Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98028791
main.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Jan 8, 20:44
Size
7 KB
Mime Type
text/x-c
Expires
Fri, Jan 10, 20:44 (2 d)
Engine
blob
Format
Raw Data
Handle
23486853
Attached To
R1448 Lenstool-HPC
main.cpp
View Options
/**
* @file main.cpp
* @Author Christoph Schaaefer, EPFL (christophernstrerne.schaefer@epfl.ch)
* @date October 2016
* @brief Benchmark for gradhalo function
*/
#include <iostream>
#include <iomanip>
#include <string.h>
#include <math.h>
#include <sys/time.h>
#include <fstream>
#include <sys/stat.h>
//
#include <mm_malloc.h>
//
#include "structure.h"
#include "timer.h"
#include "gradient.hpp"
#include "chi.hpp"
#include "module_cosmodistances.h"
#include "module_readParameters.hpp"
#include "structure.h"
int module_readCheckInput_readInput(int argc, char *argv[])
{
/// check if there is a correct number of arguments, and store the name of the input file in infile
char* infile;
struct stat file_stat;
// If we do not have 3 arguments, stop
if ( argc != 3 )
{
fprintf(stderr, "\nUnexpected number of arguments\n");
fprintf(stderr, "\nUSAGE:\n");
fprintf(stderr, "lenstool input_file output_directorypath [-n]\n\n");
exit(-1);
}
else if ( argc == 3 )
infile=argv[1];
std::ifstream ifile(infile,std::ifstream::in); // Open the file
int ts = (int) time (NULL);
char buffer[10];
std::stringstream ss;
ss << ts;
std::string trimstamp = ss.str();
//
std::string outdir = argv[2];
outdir += "-";
outdir += trimstamp;
std::cout << outdir << std::endl;
// check whether the output directory already exists
if (stat(outdir.c_str(), &file_stat) < 0){
mkdir(outdir.c_str(), S_IRUSR | S_IWUSR | S_IXUSR | S_IRGRP | S_IWGRP | S_IXGRP | S_IROTH );
}
else {
printf("Error : Directory %s already exists. Specify a non existing directory.\n",argv[2]);
exit(-1);
}
// check whether the input file exists. If it could not be opened (ifile = 0), it does not exist
if(ifile){
ifile.close();
}
else{
printf("The file %s does not exist, please specify a valid file name\n",infile);
exit(-1);
}
return 0;
}
int main(int argc, char *argv[])
{
// Setting Up the problem
//===========================================================================================================
// This module function reads the terminal input when calling LENSTOOL and checks that it is correct
// Otherwise it exits LENSTOOL
module_readCheckInput_readInput(argc, argv);
// This module function reads the cosmology parameters from the parameter file
// Input: struct cosmologicalparameters cosmology, parameter file
// Output: Initialized cosmology struct
cosmo_param cosmology; // Cosmology struct to store the cosmology data from the file
std::string inputFile = argv[1]; // Input file
module_readParameters_readCosmology(inputFile, cosmology);
// This module function reads the runmode paragraph and the number of sources, arclets, etc. in the parameter file.
// The runmode_param stores the information of what exactly the user wants to do with lenstool.
struct runmode_param runmode;
module_readParameters_readRunmode(inputFile, &runmode);
module_readParameters_debug_cosmology(runmode.debug, cosmology);
module_readParameters_debug_runmode(runmode.debug, runmode);
//=== Declaring variables
struct grid_param frame;
struct galaxy images[runmode.nimagestot];
struct galaxy sources[runmode.nsets];
struct Potential lenses[runmode.nhalos+runmode.npotfile-1];
struct Potential_SOA lenses_SOA[NTYPES];
struct cline_param cline;
struct potfile_param potfile;
struct Potential potfilepotentials[runmode.npotfile];
struct potentialoptimization host_potentialoptimization[runmode.nhalos];
int nImagesSet[runmode.nsets]; // Contains the number of images in each set of images
// This module function reads in the potential form and its parameters (e.g. NFW)
// Input: input file
// Output: Potentials and its parameters
module_readParameters_Potential(inputFile, lenses, runmode.nhalos);
//Converts to SOA
module_readParameters_PotentialSOA(inputFile, lenses, lenses_SOA, runmode.Nlens);
module_readParameters_debug_potential(runmode.debug, lenses, runmode.nhalos);
std::cerr << lenses_SOA[1].b0[0] << " " << lenses[0].b0 << std::endl;
// This module function reads in the potfiles parameters
// Input: input file
// Output: Potentials from potfiles and its parameters
if (runmode.potfile == 1 ){
module_readParameters_readpotfiles_param(inputFile, &potfile);
module_readParameters_debug_potfileparam(runmode.debug, &potfile);
module_readParameters_readpotfiles(&runmode,&potfile,lenses);
module_readParameters_debug_potential(runmode.debug, lenses, runmode.nhalos+runmode.npotfile);
}
// This module function reads in the grid form and its parameters
// Input: input file
// Output: grid and its parameters
module_readParameters_Grid(inputFile, &frame);
if (runmode.image == 1 or runmode.inverse == 1 or runmode.time > 0){
// This module function reads in the strong lensing images
module_readParameters_readImages(&runmode, images, nImagesSet);
//runmode.nsets = runmode.nimagestot;
for(int i = 0; i < runmode.nimagestot; ++i){
images[i].dls = module_cosmodistances_objectObject(lenses[0].z, images[i].redshift, cosmology);
images[i].dos = module_cosmodistances_observerObject(images[i].redshift, cosmology);
images[i].dr = module_cosmodistances_lensSourceToObserverSource(lenses[0].z, images[i].redshift, cosmology);
}
module_readParameters_debug_image(runmode.debug, images, nImagesSet,runmode.nsets);
}
if (runmode.inverse == 1){
// This module function reads in the potential optimisation limits
module_readParameters_limit(inputFile,host_potentialoptimization,runmode.nhalos);
module_readParameters_debug_limit(runmode.debug, host_potentialoptimization[0]);
}
if (runmode.source == 1){
//Initialisation to default values.(Setting sources to z = 1.5 default value)
for(int i = 0; i < runmode.nsets; ++i){
sources[i].redshift = 1.5;
}
// This module function reads in the strong lensing sources
module_readParameters_readSources(&runmode, sources);
//Calculating cosmoratios
for(int i = 0; i < runmode.nsets; ++i){
sources[i].dls = module_cosmodistances_objectObject(lenses[0].z, sources[i].redshift, cosmology);
sources[i].dos = module_cosmodistances_observerObject(sources[i].redshift, cosmology);
sources[i].dr = module_cosmodistances_lensSourceToObserverSource(lenses[0].z, sources[i].redshift, cosmology);
}
module_readParameters_debug_source(runmode.debug, sources, runmode.nsets);
}
std::cout << "--------------------------" << std::endl << std::endl;
// Lenstool-GPU Bruteforce
//===========================================================================================================
double chi2(0);
int error(0);
double t_1(0),t_2(0),t_3(0);
#if 0
t_1 = -myseconds();
chi_bruteforce(&chi2,&error,&runmode,lenses,&frame,nImagesSet,images);
t_1 += myseconds();
std::cout << " Chi Brute Force Benchmark " << std::endl;
std::cout << " Chi : " << std::setprecision(15) << chi2 << std::endl;
std::cout << " Time " << std::setprecision(15) << t_1 << std::endl;
t_2 = -myseconds();
chi_bruteforce_SOA(&chi2,&error,&runmode,lenses_SOA,&frame,nImagesSet,images);
t_2 += myseconds();
std::cout << " Chi Brute Force SOA Benchmark " << std::endl;
std::cout << " Chi : " << std::setprecision(15) << chi2 << std::endl;
std::cout << " Time " << std::setprecision(15) << t_2 << std::endl;
std::cout << " Gain " << std::setprecision(15) << t_1/t_2 << std::endl;
#endif
t_3 = -myseconds();
chi_bruteforce_SOA_AVX(&chi2, &error, &runmode,lenses_SOA, &frame, nImagesSet, images);
t_3 += myseconds();
std::cout << " Chi Brute Force SOA AVX Benchmark " << std::endl;
std::cout << " Chi : " << std::setprecision(15) << chi2 << std::endl;
std::cout << " Time " << std::setprecision(15) << t_3 << std::endl;
std::cout << " Gain " << std::setprecision(15) << t_1/t_3 << std::endl;
}
Event Timeline
Log In to Comment