
Quantum Optics 2 – Spring semester 2024 – 11/04/2024 and 18/04/2024
Problem Set 6 : Atom in Cavity

For questions contact: aurelien.fabre@epfl.ch

This exercise sheet discusses the physics of an atom inside a cavity, a classical problem in quantum optics, in great
detail. It is very long, but that is why you will be asked to solve it in two weeks time.

I. LINDBLAD MASTER EQUATION FOR A CAVITY WITH CLASSICAL DRIVE

The field inside a cavity can be described by the Hamiltonian HC = ωcâ
†â with cavity frequency ωc and cavity field

annihilation operator â. Note, we set h̄ = 1. An external classical drive can be described by the drive Hamiltonian
Hd =

√
κE0

(
â†e−iωt − âeiωt

)
in the rotating wave approximation (RWA) with cavity decay rate κ.

1. Starting from the general drive F cos(ωt + ϕ) · X̂ with frequency ω, phase ϕ and light amplitude quadrature

X̂ = 1/
√
2(â†+ â) write the driving in the interaction picture/rotating frame of the drive ω and apply the RWA

by applying the right unitary transformation Û . You can use :

eZY e−Z =

∞∑
n=0

[(Z)n, Y ]

n!
, where, [(Z)n, Y ] ≡ [Z, [(Z)n−1, Y ]], [(Z)0, Y ] ≡ Y

2. Rewrite the full Hamiltonian in the rotating frame of the drive as H = ∆a†a + i
√
κE0

(
a† − a

)
with detuning

∆ = ω − ωc.

3. The cavity can also decay through losses to the outside world. What is the Lindblad operator corresponding to
cavity decay with a rate κ and the Lindblad master equation describing the time evolution of the density matrix
of the cavity.

4. Using the master equation, derive the expression for time evolution of the expectation value of the annihilation
operator : ⟨ȧ⟩ = Tr(ρ̇a) = −i∆ ⟨a⟩ − κ

2 ⟨a⟩+
√
κE0.

5. What is the steady-solution ⟨a⟩ss of the cavity field? Which physical interpretation have the terms in the
equation for | ⟨a⟩ss |2 in the case ∆ = 0. What is the dimension of E0 ?

II. JAYNES-CUMMINGS WITH DISSIPATION

Let’s introduce a two-level system inside our cavity, that has an energy splitting ωa and interacts with the field
with a coupling strength g (equivalent to a Rabi frequency Ω = 2g).

1. Starting from the quantized atom-cavity field interaction gX̂σ̂x write the interaction in the rotating frame of
the drive and apply the RWA. What is the full Hamiltonian of atom and cavity in the rotation frame of the
cavity drive? Define atom-drive detuning ∆a = ω − ωa.

2. What is the Linblad operator for spontaneous emission of the atom, with a rate Γ and the corresponding
Lindblad equation for the atom?

3. Derive the differential equation for the time evolution of the annihilation operator:
⟨ȧ⟩ = − (i∆+ κ/2) ⟨a⟩+

√
κE0 − ig ⟨σ̂−⟩.

4. We now need to do the same for ⟨σ̇−⟩. In the expression, a term ⟨âσ̂z⟩ should appear. Also compute the
expression for ⟨σ̇z⟩.
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We now have a set of three coupled differential equations, which are sufficient to describe the time evolution of the
system, but require a lot of work to solve. Note that they include higher order correlations terms (expectation values
of operators mixing atomic and cavity operations, such as ⟨aσz⟩ of ⟨aσ+⟩). If we want an idea of the behavior and
give up on the exact correlations, we can do a mean field approximation and factor these terms, as ⟨aσz⟩ → ⟨a⟩ ⟨σz⟩.
We can then write the corresponding steady-state equations and extract the important parameters for the problem.

5. Write the coupled steady-state equations of ⟨â⟩ , ⟨σ̂−⟩ , ⟨σ̂z⟩ using the following expressions:

δa = 2∆a/Γ , δc = 2∆/κ, Γ̃ = Γ + 2i∆at and κ̃ = κ + 2i∆, photon number n = | ⟨a⟩ |2, the cooperativ-

ity C = 4g2

κΓ and the critical photon number n0 = Γ2

8g2 .

By comparing your results for ⟨σz⟩ with the optical Bloch equations, give an interpretation for n0.

6. Introduce the normalized intracavity intensity Ic = n/n0, drive intensity Id = 4|E0|2
n0κ

and show that

Id = Ic

[(
1 +

C

1 + Ic + δ2at

)2

+

(
δc −

Cδat
1 + Ic + δ2at

)2
]
. (1)

As already mentioned, the dimensionless quantity C, calculated at resonance, is called the cooperativity of the
atom-cavity system. It quantifies how much the atom coherently exchanges an excitation with the cavity-mode as
opposed to decaying into free space.

Let’s now assume that we drive the cavity with a weak field, so that we stay in the low saturation regime, i.e
⟨σz⟩ ≃ −1. For the rest of this section, we will also assume that ∆a = ∆c, i.e that the cavity is on resonance with
the atomic transition.

7. What is the condition on n/n0 to be in the low-saturation regime? Simplify the expressions in that case.

8. Simplify for the case C ≪ 1. What is the cavity ”spectrum” (Ic/Id as a function of ∆c)? What is the effect of
the atom in that case?

9. Differentiate the low-saturation expression for Ic(Id) to find three local extrema. One of them is located at

∆ = 0. Check that for g ≫ κ,Γ (strong-coupling regime), ∆ = −
√
CκΓ/2 and ∆ = +

√
CκΓ/2 are also extrema.

The three extrema, that we found, are actually two maxima at ∆ = ±g and one minimum in ∆ = 0. The spectrum
of the atom-cavity system now shows two peaks separated by 2g =

√
CκΓ.

10. What does this 2g energy gap remind you of? Give a condition on C for these two peaks to appear clearly in
the spectrum.

11. Now, use Python to plot Ic/Id as a function of ∆ for different values of C, with fixed κ and Γ that are of the
same order of magnitude. To help, you can express δc in terms of δat,C and n0. BE CAREFUL! You have to
be a bit subtle to get the right normalizations...

This double-peak structure for a low-saturation atom-cavity system is called ”Vacuum Rabi Splitting”. Let’s try
to learn a bit more about it with Qutip !

III. STRONG COUPLING REGIME : VACUUM RABI OSCILLATIONS

Imagine we start with an atom in the excited state and an empty cavity. The state of the system can be written

|ψ⟩ = |e⟩ ⊗ |n = 0⟩. If the ”cooperativity” C = 4g2

κΓ is high enough, then the atom will decay from the excited state
by emitting a photon in the cavity mode instead of in free space. This photon can then be reabsorbed and re-emitted
a certain number of times, giving rise to ”vacuum Rabi oscillations”.

The term ”strong coupling regime” corresponds to a situation where g ≫ κ,Γ. This is realizable in circuit QED or
with specific atomic states (e.g Rydberg states) which have a small decay rate.

1. The QuTIP library was developed to help with simulations of quantum problems in Python. Follow the example
in the Jupyter notebook to see these vacuum Rabi oscillations, and play around with the parameters : what
happens when :

(a) κ = Γ = ∆c = ∆at = 0 ? You should recover some standard undamped coherent Rabi oscillations.



3

(b) κ = Γ = 0.1g ?

(c) ∆c = ∆at = 0 and κ≪ g < Γ ?

(d) ∆c = ∆at = 0 and Γ ≪ g < κ ? Comment the difference with the previous case.

(e) you can also explore around with the detunings ∆c and ∆at.

2. Relate this to the spectra calculated in section II.

IV. CLASSICAL DESCRIPTION

This section is based on the following article : Tanji-Suzuki, et. al. Interaction between Atomic Ensembles and
Optical Resonators, arXiv URL : https://doi.org/10.48550/arXiv.1104.3594. Here, we will analyze the atom–
light interaction from the classical point of view and derive analytical formulas. We will see that the dimensionless
cooperativity parameter η = 4g2/(κΓ) governs all aspects of the atom–light interaction both in free-space and in a
cavity. The classical derivation for an atom–cavity system agrees with the quantum mechanical result discussed in
the previous section.

A. Interaction between a single atom and a free-space mode

In the following, we are interested in the radiation coupled into a mode of interest M (z-direction) via the atom
that is driven by an external field incident from the side (x-direction) with amplitude E. The mode M is a travelling-
wave TEM00 Gaussian mode of wavenumber k = 2π/λ = ω/c propagating along the z-axis, waist w and Rayleigh
range zR = πw2/λ. A single atom is located on the optical axis of that mode at the waist. The atom is described
as a pointlike classical dipole oscillator. This classical-oscillator description of the atom agrees with the quantum
mechanical treatment in the limit where the saturation of the atomic transition is negligible. The external driving
field polarization is assumed to be linear and perpendicular to the direction of propagation of the mode M (y-
direction). We would like to know what fraction of the total power scattered by the driven atom is emitted into this
specific mode M versus the power emitted into free-space.

FIG. 1. Scattering of radiation by a weakly driven atom. The incident field E is polarized perpendicular to the TEM00 mode
of interest M, which is propagating in the z-direction, (green arrow) and drives an atomic dipole oscillator positioned at the
waist of M (red dot) that emits an electromagnetic field Erad at large distance R from the atom.

The electric field EM(ρ, z) in mode M at position (ρ, z) with radial distance ρ2 = x2 + y2 from the z-axis can be
written as EM(ρ, z) = eM(ρ, z)EM/

√
ε0c. Here, we will refer to the position-independent quantity EM as the mode

amplitude and the normalized mode function eM. EM is related to the total power PM via PM = |EM|2/2 and to
the electric field at the waist EM(0, 0) via EM = EM(0, 0)

√
ϵ0cA, where A = πw2/2 is the effective mode area. In

the following it will be useful to similarly define a mode amplitude for the driving field E as E =
√
ϵ0cAE.
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At z ≫ zR the normalized mode function eM is approximated as

eM(ρ, z) ≈
(

2

πw̃2

)1/2

exp

(
− ρ2

w̃2
+ ikz + ik

ρ2

2z
− i

π

2

)
, (2)

with w̃(z) = w
√
1 + (z/zR)2 the beam spot size.

The driving field E induces an atomic dipole oscillation and the dipole emits a radiation field

Erad(R, θ) =
k2 sin θ

4πε0

eikR

R
αE, (3)

at large distance R ≫ λ. Here θ is the angle between the polarization of the driving field and the direction of
observation.

The complex polarizability α is given by

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
, (4)

where ω0 denotes the atomic resonance frequency and Γ is the linewidth of the atomic transition.

1. First, we derive the mode amplitude EM in mode M arising from the radiated field by calculating the projection
EM =

√
ε0c

∫
e∗MErad2πρdρ in the plane z ≫ zR.

Tips:

� Assume that the mode M with w ≫ λ subtends only a small far-field angle λ/(πw) ≪ 1, such that
the spatial dependence of Erad over the region occupied by M can be approximated as sin θ ≈ 1 and

eikR/R ≈ eikz+ikρ2/(2z)/z.

� To simplify the result, use a dimensionless parameter β = kα/(πw2ε0) and a mode amplitude for the
driving field E =

√
ε0cAE with A = πw2/2.

2. Emission: The total scattered power into all directions P4π can be calculated by integrating the intensity
Irad = ε0c|Erad|2/2 of the radiated field over the surface of the sphere of radius R. Derive P4π and the ratio of
the power emitted into the mode vs. free space 2PM/P4π by using the single-atom cooperativity in free space
ηfs = 6/(k2w2).

Now we take the driving field propagating in the z-direction alongside the mode M with power Pin = |E|2/2. We
derive the fraction of the absorbed power from the driving field and the phase shift induced by the atom.

3. Show that within the rotating wave approximation (RWA), ∆ ≡ ω − ω0 ≪ ω0, the mode-coupling parameter β
in terms of the light–atom detuning ∆ takes the simple form

βRWA = ηfs(Ld(∆) + iLa(∆)), (5)

where La(∆) = Γ2/(Γ2 + 4∆2) and Ld(∆) = −2∆Γ/(Γ2 + 4∆2).

4. Absorption: The atomic absorption is derived from the requirement that the power reduction in the forward
direction must arise from the destructive interference between the incident field E and the field EM forward-
scattered by the atom into the same mode M. Show that in the RWA the ratio of absorbed to incident power
Pabs/Pin is approximated as 2ηfsLa(∆).

5. Dispersion: The driving field in mode M not only is attenuated, but also experiences a phase shift in the
presence of the atom. This phase shift can be understood as arising from the interference of the out-of phase
component of the field EM forward-scattered by the atom with the incident field E in the same mode. Derive
the atom-induced phase shift ϕ in the RWA.



5

B. Interaction between a single atom and a cavity mode

Based on the quantitative understanding of atimic emmision into and absorption from a single Gaussian mode
in free space we can now analyze the classical interaction between a single atom and a single mode of an optical
resonator. Let us consider a standing-wave resonator of length L with two identical, loss-less, partially transmitting
mirrors with real amplitude reflection and transmission coefficients r and iq, respectively (r, q real, r2 + q2 = 1 and
q2 ≪ 1). We assume that the atom is at rest and ignore light forces and the photon recoil. The resonator supports
the mode M, and the atom is located on the mode axis near the waist at an antinode. Ein is the mode amplitude of
the incident field and Ec the mode amplitude of the travling intracavity field.

FIG. 2. Transmission through an optical standing-wave resonator containing an atom. An incident field Ein produces a steady-
state intracavtiy field with traveling mode amplitude Ec. The atom at an antinode driven by the field 2Ec contributes a field
2EM per round trip. The transmitted power is Ptr, the power scattered by the atom into free space is P4π.

The steady-state amplitude Ec can be determined from the condition that the field after one round trip is unchanged:

Ec = r2e2ikLEc + iqEin + 2EM. (6)

Here the first term is the intracavity mode amplitude after one round-trip acquiring the phase e2ikL. The second is
the mode amplitude leaking into the cavity through the input mirror. The third represents the field scattered by the
atom with the driving field 2Ec, where the factor of 2 arises from simultaneous scattering into both cavity directions
by the atom at an antinode.

1. Obtain the ratios of transmitted to incident power Ptr/Pin and scattered to incident power P4π/Pin, using β,
the cavity decay rate κ = q2c/L and the laser–cavity detuning δ ≡ ω − ωc with cavity resonance ωc. For not
too large detuning δ ≪ πc/L we can approximate r2e2ikL ≈ 1− q2 + 2iq2δ/κ.

2. Rewrite Ptr/Pin and P4π/Pin in the RWA using La(∆), Ld(∆) and a cavity cooperativity

η =
4ηfs
q2

=
24

q2k2w2
=

24F/π
k2w2

, (7)

with the cavity finesse F = πc/(Lκ) = π/q2. How can the augmentation of the cavity cooperativity η compared
to the free-space one ηfs be understood?

3. Relate this result to the one of equation (1) in section II.

4. Plot cavity transmission and free-space scattering as a function of ∆ in units of Γ for a resonant atom-cavity
system (ωc = ω0, i.e. δ = ∆) in two cases κ = Γ and κ = 10Γ. For each case plot with the value η = 0.05
representing the weak-coupling regime (η < 1) and η = 10 the strong coupling regime (η > 1).


