* ------------------------------------------------------------
RELEASE WORKING ARRAYS.
------------------------------------------------------------ */
mxFree
(
iwork
);
mxFree
(
fwork
);
}
Event Timeline
Log In to Comment