
Quantum Optics 2 – Spring semester 2024 – 25/04/2024
Problem Set 7 : Collective spin systems

For questions contact Rohit Prasad Bhatt rohit.bhatt@epfl.ch

I. SYSTEMS OF MANY SPINS

In this exercise sheet, we want to address the problem of the interaction of a many spin system with the electro-
magnetic field. The interest in solving this problem is twofold. On the one hand, a many-spin ensemble is much more
common to deal with rather than a single spin. On the other hand, when many spins are considered, a set of new
collective effects arises, as we will see throughout this sheet.
Let’s start from a collection of N spins 1/2 of states { |↓⟩ , |↑⟩}, interacting with a monochromatic electric field E of
frequency ω. Under the rotating wave approximation, the many-spins system coupled to the field is described by the
Hamiltonian:

H = ℏωa†a+
∑
i

ℏω0 |↑⟩i ⟨↑|i + ℏΩ
∑
i

(|↑⟩i ⟨↓|i + |↓⟩i ⟨↑|i)
(
a+ a†

)
, (1)

where ℏω0 is the energy of the excited |↑⟩i state for the i-th spin, Ω the Rabi frequency and a, a† are the annihilation
and creation operators of photons at frequency ω.

1. Write the previous Hamiltonian in terms of the Pauli matrices σ(i)
x , σ

(i)
y , σ

(i)
z and σ

(i)
± = σ

(i)
x ± jσ

(i)
y (j here is

the imaginary unit) acting on the i-th spin.

2. Let’s now define the collective spin operators as: Jk = 1
2

∑
i σ

(i)
k for k = x, y, z and J± =

∑
i σ

(i)
± . Prove that

Jx, Jy, Jz define an angular momentum algebra, i.e. [Jx, Jy] = jJz and [J2, Jk] = 0 with k = {x, y, z}.
3. Rewrite the system Hamiltonian in terms of the collective spin operators and prove that [J2,H] = 0. What

does it mean?
4. Let’s label the common eigenstates of J2 and Jz as |j,m⟩. Which are the allowed values for j and m? Are the

|j,m⟩ states also eigenstate of the Hamiltonian? Show that the Hamiltonian maps states of the {|j,m⟩} space
into states of the {|j,m⟩} space. Compare the dimensions of the {|j,m⟩} Hilbert space with that of the Hilbert
space in the single spin basis.

5. Write the ground state and the most excited states of the system in both the representations, namely j,m and
single spin basis, and check how J2 and Jz acts on them. Propose a representation of the system in a collective
Bloch sphere: which is the Bloch vector representing the ground state/most excited state?

6. What are the energy spectrum and eigenstates of the non-interacting Hamiltonian? Try to figure out its analogies
and the differences with the harmonic oscillator spectrum. What happens for increasing number of spins N?
What are the consequences on the Bloch sphere?

Now that we have set the framework for the many-spin system, let’s see which are its allowed states.

A. Dicke states

The eigenstate |j,m⟩ of the Hamiltonian described in terms of the angular momentum algebra of the collective spin
operators goes under the name of Dicke states.

1. Given the system ground state that you have calculated in the previous point, write down the first excited state
both in Dicke and in the single spin representation. What are its symmetry properties? Is it an entagled state?
Calculate the purity of this state, after tracing out one spin, to answer this question.

2. Following the analogy with the harmonic oscillator started in the last point of the previous section, which states
of the electro-magnetic field are the analogous of the Dicke states in a collective spin system? Which is the limit
of such analogy?
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3. Let’s now go back to the ground state. Given the commutation relation of the collective spin operators, write
down the expected fluctuations around the ground state by the Heisenberg uncertainty principle. Assuming
∆J2

x = ∆J2
y for symmetry reason, how does the relative uncertainty ∆Jx/|J | scales with the number of spin?

B. Coherent states

Given the analogy of the many-spin system with the harmonic oscillator, also in the first one we can define a set of
coherent spin states (CSSs). Similarly to coherent states of light, CSSs can be build by displacing the ground state
in the Bloch sphere by an angle θ, ϕ, as we will try in the following steps.

1. To displace the Bloch vector in the collective Bloch sphere, we need to rotate the single spins. Write down the
unitary operator that acts a rotation on a single spin using the Pauli matrices.

2. Generalize the single spin rotation of the previous point to the many spin system, assuming an identical rotation
to act on each individual spin. Write down such collective displacement operator U in terms of the collective
operators J±.

3. Define the CSS as the displaced Dicke ground state under the operator U and explicit its dependance on θ, ϕ.
4. Coherent state of light are defined as the eigenstates of the annihilation operator. Is this statement applicable

also in our collective spin system?

C. Squeezed states

Similarly to states of light, also collective spin states can be squeezed. To realize squeezing, quantum correlations are
indispensable, and only non-linear terms in the Hamiltonian can introduce them. In fact, a linear Hamiltonian can
only exert rotations on the individual spins, as we understood for coherent spin states, but cannot correlate them.
Let’s consider the Hamiltonian term H = ℏχJ2

z , the unitary transformation U(t) it generates for time evolution is:

U(t) = exp
(
−itχJ2

z

)
(2)

1. What is the time evolution of the ladder operators J±? Write J±(t), Jx(t), Jy(t), Jz(t) as a function of
J±(0), Jx(0), Jy(0), Jz(0) and χ, introducing for simplicity the quantity µ = 2χt.

2. Starting with the CSS |ψ(0)⟩ = |π/2, 0⟩ as an initial state, use Qutip to visualize |ψ(t)⟩ on the Bloch sphere.
The evolution of the spin under Hamiltonian (2) is called one-axis twisting, the axis here being z.

3. Given the shape of the state on the Bloch sphere, check with Qutip what happen to the state after a global
rotation of an angle ν around the x axis.

4. The means and variances of the transformed state reads:〈
J̃x

∣∣∣J̃x〉 = N cos2j−1(µ/2) ;
〈
J̃y

∣∣∣J̃y〉 =
〈
J̃z

∣∣∣J̃z〉 = 0; (3)

∆J̃2
x =

N

2

[
2N(1− cos2(2N−1) µ

2
)− (N − 1

2
)A

]
; (4)

∆J̃2
y,z =

N

2

[
1 +

N − 1/2

2

(
A±

√
A2 +B2 cos(2ν + 2δ)

)]
; (5)

where A = 1− cos2N−2 µ, B = 4 sin µ
2 cos2N−2 µ

2 and δ = 1
2 arctan

B
A . Show that, for ν = −δ and ν = π/2− δ,

the increased and decreased variances V± = ∆J̃2
y,z take the values

V± =
N

2

[
1 +

N − 1/2

2
A± N − 1/2

2

√
A2 +B2

]
. (6)

What are the differences between the squeezed states with ν = −δ and ν = π/2− δ?

5. Assuming N ≫ 1 and |µ| ≪ 1, |α| = |Nµ
2 | > 1 and β = Nµ2

4 ≪ 1, show that V+ and V−, up to the lowest order
in β, approximate to:

V+ ≃ N

2
4α2 =

N

2
N2µ2 ; V− ≃ N

2

(
1

4α2
+

2

3
β2

)
=
N

2

(
1

N2µ2
+
N2µ4

24

)
. (7)
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6. Due to the sphericity of the phase space, i.e. the Bloch sphere, there exist an optimal amount of squeezing for
a given N , as it is apparent from the β dependence of V−. What is the minimum value Vmin of V− for a given
N , and for which value µ0 of µ is it realized?

7. Plot this value Vmin as a function of N and compare it to the variance value of a CSS. From the plot you should
see that, even though one-axis twisting allows to significantly squeeze a spin system, the variance still increases
with N .

8. Calculate the uncertainty product V+V− as a function of µ and compare it to the uncertainty product of the
initial CSS. What is the effect of one-axis twisting on the uncertainty product?

To learn more on the squeezing procedure followed during this exercise see PHYSICAL REVIEW A 47, 6, 5138 (1993),
Squeezed spin states. M. Kitagawa & M. Ueda

D. Many-spins states visualisation

We now try to figure out how the different many-spin states described so far look like on the extended Bloch sphere.
We employ the Husimi Q-function, a Quasi-Probability Density function, to represent the density matrix on the Bloch
sphere. For a coherent state of light |α⟩, it is defined as Qρ(α) = 1

π ⟨α|ρ|α|α|ρ|α⟩. For our many-spin system, the
over-complete basis of coherent states α needs to be replaced by the basis of the |θ, ϕ⟩ CSSs.

5. Let’s first understand how the Q-function looks like and why it provides a good visualization of the many-
spin state. Calculate explicitly the Q-function Qρ(θ, ϕ), for a single spin in the state |+x⟩ = 1√

2
(|↑⟩ + |↓⟩) =

|θ = π/2, ϕ = 0)⟩. To get a sense of how it looks like on the sphere, calculate its numerical value at the coordinates
(θ, ϕ) = (0, 0), (π/2, 0), (π/2, π/2), (π/2, π), (π, 0).

6. Let’s now move to a higher number of spin and employ Qutip to calculate the Husimi Q function for a CSS.
By filling in the ’CollectiveSpins.ipynb’ Jupyter notebook, plot the Q function on the Bloch sphere for different
CSSs : (θ, ϕ) = (0, 0), (π/2, 0), (π/2, π/4) with a number of spins N = 1, 3, 10.

7. Finally, let’s visualize the one-axis twisting method for creating squeezed state. Using the same notebook as
above, define the Hamiltonian providing the time evolution of Eq. (2) on Qutip and compute the time evolution
of a coherent state under its action. Visualize the corresponding squeezed state on the Bloch sphere by employing
the Husimi Q-function for increasing value of µ. What is the limit of this squeezing procedure?
NOTE : The qutip functions proposed in the jupyter notebook only work for integer spin numbers.

II. APPLICATION 1: ATOMIC CLOCKS WITH N SPINS

Reminder: Ramsey interferometer. As we already saw in Exercise sheet 1 for a single spin, a Ramsey interferometer
consists in the following scheme:

• A π/2−pulse that rotates the Bloch vector along the x-axis;

• A unitary evolution U(θ) that rotates the Bloch vector of angle θ around the z-axis;

• A second π/2−pulse that again rotates the Bloch vector along the x-axis;

• A projective measurement on the spin basis {|↑⟩ , |↓⟩}.

In an atomic clock, the above Ramsey scheme is employed to precisely measure the atomic resonance frequency ω and
the unitary evolution U is simply the free evolution of the spin for a time t, so that θ = ωt.
Let’s now extend the Ramsey interferometer to the case of a system of N atoms, i.e. an ensamble of N two-level
systems (or spin) which can be treated with collective operations.

1. Generalize the Ramsey interferometer scheme to the many spin system by employing the collective spin operators
Jµ. Verify that the whole Ramsey interferometer operation can be written as I(θ) = e−iθJy . Hint: try to
explicitly write the different operations of the Ramsey sequence as 3x3 matrices and calculate the resulting
transformation matrix.
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2. Write down the interferometer outcome after the measurement as a function of the angle θ, assuming that the
initial state is the ground state of the many spin system. For which value of θ the sensitivity of the interferometer
is maximum? Consider that the best sensitivity is obtained when a small change in θ is translated into a large
change on the interferometer output, i.e. when the derivative is max.

3. What is the relative uncertainty ∆Jz/|J | of the a Ramsey interferometer measurement? Hint: check point A3
or previous section. This lower bound of the measurement uncertainty is called Standard Quantum Limit.

4. To go beyond the SQL, we can employ squeezed state for the collective spin system to reduce the uncertainity
on the measurement at the end of Ramsey interferometer. Considering that I(θ) effectively represents a rotation
around the y-axis on the collective Bloch sphere, which component of the uncertainty should be squeezed to
reduce the noise on the final measurment? What happen in the opposite case?

III. APPLICATION 2: SUPERRADIANCE

As already mentioned in the first section of this exercise sheet, the collective spin system is analogous to an harmonic
oscillator, as long as it is close to the ground state. We will now try to make this analogy even more apparent by
employing the Holstein-Primakoff transformation, which defines the two creation and annihilation operator b† and b
by the relations:

J+ =
√
2jb†

√
1− b†b

2j
; J− =

√
2jb

√
1− b†b

2j
; Jz = b†b− j (8)

1. Demonstrate that [b, b†] = 1. What does is it imply on the nature of the b, b† operators? Or, to say it in different
words, what kind of excitation do they annihilate and create, respectively?

2. Let’s now assume that we are in the low number of excitation limit, i.e. ⟨b†b⟩ ≪ 1. Perform a first order
expansion of J± in the above limit and write the collective spin Hamiltonian in terms of b, b†.

3. The transformed Hamiltonian represents two coupled harmonic oscillators, one given by the electro-magnetic
field, the other by the collective spin b, b† operators. To find the spectrum of H, one should decouple the two
oscillator by introducing the normal modes c± = αa ± βb, which consist in mixed states of light and matter
that are called polaritons. Write the collective Hamiltonian in terms of the c± to verify that they are its normal
modes.

A. Superradiance of many atoms in a cavity

The collective effects of many spins coupled to an electro-magnetic field can be observed in the coupled system of
an ensamble of N atoms coupled to an optical cavity. We now focus on the collective spontaneous emission of an
emsamble of two-level atoms, initially all occupying the excited state, namely in the |↑, ↑, ..., ↑⟩ many-spins state. In
the following, we will employ the notebook ’Superradiance.ipynb’ to investigate the time evolution of coupled atoms-
cavity system, making use of some of the techniques already discussed in the ’Atom in a cavity’ excercise sheet. We
will find out that thanks to collective effects, the emsemble of atoms will produce a burst of photons, much faster
that a single atom. This effect is called superradiance. For all the simulations we will use the following parameters:
ω = 2π, Ω0 = 2π 0.1

4. Let’s start from an ideal cavity, featuring no losses, κ = 0. In the notebook, define the Hamiltonian of Eq. (1)
in Qutip as a function of the collective spin operators and solve the Schrödinger equation for the initial state
|↑, ↑, ..., ↑⟩ for N = 100 atoms. Plot the mean number of atomic excitations N/2 + ⟨Jz⟩, the number of photons
in the cavity c, the totoal number of excitations and the standard deviations of the atomic excitations. You
should reproduce the following plot:

5. We now make the cavity leaky by introducing the jump operator L =
√
κa. To describe the dynamics of the

system, solve the master equation for N = 10 atoms in the following cases:

• The under-damped case (κ < Ω0

√
N) for κ = 2π 0.1.

• The over-damped case (κ > Ω0

√
N) for κ = 2 π2.
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FIG. 1. Result of unitary evolution.

FIG. 2. Solution of unitary evolution.

You should reproduce the following two plots:

6. What happens to photon number fluctuations during the relaxation of the atom excitations? Think of a simple
classical model that shows similar behavior: starting from a maximally excited state it undergoes to oscillations
(damped or not depending on a non-conservative term) characterized by fluctuations peaked on the minima
of the oscillation. Try to include the quantum fluctuations in the classical model as fluctuations in the initial
conditions and explain how these fluctuations propagate.

To read more on the problem, check pages 220-229 of S. Haroche and J-M. Raimond. Exploring the quantum: atoms,
cavities, and photons. Oxford university press, 2006.


