Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F99005360
LSTM.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jan 18, 09:51
Size
5 KB
Mime Type
text/x-python
Expires
Mon, Jan 20, 09:51 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
23685016
Attached To
R13271 Optical_Trapping_ML
LSTM.py
View Options
# implementation of LMGRU
import
torch
import
torch.nn
as
nn
import
torch.optim
as
optim
from
torch.utils.data
import
Dataset
,
DataLoader
import
numpy
as
np
from
torch.optim
import
AdamW
,
RMSprop
,
Adam
from
sklearn.preprocessing
import
LabelEncoder
from
torch.nn.utils
import
clip_grad_norm_
from
data_processing
import
*
from
feature_extraction
import
*
device
=
torch
.
device
(
'cuda'
if
torch
.
cuda
.
is_available
()
else
'cpu'
)
class
LMGRU
(
nn
.
Module
):
def
__init__
(
self
,
input_size
,
hidden_size
,
num_layers
,
num_classes
,
dropout
):
super
(
LMGRU
,
self
)
.
__init__
()
self
.
hidden_size
=
hidden_size
self
.
num_layers
=
num_layers
self
.
dropout
=
nn
.
Dropout
(
dropout
)
# Initialize Linear layers with the correct input sizes
self
.
Wz
=
nn
.
Linear
(
input_size
+
hidden_size
,
hidden_size
)
self
.
Wr
=
nn
.
Linear
(
input_size
+
hidden_size
,
hidden_size
)
self
.
Wc
=
nn
.
Linear
(
input_size
+
hidden_size
,
hidden_size
)
self
.
Wo
=
nn
.
Linear
(
input_size
+
hidden_size
,
hidden_size
)
self
.
fc
=
nn
.
Linear
(
hidden_size
,
num_classes
)
def
forward
(
self
,
x
):
h
=
torch
.
zeros
(
x
.
size
(
0
),
self
.
hidden_size
)
.
to
(
x
.
device
)
c
=
torch
.
zeros
(
x
.
size
(
0
),
self
.
hidden_size
)
.
to
(
x
.
device
)
for
t
in
range
(
x
.
size
(
1
)):
x_t
=
x
[:,
t
,
:]
# Concatenate x_t and h correctly
combined
=
torch
.
cat
((
x_t
,
h
),
dim
=
1
)
z_t
=
torch
.
sigmoid
(
self
.
Wz
(
combined
))
r_t
=
torch
.
sigmoid
(
self
.
Wr
(
combined
))
combined_reset
=
torch
.
cat
((
x_t
,
r_t
*
c
),
dim
=
1
)
c_tilde
=
torch
.
tanh
(
self
.
Wc
(
combined_reset
))
c
=
z_t
*
c
+
(
1
-
z_t
)
*
c_tilde
o_t
=
torch
.
sigmoid
(
self
.
Wo
(
combined
))
h
=
o_t
*
torch
.
tanh
(
c
)
out
=
self
.
fc
(
self
.
dropout
(
h
))
return
out
class
BacteriaDatasetLMGRU
(
Dataset
):
def
__init__
(
self
,
data
,
labels
):
self
.
data
=
data
self
.
labels
=
labels
def
__len__
(
self
):
return
len
(
self
.
data
)
def
__getitem__
(
self
,
idx
):
sample
=
torch
.
tensor
(
self
.
data
[
idx
],
dtype
=
torch
.
float32
)
label
=
torch
.
tensor
(
self
.
labels
[
idx
],
dtype
=
torch
.
long
)
return
sample
,
label
def
create_dataloader_lmgru
(
features
,
labels
,
batch_size
=
32
,
shuffle
=
True
):
if
features
.
ndim
==
2
:
features
=
features
[:,
:,
np
.
newaxis
]
# Add a new axis to match the required input dimensions
dataset
=
BacteriaDatasetLMGRU
(
features
,
labels
)
dataloader
=
DataLoader
(
dataset
,
batch_size
=
batch_size
,
shuffle
=
shuffle
)
return
dataloader
def
train_lmgru_model
(
model
,
train_loader
,
val_loader
,
epochs
=
150
,
learning_rate
=
0.001
):
criterion
=
nn
.
CrossEntropyLoss
()
optimizer
=
Adam
(
model
.
parameters
(),
lr
=
learning_rate
)
for
epoch
in
range
(
epochs
):
model
.
train
()
running_loss
=
0.0
for
inputs
,
labels
in
train_loader
:
inputs
,
labels
=
inputs
.
to
(
device
),
labels
.
to
(
device
)
# Ensure inputs are 3-dimensional
if
len
(
inputs
.
shape
)
==
2
:
inputs
=
inputs
.
unsqueeze
(
-
1
)
optimizer
.
zero_grad
()
outputs
=
model
(
inputs
)
loss
=
criterion
(
outputs
,
labels
)
loss
.
backward
()
clip_grad_norm_
(
model
.
parameters
(),
max_norm
=
1.0
)
optimizer
.
step
()
running_loss
+=
loss
.
item
()
val_loss
,
val_accuracy
=
evaluate_model_lmgru
(
model
,
val_loader
)
print
(
f
'Epoch {epoch + 1}/{epochs}, Training Loss: {running_loss / len(train_loader)}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy}'
)
def
evaluate_model_lmgru
(
model
,
dataloader
):
model
.
eval
()
total_loss
=
0.0
correct
=
0
criterion
=
nn
.
CrossEntropyLoss
()
with
torch
.
no_grad
():
for
inputs
,
labels
in
dataloader
:
inputs
,
labels
=
inputs
.
to
(
device
),
labels
.
to
(
device
)
# Ensure inputs are 3-dimensional
if
len
(
inputs
.
shape
)
==
2
:
inputs
=
inputs
.
unsqueeze
(
-
1
)
outputs
=
model
(
inputs
)
loss
=
criterion
(
outputs
,
labels
)
total_loss
+=
loss
.
item
()
_
,
predicted
=
torch
.
max
(
outputs
,
1
)
correct
+=
(
predicted
==
labels
)
.
sum
()
.
item
()
average_loss
=
total_loss
/
len
(
dataloader
)
accuracy
=
correct
/
len
(
dataloader
.
dataset
)
return
average_loss
,
accuracy
def
preprocess_time_series_lmgru
(
docs
,
num_chunks
=
6
,
max_length
=
1000
):
chunked_docs
=
chunk_time_series
(
docs
)
augmented_docs
=
augment_data
(
chunked_docs
,
noise_level
=
0.05
,
shift_max
=
10
)
for
doc
in
augmented_docs
:
transmission
=
np
.
array
(
doc
[
'transmission_normalized'
])
if
len
(
transmission
)
<
max_length
:
padded_transmission
=
np
.
pad
(
transmission
,
(
0
,
max_length
-
len
(
transmission
)),
'constant'
)
else
:
padded_transmission
=
transmission
[:
max_length
]
doc
[
'transmission_normalized'
]
=
padded_transmission
return
augmented_docs
def
preprocess_data_lmgru
(
docs
):
normalized_docs
=
normalize_data_model2
(
docs
)
augmented_docs
=
preprocess_time_series_lmgru
(
normalized_docs
)
raw_signals
=
[
doc
[
'transmission_normalized'
]
for
doc
in
augmented_docs
]
bacteria_labels
=
[
doc
[
'bacteria'
]
for
doc
in
augmented_docs
]
label_encoder_bacteria
=
LabelEncoder
()
encoded_bacteria_labels
=
label_encoder_bacteria
.
fit_transform
(
bacteria_labels
)
return
np
.
array
(
raw_signals
),
np
.
array
(
encoded_bacteria_labels
),
label_encoder_bacteria
Event Timeline
Log In to Comment