Page MenuHomec4science

symbfwblk.c
No OneTemporary

File Metadata

Created
Sun, Jul 13, 09:48

symbfwblk.c

/*
x = symbfwblk(L, b)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include <string.h>
#include "mex.h"
#include "blksdp.h"
#define X_OUT plhs[0]
#define NPAROUT 1
#define L_IN prhs[0]
#define B_IN prhs[1]
#define NPARIN 2
/* ************************************************************
PROCEDURE snodeCompress - Compressed subscripts based on
supernodal partition.
INPUT
ljc, lir - uncompressed nz-structure of L
xsuper - supernodal partition (length nsuper+1).
nsuper - number of supernodes
OUTPUT
xlindx - length nsuper+1, the columns in lindx.
lindx - compressed subscript array: L(:,xsuper). Should be allocated
to ljc[m], so that there are certainly enough entries.
snode - length m = xsuper[nsuper+1]. Maps subnode to its supernode.
************************************************************ */
void snodeCompress(mwIndex *xlindx,mwIndex *lindx,mwIndex *snode,
const mwIndex *ljc,const mwIndex *lir,const mwIndex *xsuper,
const mwIndex nsuper)
{
mwIndex j, jsup, ix, collen, jcol;
/* ------------------------------------------------------------
SNODE: map each column to the supernode containing it
------------------------------------------------------------ */
j = xsuper[0];
for(jsup = 0; jsup < nsuper; jsup++){
while(j < xsuper[jsup + 1])
snode[j++] = jsup;
}
/* ------------------------------------------------------------
COMPRESS SUBSCRIPTS:
Let (xlindx,lindx) = ljc(xsuper(:)), i.e store only once
for each snode, instead of once per column.
------------------------------------------------------------ */
for(ix = 0, jsup = 0; jsup < nsuper; jsup++){
xlindx[jsup] = ix;
jcol = xsuper[jsup];
collen = ljc[jcol+1] - ljc[jcol];
memcpy(lindx + ix, lir + ljc[jcol], collen * sizeof(mwIndex));
ix += collen;
}
xlindx[nsuper] = ix;
}
/* ************************************************************
PROCEDURE getnzfwlj - find nonzero supernodes in L\e_{xsuper[jsup]}.
INPUT
jsup - starting supernode to process from.
snode, xsuper - supernodal partition.
xsuper(nsuper+1): xsuper(j):xsuper(j+1)-1 is jth supernode
snode(m): j=snode(i) means xsuper(j) <= i < xsuper(j+1).
xlindx,lindx - compressed subscript array.
xlindx(nsuper+1): lindx(xlindx(j):xlindx(j+1)-1) are the subscripts
for supernode j.
UPDATED
processed - Sets processed[jsup] = 1 if jsup is in L\e_{xsuper[jsup]}.
snodefrom - Lists first relevant subnode of each supernode
where processed[jsup]=1.
REMARK - caller has to set processed[jsup]=1; getnzfwlj only does
this for the child supernodes.
************************************************************ */
void getnzfwlj(mwIndex *snodefrom, bool *processed, mwIndex jsup,
const mwIndex *snode, const mwIndex *xsuper,
const mwIndex *xlindx, const mwIndex *lindx)
{
mwIndex i,j;
j = xsuper[jsup+1] - xsuper[jsup];
while(xlindx[jsup] + j < xlindx[jsup + 1]){
i = lindx[xlindx[jsup] + j];
jsup = snode[i]; /* next affected snode */
/* ------------------------------------------------------------
If jsup has already been processed, then we can stop here, after
making sure that i >= snodefrom[jsup].
------------------------------------------------------------ */
if(processed[jsup]){
if(i < snodefrom[jsup])
snodefrom[jsup] = i;
break; /* STOP */
}
/* ------------------------------------------------------------
Otherwise, we process and link through to next affected supernode
------------------------------------------------------------ */
processed[jsup] = 1;
snodefrom[jsup] = i;
j = xsuper[jsup+1] - xsuper[jsup];
}
}
/* ************************************************************
PROCEDURE getnzsuper - Compute sparsity structure of L\b(perm), by
determining nonzero-supernodes, and starting subnodes within
them (each supernode is a dense diag block in L).
INPUT
bir, bnnz - bir(bnnz) lists the row-indices of vector b.
invperm - mwIndex(m) Is s.t. perm[invperm[i]] = i.
snode, xsuper - supernodal partition.
xsuper(nsuper+1): xsuper(j):xsuper(j+1)-1 is jth supernode
snode(m): j=snode(i) means xsuper(j) <= i < xsuper(j+1).
xlindx,lindx - compressed subscript array.
xlindx(nsuper+1): lindx(xlindx(j):xlindx(j+1)-1) are the subscripts
for supernode j.
UPDATED
processed - char(nsuper) array. On input all-0, on output
processed[jsup] = 1 iff jsup is in nz structure of L\b.
OUTPUT
snodefrom - Length nsuper array. Lists first relevant subnode of
each supernode where processed[jsup]=1.
************************************************************ */
void getnzsuper(mwIndex *snodefrom, bool *processed,
const mwIndex *bir, const mwIndex bnnz,
const mwIndex *invperm, const mwIndex *snode, const mwIndex *xsuper,
const mwIndex *xlindx, const mwIndex *lindx)
{
mwIndex inz,i,jsup;
/* ------------------------------------------------------------
We'll process each supernode jsup = snode[ bir[ inz ] ], to
find all supernodes in x, L*x = b, and the first relevant
subnode of each supernode, snodefrom[jsup].
------------------------------------------------------------ */
if(bnnz <= 0)
return;
for(inz = 0; inz < bnnz; inz++){
i = invperm[bir[inz]]; /* We're interested in b(perm) */
jsup = snode[i];
/* ------------------------------------------------------------
If jsup has not yet been processed, then find supernodes involved
in solving L*x = e_i.
------------------------------------------------------------ */
if(!processed[jsup]){
snodefrom[jsup] = i;
getnzfwlj(snodefrom,processed,jsup, snode,xsuper,xlindx,lindx);
processed[jsup] = 1;
}
/* ------------------------------------------------------------
Otherwise, we only need to make sure that i >= snodefrom[jsup].
------------------------------------------------------------ */
else if(i < snodefrom[jsup])
snodefrom[jsup] = i;
}
}
/* ************************************************************
PROCEDURE symbfwmat - Computes nz-structur of x = L\b(perm,:).
INPUT
bjc, bir - nz-structure of m x n RHS-matrix b.
invperm - mwIndex(m) Is s.t. perm[invperm[i]] = i.
snode, xsuper - supernodal partition.
xsuper(nsuper+1): xsuper(j):xsuper(j+1)-1 is jth supernode
snode(m): j=snode(i) means xsuper(j) <= i < xsuper(j+1).
xlindx,lindx - compressed subscript array.
xlindx(nsuper+1): lindx(xlindx(j):xlindx(j+1)-1) are the subscripts
for supernode j.
nsuper - number of supernodes
m,n - size(b), m rows, n columns.
OUTPUT
xjc - n+1-array: Start of each column in *pxir.
*pxir - length *pmaxnnz array of row-indices.
UPDATED
*pmaxnnz - The allocated number of entries in *pxir. Will be changed
by this function to the exact number needed (but s.t. maxnnz >= 1).
WORK
snodefrom - mwIndex(nsuper)
processed - char(nsuper)
************************************************************ */
void symbfwmat(mwIndex *xjc, mwIndex **pxir,mwIndex *pmaxnnz,
const mwIndex *bjc, const mwIndex *bir,
const mwIndex *invperm, const mwIndex *snode, const mwIndex *xsuper,
const mwIndex *xlindx, const mwIndex *lindx,
const mwIndex nsuper, const mwIndex m, const mwIndex n,
mwIndex *snodefrom, bool *processed)
{
mwIndex i,j,k,inz, maxnnz;
mwIndex *xir;
/* ------------------------------------------------------------
INIT: processed = 0, xir = *pxir, maxnnz = *pmaxnnz.
------------------------------------------------------------ */
memset(processed, 0, nsuper * sizeof(char));
xir = *pxir;
maxnnz = *pmaxnnz;
/* ------------------------------------------------------------
For each column j, compute nz-structure of L\b(:,j) into xir.
First make sure that xir has enough (at least m) available entries.
------------------------------------------------------------ */
inz = 0;
for(j = 0; j < n; j++){
xjc[j] = inz;
if(inz + m > maxnnz){
maxnnz += inz + m; /* required + old amount */
xir = (mwIndex *) mxRealloc(xir, maxnnz*sizeof(mwIndex));
}
/* ------------------------------------------------------------
Find all nz-supernodes in L\b(:,j).
------------------------------------------------------------ */
getnzsuper(snodefrom, processed, bir + bjc[j], bjc[j+1]-bjc[j],
invperm, snode, xsuper, xlindx, lindx);
/* ------------------------------------------------------------
For each nz-supernode, write the row-indices from "snodefrom" into xir.
------------------------------------------------------------ */
for(k = 0; k < nsuper; k++)
if(processed[k]){
processed[k] = 0;
for(i = snodefrom[k]; i < xsuper[k+1]; i++)
xir[inz++] = i;
}
}
/* ------------------------------------------------------------
FINALLY: close last column in xir, Realloc xir to the actual
maxnnz:= xjc[n], and return.
------------------------------------------------------------ */
xjc[n] = inz;
if(inz < maxnnz){
maxnnz = MAX(inz,1); /* avoid realloc to NULL */
xir = (mwIndex *) mxRealloc(xir, maxnnz * sizeof(mwIndex));
}
*pxir = xir;
*pmaxnnz = maxnnz;
}
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
************************************************************ */
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
const mxArray *L_FIELD;
mwIndex maxnnz, i,j, nsuper,m,n;
const mwIndex *ljc,*lir,*bjc,*bir;
mwIndex *xjc,*xir, *snode,*xlindx,*lindx, *iwork,*xsuper, *invperm;
bool *cwork;
double *xpr;
const double *permPr, *xsuperPr;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert(nrhs >= NPARIN, "symbfwblk requires more input arguments");
mxAssert(nlhs <= NPAROUT, "symbfwblk produces 1 output argument");
/* ------------------------------------------------------------
Get rhs-input B
------------------------------------------------------------ */
mxAssert(mxIsSparse(B_IN), "B must be sparse");
m = mxGetM(B_IN);
n = mxGetN(B_IN);
bjc = mxGetJc(B_IN);
bir = mxGetIr(B_IN);
/* ------------------------------------------------------------
Disassemble block Cholesky structure L
------------------------------------------------------------ */
mxAssert(mxIsStruct(L_IN), "Parameter `L' should be a structure.");
L_FIELD = mxGetField(L_IN,(mwIndex)0,"perm");
mxAssert( L_FIELD != NULL, "Missing field L.perm."); /* L.perm */
mxAssert(m == mxGetM(L_FIELD) * mxGetN(L_FIELD), "L.perm size mismatches B");
permPr = mxGetPr(L_FIELD);
L_FIELD = mxGetField(L_IN,(mwIndex)0,"L");
mxAssert( L_FIELD!= NULL, "Missing field L.L."); /* L.L */
mxAssert( m == mxGetM(L_FIELD) && m == mxGetN(L_FIELD), "Size L.L mismatch.");
mxAssert(mxIsSparse(L_FIELD), "L.L should be sparse.");
ljc = mxGetJc(L_FIELD);
lir = mxGetIr(L_FIELD);
L_FIELD = mxGetField(L_IN,(mwIndex)0,"xsuper");
mxAssert( L_FIELD!= NULL, "Missing field L.xsuper."); /* L.xsuper */
nsuper = mxGetM(L_FIELD) * mxGetN(L_FIELD) - 1;
mxAssert( nsuper <= m , "Size L.xsuper mismatch.");
xsuperPr = mxGetPr(L_FIELD);
/* ------------------------------------------------------------
Allocate mwIndex-part of sparse output matrix X(m x n)
Heuristically set nnz to nnz(B) + 4*m.
------------------------------------------------------------ */
maxnnz = bjc[n] + 4 * m;
xjc = (mwIndex *) mxCalloc(n + 1, sizeof(mwIndex));
xir = (mwIndex *) mxCalloc(maxnnz, sizeof(mwIndex));
/* ------------------------------------------------------------
Allocate working arrays:
mwIndex invperm(m), snode(m), xsuper(nsuper+1), xlindx(nsuper+1), lindx(nnz(L)),
iwork(nsuper).
char cwork(nsuper).
------------------------------------------------------------ */
invperm = (mwIndex *) mxCalloc(m,sizeof(mwIndex));
snode = (mwIndex *) mxCalloc(m,sizeof(mwIndex));
xsuper = (mwIndex *) mxCalloc(nsuper+1,sizeof(mwIndex));
xlindx = (mwIndex *) mxCalloc(nsuper+1,sizeof(mwIndex));
lindx = (mwIndex *) mxCalloc(ljc[m], sizeof(mwIndex));
iwork = (mwIndex *) mxCalloc(nsuper, sizeof(mwIndex));
cwork = (bool *) mxCalloc(nsuper, sizeof(bool));
/* ------------------------------------------------------------
Convert PERM, XSUPER to integer and C-Style
------------------------------------------------------------ */
for(i = 0; i < m; i++){
j = (mwIndex) permPr[i];
mxAssert(j>0,"");
invperm[--j] = i; /* so that invperm[perm[i]] = i */
}
for(i = 0; i <= nsuper; i++){
j = (mwIndex) xsuperPr[i];
mxAssert(j>0,"");
xsuper[i] = --j;
}
/* ------------------------------------------------------------
Create "snode" from xsuper, and get compact subscript (xlindx,lindx)
from (ljc,lir,xsuper), i.e. nz-pattern per supernode.
------------------------------------------------------------ */
snodeCompress(xlindx,lindx,snode, ljc,lir,xsuper,nsuper);
/* ------------------------------------------------------------
Compute nz structure after forward solve
------------------------------------------------------------ */
symbfwmat(xjc, &xir, &maxnnz, bjc, bir, invperm, snode, xsuper,
xlindx, lindx,
nsuper, m, n, iwork, cwork);
/* ------------------------------------------------------------
Create output matrix x
------------------------------------------------------------ */
X_OUT = mxCreateSparse(m,n, (mwSize)1,mxREAL);
mxFree(mxGetJc(X_OUT)); /* jc */
mxFree(mxGetIr(X_OUT)); /* ir */
mxFree(mxGetPr(X_OUT)); /* pr */
xpr = (double *) mxCalloc(maxnnz,sizeof(double));
mxSetJc(X_OUT, xjc);
mxSetIr(X_OUT, xir);
mxSetPr(X_OUT, xpr);
mxSetNzmax(X_OUT, maxnnz);
for(i = 0; i < maxnnz; i++)
xpr[i] = 1.0;
/* ------------------------------------------------------------
Release working arrays.
------------------------------------------------------------ */
mxFree(cwork);
mxFree(iwork);
mxFree(lindx);
mxFree(xlindx);
mxFree(xsuper);
mxFree(snode);
mxFree(invperm);
}

Event Timeline