Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F97187540
Classifier.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Jan 3, 06:57
Size
4 KB
Mime Type
text/x-python
Expires
Sun, Jan 5, 06:57 (2 d)
Engine
blob
Format
Raw Data
Handle
23349630
Attached To
R13225 LPBF Acoustic Dynamics of in-situ alloying of Titanium-Fe
Classifier.py
View Options
# -*- coding: utf-8 -*-
"""
@author: srpv
contact: vigneashwara.solairajapandiyan@empa.ch, vigneashpandiyan@gmail.com
The codes in this following script will be used for the publication of the following work
"Acoustic emission signature of martensitic transformation in Laser Powder Bed Fusion of Ti6Al4V-Fe, supported by operando X-ray diffraction"
@any reuse of this code should be authorized by the first owner, code author
"""
# libraries to import
import
numpy
as
np
import
pandas
as
pd
import
matplotlib.pyplot
as
plt
from
sklearn.ensemble
import
RandomForestClassifier
from
sklearn.metrics
import
confusion_matrix
from
sklearn.metrics
import
classification_report
,
confusion_matrix
import
itertools
import
os
from
sklearn
import
metrics
# import pydot
import
collections
# import pydotplus
from
sklearn.metrics
import
ConfusionMatrixDisplay
from
sklearn.model_selection
import
RandomizedSearchCV
from
sklearn.feature_selection
import
SelectFromModel
import
joblib
from
sklearn.model_selection
import
cross_val_score
from
IPython.display
import
Image
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.model_selection
import
train_test_split
# implementing train-test-split
from
sklearn.neural_network
import
MLPClassifier
from
sklearn.decomposition
import
PCA
from
sklearn.model_selection
import
train_test_split
from
sklearn.linear_model
import
LogisticRegression
import
os
# from Plots import *
# %%
def
classifier_linear
(
Exptype
,
folder_created
):
"""
This function performs linear classification using logistic regression.
Parameters:
Exptype (str): The type of experiment.
folder_created (str): The path to the folder where the embeddings and labels are stored.
Returns:
None
"""
train_embeddings
=
Exptype
+
'_train_embeddings'
+
'_'
+
'.npy'
train_embeddings
=
os
.
path
.
join
(
folder_created
,
train_embeddings
)
train_labelsname
=
Exptype
+
'_train_labels'
+
'_'
+
'.npy'
train_labelsname
=
os
.
path
.
join
(
folder_created
,
train_labelsname
)
test_embeddings
=
Exptype
+
'_test_embeddings'
+
'_'
+
'.npy'
test_embeddings
=
os
.
path
.
join
(
folder_created
,
test_embeddings
)
test_labelsname
=
Exptype
+
'_test_labels'
+
'_'
+
'.npy'
test_labelsname
=
os
.
path
.
join
(
folder_created
,
test_labelsname
)
X_train
=
np
.
load
(
train_embeddings
)
.
astype
(
np
.
float64
)
y_train
=
np
.
load
(
train_labelsname
)
.
astype
(
np
.
float64
)
X_test
=
np
.
load
(
test_embeddings
)
.
astype
(
np
.
float64
)
y_test
=
np
.
load
(
test_labelsname
)
.
astype
(
np
.
float64
)
y_pred_prob
,
pred_prob
=
LR
(
X_train
,
X_test
,
y_train
,
y_test
,
folder_created
)
def
LR
(
X_train
,
X_test
,
y_train
,
y_test
,
folder_created
):
"""
Logistic Regression classifier.
Args:
X_train (array-like): Training data features.
X_test (array-like): Test data features.
y_train (array-like): Training data labels.
y_test (array-like): Test data labels.
folder_created (str): Path to the folder where the output files will be saved.
Returns:
tuple: A tuple containing the predicted probabilities and predicted labels.
"""
model
=
LogisticRegression
(
max_iter
=
1000
,
random_state
=
123
)
model
.
fit
(
X_train
,
y_train
)
predictions
=
model
.
predict
(
X_test
)
pred_prob
=
model
.
predict_proba
(
X_test
)
y_pred_prob
=
np
.
vstack
((
y_test
,
predictions
))
.
transpose
()
y_pred_prob
=
np
.
hstack
((
y_pred_prob
,
pred_prob
))
print
(
"LogisticRegression Accuracy:"
,
metrics
.
accuracy_score
(
y_test
,
predictions
))
print
(
classification_report
(
y_test
,
predictions
))
print
(
confusion_matrix
(
y_test
,
predictions
))
graph_name1
=
'LR'
+
'_without normalization w/o Opt'
graph_name2
=
'Logistic Regression'
graph_1
=
'LR_Confusion_Matrix_No_Opt.png'
graph_2
=
'LR_Confusion_Matrix_Opt.png'
titles_options
=
[(
graph_name1
,
None
,
graph_1
),
(
graph_name2
,
'true'
,
graph_2
)]
for
title
,
normalize
,
graphname
in
titles_options
:
plt
.
figure
(
figsize
=
(
20
,
10
),
dpi
=
400
)
disp
=
ConfusionMatrixDisplay
.
from_estimator
(
model
,
X_test
,
y_test
,
display_labels
=
[
'Ti64'
,
'Ti64_3Fe'
,
'Ti64_6Fe'
],
cmap
=
plt
.
cm
.
Reds
,
xticks_rotation
=
'vertical'
,
normalize
=
normalize
)
plt
.
title
(
title
,
size
=
12
)
plt
.
savefig
(
os
.
path
.
join
(
folder_created
,
graphname
),
bbox_inches
=
'tight'
,
dpi
=
400
)
savemodel
=
os
.
path
.
join
(
folder_created
,
'LR_model.sav'
)
joblib
.
dump
(
model
,
savemodel
)
return
y_pred_prob
,
pred_prob
Event Timeline
Log In to Comment