Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F122088084
qrK.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Jul 15, 17:30
Size
11 KB
Mime Type
text/x-c
Expires
Thu, Jul 17, 17:30 (2 d)
Engine
blob
Format
Raw Data
Handle
27432923
Attached To
R1252 EMPoWER
qrK.c
View Options
/*
[q,r] = qrK(x,K);
* x should consist only of SDP part (length sum(K.s.^2)).
* q is in product form: the n-1 factors are:
I- q(k:n,k)*q(k:n,k)' / beta(k).
For real PSD blocks, beta[k] = q(k,n)
For complex PSD blocks, beta[k] = q(k,2*n+1), and q is n * (2n+1).
* tril(r) will be all-0.
qrK: Q(beta)*R factorization
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include <string.h>
#include <math.h>
#include "mex.h"
#include "blksdp.h"
#define Q_OUT myplhs[0]
#define R_OUT myplhs[1]
#define NPAROUT 2
#define X_IN prhs[0]
#define K_IN prhs[1]
#define NPARIN 2
/* ************************************************************
PROCEDURE isconjhadamul - Let y = conj(x).*y
************************************************************ */
void isconjhadamul(double *y, double *ypi, const double *x,const double *xpi,
const mwIndex n)
{
mwIndex i;
double yi;
for(i = 0; i < n; i++){
yi = x[i] * y[i] + xpi[i] * ypi[i];
ypi[i] = x[i] * ypi[i] - xpi[i] * y[i];
y[i] = yi;
}
}
/* ************************************************************
PROCEDURE qrfac - QR factorization for nxn matrix.
INPUT
n - order of matrix to be factored
UPDATED
u - Full nxn. On input, u is matrix to be factored. On output,
triu(u) = uppertriangular factor;
tril(u,-1) = undefined.
OUTPUT
beta - length n vector. kth Householder reflection is
Qk = I-qk*qk' / beta[k], where qk = q(k:n-1,k).
q - n x (n-1) matrix; each column is a Householder reflection.
************************************************************ */
void qrfac(double *beta, double *q, double *u, const mwIndex n)
{
mwIndex i,k, kcol, nmink, icol;
double dk, betak, qkui, qkk;
for(k = 0, kcol = 0; k < n-1; k++, kcol += n+1){
/* ------------------------------------------------------------
kth Householder reflection:
dk = sign(xkk) * ||xk(k:n)||,
qk(k+1:n) = x(k+1:n); qkk = xkk+dk, betak = dk*qkk, ukk = -dk.
------------------------------------------------------------ */
qkk = u[kcol];
dk = SIGN(qkk) * sqrt(realssqr(u+kcol,n-k));
memcpy(q + kcol+1, u+kcol+1, (n-k-1) * sizeof(double));
qkk += dk;
betak = dk * qkk;
q[kcol] = qkk;
if(betak == 0.0) /* If xk is all-0 then set beta = 1. */
betak = 1.0;
beta[k] = betak;
u[kcol] = -dk;
/* ------------------------------------------------------------
Reflect columns k+1:n-1, i.e.
xi -= (qk'*xi / betak) * qk, where xi = x(k:n-1, i).
------------------------------------------------------------ */
nmink = n-k;
betak = -betak;
for(i = k + 1, icol = kcol + n; i < n; i++, icol += n){
qkui = realdot(q+kcol, u+icol, nmink);
addscalarmul(u+icol, qkui/betak, q+kcol, nmink);
}
}
}
/* complex Hermitian: */
/* ************************************************************
PROCEDURE prpiqrfac - QR factorization for nxn matrix.
INPUT
n - order of matrix to be factored
UPDATED
u - Full nxn. On input, u is matrix to be factored. On output,
triu(u) = uppertriangular factor;
tril(u,-1) = undefined.
OUTPUT
beta - length n vector. kth Householder reflection is
Qk = I-qk*qk' / beta[k], where qk = q(k:n-1,k).
q,qpi - n x n matrix; each of the first n-1 columns is a Householder
reflection. The n-th column gives Qn = diag(q(:,n)), which is NOT
Hermitian (viz. diag complex rotations). We have
u_IN = Q_1*Q_2*.. *Q_n * triu(u_OUT),
u_OUT = Q_n' * Q_{n-1}* .. * Q_2*Q_1*u_IN.
************************************************************ */
void prpiqrfac(double *beta, double *q, double *qpi, double *u,
double *upi, const mwIndex n)
{
mwIndex i,j,k, kcol, nmink, icol;
double betak, qkui,qkuiim, absxkk, normxk, xkk,xkkim;
double *ui,*uipi, *qk, *qkpi;
for(k = 0, kcol = 0; k < n-1; k++, kcol += n+1){
qk = q+kcol;
qkpi = qpi + kcol;
/* ------------------------------------------------------------
kth Householder reflection:
Set absxkk = |xkk| and normxk = norm(xk(k:n)), then
ukk = -sign(xkk) * normxk, qkk = xkk - ukk, qk(k+1:n) = xk(k+1:n).
Remark: sign(xkk) := xkk/|xkk|, a complex number.
------------------------------------------------------------ */
xkk = u[kcol];
xkkim = upi[kcol];
absxkk = SQR(xkk) + SQR(xkkim);
normxk = absxkk + realssqr(u+kcol+1,n-k-1) + realssqr(upi+kcol+1,n-k-1);
memcpy(qk+1, u+kcol+1, (n-k-1) * sizeof(double)); /* real */
memcpy(qkpi+1, upi+kcol+1, (n-k-1) * sizeof(double)); /* imag */
absxkk = sqrt(absxkk);
normxk = sqrt(normxk);
if(absxkk > 0.0){
u[kcol] = -(xkk / absxkk) * normxk; /* ukk = -sign(xkk) * normxk */
upi[kcol] = -(xkkim / absxkk) * normxk;
}
else
u[kcol] = -normxk; /* sign(0) := 1 */
qk[0] = xkk - u[kcol]; /* qkk = xkk - ukk */
qkpi[0] = xkkim - upi[kcol];
/* ------------------------------------------------------------
betak = normxk * (normxk + absxkk)
EXCEPTION: if xk is all-0 then set beta = 1 (to avoid division by 0).
------------------------------------------------------------ */
if(normxk == 0.0)
betak = 1.0;
else
betak = normxk * (normxk + absxkk);
beta[k] = betak;
/* ------------------------------------------------------------
Reflect columns k+1:n-1, i.e.
xi -= (qk'*xi / betak) * qk, where xi = x(k:n-1, i).
------------------------------------------------------------ */
nmink = n-k;
for(i = k + 1, icol = kcol + n; i < n; i++, icol += n){
ui = u + icol; uipi = upi+icol;
qkui = realdot(qk, ui, nmink) + realdot(qkpi, uipi, nmink);
qkuiim = realdot(qk, uipi, nmink) - realdot(qkpi, ui, nmink);
qkui /= betak;
qkuiim /= betak;
/* for all j, we have x(j,i) -= (qkui + i * qkuiim) * (qk[j] + i*qkpi[j]) */
for(j = 0; j < nmink; j++){
ui[j] -= qkui * qk[j] - qkuiim * qkpi[j];
uipi[j] -= qkui * qkpi[j] + qkuiim * qk[j];
}
}
} /* k = 0:n-2 */
/* ------------------------------------------------------------
The Q*R decomposition is now done, but IM diag(u) may be nonzero.
Therefore, we multiply each row with conj(sign(u_ii)) = conj(u_ii)/|u_ii|.
Let q(1:n,n) = sign(diag(u))
------------------------------------------------------------ */
mxAssert(n>=0,"");
if(n > 0){
kcol = n * (n-1); /* sign column q(:,n) */
qk = q + kcol;
qkpi = qpi + kcol;
/* Let icol point to (i,i) entry */
for(i = 0, icol = 0; i < n; i++, icol += n+1){
xkk = u[icol]; /* get u(i,i) */
xkkim = upi[icol];
absxkk = sqrt(SQR(xkk) + SQR(xkkim));
qk[i] = xkk / absxkk; /* q(i) = sign(u(i,i)) */
qkpi[i] = xkkim / absxkk;
u[icol] = absxkk; /* new u(i,i) = |uOLD(i,i)| */
upi[icol] = 0.0;
}
/* ------------------------------------------------------------
Let Unew = Q_n'*Uold, i.e. u(i,k) = conj(qn(i)) * uOLD(i,k), i < k
------------------------------------------------------------ */
for(k = 1, kcol = n; k < n; k++, kcol += n)
isconjhadamul(u+kcol, upi+kcol, qk,qkpi,k);
}
}
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
[beta,U,d,perm] = qrpfacK(x,K)
************************************************************ */
void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mxArray *myplhs[NPAROUT];
coneK cK;
mwIndex i,k,nk,nksqr, sdpdim, qsize;
double *q, *r, *betak;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert(nrhs >= NPARIN, "qrK requires more input arguments");
mxAssert(nlhs <= NPAROUT, "qrK produces less output arguments");
/* ------------------------------------------------------------
Disassemble cone K structure
------------------------------------------------------------ */
conepars(K_IN, &cK);
/* ------------------------------------------------------------
Compute statistics: sdpdim = rdim+hdim, qsize = sdpdim + hLen.
------------------------------------------------------------ */
sdpdim = cK.rDim + cK.hDim;
qsize = sdpdim + cK.hLen;
/* ------------------------------------------------------------
Check input vector x.
------------------------------------------------------------ */
mxAssert(mxGetM(X_IN) * mxGetN(X_IN) == sdpdim, "size mismatch x");
/* ------------------------------------------------------------
Allocate output Q(qsize), R(sdpdim)
and let r = x.
------------------------------------------------------------ */
Q_OUT = mxCreateDoubleMatrix(qsize, (mwSize)1, mxREAL);
q = mxGetPr(Q_OUT);
R_OUT = mxCreateDoubleMatrix(sdpdim, (mwSize)1, mxREAL);
r = mxGetPr(R_OUT);
memcpy(r, mxGetPr(X_IN), sdpdim * sizeof(double));
/* ------------------------------------------------------------
The actual job is done here:
------------------------------------------------------------ */
for(k = 0; k < cK.rsdpN; k++){ /* real symmetric */
nk = (mwIndex) cK.sdpNL[k];
nksqr = SQR(nk);
qrfac(q+nksqr-nk,q,r, nk);
r += nksqr;
q += nksqr;
}
for(; k < cK.sdpN; k++){ /* complex Hermitian */
nk = (mwIndex) cK.sdpNL[k];
nksqr = SQR(nk);
betak = q + 2*nksqr;
prpiqrfac(betak,q,q+nksqr, r,r+nksqr, nk);
nksqr += nksqr;
r += nksqr;
q += nksqr + nk; /* nk for betak */
}
/* ------------------------------------------------------------
Copy requested output parameters (at least 1), release others.
------------------------------------------------------------ */
i = MAX(nlhs, 1);
memcpy(plhs,myplhs, i * sizeof(mxArray *));
for(; i < NPAROUT; i++)
mxDestroyArray(myplhs[i]);
}
Event Timeline
Log In to Comment