Page MenuHomec4science

lt_math.c
No OneTemporary

File Metadata

Created
Mon, Jan 20, 00:40

lt_math.c

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<float.h>
#include"dimension.h"
#include "structure.h"
#include "fonction.h"
#include "lt.h"
/* Return the value of the main mode of a pdf
* Use the Freedman & Diaconis rule to find the best bin size */
double mode(int n, double *array)
{
int i;
double *copy, *histo;
double binsize;
int bin, nbin, biNMAX;
double xmax;
// make a copy of array
copy = (double *)calloc(n, sizeof(double));
for ( i = 0; i < n; i++ )
copy[i] = array[i];
arraySort(copy, n );
binsize = copy[(int)(n*0.75)] - copy[(int)(n*0.25)];
binsize *= 2 * pow(n, -0.33333);
nbin = (int) round( (copy[n-1] - copy[0]) / binsize );
histo = (double *)calloc(nbin, sizeof(double));
xmax = copy[0] + binsize;
bin = 0;
for ( i = 0; i < n; i++ )
{
histo[bin]++;
if ( copy[i] > xmax && bin < nbin - 1 )
{
histo[bin]--;
bin++;
histo[bin]++;
xmax += binsize;
}
}
// Find the index of the largest bin
xmax = 0;
biNMAX = 0;
for ( i = 0; i < nbin; i++ )
if ( histo[i] > xmax )
{
xmax = histo[i];
biNMAX = i;
}
xmax = copy[0] + binsize / 2. + biNMAX * binsize;
free(histo);
free(copy);
return(xmax);
}
/* Return the mean value of an array of double */
double mean(int n, double *array)
{
double sum;
int i;
sum = 0;
// Compute the mean value
for ( i = 0; i < n; i++)
{
sum += array[i];
}
sum /= n;
return( sum );
}
// Return the median value of an array
double median(int n, double *array)
{
return( median_WIRTH(n, array) );
}
/* Return the bias corrected standard deviation of an array
* stddev = sqrt( 1/N-1 * Sum (x - mu)^2 )
*/
double stddev(int n, double *array)
{
double stddev, mean;
int i;
stddev = 0;
mean = 0;
for ( i = 0; i < n; i++ )
{
mean += array[i];
stddev += array[i] * array[i];
}
stddev /= n - 1;
stddev -= mean * mean / n / (n - 1);
return( sqrt(stddev) );
}
/* Return the minimum of a list
*/
double min(int n, double *array)
{
int i;
double min = DBL_MAX;
for ( i = 0; i < n; i++ )
if ( array[i] < min ) min = array[i];
return min;
}
/* Return the maximum of a list
*/
double max(int n, double *array)
{
int i;
double max = DBL_MIN;
for ( i = 0; i < n; i++ )
if ( array[i] > max ) max = array[i];
return max;
}
/* return the sign of a double as a double -1/0./1. */
double sgn(double x)
{
if (x < 0)
return(-1.);
else if (x > 0)
return(1.);
else
return(0.);
}
/* COMPLEX FUNCTIONS ---------------------------------------------------*/
/*
* make complex number
* Global variables used :
* - none
*/
complex cpx(double re, double im)
{
complex a;
a.re = re;
a.im = im;
return(a);
}
/*
* square complex --------------------------------------------------
*/
complex sqcpx(complex c)
{
complex res;
res.re = c.re * c.re - c.im * c.im;
res.im = 2.*c.re * c.im;
return(res);
}
/*
* complex addition --------------------------------------------------
* Global variables used :
* - none
*/
complex acpx(complex c1, complex c2)
{
complex res;
res.re = c1.re + c2.re;
res.im = c1.im + c2.im;
return(res);
}
/*
* complex substraction --------------------------------------------------
* Global variables used :
* - none
*/
complex scpx(complex c1, complex c2)
{
complex res;
res.re = c1.re - c2.re;
res.im = c1.im - c2.im;
return(res);
}
/*
* double substraction to complex ----------------------------------------
*/
complex scpxflt(complex c1, double f2)
{
complex res;
res.re = c1.re - f2;
res.im = c1.im;
return(res);
}
/*
* double addition to complex ----------------------------------------------
*/
complex acpxflt(complex c1, double f2)
{
complex res;
res.re = c1.re + f2;
res.im = c1.im;
return(res);
}
/*
* complex product----------------------------------------------
* Global variables used :
* - none
*/
complex pcpx(complex c1, complex c2)
{
complex res;
res.re = c1.re * c2.re - c1.im * c2.im;
res.im = c1.im * c2.re + c2.im * c1.re;
return(res);
}
/*
* complex times double ----------------------------------------------
* Global variables used :
* - none
*/
complex pcpxflt(complex c, double f)
{
complex res;
res.re = c.re * f;
res.im = c.im * f;
return(res);
}
/*
* complex divided by double ------------------------------------------
* Global variables used :
* - none
*/
complex dcpxflt(complex c, double f)
{
complex res;
if (f != 0)
{
res.re = c.re / f;
res.im = c.im / f;
return(res);
}
else
{
fprintf(stderr, "dcpxflt: Division by Zero!\n");
return(c);
}
}
/* norme complexe au carre------------------------------------------
* Global variables used :
* - none
*/
double ncpx(complex c)
{
double res;
res = c.re * c.re + c.im * c.im;
return(res);
}
/* complex inverse ------------------------------------------
* Global variables used :
* - none
*/
complex icpx(complex c)
{
complex res;
double norm;
norm = ncpx(c);
if (norm != 0.)
{
res.re = c.re / norm;
res.im = -c.im / norm;
}
else
{
fprintf(stderr, "ERROR:(icpx) division by zero\n");
res.re = 0.;
res.im = 0.;
};
return(res);
}
/* division complexe ------------------------------------------
* Return a complex number with
* re = Real(c1*Conj(c2))/Norm(c2)
* im = Img(c1*Conj(c2))/Norm(c2)
*
* If Norma(c2)=0 then return a complex = 0
*
* Global variables used :
* - none
*/
complex dcpx(complex c1, complex c2)
{
complex res;
double norm;
norm = ncpx(c2);
if (norm != 0.)
{
res.re = (c1.re * c2.re + c1.im * c2.im) / norm;
res.im = (c1.im * c2.re - c1.re * c2.im) / norm;
}
else
{
fprintf(stderr, "ERROR:(dcpx) division by zero\n");
res.re = 0.;
res.im = 0.;
};
return(res);
}
/*
* square root complex --------------------------------------------------
* Global variables used :
* - none
*/
complex sqrtcpx(complex c)
{
complex res;
double arg, nc;
nc = sqrt(ncpx(c));
arg = atan2(c.im, c.re);
res.re = sqrt(nc) * cos(arg / 2.);
res.im = sqrt(nc) * sin(arg / 2.);
return(res);
}
/* Global variables used :
* - none
*/
double sgn_darg(complex z1, complex z2)
{
double arg1, arg2;
arg1 = atan2(z1.im, z1.re);
arg2 = atan2(z2.im, z2.re);
/* fprintf (stderr,"%.3lf %.3lf %.3lf %.3lf %.2lf %.2lf %.2lf\n",
z1.re,z1.im,z2.re,z2.im,arg1,arg2,fabs(arg1-arg2));
*/
if (fabs(arg1 - arg2) < M_PI / 2.)
return(1.);
else
return(-1.);
}
/* exponentiel complexe ------------------------------------------
*/
complex ecpx(complex c)
{
complex res;
double expo;
expo = exp(c.re);
res.re = expo * cos(c.im);
res.im = expo * sin(c.im);
return(res);
}
/* cosh complexe ------------------------------------------
*/
complex coshcpx(complex c)
{
complex res;
double ex, emx;
ex = exp(c.re);
emx = exp(-c.re);
res.re = 0.5 * (ex + emx) * cos(c.im);
res.im = 0.5 * (ex - emx) * sin(c.im);
return(res);
}
/* sinh complexe ------------------------------------------
*/
complex sinhcpx(complex c)
{
complex res;
double ex, emx;
ex = exp(c.re);
emx = exp(-c.re);
res.re = 0.5 * (ex - emx) * cos(c.im);
res.im = 0.5 * (ex + emx) * sin(c.im);
return(res);
}
/* cos complexe */
complex coscpx(complex c)
{
complex res;
double ey, emy;
ey = exp(c.im);
emy = exp(-c.im);
res.re = 0.5 * (ey + emy) * cos(c.re);
res.im = -0.5 * (ey - emy) * sin(c.re);
return(res);
}
/* sin complexe */
complex sincpx(complex c)
{
complex res;
double ey, emy;
ey = exp(c.im);
emy = exp(-c.im);
res.re = -0.5 * (ey - emy) * cos(c.re);
res.re = 0.5 * (ey + emy) * sin(c.re);
// TODO: Define res.im
return(res);
}
/* tan complexe */
complex tancpx(complex c)
{
return(dcpx(coscpx(c), sincpx(c)));
}
/* log complexe ------------------------------------------
*/
complex lncpx(complex c)
{
complex res;
res.re = log(sqrt(c.re * c.re + c.im * c.im));
res.im = atan2(c.im, c.re);
return(res);
}
/* END OF COMPLEX FUNCTIONS ----------------------------------------------*/

Event Timeline