Page MenuHomec4science

urotorder.c
No OneTemporary

File Metadata

Created
Tue, Jul 15, 17:35

urotorder.c

/*
% [u,perm,gjc,g] = urotorder(u,K, maxu,permIN)
% UROTORDER Stable reORDERing of triu U-factor by Givens ROTations.
%
% SEE ALSO sedumi
% ********** INTERNAL FUNCTION OF SEDUMI **********
function [u,perm,gjc,g] = urotorder(u,K, maxu,permIN)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include <string.h>
#include <math.h>
#include "mex.h"
#include "blksdp.h"
#include "givens.h"
#define U_OUT myplhs[0]
#define PERM_OUT myplhs[1]
#define GJC_OUT myplhs[2]
#define G_OUT myplhs[3]
#define NPAROUT 4
#define U_IN prhs[0]
#define K_IN prhs[1]
#define MAXU_IN prhs[2]
#define NPARINMIN 3
#define PERM_IN prhs[3]
#define NPARIN 4
/* ============================================================
TYPE DEFINITIONS:
============================================================ */
/* controls when d's are recomputed from scratch. Not critical, since
d's are used only for SELECTING pivots. Just need avoid full underflow. */
#define DRELTOL 1E-10
/* ************************************************************
PROCEDURE rotorder
UPDATED
u - full n x n matrix. On input, triu(u) is possibly unstable factor.
On output, triu(u(:,perm)) is a stable factor. U_OUT = Q*U_IN,
where Q is a sequence of givens rotations, given in g.
OUTPUT
perm - length n stable (column) pivot ordering.
gjc - The givens rotations at step k are g[gjc[k]:gjc[k+1]-1].
The order in each column is bottom up.
g - length gjc[n] <= n(n-1)/2 array of givens rotations.
At worst we need n-1-k rotations in iter k=0:n-2.
************************************************************ */
void rotorder(mwIndex *perm, double *u, mwIndex *gjc, twodouble *g, double *d,
const double maxusqr, const mwIndex n)
{
mwIndex i,j,k,inz, pivk, m;
double *uj, *rowuk;
double dk,y,nexty, h, uki,ukmax;
twodouble gi;
/* ------------------------------------------------------------
Initialize:
Let perm = 1:n, inz = 0. (inz points into rotation list r)
Let d(0) = 0, h = 1: this will let us compute all d's (since d(0)<h).
------------------------------------------------------------ */
for(j = 0; j < n; j++)
perm[j] = j;
inz = 0;
d[0] = 0.0; h = 1.0;
for(k = 0, rowuk = u; k < n-1; k++, rowuk++){
gjc[k] = inz;
/* ------------------------------------------------------------
If current d's are not reliable then
compute d(i) = sum(u(k:n-1,i).^2) from scratch.
------------------------------------------------------------ */
if(d[perm[k]] <= h){
for(j = k; j < n; j++){
i = perm[j];
d[i] = realssqr(rowuk + i*n,j+1-k);
}
h = d[perm[k]] * DRELTOL;
}
/* ------------------------------------------------------------
Let ukmax = max(U(k,perm(k+1:n)).^2)
------------------------------------------------------------ */
ukmax = 0.0;
for(j = k + 1; j < n; j++){
uki = rowuk[perm[j] * n];
uki *= uki;
ukmax = MAX(ukmax, uki);
}
/* ------------------------------------------------------------
If ukmax > maxusqr * d(k), then pivot k is unstable.
If so, find best pivot: (pivk, dk) = max(perm(d(k:n))).
------------------------------------------------------------ */
if(ukmax > maxusqr * d[perm[k]]){
dk = 0.0;
for(j = k+1; j < n; j++)
if(d[perm[j]] > dk){
pivk = j;
dk = d[perm[j]];
}
/* ------------------------------------------------------------
Pivot on column pivk, and make U(:,perm)
upper-triangular by pivk - k givens rotations on U(:,perm(k:n)).
Givens at row i is {u(i,j), norm( u(i+1:pivk,j) )} for
j=perm[pivk] and i = k:pivk-1.
------------------------------------------------------------ */
m = pivk - k; /* number of Givens rotations needed */
j = perm[pivk]; /* uj(1:m) should become 0 */
uj = rowuk + j * n;
nexty = uj[m]; /* last nonzero in col uj */
y = SQR(nexty);
for(i = m; i > 0; i--){
gi.x = uj[i-1];
gi.y = nexty;
y += SQR(gi.x);
nexty = sqrt(y);
gi.x /= nexty; /* Normalize to rotation [x,y; y,-x] */
gi.y /= nexty;
g[i-1] = gi;
} /* y == d[j] after loop */
uj[0] = nexty; /* New pivotal diagonal entry */
/* ------------------------------------------------------------
move pivot j=perm[pivk] to head of perm (shifting old k:pivk-1)
------------------------------------------------------------ */
memmove(perm+k+1, perm+k, m * sizeof(mwIndex)); /* move 1-> */
perm[k] = j; /* inserted at k */
/* ------------------------------------------------------------
Apply rotations to columns perm(k+1:n-1).
Apply 1,2,...,m rotations on column k+1,..,k+m=pivk,
and m rotations on cols pivk+1:n-1.
------------------------------------------------------------ */
for(i = 1; i <= m; i++)
givensrotuj(rowuk + perm[k+i] * n, g,i);
for(i += k; i < n; i++)
givensrot(rowuk + perm[i] * n, g,m);
inz += m; /* point to next avl. place */
g += m;
/* ------------------------------------------------------------
Update d(perm(k+1:n)) -= u(k,perm(k+1:n)).^2.
------------------------------------------------------------ */
for(j = k + 1; j < n; j++){
i = perm[j];
d[i] -= SQR(rowuk[i * n]);
}
}
}
/* ------------------------------------------------------------
We have reordered n-1 columns of U using inz Givens-rotations.
------------------------------------------------------------ */
mxAssert(n > 0,"");
gjc[n-1] = inz;
}
/* ************************************************************
PROCEDURE prpirotorder
UPDATED
u,upi - full n x n matrix. On input, triu(u) is possibly unstable factor.
u is triu, real diagonal.
On output, triu(u(:,perm)) is a stable factor. U_OUT = Q*U_IN,
where Q is a sequence of givens rotations, given in g.
u remains triu, real diagonal.
OUTPUT
perm - length n stable (column) pivot ordering.
gjc - The givens rotations at step k are g[gjc[k]:gjc[k+1]-1].
The order in each column is bottom up.
g - length gjc[n] <= n(n-1)/2 array of givens rotations.
At worst we need n-1-k rotations in iter k=0:n-2.
************************************************************ */
void prpirotorder(mwIndex *perm, double *u,double *upi, mwIndex *gjc,
tridouble *g, double *d,
const double maxusqr, const mwIndex n)
{
mwIndex i,j,k,inz, pivk, m;
double *uj,*ujpi, *rowuk, *rowukpi;
double dk,y,nexty, h, uki,ukiim,ukmax;
tridouble gi;
/* ------------------------------------------------------------
Initialize:
Let perm = 1:n, inz = 0. (inz points into rotation list r)
Let d(0) = 0, h = 1: this will let us compute all d's (since d(0)<h).
------------------------------------------------------------ */
for(j = 0; j < n; j++)
perm[j] = j;
inz = 0;
d[0] = 0.0; h = 1.0;
for(k = 0, rowuk = u, rowukpi = upi; k < n-1; k++, rowuk++, rowukpi++){
gjc[k] = inz;
/* ------------------------------------------------------------
If current d's are not reliable then
compute d(i) = sum(u(k:n-1,i).^2) from scratch.
------------------------------------------------------------ */
if(d[perm[k]] <= h){
for(j = k; j < n; j++){
i = perm[j]; /* diag entry u(j,i) is real */
d[i] = realssqr(rowuk + i*n,j+1-k) + realssqr(rowukpi + i*n,j-k);
}
h = d[perm[k]] * DRELTOL;
}
/* ------------------------------------------------------------
Let ukmax = max(abs(U(k,perm(k+1:n))).^2)
------------------------------------------------------------ */
ukmax = 0.0;
for(j = k + 1; j < n; j++){
uki = rowuk[perm[j] * n];
ukiim = rowukpi[perm[j] * n];
ukmax = MAX(ukmax, SQR(uki) + SQR(ukiim));
}
/* ------------------------------------------------------------
If ukmax > maxusqr * d(k), then pivot k is unstable.
If so, find best pivot: (pivk, dk) = max(perm(d(k:n))).
------------------------------------------------------------ */
if(ukmax > maxusqr * d[perm[k]]){
dk = 0.0;
for(j = k+1; j < n; j++)
if(d[perm[j]] > dk){
pivk = j;
dk = d[perm[j]];
}
/* ------------------------------------------------------------
Pivot on column pivk, and make U(:,perm)
upper-triangular by pivk - k givens rotations on U(:,perm(k:n)).
Givens at row i is {u(i,j), norm( u(i+1:pivk,j) )} for
j=perm[pivk] and i = k:pivk-1.
Thus, the rotation gi consists of 1 complex and 1 real entry,
(gi.x,gi.xim) and gi.y, resp. The rotation is [conj(x), y;y, -x]
------------------------------------------------------------ */
m = pivk - k; /* number of Givens rotations needed */
j = perm[pivk]; /* uj(1:m) should become 0 */
uj = rowuk + j * n;
ujpi = rowukpi + j * n;
nexty = uj[m]; /* last nonzero in col uj (real) */
y = SQR(nexty);
for(i = m; i > 0; i--){
gi.x = uj[i-1];
gi.xim = ujpi[i-1];
gi.y = nexty;
y += SQR(gi.x) + SQR(gi.xim);
nexty = sqrt(y);
gi.x /= nexty; /* Normalize to rotation [conj(x),y; y,-x] */
gi.xim /= nexty;
gi.y /= nexty;
g[i-1] = gi;
} /* y == d[j] after loop */
uj[0] = nexty; /* New pivotal diagonal entry */
/* ------------------------------------------------------------
move pivot j=perm[pivk] to head of perm (shifting old k:pivk-1)
------------------------------------------------------------ */
memmove(perm+k+1, perm+k, m * sizeof(mwIndex)); /* move 1-> */
perm[k] = j; /* inserted at k */
/* ------------------------------------------------------------
Apply rotations to columns perm(k+1:n-1).
Apply 1,2,...,m rotations on column k+1,..,k+m=pivk,
and m rotations on cols pivk+1:n-1.
------------------------------------------------------------ */
for(i = 1; i <= m; i++)
prpigivensrotuj(rowuk + perm[k+i] * n,rowukpi + perm[k+i] * n, g,i);
for(i += k; i < n; i++)
prpigivensrot(rowuk + perm[i] * n,rowukpi + perm[i] * n, g,m);
inz += m; /* point to next avl. place */
g += m;
/* ------------------------------------------------------------
Update d(perm(k+1:n)) -= u(k,perm(k+1:n)).^2.
------------------------------------------------------------ */
for(j = k + 1; j < n; j++){
i = perm[j];
d[i] -= SQR(rowuk[i * n]) + SQR(rowukpi[i * n]);
}
}
}
/* ------------------------------------------------------------
We have reordered n-1 columns of U using inz Givens-rotations.
------------------------------------------------------------ */
mxAssert(n > 0,"");
gjc[n-1] = inz;
}
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
************************************************************ */
void mexFunction(const int nlhs, mxArray *plhs[],
const int nrhs, const mxArray *prhs[])
{
mxArray *myplhs[NPAROUT];
mwIndex i,j,k, nk, nksqr, lenud, sdplen, gnnz, inz, maxKs,maxKssqr, rgnnz, hgnnz;
const double *uOld, *permOld;
double *u, *d, *gjcPr, *permPr, *fwork, *fworkpi;
mwIndex *perm, *gjc;
double *g, *gk;
double maxusqr;
coneK cK;
char use_pivot;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert(nrhs >= NPARINMIN, "urotorder requires more input arguments.");
mxAssert(nlhs <= NPAROUT, "urotorder generates less output arguments.");
/* ------------------------------------------------------------
Disassemble cone K structure
------------------------------------------------------------ */
conepars(K_IN, &cK);
/* ------------------------------------------------------------
Get statistics of cone K structure
------------------------------------------------------------ */
lenud = cK.rDim + cK.hDim;
sdplen = cK.rLen + cK.hLen;
/* ------------------------------------------------------------
Get scalar input MAXU and input vectors U_IN, PERM_IN
------------------------------------------------------------ */
maxusqr = mxGetScalar(MAXU_IN);
maxusqr *= maxusqr;
mxAssert(mxGetM(U_IN) * mxGetN(U_IN) == lenud, "u size mismatch");
uOld = mxGetPr(U_IN);
use_pivot = 0;
if(nrhs >= NPARIN) /* Optional permIN */
if(mxGetM(PERM_IN) * mxGetN(PERM_IN) > 0){
mxAssert(mxGetM(PERM_IN) * mxGetN(PERM_IN) == sdplen, "perm size mismatch");
use_pivot = 1;
permOld = mxGetPr(PERM_IN);
}
/* ------------------------------------------------------------
Allocate output U_OUT, and initialize u_out = u_in.
------------------------------------------------------------ */
U_OUT = mxCreateDoubleMatrix(lenud, (mwSize)1, mxREAL);
u = mxGetPr(U_OUT);
memcpy(u, mxGetPr(U_IN), lenud * sizeof(double));
/* ------------------------------------------------------------
Allocate outputs PERM(sum(K.s)), GJC(sum(K.s))
------------------------------------------------------------ */
PERM_OUT = mxCreateDoubleMatrix(sdplen, (mwSize)1, mxREAL);
permPr = mxGetPr(PERM_OUT);
GJC_OUT = mxCreateDoubleMatrix(sdplen, (mwSize)1, mxREAL);
gjcPr = mxGetPr(GJC_OUT);
/* ------------------------------------------------------------
Allocate g initially as length (lenud - cK.rLen) / 2. The final
length can be shorter (viz. gjc[sum(K.s)])
------------------------------------------------------------ */
rgnnz = (cK.rDim - cK.rLen) / 2; /* n(n-1)/2 real sym */
hgnnz = (cK.hDim - 2*cK.hLen) / 4; /* n(n-1)/2 complex herm */
gnnz = rgnnz * 2 + hgnnz * 3;
g = (double *) mxCalloc(MAX(1, gnnz),sizeof(double));
/* ------------------------------------------------------------
Allocate working arrays:
Let maxKssqr = max(rMaxn^2, 2*hMaxn^2), then
integer perm(max(K.s)), gjc(max(K.s))
double d(max(K.s)), fwork(maxKs)
------------------------------------------------------------ */
maxKs = MAX(cK.rMaxn,cK.hMaxn); /* max(K.s) */
maxKssqr = MAX(SQR(cK.rMaxn),2 * SQR(cK.hMaxn)); /* max(K.s.^2) */
perm = (mwIndex *) mxCalloc(MAX(1,maxKs), sizeof(mwIndex));
gjc = (mwIndex *) mxCalloc(MAX(1,maxKs), sizeof(mwIndex));
d = (double *) mxCalloc(MAX(1,maxKs), sizeof(double));
fwork = (double *) mxCalloc(MAX(1,maxKssqr), sizeof(double));
fworkpi = fwork + SQR(cK.hMaxn);
/* ------------------------------------------------------------
The actual job is done here: U_NEW = Q(g) * U_OLD
------------------------------------------------------------ */
inz = 0;
for(k = 0; k < cK.rsdpN; k++){ /* real symmetric */
nk = cK.sdpNL[k];
nksqr = SQR(nk);
memcpy(fwork, uOld, nksqr *sizeof(double)); /* k-th U-matrix */
gk = g+inz;
rotorder(perm, fwork, gjc, (twodouble *) gk, d, maxusqr, nk);
/* ------------------------------------------------------------
Physically reorder the columns from fwork into u. Then Let
tril(U) = triu(U)'
------------------------------------------------------------ */
uperm(u, fwork, perm, nk);
triu2sym(u,nk);
/* ------------------------------------------------------------
Let perm_out = perm_in(perm)
------------------------------------------------------------ */
if(use_pivot){
for(i = 0; i < nk; i++)
permPr[i] = permOld[perm[i]];
permOld += nk;
}
else
for(i = 0; i < nk; i++)
permPr[i] = 1.0 + perm[i];
for(i = 0; i < nk; i++)
gjcPr[i] = gjc[i]; /* don't add 1 */
inz += 2 * gjc[nk-1]; /* next PSD block. Rotation g is 2 doubles */
gjcPr += nk;
permPr += nk; uOld += nksqr;
u += nksqr;
}
/* ------------------------------------------------------------
Complex Hermitian
------------------------------------------------------------ */
for(; k < cK.sdpN; k++){ /* complex Hermitian */
nk = cK.sdpNL[k];
nksqr = SQR(nk);
memcpy(fwork, uOld, nksqr *sizeof(double)); /* k-th complex U-matrix */
memcpy(fworkpi, uOld+nksqr, nksqr *sizeof(double));
gk = g+inz;
prpirotorder(perm, fwork,fworkpi, gjc, (tridouble *) gk, d, maxusqr, nk);
/* ------------------------------------------------------------
Physically reorder the columns from fwork into u. Then Let
tril(U) = triu(U)'
------------------------------------------------------------ */
uperm(u, fwork, perm, nk); /* real part */
uperm(u+nksqr, fworkpi, perm, nk); /* imaginary part */
triu2herm(u,u+nksqr, nk);
/* ------------------------------------------------------------
Let perm_out = perm_in(perm)
------------------------------------------------------------ */
if(use_pivot){
for(i = 0; i < nk; i++)
permPr[i] = permOld[perm[i]];
permOld += nk;
}
else
for(i = 0; i < nk; i++)
permPr[i] = 1.0 + perm[i];
for(i = 0; i < nk; i++)
gjcPr[i] = gjc[i]; /* don't add 1 */
inz += 3 * gjc[nk-1]; /* next PSD block. Rotation g is 3 doubles */
gjcPr += nk;
permPr += nk;
nksqr += nksqr;
uOld += nksqr; u += nksqr;
}
/* ------------------------------------------------------------
In total, we used inz doubles in Givens rotations.
Reallocate (shrink) g accordingly.
------------------------------------------------------------ */
mxAssert(inz <= gnnz,"");
if(inz > 0){
if((g = (double *) mxRealloc(g, inz * sizeof(double))) == NULL)
mexErrMsgTxt("Memory allocation error.");
}
else{
mxFree(g);
g = (double *) NULL;
}
/* ------------------------------------------------------------
Assign g to a length inz output vector
------------------------------------------------------------ */
G_OUT = mxCreateDoubleMatrix((mwSize)1, (mwSize)1, mxREAL);
mxFree(mxGetPr(G_OUT));
mxSetPr(G_OUT, (double *) g);
mxSetM(G_OUT, inz);
/* ------------------------------------------------------------
Release working arrays
------------------------------------------------------------ */
mxFree(fwork);
mxFree(d);
mxFree(gjc);
mxFree(perm);
/* ------------------------------------------------------------
Copy requested output parameters (at least 1), release others.
------------------------------------------------------------ */
i = MAX(nlhs, 1);
memcpy(plhs,myplhs, i * sizeof(mxArray *));
for(; i < NPAROUT; i++)
mxDestroyArray(myplhs[i]);
}

Event Timeline