Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F121629053
getada1.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jul 12, 15:18
Size
11 KB
Mime Type
text/x-c
Expires
Mon, Jul 14, 15:18 (2 d)
Engine
blob
Format
Raw Data
Handle
27362401
Attached To
R1252 EMPoWER
getada1.c
View Options
/* ************************************************************
% ADA = getada1(ADA, A,Ajc2,perm, d, blkstart)
% GETADA1 Compute ADA(i,j) = (D(d^2; LP,Lorentz)*A.t(:,i))' *A.t(:,j),
% and exploit sparsity as much as possible.
% Ajc2 points just beyond LP/Lorentz nonzeros for each column
% blkstart = K.qblkstart partitions into Lorentz blocks.
%
% IMPORTANT 1: only LP and sparse Lorentz part. PSD part ignored altogether.
% For Lorentz, it uses only det(dk) * ai[k]'*aj[k].
% IMPORTANT 2: Computes ADA only on triu(ADA(Aord.lqperm,Aord.lqperm)).
% Remaining entries are set to 0. (CAUTION: sparse(ADA) will therefore
% destroy the sparsity structure !).
%
% SEE ALSO sedumi, getada2, getada3
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
function ADA = getada1(ADA, A,Ajc2,perm, d, blkstart)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
************************************************************ */
#include <string.h>
#include <math.h>
#include "mex.h"
#include "blksdp.h"
#define ADA_OUT plhs[0]
#define NPAROUT 1
#define ADA_IN prhs[0]
/* sparsity struct ADA */
#define AT_IN prhs[1]
/* N x m sparse At */
#define AJC2_IN prhs[2]
/* End of LP/Lorentz columns in At */
#define PERM_IN prhs[3]
#define D_IN prhs[4]
/* scaling vector */
#define BLKSTART_IN prhs[5]
#define NPARIN 6
/* ************************************************************
PROCEDURE: getada1
INPUT
ada.{jc,ir} - sparsity structure of ada.
At - sparse N x m matrix.
d - blkstart[0] (=K.l) vector containing x./z for LP-part.
ddet - length nblk-1 (=|K.q|) vector containing d.det = (det(dk))_k for
each Lorentz block k.
Ajc1 - m mwIndex-array, Ajc1 points to start of PSD nz's in At,
and hence just beyond the LP/Lorentz part.
blkstart - length nblk+1, cumsum([K.l,|K.q|, K.q-1]), is
K.blkstart(1:2+length(K.q)).
perm, invperm - length(m) array, ordering in which ADA should be computed,
and its inverse. We compute in order triu(ADA(perm,perm)), but store
at original places. OPTIMAL PERM: sort(Ajc1-At.jc, inc), i.e. start
with sparsest.
m - order of ADA, number of constraints.
nblk - 1+length(K.q)
OUTPUT
ada.pr - ada(i,j) = ai'*D(d^2)*aj. ONLY triu(ADA(perm,perm)) is
affected. (So caller typically should initialize to all-0.)
WORKING ARRAYS
fwork - work vector, size 2*blkstart[nblk].
************************************************************ */
void
getada1
(
jcir
ada
,
jcir
At
,
const
double
*
d
,
const
double
*
ddet
,
const
mwIndex
*
Ajc1
,
const
mwIndex
*
blkstart
,
const
mwIndex
*
perm
,
const
mwIndex
*
invperm
,
const
mwIndex
m
,
const
mwIndex
nblk
,
double
*
fwork
)
{
mwIndex
i
,
j
,
k
,
knz
,
inz
,
permj
;
double
*
daj
,
*
dsqr
;
double
adaij
,
detk
;
/* ------------------------------------------------------------
Partition working arrays
double: dsqr(lend), daj(lend), where lend = K.l + sum(K.q.^2).
------------------------------------------------------------ */
daj
=
fwork
;
/* lend */
dsqr
=
daj
+
blkstart
[
nblk
];
/* lend */
/* ------------------------------------------------------------
Init daj = all-0 (for LP+Lorentz)
------------------------------------------------------------ */
fzeros
(
daj
,
blkstart
[
nblk
]);
/* ------------------------------------------------------------
Init dsqr = [d.l; -d.det; kron(d.det, all-1)]
------------------------------------------------------------ */
memcpy
(
dsqr
,
d
,
blkstart
[
0
]
*
sizeof
(
double
));
/* LP */
memcpy
(
dsqr
+
blkstart
[
0
],
ddet
,(
blkstart
[
1
]
-
blkstart
[
0
])
*
sizeof
(
double
));
for
(
inz
=
blkstart
[
0
];
inz
<
blkstart
[
1
];
inz
++
)
dsqr
[
inz
]
*=
-
1
;
/* Lorentz trace */
ddet
-=
2
;
for
(
k
=
2
;
k
<=
nblk
;
k
++
){
/* Lorentz norm-bound: */
detk
=
ddet
[
k
];
while
(
inz
<
blkstart
[
k
])
dsqr
[
inz
++
]
=
detk
;
/* detk * all-1 */
}
/* ============================================================
MAIN getada LOOP: loop over nodes perm(0:m-1)
============================================================ */
for
(
j
=
0
;
j
<
m
;
j
++
){
permj
=
perm
[
j
];
if
((
inz
=
At
.
jc
[
permj
])
<
Ajc1
[
permj
]){
/* if any nonzeros */
/* ------------------------------------------------------------
Compute daj = dsqr .* aj.
------------------------------------------------------------ */
for
(;
inz
<
Ajc1
[
permj
];
inz
++
){
i
=
At
.
ir
[
inz
];
daj
[
i
]
=
dsqr
[
i
]
*
At
.
pr
[
inz
];
}
/* ------------------------------------------------------------
For all i with invpermi < j:
ada_ij = a_i'*daj.
------------------------------------------------------------ */
for
(
inz
=
ada
.
jc
[
permj
];
inz
<
ada
.
jc
[
permj
+
1
];
inz
++
){
i
=
ada
.
ir
[
inz
];
if
(
invperm
[
i
]
<=
j
){
for
(
adaij
=
0.0
,
knz
=
At
.
jc
[
i
];
knz
<
Ajc1
[
i
];
knz
++
)
adaij
+=
At
.
pr
[
knz
]
*
daj
[
At
.
ir
[
knz
]];
ada
.
pr
[
inz
]
=
adaij
;
}
}
/* ------------------------------------------------------------
Re-initialize daj = 0.
------------------------------------------------------------ */
for
(
i
=
At
.
jc
[
permj
];
i
<
Ajc1
[
permj
];
i
++
)
/* LP + Lorentz */
daj
[
At
.
ir
[
i
]]
=
0.0
;
}
/* ~isempty(At(:,j)) */
}
/* j = 0:m-1 */
}
/* ============================================================
MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
************************************************************ */
void
mexFunction
(
int
nlhs
,
mxArray
*
plhs
[],
int
nrhs
,
const
mxArray
*
prhs
[])
{
const
mxArray
*
MY_FIELD
;
mwIndex
nblk
,
m
,
i
,
j
;
const
double
*
d
,
*
ddet
,
*
permPr
,
*
Ajc2Pr
,
*
blkstartPr
;
double
*
fwork
;
mwIndex
*
blkstart
,
*
iwork
,
*
Ajc2
,
*
perm
,
*
invperm
;
jcir
At
,
ada
;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert
(
nrhs
>=
NPARIN
,
"getADA requires more input arguments."
);
mxAssert
(
nlhs
<=
NPAROUT
,
"getADA produces less output arguments."
);
/* ------------------------------------------------------------
Get INPUTS blkstart, At, Ajc2, perm.
------------------------------------------------------------ */
blkstartPr
=
mxGetPr
(
BLKSTART_IN
);
nblk
=
mxGetM
(
BLKSTART_IN
)
*
mxGetN
(
BLKSTART_IN
);
/* is |K.q| + 1 */
mxAssert
(
nblk
>=
1
,
"Size mismatch blkstart."
);
m
=
mxGetN
(
AT_IN
);
mxAssert
(
mxIsSparse
(
AT_IN
),
"At should be sparse."
);
At
.
pr
=
mxGetPr
(
AT_IN
);
At
.
jc
=
mxGetJc
(
AT_IN
);
At
.
ir
=
mxGetIr
(
AT_IN
);
Ajc2Pr
=
mxGetPr
(
AJC2_IN
);
mxAssert
(
mxGetM
(
AJC2_IN
)
*
mxGetN
(
AJC2_IN
)
==
m
,
"Size mismatch Ajc2."
);
mxAssert
(
mxGetM
(
PERM_IN
)
*
mxGetN
(
PERM_IN
)
==
m
,
"Size mismatch perm."
);
permPr
=
mxGetPr
(
PERM_IN
);
/* ------------------------------------------------------------
Allocate working array blkstart(nblk+1).
------------------------------------------------------------ */
blkstart
=
(
mwIndex
*
)
mxCalloc
(
nblk
+
1
,
sizeof
(
mwIndex
));
/* ------------------------------------------------------------
Translate blkstart from Fortran-double to C-mwIndex
------------------------------------------------------------ */
for
(
i
=
0
;
i
<
nblk
;
i
++
){
/* to integers */
j
=
(
mwIndex
)
blkstartPr
[
i
];
mxAssert
(
j
>
0
,
""
);
blkstart
[
i
+
1
]
=
--
j
;
}
mxAssert
(
mxGetM
(
AT_IN
)
>=
blkstart
[
nblk
],
"Size mismatch At"
);
/* ------------------------------------------------------------
Get SCALING VECTOR: d.{l,det}, and check its size with blkstart.
------------------------------------------------------------ */
mxAssert
(
mxIsStruct
(
D_IN
),
"Parameter `d' should be a structure."
);
/* d */
MY_FIELD
=
mxGetField
(
D_IN
,(
mwIndex
)
0
,
"l"
);
/* d.l */
mxAssert
(
MY_FIELD
!=
NULL
,
"Field d.l missing."
);
blkstart
[
0
]
=
mxGetM
(
MY_FIELD
)
*
mxGetN
(
MY_FIELD
);
d
=
mxGetPr
(
MY_FIELD
);
MY_FIELD
=
mxGetField
(
D_IN
,(
mwIndex
)
0
,
"det"
);
/* d.det */
mxAssert
(
MY_FIELD
!=
NULL
,
"Field d.det missing."
);
mxAssert
(
mxGetM
(
MY_FIELD
)
*
mxGetN
(
MY_FIELD
)
==
blkstart
[
1
]
-
blkstart
[
0
],
"Size d.det mismatch"
);
ddet
=
mxGetPr
(
MY_FIELD
);
/* ------------------------------------------------------------
Allocate output matrix ADA with sparsity structure of ADA_IN:
------------------------------------------------------------ */
mxAssert
(
mxGetM
(
ADA_IN
)
==
m
&&
mxGetN
(
ADA_IN
)
==
m
,
"Size mismatch ADA."
);
mxAssert
(
mxIsSparse
(
ADA_IN
),
"ADA should be sparse."
);
ada
.
jc
=
mxGetJc
(
ADA_IN
);
ada
.
ir
=
mxGetIr
(
ADA_IN
);
ADA_OUT
=
mxCreateSparse
(
m
,
m
,
ada
.
jc
[
m
],
mxREAL
);
/* ADA = sparse(ADA_IN) */
ada
.
pr
=
mxGetPr
(
ADA_OUT
);
/* initialized to all-0 */
memcpy
(
mxGetJc
(
ADA_OUT
),
ada
.
jc
,
(
m
+
1
)
*
sizeof
(
mwIndex
));
memcpy
(
mxGetIr
(
ADA_OUT
),
ada
.
ir
,
ada
.
jc
[
m
]
*
sizeof
(
mwIndex
));
/* ------------------------------------------------------------
ALLOCATE working arrays:
iwork(3*m) = [Ajc2(m) perm(m), invperm(m)].
fwork[2 * blkstart[nblk]]
------------------------------------------------------------ */
iwork
=
(
mwIndex
*
)
mxCalloc
(
MAX
(
3
*
m
,
1
),
sizeof
(
mwIndex
));
Ajc2
=
iwork
;
perm
=
iwork
+
m
;
invperm
=
perm
+
m
;
fwork
=
(
double
*
)
mxCalloc
(
MAX
(
2
*
blkstart
[
nblk
],
1
),
sizeof
(
double
));
/* ------------------------------------------------------------
perm and Ajc2 to integer C-style
------------------------------------------------------------ */
for
(
i
=
0
;
i
<
m
;
i
++
){
j
=
(
mwIndex
)
permPr
[
i
];
mxAssert
(
j
>
0
,
""
);
perm
[
i
]
=
--
j
;
}
for
(
i
=
0
;
i
<
m
;
i
++
)
Ajc2
[
i
]
=
(
mwIndex
)
Ajc2Pr
[
i
];
/* ------------------------------------------------------------
Let invperm(perm) = 0:m-1.
------------------------------------------------------------ */
for
(
i
=
0
;
i
<
m
;
i
++
)
invperm
[
perm
[
i
]]
=
i
;
/* ------------------------------------------------------------
ACTUAL COMPUTATION: handle constraint aj=At(:,perm(j)), j=0:m-1.
------------------------------------------------------------ */
getada1
(
ada
,
At
,
d
,
ddet
,
Ajc2
,
blkstart
,
perm
,
invperm
,
m
,
nblk
,
fwork
);
/* ------------------------------------------------------------
RELEASE WORKING ARRAYS.
------------------------------------------------------------ */
mxFree
(
fwork
);
mxFree
(
iwork
);
mxFree
(
blkstart
);
}
Event Timeline
Log In to Comment