Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F100711580
Classifier.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Feb 2, 02:46
Size
2 KB
Mime Type
text/x-python
Expires
Tue, Feb 4, 02:46 (2 d)
Engine
blob
Format
Raw Data
Handle
24016425
Attached To
R13109 LPBF-Sinergia- SNF
Classifier.py
View Options
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 26 07:14:15 2023
@author: srpv
contact: vigneashwara.solairajapandiyan@empa.ch
contact: vigneashwara.pandiyan@tii.ae
The codes in this following script will be used for the publication of the following work
"Dynamics of in-situ alloying of Ti6Al4V-Fe by means of acoustic emission monitoring
supported by operando synchrotron X-ray diffraction"
@any reuse of this code should be authorized by the first owner, code author
"""
# %%
# Libraries to import
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
sklearn.metrics
import
classification_report
,
confusion_matrix
import
os
from
sklearn
import
metrics
from
sklearn.metrics
import
ConfusionMatrixDisplay
import
joblib
from
sklearn.model_selection
import
train_test_split
from
sklearn.linear_model
import
LogisticRegression
# from Plots import *
# %%
def
LR
(
folder
,
X_train
,
X_test
,
y_train
,
y_test
):
model
=
LogisticRegression
(
max_iter
=
1000
,
random_state
=
123
)
model
.
fit
(
X_train
,
y_train
)
predictions
=
model
.
predict
(
X_test
)
pred_prob
=
model
.
predict_proba
(
X_test
)
y_pred_prob
=
np
.
vstack
((
y_test
,
predictions
))
.
transpose
()
y_pred_prob
=
np
.
hstack
((
y_pred_prob
,
pred_prob
))
print
(
"LogisticRegression Accuracy:"
,
metrics
.
accuracy_score
(
y_test
,
predictions
))
print
(
classification_report
(
y_test
,
predictions
))
print
(
confusion_matrix
(
y_test
,
predictions
))
graph_name1
=
'LR'
+
'_without normalization w/o Opt'
graph_name2
=
'Logistic Regression'
graph_1
=
'LR'
+
'_Confusion_Matrix'
+
'_'
+
'No_Opt'
+
'.png'
graph_2
=
'LR'
+
'_Confusion_Matrix'
+
'_'
+
'Opt'
+
'.png'
titles_options
=
[(
graph_name1
,
None
,
graph_1
),
(
graph_name2
,
'true'
,
graph_2
)]
for
title
,
normalize
,
graphname
in
titles_options
:
plt
.
figure
(
figsize
=
(
20
,
10
),
dpi
=
400
)
disp
=
ConfusionMatrixDisplay
.
from_estimator
(
model
,
X_test
,
y_test
,
display_labels
=
[
'Ti64'
,
'Ti64_3Fe'
,
'Ti64_6Fe'
],
cmap
=
plt
.
cm
.
Reds
,
xticks_rotation
=
'vertical'
,
normalize
=
normalize
)
plt
.
title
(
title
,
size
=
12
)
plt
.
savefig
(
os
.
path
.
join
(
folder
,
graphname
),
bbox_inches
=
'tight'
,
dpi
=
400
)
savemodel
=
folder
+
'/'
+
'LR'
+
'_model'
+
'.sav'
joblib
.
dump
(
model
,
savemodel
)
return
y_pred_prob
,
pred_prob
Event Timeline
Log In to Comment