Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F122145915
sdmauxTriu.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Jul 16, 03:35
Size
5 KB
Mime Type
text/x-c
Expires
Fri, Jul 18, 03:35 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27402269
Attached To
R1252 EMPoWER
sdmauxTriu.c
View Options
/* ************************************************************
MODULE sdmaux*.c -- Several low-level subroutines for the
mex-files in the Self-Dual-Minimization package.
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
************************************************************ */
#include <string.h>
#include "blksdp.h"
/* ============================================================
TRIU/TRIL RELATED
============================================================ */
/* ************************************************************
PROCEDURE tril2sym -- assign R(i,j) = R(j,i) for all j>i.
INPUT n - order of n x n matrix R.
UPDATED r - on output, the strict lower triangular is copied
to the strict upper triangular.
************************************************************ */
void tril2sym(double *r, const mwIndex n)
{
mwIndex colp,i,j;
/* ------------------------------------------------------------
r points to R(:,i); r+colp = R(:,j).
------------------------------------------------------------ */
for(i=0; i<n; r += n, i++)
for(colp = n + i, j=i+1; j<n; j++, colp += n)
r[colp] = r[j]; /* R(i,j) = R(j,i) */
}
/* ************************************************************
PROCEDURE tril2herm -- Given R = [RE R, IM R],
assign RE R(i,j) = RE R(j,i) and IM R(i,j) = - IM R(j,i) for all j>i.
INPUT n - order of 2*(n x n) matrix R.
UPDATED r,rpi - on output, is made Hermitian (sym, skew-sym resp).
************************************************************ */
void tril2herm(double *r, double *rpi, const mwIndex n)
{
mwIndex colp,i,j;
/* ------------------------------------------------------------
First, make the real block symmetric. Then, make the imaginary
part skew-symmetric.
------------------------------------------------------------ */
tril2sym(r,n);
/* ------------------------------------------------------------
r points to R(:,i); r+colp = R(:,j).
------------------------------------------------------------ */
for(i = 0; i < n; rpi += n, i++){
rpi[i] = 0.0; /* zero-diagonal */
for(colp = n + i, j = i + 1; j < n; j++, colp += n)
rpi[colp] = -rpi[j]; /* R(i,j) = -R(j,i) */
}
}
/* ************************************************************
PROCEDURE triu2sym -- assign R(j,i) = R(i,j) for all j>i.
INPUT n - order of n x n matrix R.
UPDATED r - on output, the strict lower triangular is copied
to the strict upper triangular.
************************************************************ */
void triu2sym(double *r, const mwIndex n)
{
mwIndex colp,i,j;
/* ------------------------------------------------------------
r points to R(:,i); r+colp = R(:,j).
------------------------------------------------------------ */
for(i = 0; i < n; r += n, i++)
for(colp = n + i, j=i+1; j<n; j++, colp += n)
r[j] = r[colp]; /* R(j,i) = R(i,j) */
}
/* ************************************************************
PROCEDURE triu2herm -- Given R = [RE R, IM R],
assign RE R(i,j) = RE R(j,i) and IM R(i,j) = - IM R(j,i) for all j<i.
INPUT n - order of 2*(n x n) matrix R.
UPDATED r, rpi - on output, is made Hermitian (sym and skewsym resp).
************************************************************ */
void triu2herm(double *r, double *rpi, const mwIndex n)
{
mwIndex colp,i,j;
/* ------------------------------------------------------------
First, make the real block symmetric. Then, let r point to
the imaginary part and make that skew-symmetric.
------------------------------------------------------------ */
triu2sym(r,n);
/* ------------------------------------------------------------
rpi points to R(:,i); rpi+colp = R(:,j).
------------------------------------------------------------ */
for(i = 0; i < n; rpi += n, i++){
rpi[i] = 0.0; /* zero-diagonal */
for(colp = n + i, j=i+1; j < n; j++, colp += n)
rpi[j] = -rpi[colp]; /* R(j,i) = -R(i,j) */
}
}
/* ************************************************************
PROCEDURE uperm - Let triu(Y) = triu(U(:,perm)),
leaving tril(Y,-1) undefined.
INPUT
u - nxn input matrix
perm - length n pivot ordering
n - order
OUTPUT
y - triu(y) = triu(u(:,perm).
************************************************************ */
void uperm(double *y, const double *u, const mwIndex *perm, const mwIndex n)
{
mwIndex j;
const double *uj;
for(j = 0; j < n; y += n){
uj = u + perm[j] * n;
memcpy(y, uj, (++j) * sizeof(double));
}
}
Event Timeline
Log In to Comment