Page MenuHomec4science

readBayesModels.c
No OneTemporary

File Metadata

Created
Thu, Jan 23, 03:45

readBayesModels.c

#include<stdlib.h>
#include<float.h>
#include<string.h>
#include<math.h>
#include<fonction.h>
#include<constant.h>
#include<dimension.h>
#include<structure.h>
#include"lt.h"
/****************************************************************/
/* nom: readBayesModels */
/* auteur: Eric Jullo */
/* date: 07/08/06 */
/* place: ESO, Chile *
*
* Read the bayes.dat file and return an array[nParam][val].
* where nParam = [chi2 -> Last param]
*
* It also analyse the header of bayes.dat and set
* the <G.no_lens>, <G.nlens>, <block>, <cblock> and <P.ircut>,
* <P.isigma> global variables to their corresponding values.
*
* Return:
* - the bayes.dat array and nParam and nVal the size of the array.
* - 0 for nVal and nParam if bayes.dat cannot be read.
*
* Warning :
* - Theta in <bayes.dat> is in degree but is converted to radian in <array>
* - sigma in <bayes.dat> is in km/s but is converted according to the lens type
* in <array>.
*
* Then, the user can generate an error mass map even if he doesn't perform
* an optimisation.
*/
static double lhood_mode; // If 1, bayes.dat contains #ln(Lhood), otherwise 0
static int analyseHeader( char *line );
static double bayes2lt(long int ilens, int ipx, double val);
static void convertArray(long int nVal, double **array );
static double method(long int n, int param, double **array);
static double **readBayesASCII(int *nParam, long int *nVal);
static double **readBayesFITS(int *nParam, long int *nVal);
static void reset_grad_multi();
static void reset_grad_arclet();
double **readBayesModels(int *nParam, long int *nVal)
{
extern struct g_grille G;
extern struct g_image I;
extern struct g_pot P[NPOTFILE];
extern struct g_source S;
extern int block[][NPAMAX];
extern int cblock[NPAMAX];
extern int sblock[NFMAX][NPAMAX];
extern struct sigposStr sigposAs;
double **array;
char line[LINESIZE];
long int nLines;
long int ilens;
int i, ipx;
// Initialize ouput variables
*nParam = 0;
*nVal = 0;
//
// REINITIALIZE ALL VARIABLES
//
// Get G.no_lens from bayes.dat
// Reset G and block global variables
G.no_lens = 0;
for ( ilens = 0; ilens < G.nlens; ilens++)
for ( ipx = CX; ipx <= PMASS; ipx ++)
block[ilens][ipx] = 0;
// Source parameters
// for ( i = 0; i < S.ns; i++ )
// for( ipx = SCX; ipx <= SFLUX; ipx++ )
// sblock[i][ipx] = 0;
// Reset the cblock global variables
for ( ipx = OMEGAM; ipx <= WA; ipx++)
cblock[ipx] = 0;
// Reset the redshift I.nzlim
// I.nzlim = 0;
// Reset the potfile
for( i = 0; i < G.npot; i++ )
{
P[i].ircut = 0;
P[i].isigma = 0;
P[i].islope = 0;
P[i].ivdslope = 0;
P[i].ivdscat = 0;
P[i].ircutscat = 0;
}
// Reset the nuisance
sigposAs.bk = 0;
I.dsigell = -1.;
// Read bayes.dat
lhood_mode = 0;
array = readBayesASCII(nParam, nVal);
if ( array == NULL )
return 0;
// Convert <array> to values directly usable in lenstool
convertArray(*nVal, array);
return array;
}
static int imethod; // use a specified method as parameter estimator
// -1 : mean value
// -2 : median value
// -3 : mode value
// -4 : best chi2 value
// -5 : to be used by o_rescale()
// Reset the parameters of a potfile
// Return 1 if the potfile parameters have been updated
int setpotBayes(struct g_pot *pot, int *iParam_in, long int nVal, double **array)
{
int iParam = *iParam_in;
int computePot = 0;
if ( pot->ircut != 0 )
{
pot->cut = method(nVal, iParam++, array);
computePot = 1;
}
if ( pot->isigma != 0 )
{
pot->sigma = method(nVal, iParam++, array);
computePot = 1;
}
if ( pot->islope != 0 )
{
pot->slope = method(nVal, iParam++, array);
computePot = 1;
}
if ( pot->ivdslope != 0 )
{
pot->vdslope = method(nVal, iParam++, array);
computePot = 1;
}
if ( pot->ivdscat != 0 )
{
pot->vdscat = method(nVal, iParam++, array);
computePot = 1;
}
if ( pot->ircutscat != 0 )
{
pot->rcutscat = method(nVal, iParam++, array);
computePot = 1;
}
if ( pot->ia != 0 )
{
pot->a = method(nVal, iParam++, array);
computePot = 1;
}
if ( pot->ib != 0 )
{
pot->b = method(nVal, iParam++, array);
computePot = 1;
}
*iParam_in = iParam;
return computePot;
}
/* Set all the lenstool parameters to the values contained in the
* bayes.dat file at line iVal.
* If iVal < 0 then iVal specifies the method corresponding to the imethod index.
*/
void setBayesModel( long int iVal, long int nVal, double **array)
{
extern struct g_mode M;
extern struct g_grille G;
extern struct g_cosmo C;
extern struct g_image I;
extern struct g_pot P[NPOTFILE];
extern struct galaxie multi[NFMAX][NIMAX];
extern struct galaxie arclet[NAMAX];
extern struct z_lim zlim[];
extern struct z_lim zalim;
extern struct cline cl[];
extern struct pot lens[];
extern int block[][NPAMAX];
extern int cblock[NPAMAX];
extern int vfblock[NPAMAX];
extern struct sigposStr sigposAs;
extern double *np_b0;
extern long int narclet;
int computedr_m, computedr_a, computePot[NPOTFILE]; // flags
int nimages;
char limages[ZMBOUND][IDSIZE];
double tmp;
double dl0s, dos;
long int ilens, i;
int iParam, ipx;
int j, k, l;
imethod = iVal;
if ( imethod == -5 )
iParam = 0; // assign cube[0][iParam] to the model parameters
else
iParam = IDPARAM1;
computedr_m = computedr_a = 0; // do not recompute dlsds ratio for multiple images
for( i = 0; i < G.npot; i++ )
computePot[i] = 0; // potfile parameters are not modified
for ( ilens = 0; ilens < G.no_lens; ilens++ )
{
for ( ipx = CX; ipx <= PMASS; ipx++ )
if ( block[ilens][ipx] != 0 )
o_set_lens( ilens, ipx, method(nVal, iParam++, array) );
// TODO in o_set_lens() assign sigma directly to lens.sigma rather than lens.b0
if ( block[ilens][B0] != 0 )
lens[ilens].sigma = lens[ilens].b0;
if ( block[ilens][ZLENS] != 0 )
computedr_m = computedr_a = 1;
set_dynamics(ilens);
}
// Compute b0 from msgrid potentials either from sigma or rhos random values
// if ( G.nmsgrid < G.nlens )
// {
// if ( block[G.nmsgrid][B0] != 0 )
// for ( ilens = G.nmsgrid; ilens < G.nlens; ilens++ )
// {
// tmp = method(nVal, iParam++, array);
// tmp = 6.*pia_c2 * tmp * tmp;
// np_b0[ilens-G.nmsgrid] = tmp;
// lens[ilens].b0 = tmp;
// }
// else
// {
// double *atmp = (double *) malloc((G.nlens - G.nmsgrid ) * sizeof(double));
// for ( ilens = G.nmsgrid; ilens < G.nlens; ilens++ )
// atmp[ilens - G.nmsgrid] = method(nVal, iParam++, array);
//
// setgrid_rhos2b0(atmp);
// free(atmp);
// }
// }
for ( ilens = G.nmsgrid; ilens < G.nlens; ilens++ )
np_b0[ilens - G.nmsgrid] = lens[ilens].b0 = method(nVal, iParam++, array);
// Set Multiscale grid SL source positions
if ( G.nmsgrid != G.nlens && I.n_mult != 0)
{
extern struct galaxie source[NFMAX];
for ( i = 0; i < I.n_mult; i++ )
source[i].C.x = method(nVal, iParam++, array);
for ( i = 0; i < I.n_mult; i++ )
source[i].C.y = method(nVal, iParam++, array);
}
// set the source positions
if( M.iclean == 2 )
{
extern struct g_source S;
extern struct galaxie source[NFMAX];
extern int sblock[NFMAX][NPAMAX];
char str[IDSIZE], *pch;
for ( i = 0; i < S.ns; i++ )
{
// if source is attached to an image, reset its coordinates
strcpy(str, source[i].n);
pch = strtok(str, "_");
pch = strtok(NULL, "_");
if( pch != NULL )
source[i].C.x = source[i].C.y = 0.;
for( ipx = SCX ; ipx <= SFLUX; ipx++ )
if( sblock[i][ipx] != 0 )
o_set_source( &source[i], ipx, method(nVal, iParam++, array));
if( sblock[i][SEPS] != 0 )
source[i].E.b = source[i].E.a * (1. - source[i].eps) / (1. + source[i].eps);
}
}
// Set the cosmological parameters
for ( ipx = OMEGAM; ipx <= WA; ipx++ )
if ( cblock[ipx] != 0 )
{
o_set_lens( 0, ipx, method(nVal, iParam++, array) );
computedr_m = computedr_a = 1;
}
// Set the optimized redshifts to the corresponding images
for ( i = 0 ; i < I.nzlim; i++ )
if ( zlim[i].bk != 0 )
{
tmp = method(nVal, iParam++, array);
nimages = splitzmlimit(zlim[i].n, limages);
// for all the families in zlim[ipx].n
for ( j = 0; j < nimages; j++ )
{
if( ! strncmp(limages[j], "cl", 2) )
{
// loop over the critical lines
int zmid;
sscanf(limages[j], "cl%d", &zmid);
cl[zmid].z = tmp;
}
else
{
// loop over the images families
k = 0;
while ( indexCmp( multi[k][0].n, limages[j] ) && k < I.n_mult ) k++;
// set the reshift of all the images of the family
for ( l = 0; l < I.mult[k]; l++ )
multi[k][l].z = tmp;
}
}
computedr_m = 1;
}
// Set the optimized redshifts of the arclets with unknown redshift
if ( zalim.bk != 0 )
{
I.zarclet = method(nVal, iParam++, array);
for( j = 0; j < zalim.opt; j++ )
arclet[j].z = I.zarclet;
computedr_a = 1;
}
// Set the velocity field parameters
for ( ipx = VFCX; ipx <= VFSIGMA; ipx++ )
if ( vfblock[ipx] != 0 )
{
o_set_lens( 0, ipx, method(nVal, iParam++, array) );
}
//rescale the pot parameters
for( i = 0; i < G.npot; i++ )
if (P[i].ftype != 0 )
computePot[i] = setpotBayes(&P[i], &iParam, nVal, array);
//set the nuisance parameters
if ( sigposAs.bk != 0. )
{
for ( i = 0; i < I.n_mult; i++ )
for ( j = 0; j < I.mult[i]; j++ )
{
tmp = method(nVal, iParam++, array);
I.sig2pos[i][j] = tmp * tmp;
}
}
if ( I.dsigell != -1. )
{
I.sigell = method(nVal, iParam++, array);
I.sig2ell = I.sigell * I.sigell;
}
// recompute the dlsds ratios if necessary
if ( computedr_a && computedr_m )
{
if ( C.kcourb == 0. )
C.omegaX = 1 - C.omegaM;
else
C.kcourb = C.omegaM + C.omegaX - 1;
// ...same for the critical line dlsds
for ( i = 0 ; i < I.npcl; i++ )
{
if ( lens[0].z < cl[i].z )
cl[i].dl0s = distcosmo2(lens[0].z, cl[i].z);
else
cl[i].dl0s = 0.;
cl[i].dos = distcosmo1(cl[i].z);
cl[i].dlsds = cl[i].dl0s / cl[i].dos;
}
}
if ( computedr_m )
{
// set the DLS/DS ratio for all the images according
// to the new cosmological parameters
for ( i = 0 ; i < I.n_mult; i++ )
for ( j = 0; j < I.mult[i]; j++ )
{
dos = distcosmo1(multi[i][0].z);
if ( lens[0].z < multi[i][0].z )
dl0s = distcosmo2(lens[0].z, multi[i][0].z);
else
dl0s = 0.;
for ( j = 0 ; j < I.mult[i]; j++ )
{
multi[i][j].dos = dos;
multi[i][j].dl0s = dl0s;
multi[i][j].dr = dl0s / dos;
}
}
}
//...the same for the arclets
if( computedr_a )
{
//... arclets with optimized redshifts
if( zalim.bk != 0 )
{
dos = distcosmo1(I.zarclet);
if ( lens[0].z < I.zarclet )
dl0s = distcosmo2(lens[0].z, I.zarclet);
else
dl0s = 0.;
for ( i = 0 ; i < zalim.opt; i++ )
{
arclet[i].dos = dos;
arclet[i].dl0s = dl0s;
arclet[i].dr = dl0s / dos;
}
}
// ... the rest of the arclets
if( computedr_m )
for( i = zalim.opt; i < narclet; i++ )
dratio_gal(&arclet[i], lens[0].z);
}
// recompute the potfile if necessary
for( i = 0; i < G.npot; i++ )
if ( computePot[i] )
{
scale_pot(&P[i]);
computedr_a = computedr_m = 1;
}
// Reset the image->grad and image->grad2 accelerators
if( computedr_m )
reset_grad_multi();
if( computedr_a )
reset_grad_arclet();
}
// Read the header of bayes.dat and call analyseHeader()
// to process each line
static double ** readBayesASCII(int *nParam, long int *nVal)
{
extern struct g_grille G;
long int nLines;
FILE *bayes;
int error;
char line[LINESIZE];
char *pch; // token to split a line
double **array;
int j;
// Read bayes.dat
#ifdef DEBUG
bayes = fopen( "bayes.dbg.dat", "r");
#else
bayes = fopen( "bayes.dat" , "r" );
#endif
if ( bayes == NULL )
{
//fprintf(stderr, "WARNING: Reading bayes.dat. No such file found.\n");
return 0;
}
// Read header
error = 0;
nLines = wc(bayes);
fgets( line, LINESIZE, bayes);
line[strlen(line)-1] = '\0'; // replace ending \n by \0
while ( !feof(bayes) && !ferror(bayes) && line[0] == '#' && !error )
{
(*nParam)++;
error = analyseHeader( line );
fgets( line, LINESIZE, bayes);
line[strlen(line)-1] = '\0';
}
// Deal with error code
if ( error )
{
fclose(bayes);
return 0;
}
// Reinitialise G.no_lens in case part of the clumps are accelerated
if ( G.no_lens > G.nmsgrid )
G.no_lens = G.nmsgrid;
// Initialize array
*nParam = (*nParam) - 1; //because Nsample is excluded from array
array = alloc_square_double( *nParam , nLines - (*nParam) - 1);
// Read the data (first line comes from header analysis)
nLines = *nParam + 1;
while ( !feof(bayes) && !ferror(bayes) )
{
// Test for line too long
if ( strlen(line) + 1 == LINESIZE )
{
fprintf(stderr, "ERROR: while reading bayes.dat line %ld. Increase LINESIZE(current value is=%d) to match the line size in bayes.dat.\n", nLines, LINESIZE);
exit(1);
}
// Skip the fist column and read the 2nd one
pch = strtok( line, " " );
// Fill array[][*nVal]
j = 0;
while ( j < *nParam && pch != NULL )
{
pch = strtok (NULL, " ");
if ( pch != NULL )
{
int lnval;
double val;
if( sscanf( pch, "%dx%lf", &lnval, &val ) == 2 )
{
long int i;
for ( i = 0; i < lnval; i++ )
array[j++][*nVal] = val;
}
else if( sscanf( pch, "%lf", &array[j++][*nVal] ) != 1 )
{
fprintf( stderr, "ERROR: while reading bayes.dat line %ld, column %d. pch = %s\n", *nVal, j + 1, pch);
pch = NULL;
*nVal -= 1;
}
}
}
// normal exit: (j == *nParam && pch != NULL) || pch == NULL (it points on the last element)
if( j < *nParam ) // if true pch != NULL
{
fprintf( stderr, "ERROR: while reading bayes.dat line %ld, not enough parameters (%d/%d).\n", nLines, j+1, *nParam+1);
*nVal -= 1;
}
fgets(line, LINESIZE, bayes);
line[strlen(line)-1] = '\0';
nLines ++;
(*nVal) ++;
}
fprintf( stderr, "INFO: %ld good lines found in bayes.dat\n", *nVal);
// Catch errors
if ( ferror(bayes) || ( feof(bayes) && *nVal == 0 ) )
{
// fprintf( stderr, "WARNING : reading bayes.dat\n" );
*nVal = *nParam = 0;
fclose(bayes);
return array;
}
fclose(bayes);
return array;
}
// Read the header of bayes.fits and call analyseHeader()
// to process each line
static double ** readBayesFITS(int *nParam, long int *nVal)
{
}
/* Analyse a line of the bayes.dat header and eventually
* In the case of reading a best.par file, reset the
* <G.no_lens>, <block>, <cblock>, <zlim> and <P.ircut>, <P.isigma>
* global variables as if they were optimized
*/
static int analyseHeader( char *line )
{
extern struct g_grille G;
extern struct g_image I;
extern struct pot lens[];
extern struct z_lim zlim[];
extern int block[][NPAMAX];
extern int cblock[NPAMAX];
extern struct sigposStr sigposAs;
long int i;
int ipx;
char *pch, *pch2, name[50];
int updated; // flag to prevent the case when the clump is already set as optimised
// skip the '#'
line = line + 1;
if ( !strcmp(line, "Nsample") ||
!strcmp(line, "Evidence") ||
!strcmp(line, "Chi2") )
return 0; // not an error
if ( !strcmp(line, "ln(Lhood)") )
{
lhood_mode = 1;
return 0; // not an error
}
// Get the first word
pch = strtok( line, " " );
// Skip the "O" if it exists in the <bayes.dat> file... <pch> in bayes.dat
// "O" means a lens[] element
if ( pch[0] == 'O' )
{
pch++;
// Look for the right lens to change
updated = 0;
for ( i = 0; i < G.nlens && updated == 0 ; i++ )
{
// ... and in Lenstool... <pch2> in Lenstool
pch2 = lens[i].n;
if ( pch2[0] == 'O' )
pch2++;
if ( !strcmp( pch, pch2 ) )
{
pch = strtok( NULL, " " ); // skip the ':'
pch = strtok( NULL, " " );
// Look for the right parameter to change
for ( ipx = CX; ipx <= PMASS; ipx++ )
{
pch2 = strtok( getParName(ipx, name, lens[i].type), " "); // remove the unit if any
if ( !strcmp( pch, pch2) && block[i][ipx] == 0 )
block[i][ipx] = 1;
}
// Prevent the case when the clump is already set as optimised
for ( ipx = CX; ipx <= PMASS; ipx++ )
updated += block[i][ipx];
// Increment G.no_lens only once per clump
if ( updated == 1 )
{
G.no_lens ++;
}
else if ( updated == 0 )
{
fprintf( stderr, "ERROR: bayes.dat header format unrecognised\n");
exit(-1);
}
}
}
}
// Look for a source parameter
// TODO: Not finished. Find a way to check the number of sources
if ( !strcmp(pch, "src") )
{
extern struct g_source S;
extern struct galaxie source[NFMAX];
pch = strtok( NULL, " " );
i = 0;
while( strcmp(pch, source[i].n) && i < S.ns ) i++;
if ( i == S.ns && strcmp(pch, source[i - 1].n) )
{
fprintf(stderr, "ERROR: number of sources in lenstool (%ld) and found in bayes.dat mismatch\n", S.ns);
exit(-1);
}
}
// Look for cosmological parameters
if ( !strcmp(pch, "omegaM") )
cblock[OMEGAM] = 1;
if ( !strcmp(pch, "omegaX") )
cblock[OMEGAX] = 1;
if ( !strcmp(pch, "wX") )
cblock[WX] = 1;
if ( !strcmp(pch, "wa") )
cblock[WA] = 1;
// Look for the redshifts
// THIS HAS TO BE DEFINED IN THE .PAR FILE
// if ( !strcmp(pch, "Redshift") )
// {
// pch = strtok( NULL, " " ); // pch contains 'of'
// pch += 3; // pch points on the last part of line
// strcpy(zlim[I.nzlim].n, pch);
// // Append an image to optimize
// zlim[I.nzlim].opt = 1;
// COMMENTED EJ20100306 : trust .par input file
// I.nzlim++;
// }
// Look for the Potfile keyword "Pot" or "Pot1" or "Pot2" etc...
int ipot = 0;
if ( !strcmp(pch, "Pot") || sscanf(pch, "Pot%d", &ipot) == 1 )
{
extern struct g_pot P[NPOTFILE];
struct g_pot *pot = &P[ipot]; // default with P[0]
// if ( pot->core == -1 )
// {
// fprintf( stderr, "WARNING : Potfile parameters in bayes.dat not found in parfile.\n");
// return 1;
// }
pch = strtok( NULL, " " ); // pch contains rcut or sigma
if ( !strcmp(pch, "rcut") )
pot->ircut = 1;
if ( !strcmp(pch, "sigma") )
pot->isigma = 1;
if ( !strcmp(pch, "rcut_slope") || !strcmp(pch, "m200slope") )
pot->islope = 1;
if ( !strcmp(pch, "sigma_slope") || !strcmp(pch, "c200slope") )
pot->ivdslope = 1;
if ( !strcmp(pch, "vdscatter") )
pot->ivdscat = 1;
if ( !strcmp(pch, "rcutscatter") )
pot->ircutscat = 1;
if ( !strcmp(pch, "a") || !strcmp(pch, "m200") )
pot->ia = 1;
if ( !strcmp(pch, "b") || !strcmp(pch, "c200") )
pot->ib = 1;
}
// Look for the nuisance
if ( !strcmp(pch, "SigposArcsec") )
sigposAs.bk = 1; // this is not the correct sigma but it doesn't matter
// since the values are written in the bayes.dat file
if ( !strcmp(pch, "Sigell") )
I.dsigell = 1.;
return 0;
}
/* Convert input <bayes.dat> values to the corresponding values readily usable
* in lenstool.
*/
static double bayes2lt(long int i, int ipx, double val)
{
extern struct g_cosmo C;
extern struct pot lens[];
switch (ipx)
{
case(THETA):
val *= DTR;
break;
case(B0):
if ( lens[i].type == 13 )
val *= 1e8;
break;
/* now it is in solar mass in bayes.dat also
case(PMASS):
if( lens[i].type == 12 )
val *= 1e14; // rhos in 10^14 Msol -> Msol
break;
case(MASSE):
if( lens[i].type == 12 )
val *= 1e14; // masse in 10^14 Msol -> Msol
break;
*/
default:
break;
}
return val;
}
static void convertArray(long int nVal, double **array )
{
extern struct g_mode M;
extern struct g_grille G;
extern struct g_source S;
extern int sblock[NFMAX][NPAMAX];
extern int block[][NPAMAX];
long int iVal, i;
int nParam, ipx;
for ( iVal = 0; iVal < nVal; iVal++ )
{
nParam = IDPARAM1; // position of the first parameter in array
// 1st column in array is chi2
if ( lhood_mode ) array[0][iVal] *= -1.; // so that the best lhood has the lowest value
// ie same behavior as chi2
// Optimized clumps
for ( i = 0; i < G.no_lens; i++ )
for ( ipx = CX; ipx <= PMASS; ipx++ )
if ( block[i][ipx] != 0 )
{
array[nParam][iVal] = bayes2lt( i, ipx, array[nParam][iVal] );
nParam++;
}
// Grid clumps
for ( i = G.nmsgrid; i < G.nlens; i++ )
nParam++;
// Sourcelimit parameters
if( M.iclean == 2 )
for ( i = 0; i < S.ns; i++ )
for( ipx = SCX; ipx <= SFLUX; ipx ++ )
if( sblock[i][ipx] != 0 )
{
if( ipx == STHETA )
array[nParam][iVal] = array[nParam][iVal] * DTR;
nParam ++;
}
}
}
/* Return the value in <list> that has produced the best chi2*/
static double bestchi2(long int n, double *chi2, double *list)
{
double chi2min;
long int i, imin;
imin = 0;
chi2min = DBL_MAX;
for ( i = 0; i < n; i++)
if ( chi2[i] < chi2min )
{
chi2min = chi2[i];
imin = i;
}
return( list[imin] );
}
/* Return an estimated value of the values in <array> depending
* on the value of the <imethod> value.
* <imethod> may also be a line number in array[param].
* n is the number of elements in array[param].
*/
static double method(long int n, int param, double **array)
{
double val;
switch ( imethod )
{
case(-1):
val = mean(n, array[param]);
break;
case(-2):
val = median(n, array[param]);
break;
case(-3):
val = mode(n, array[param]);
break;
case(-4):
val = bestchi2(n, array[0], array[param]);
break;
case(-5): // o_rescale Atoms, with n parameters per atom
val = array[0][param];
break;
default:
val = array[param][imethod];
break;
}
return val;
}
/*
* reset the multi.grad(2) parameters for the optimisation.
*/
static void reset_grad_multi()
{
extern struct g_image I;
extern struct galaxie multi[][NIMAX];
long int i;
int k;
// reset the grad and grad2 arclet temporary structure for optimisation
for ( i = 0; i < I.n_mult; i++ )
for ( k = 0; k < I.mult[i]; k++ )
{
multi[i][k].grad2.a = 0;
multi[i][k].grad2.c = 0;
multi[i][k].grad.x = 0;
multi[i][k].grad.y = 0;
}
}
/*
* reset the arclet.grad(2) parameters for the optimisation.
*/
static void reset_grad_arclet()
{
extern struct galaxie arclet[NAMAX];
extern long int narclet;
long int i;
// reset the grad and grad2 arclet temporary structure for optimisation
for ( i = 0 ; i < narclet ; i++ )
{
arclet[i].grad2.a = arclet[i].grad2.c = 0;
arclet[i].grad.x = arclet[i].grad.y = 0;
}
}

Event Timeline