Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91378720
Grad.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 12:51
Size
7 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 12:51 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22252000
Attached To
R1448 Lenstool-HPC
Grad.cpp
View Options
#include <Grad.h>
struct
point
module_potentialDerivatives_totalGradient
(
const
int
*
Nlens
,
const
struct
point
*
pImage
,
PotentialSet
*
lens
)
{
struct
point
grad
,
clumpgrad
;
grad
.
x
=
0
;
grad
.
y
=
0
;
//This here could be done with function pointer to better acomodate future ass distributions functions
// However I'm unsure of the time of function pointers -> ask gilles
//for the moment lens and Nlens is organised the following way : 1. SIS, 2. PIEMD
//SIS is the first
for
(
int
i
=
0
;
i
<
Nlens
[
0
];
i
++
){
clumpgrad
=
grad_halo_sis
(
pImage
,
i
,
&
lens
[
0
]);
//compute gradient for each clump separately
if
(
clumpgrad
.
x
==
clumpgrad
.
x
or
clumpgrad
.
y
==
clumpgrad
.
y
){
//nan check
grad
.
x
+=
clumpgrad
.
x
;
grad
.
y
+=
clumpgrad
.
y
;
}
// add the gradients
}
//PIEMD is the second
for
(
int
i
=
0
;
i
<
Nlens
[
1
];
i
++
){
clumpgrad
=
grad_halo_piemd
(
pImage
,
i
,
&
lens
[
1
]);
//compute gradient for each clump separately
if
(
clumpgrad
.
x
==
clumpgrad
.
x
or
clumpgrad
.
y
==
clumpgrad
.
y
){
//nan check
grad
.
x
+=
clumpgrad
.
x
;
grad
.
y
+=
clumpgrad
.
y
;
}
// add the gradients
}
return
(
grad
);
}
/**@brief Return the gradient of the projected lens potential for one PIEMD clump. Uses SoA insteand of AoS lenses for speed
*!!! You have to multiply by dlsds to obtain the true gradient for the expressions, see the papers :
*JP Kneib & P Natarajan, Cluster Lenses, The Astronomy and Astrophysics Review (2011) for 1 and 2 and JP Kneib PhD (1993) for 3
*
* @param pImage point where the result is computed in the lens plane
* @param lens mass distribution
*/
struct
point
grad_halo_piemd
(
const
struct
point
*
pImage
,
int
iterator
,
PotentialSet
*
lens
)
{
struct
point
true_coord
,
true_coord_rotation
,
result
;
double
R
,
angular_deviation
;
complex
zis
;
result
.
x
=
result
.
y
=
0.
;
/*positionning at the potential center*/
true_coord
.
x
=
pImage
->
x
-
lens
->
x
[
iterator
];
// Change the origin of the coordinate system to the center of the clump
true_coord
.
y
=
pImage
->
y
-
lens
->
y
[
iterator
];
/* PIEMD */
/*rotation of the coordiante axes to match the potential axes*/
true_coord_rotation
=
rotateCoordinateSystem
(
true_coord
,
lens
->
ellipticity_angle
[
iterator
]);
/*Doing something....*/
zis
=
piemd_1derivatives_ci05
(
true_coord_rotation
.
x
,
true_coord_rotation
.
y
,
lens
->
ellipticity_potential
[
iterator
],
lens
->
rcore
[
iterator
]);
result
.
x
=
lens
->
b0
[
iterator
]
*
zis
.
re
;
result
.
y
=
lens
->
b0
[
iterator
]
*
zis
.
im
;
return
result
;
}
/**@brief Return the gradient of the projected lens potential for one SIS clump. Uses SoA insteand of AoS lenses for speed
*!!! You have to multiply by dlsds to obtain the true gradient for the expressions, see the papers :
*JP Kneib & P Natarajan, Cluster Lenses, The Astronomy and Astrophysics Review (2011) for 1 and 2 and JP Kneib PhD (1993) for 3
*
* @param pImage point where the result is computed in the lens plane
* @param lens mass distribution
*/
struct
point
grad_halo_sis
(
const
struct
point
*
pImage
,
int
iterator
,
PotentialSet
*
lens
)
{
struct
point
true_coord
,
true_coord_rotation
,
result
;
double
R
,
angular_deviation
;
complex
zis
;
result
.
x
=
result
.
y
=
0.
;
/*positionning at the potential center*/
true_coord
.
x
=
pImage
->
x
-
lens
->
x
[
iterator
];
// Change the origin of the coordinate system to the center of the clump
true_coord
.
y
=
pImage
->
y
-
lens
->
y
[
iterator
];
/*Elliptical Isothermal Sphere*/
/*rotation of the coordiante axes to match the potential axes*/
true_coord_rotation
=
rotateCoordinateSystem
(
true_coord
,
lens
->
ellipticity_angle
[
iterator
]);
R
=
sqrt
(
true_coord_rotation
.
x
*
true_coord_rotation
.
x
*
(
1
-
lens
->
ellipticity
[
iterator
]
/
3.
)
+
true_coord_rotation
.
y
*
true_coord_rotation
.
y
*
(
1
+
lens
->
ellipticity
[
iterator
]
/
3.
));
//ellippot = ellipmass/3
result
.
x
=
(
1
-
lens
->
ellipticity
[
iterator
]
/
3.
)
*
lens
->
b0
[
iterator
]
*
true_coord_rotation
.
x
/
(
R
);
result
.
y
=
(
1
+
lens
->
ellipticity
[
iterator
]
/
3.
)
*
lens
->
b0
[
iterator
]
*
true_coord_rotation
.
y
/
(
R
);
return
result
;
}
/**** usefull functions for PIEMD profile : see old lenstool ****/
/** I*w,v=0.5 Kassiola & Kovner, 1993 PIEMD, paragraph 4.1
*
* Global variables used :
* - none
*/
complex
piemd_1derivatives_ci05
(
double
x
,
double
y
,
double
eps
,
double
rc
)
{
double
sqe
,
cx1
,
cxro
,
cyro
,
rem2
;
complex
zci
,
znum
,
zden
,
zis
,
zres
;
double
norm
;
sqe
=
sqrt
(
eps
);
cx1
=
(
1.
-
eps
)
/
(
1.
+
eps
);
cxro
=
(
1.
+
eps
)
*
(
1.
+
eps
);
cyro
=
(
1.
-
eps
)
*
(
1.
-
eps
);
rem2
=
x
*
x
/
cxro
+
y
*
y
/
cyro
;
/*zci=cpx(0.,-0.5*(1.-eps*eps)/sqe);
znum=cpx(cx1*x,(2.*sqe*sqrt(rc*rc+rem2)-y/cx1));
zden=cpx(x,(2.*rc*sqe-y));
zis=pcpx(zci,lncpx(dcpx(znum,zden)));
zres=pcpxflt(zis,b0);*/
// --> optimized code
zci
.
re
=
0
;
zci
.
im
=
-
0.5
*
(
1.
-
eps
*
eps
)
/
sqe
;
znum
.
re
=
cx1
*
x
;
znum
.
im
=
2.
*
sqe
*
sqrt
(
rc
*
rc
+
rem2
)
-
y
/
cx1
;
zden
.
re
=
x
;
zden
.
im
=
2.
*
rc
*
sqe
-
y
;
norm
=
zden
.
re
*
zden
.
re
+
zden
.
im
*
zden
.
im
;
// zis = znum/zden
zis
.
re
=
(
znum
.
re
*
zden
.
re
+
znum
.
im
*
zden
.
im
)
/
norm
;
zis
.
im
=
(
znum
.
im
*
zden
.
re
-
znum
.
re
*
zden
.
im
)
/
norm
;
norm
=
zis
.
re
;
zis
.
re
=
log
(
sqrt
(
norm
*
norm
+
zis
.
im
*
zis
.
im
));
// ln(zis) = ln(|zis|)+i.Arg(zis)
zis
.
im
=
atan2
(
zis
.
im
,
norm
);
// norm = zis.re;
zres
.
re
=
zci
.
re
*
zis
.
re
-
zci
.
im
*
zis
.
im
;
// Re( zci*ln(zis) )
zres
.
im
=
zci
.
im
*
zis
.
re
+
zis
.
im
*
zci
.
re
;
// Im( zci*ln(zis) )
//zres.re = zis.re*b0;
//zres.im = zis.im*b0;
return
(
zres
);
}
/// Useful functions
// changes the coordinates of point P into a new basis (rotation of angle theta)
// y' y x'
// * | /
// * | / theta
// * | /
// *|--------->x
struct
point
rotateCoordinateSystem
(
struct
point
P
,
double
theta
)
{
struct
point
Q
;
Q
.
x
=
P
.
x
*
cos
(
theta
)
+
P
.
y
*
sin
(
theta
);
Q
.
y
=
P
.
y
*
cos
(
theta
)
-
P
.
x
*
sin
(
theta
);
return
(
Q
);
}
/** @brief This module function calculates profile depended information like the impactparameter b0 and the potential ellipticity epot
*
* @param lens: mass distribution for which to calculate parameters
*/
void
module_readParameters_calculatePotentialparameter
(
Potential
*
lens
){
switch
(
lens
->
type
)
{
case
(
5
)
:
/*Elliptical Isothermal Sphere*/
//impact parameter b0
lens
->
b0
=
4
*
pi_c2
*
lens
->
vdisp
*
lens
->
vdisp
;
//ellipticity_potential
lens
->
ellipticity_potential
=
lens
->
ellipticity
/
3
;
break
;
case
(
8
)
:
/* PIEMD */
//impact parameter b0
lens
->
b0
=
6.
*
pi_c2
*
lens
->
vdisp
*
lens
->
vdisp
;
//ellipticity_parameter
if
(
lens
->
ellipticity
==
0.
&&
lens
->
ellipticity_potential
!=
0.
){
// emass is (a2-b2)/(a2+b2)
lens
->
ellipticity
=
2.
*
lens
->
ellipticity_potential
/
(
1.
+
lens
->
ellipticity_potential
*
lens
->
ellipticity_potential
);
//printf("1 : %f %f \n",lens->ellipticity,lens->ellipticity_potential);
}
else
if
(
lens
->
ellipticity
==
0.
&&
lens
->
ellipticity_potential
==
0.
){
lens
->
ellipticity_potential
=
0.00001
;
//printf("2 : %f %f \n",lens->ellipticity,lens->ellipticity_potential);
}
else
{
// epot is (a-b)/(a+b)
lens
->
ellipticity_potential
=
(
1.
-
sqrt
(
1
-
lens
->
ellipticity
*
lens
->
ellipticity
))
/
lens
->
ellipticity
;
//printf("3 : %f %f \n",lens->ellipticity,lens->ellipticity_potential);
}
break
;
default
:
std
::
cout
<<
"ERROR: LENSPARA profil type of clump "
<<
lens
->
name
<<
" unknown : "
<<
lens
->
type
<<
std
::
endl
;
//printf( "ERROR: LENSPARA profil type of clump %s unknown : %d\n",lens->name, lens->type);
break
;
};
}
Event Timeline
Log In to Comment